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Abstract
The article addresses the issues related to making decisions by an ensemble of clas‑
sifiers. Classifiers are built based on local tables, the set of local tables is called a 
dispersed knowledge. The paper discusses a novel application of Pawlak analysis 
model to examine the relations between classifiers and to create coalitions of classi‑
fiers. Each coalition has access to some aggregated knowledge on the basis of which 
joint decisions are made. Various types of coalitions are formed—a strong coalitions 
consisting of a large number and significant classifiers, and a weak coalitions con‑
sisting of insignificant classifiers. The new contributions of the paper is a systemati‑
cal investigation of the weights of coalitions that influence the final decision. Four 
different method of calculating the strength of the coalitions have been applied. Each 
of these methods consider another aspect of the structure of the coalitions. Gener‑
ally, it has been experimentally confirmed that, for a method that correctly identi‑
fies the relations between base classifiers, the use of coalitions weights improves the 
quality of classification. More specifically, it has been statistically confirmed that the 
best results are generated by the weighting method that is based on the size of the 
coalitions and the method based on the unambiguous of the decisions.

Keywords Conflict analysis · Dispersed knowledge · Multiple classifiers · Coalitions

1 Introduction

An important problem in today’s world is the dispersion of knowledge. Many units, 
dealing with the same subject and operating in the same field, gather the knowledge 
to which they have access. This knowledge can be the result of various factors—
experience, history, analyzed cases, sensors. Very popular form of saving knowledge 
is a decision table. However, if the knowledge contained in local decision tables is 
the result of different stimuli or analysis, the form of the tables can be very different, 
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both in terms of the sets of conditional attributes and the sets of the universe. It 
is not possible to aggregate such knowledge. In this situation, a more sophisticated 
approach should be used.

In this paper the novel application of Pawlak rough set analysis to a dispersed sys‑
tem is considered. This approach was proposed in Przybyła‑Kasperek (2017), and 
Przybyła‑Kasperek (2017) for the first time, in this article it is further developed and 
analyzed.

For the simultaneous use of dispersed knowledge, a dispersed system with a two‑
stage aggregation structure was proposed. In the first step, local tables on the basis 
of which classifiers make similar decisions for the test object, are aggregated. In the 
second step, probability vectors generated based on aggregated tables are merged. In 
the paper (Przybyła‑Kasperek 2017), Pawlak’s conflict model was used to identify 
relations between base classifiers that are constructed based on local tables. In this 
way coalitions are generated for which the aggregated tables are defined.

The Pawlak’s model was not originally designed for ensemble of classifiers. 
Therefore some modifications were proposed in the paper (Przybyła‑Kasperek 
2017) in order to apply the model to the problem of classification based on dispersed 
knowledge. Three approaches to adopting the model for the multiple classifier have 
been proposed. In the paper (Przybyła‑Kasperek 2017), the structure of clusters cre‑
ated using these methods was analyzed. It turned out that the quality of the gener‑
ated coalitions did not translate into the quality of the classification. The reason for 
this lies in the final decision‑making method, where each coalition (both strong and 
weak) has the same influence on the decision.

The novelty that is proposed in this paper is to apply the weights of the coali‑
tions in order to diversify the coalitions’ influence on final decision. Four different 
methods of counting weights are analyzed. Coalitions’ strength is calculated accord‑
ing to various factors. The first method takes into account the number of classifiers 
belonging to the coalition. The second method takes decisiveness of classifiers into 
account. The third method is a combination of the above two. The fourth method 
calculates the strength of the coalition depending on the variability of the vectors, 
which are generated based on the aggregated tables.

In this paper, these four methods have been applied to three approaches of using 
Pawlak’s model in the ensemble of classifiers. It was shown on the example that 
the use of different approaches to determining weights of coalitions generates com‑
pletely different results. In this paper in‑depth and systematical experiments were 
presented that have been conducted on fifteen different dispersed sets (three differ‑
ent data sets, each dispersed in five different versions). Three different approaches 
to using Pawlak analysis model and four different methods for determining weights 
were compared. Statistical tests were performed to confirm that the use of coalitions’ 
weights improved the quality of classification. It was found that the best results are 
generated by the weighting method that is based on the size of the coalitions and the 
method that is based on the unambiguous of the decisions.

To summarize the main contributions of this paper are as follows:

• proposition of four methods for determining the weights of coalitions in a dis‑
persed system using Pawlak analysis model,
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• examination of these methods for three approaches of application Pawlak 
analysis method in a dispersed system,

• comparison and statistical analysis of the obtained results.

In this paper, the problem of ensemble of classifiers is considered. However, the 
fundamental difference between the approaches known from the literature (Bloch 
1996; Shoemaker et  al. 2008; Stefanowski 2005; Tang et  al. 2006) and the one 
considered in the paper lies in the knowledge representation to which the clas‑
sifiers have access. In the paper it was assumed that knowledge is pre‑specified 
and accumulated separately by independent units. Therefore, we can not expect 
that the sets of objects or the sets of attributes fulfill some relations (inclusion, 
equality, or disjunction). Therefore, the approach that is considered in the paper 
is more general. In Panov and Džeroski (2007), a classifier ensembles with differ‑
ent sets of objects and different sets of attributes are considered. This method is a 
combination of Bagging and Random Subspace Method. However, the knowledge 
that is provided in this model is stored in a single data base and it is not possi‑
ble to use several local decision tables that were collected separately. In Polikar 
et  al. (2006), a system with incremental learning capability was proposed. This 
method allows to learn new information when a new data set is available. Data 
sets have different sets of attributes. This approach consists in creating several 
classifiers based on each new set of data. The system does not analyze the rela‑
tionship between the available data sets and does not check the consistency of the 
knowledge contained in them.

In the paper the approach is used in which the recognition of relations and the 
creation of coalitions are very important. In the literature, different approaches to 
this issue can be found (Lopes et al. 2008; Fatima et al. 2005; Kersten and Lai 2007; 
Rahwan et al. 2004). In this article the Pawlak’s model (Pawlak 1984) is used. The 
model allows to make advanced analysis of relations between agents and is a simple 
way to illustrate the basic properties of conflicts. The Pawlak’s model has been stud‑
ied by many authors (Deja 2002; Ramanna et al. 2006; Ramanna et al. 2007; Skow‑
ron and Deja 2002; Skowron et al. 2006). In Lang et al. (2017) a probabilistic model 
of conflict analysis was proposed, which is a combination of the Pawlak model and 
three‑way decisions approach. Instead of using one threshold value, as it is done 
in this paper, two thresholds were used in order to recognize relations in conflict 
situation. In Yao (2019) three levels of conflict (strong conflict, weak conflict, and 
non‑conflict) were considered. The author noticed some inconsistencies in the Paw‑
lak model and removed them. In this study a completely different application of the 
Pawlak’s model is considered.

The article is organized as follows. In the second section the three methods of 
using Pawlak’s model for ensemble of classifiers are discussed. The third section 
describes the general way of operating a dispersed system. In the fourth section, 
methods of calculating weights are presented. The fifth section contains the example 
of applying the coalitions’ weights in a dispersed system. The sixth section shows 
the experimental protocol. In the seventh section the results of experiments carried 
out using some data sets from the UCI repository are presented. The article con‑
cludes with a short summary.
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2  Application of the Pawlak’s Model for Ensemble of Classifiers

The Pawlak’s original model was proposed (Pawlak 1984, 2005, 2006) to analyze the 
conflict situation in which the agents (parties participating in the conflict) decided to 
resolve the dispute peacefully. In the model, each agent express his views on some 
issues, from the set A, by assigning one of three values. For each issue, each agent 
assigns a value: 1—means the agent is favoring the issue or 0—means the agent is neu‑
tral or −1—means the agent is opposed to the issue. Such information about the conflict 
situation is stored in the form of an information system S = (U,A) , where the universe 
U are agents, A is a set of issues, and the set of values of a ∈ A is equal Va = {−1, 0, 1} . 
Opinion of agent ag about issue a is the value a(ag).

In the Pawlak’s model, based on such information system, relations between agents 
are defined and coalitions of agents in friendship (clique) are created.

In the paper (Przybyła‑Kasperek 2017), this model was used to the prob‑
lem of ensemble of classifiers. It is assumed that each classifier is interpreted 
as an agent in the Pawlak’s model. The classifier ag generates a vector of ranks 
�ag(x) = [rag,1(x),… , rag,c(x)] that reflects the classification of the test object x (c is 
the number of decision classes). This is implemented as follows. At first, a vector of 
values �̄�ag(x) = [�̄�ag,1(x),… , �̄�ag,c(x)] is generated based on each local decision table 
using the modified m1‑Nearest Neighbor algorithm. That is, from each local decision 
table and each decision class, m1 objects that are the most similar to the test object are 
selected. The vector’s coordinate for a given decision value is equal to the average simi‑
larity of the relevant objects from that decision class. Based on this vector, a vector of 
ranks �ag(x) = [rag,1(x),… , rag,c(x)] for classifier ag is generated. For example, if we 
have five decision classes and the vector �̄�ag(x) = [0.8, 0.4, 0.6, 0.4, 1] then the vector 
of ranks is equal to �ag(x) = [2, 4, 3, 4, 1] . Which means that the decision with the high‑
est value in the vector �̄�ag(x) has the rank 1, the second decision in the order has the 
rank 2, and so on.

A set of issues A that is considered in the Pawlak’s conflict model is a set of decision 
attribute values. Based on the vectors of ranks, the views of the classifiers on the set of 
issues A are defined. Two approaches have been proposed to generate an information 
system.

In both methods, the information system S = (U,A) , where U is a set of classifi‑
ers, A is a set of decision attribute values, is defined. In the first method the vectors 
of ranks are converted into the views of the classifiers in the following way. Function 
a ∶ U → {−1, 0, 1} for each a ∈ A is defined

In the second method it is realized in the following way. Function a ∶ U → {−1, 0, 1} 
for each a ∈ A is defined

(1)a(ag) =

{
1 if rag,a(x) = 1

−1 if rag,a(x) > 1
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As can be seen, in the first method the classifier is favoring the decision only if it 
has the rank 1; neutrality was not used here. In the second method the classifier is 
favorable to the decisions with the rank 1 and it is neutral to the decisions with the 
rank 2. It may be concluded that, the first method of defining an information system 
is more restrictive.

In the Pawlak’s model, the relations between classifiers are defined based on 
the information system in one of the two following ways. A function of distance 
between agents can be used. The function �∗

B
∶ U × U → [0, 1] for the set of issues 

B ⊆ A is defined

where

Or a conflict function can be used. The function �B ∶ U × U → [0, 1] for the set of 
issues B ⊆ A is defined as follows

where �B(ag1, ag2) = {a ∈ B ∶ a(ag1) ≠ a(ag2)}.

The main difference between these functions refers to neutral classifiers. We will 
explain this by example. Let it be given the issue a ∈ A and the three classifiers 
ag1, ag2, ag3 ∈ U . We assume that a(ag1) = 1, a(ag2) = 0, a(ag3) = −1 . Then 
�∗
{a}

(ag1, ag2) = 0, 5 and �∗
{a}

(ag1, ag3) = 1 . Thus, the distance of classifiers who are 
neutral is less than the distance of classifiers who are in conflict. For the conflict 
function, we have �{a}(ag1, ag2) = 1 and �{a}(ag1, ag3) = 1 . Thus, the distance 
between neutral classifiers and classifiers in conflict is the same. This can be sum‑
marized that the conflict function is more restrictive.

In the Pawlak’s model, a pair of classifiers ag1, ag2 ∈ U is said to be:

• allied R+(x, y) , if 𝜌∗(ag1, ag2) < 0.5 (or 𝜌(ag1, ag2) < 0.5),
• in conflict R−(x, y) , if 𝜌∗(ag1, ag2) > 0.5 (or 𝜌(ag1, ag2) > 0.5),
• neutral R0(x, y) , if �∗(ag1, ag2) = 0.5 (or �(ag1, ag2) = 0.5).

Set X ⊆ U is a coalition if for every ag1, ag2 ∈ X , R+(ag1, ag2) and ag1 ≠ ag2.

(2)a(ag) =

⎧
⎪⎨⎪⎩

1 if rag,a(x) = 1

0 if rag,a(x) = 2

−1 if rag,a(x) > 2

(3)�∗
B
(ag1, ag2) =

∑
a∈B �

∗
a
(ag1, ag2)

card{B}
,

�∗
a
(ag1, ag2) =

⎧
⎪⎨⎪⎩

0 if a(ag1)a(ag2) = 1 or ag1 = ag2,

0.5 if a(ag1)a(ag2) = 0 and ag1 ≠ ag2,

1 if a(ag1)a(ag2) = −1.

(4)�B(ag1, ag2) =
card{�B(ag1, ag2)}

card{B}
,
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In the first method of defining the information system, there is no 0 value, so 
there are no neutral classifiers. This means that both functions assign the same 
values for each pair of classifiers. In the second method of defining the informa‑
tion system, neutral classifiers occur, so functions can have different values. As 
was explained above, the distance function is less restrictive for neutral agents—it 
assigns smaller value for neutral agents—than the conflict function. Based on the 
value of one of the functions, we define a coalition as a subset of classifiers such that 
for each pair of classifiers the value of the function is less than 0.5. Finally, three dif‑
ferent approaches to generating coalitions were considered:

• Approach 1—the first method of defining an information system is used,
• Approach 2—the second method of defining an information system and the func‑

tion of distance between agents are used,
• Approach 3—the second method of defining an information system and the con‑

flict function are used.

In the next section, issues related to the use of the created coalitions and the organi‑
zation of the dispersed system, are described.

3  Scheme of a Dispersed System’s Operation

Methods of creating coalitions that were described in the previous section can be 
applied to any ensemble of classifiers. In order to perform the experiments, some 
technical specifications have been adopted in this paper. These are described below. 
The way to generate vectors of ranks and the method for aggregation local decision 
tables have been taken from the previous work of the author (Przybyła‑Kasperek 
2017; Przybyła‑Kasperek and Wakulicz‑Deja 2016).

General rules of operation of a dispersed system can be described in several 
steps. In the first step, the coalitions of classifiers are determined using one of the 
three approaches discussed in the previous section.

In the second step, on the basis of local decision tables from one coalition an 
aggregated decision table is generated. The method of approximation aggregation is 
described in the paper (Przybyła‑Kasperek and Wakulicz‑Deja 2016). The method is 
implemented as follows. From each of the local tables and from each decision class, 
m2 objects that are the most similar to the test object are selected. Then the objects 
are merged under certain conditions. If objects come from the same decision class 
and have consistent values on common attributes, then they are written as one object 
in the aggregated table.

In the third step, a vector of values is determined on the basis of each aggregated 
table. The vector’s coordinate for a given decision value is equal to the maximum 
similarity of objects from the decision class and the aggregated table to the test 
object.

In the last step, some linear transformations are made on these vectors of values 
and global decisions is generated. However, this will be discussed in the next sec‑
tion, as the novelty—the coalitions’ weights—will be applied at this stage.
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4  Weights for Coalitions

The methods of creating coalitions of classifiers and identifying relations between 
classifiers that were described in Sect. 2, have already been analyzed in the paper 
(Przybyła‑Kasperek 2017). In this article the structures of created coalitions were 
compared in detail. It was found that approaches 1 and 2 tend to create a smaller 
number of large coalitions. For data sets with a large number of decision classes, 
the extreme situation was obtained, in which practically one coalition consisting 
of all classifiers was generated. This is a very unfavorable situation and means 
that, in this case, these approaches have lost the ability to identify the relations 
between the classifiers. Only approach 3, which uses the second method of defin‑
ing an information system and the conflict function, generates different result. A 
larger number of smaller coalitions has been obtained in this case. In addition, in 
this approach, classifiers are more likely to be simultaneously assigned to several 
coalitions. Finally, it was concluded that approach 3 has the greatest ability to 
identify relations between classifiers.

In the second step of the experiments that were presented in article (Przybyła‑
Kasperek 2017), the quality of the classification was analyzed using these three 
approaches. It was found that significant differences in coalitions’ structure do not 
translate into the quality of classification. The reason for this lies in the method 
that was used to generate final decisions. Some novelties are proposed in this 
paper so that the coalitions’ structure is taken into account when generating the 
final result. The method that was used previously and the introduced modifica‑
tions are described below.

As was mentioned earlier, after determination of the classifiers’ coalitions, for 
each coalition Cj an aggregated decision table is generated. Based on each of the 
aggregated tables, the vector of values �j(x) = [�j,1(x), … ,�j,c(x)] , where c is the 
number of decision classes and x is the classified object, is generated as described 
in Sect.  3. Each vector coordinate corresponds to one decision value. The final 
decisions are generated using these vectors.

In the previous papers, the method of density‑based algorithm was used. It 
was implemented as follows. First, the sum of the vectors �j(x) was calculated. 
Then a decision that has the maximum value of the vector’s coordinates 

∑
j �j(x) 

is selected. Finally, the DBSCAN algorithm was used in order to determine which 
values of the decision have vector’s coordinates densely located around the maxi‑
mum value (they are close enough to the maximum value). In this way, not only 
the decision which has the maximum support of all classifiers but also the ones 
for which support is sufficiently large is determined. However, if a simple sum 
of vectors is considered, each coalition has the same influence on the final deci‑
sion. The coalition’s structure and its size are not taken into account. In this situ‑
ation, the process of coalitions’ generation, and better identification of relations 
between classifiers is less important, and is not fully exploited.

Therefore, in this work, instead of a simple sum of the vectors, the weighted 
sum will be calculated. The weight is assigned to each coalition, which takes into 



556 M. Przybyła-Kasperek 

1 3

account the size, the structure and the commitment of the members into the coali‑
tion formation. Four different methods of calculating weights are considered.

The first method—the size of the coalition. In this method, a weight that takes into 
account the number of classifiers belonging to the coalition is assigned to each coa‑
lition. In all three approaches of applying the Pawlak’s model, inseparable coalitions 
are generated. And that is why it is important to take into account the partial involve‑
ment of the classifier in the formation of the coalition. For each classifier ag the coeffi‑
cient mx

ag
 , where x is the classified object, is determined. The value of this coefficient is 

inversely proportional to the number of coalitions to which the classifier belongs

where Cx
1
,… ,Cx

m
 are the coalitions for object x. The weight that is assigned to the 

coalition Cx
j
 is equal to 

∑
ag∈Cx

j

mx
ag

 . In this way, the larger coalitions will have a 
greater influence on the final decisions that were made.

The second method—the unambiguous of the decisions made by the classifiers. The 
quality of the decisions taken by classifiers belonged to the coalition should also be 
taken into account when determining the weight of the coalition. By the quality of the 
decisions we understand the uniqueness of decisions, in other words decisiveness of 
classifiers. If the classifier ag generates a vector of values �̄�ag(x) (defined in Sect. 3) in 
which the coordinates are very different, i.e. one of them is significantly larger than the 
others, it means that the classifier is certain of the taken decision. The probability of 
classifying the test object into one of the classes is much higher compared to the proba‑
bilities for other classes. The standard deviation of the values of the vector’s coordi‑
nates is the measure of the quality of the taken decisions that correspond to such 
assumptions. Thus, for each classifier ag the standard deviation of the values of the 
vector �̄�ag(x) is calculated, denoted as sdx

ag
 . The weight that is assigned to the coalition 

Cx
j
 is equal to

In this way, coalitions that contain more resolute and assertive classifiers will have a 
greater influence on the final decisions that were made.

The third method—the size of the coalition and the unambiguous of the taken deci‑
sions. In this method two previously discussed approaches have been combined. It 
means that both the size of the coalition expressed by the number of classifiers included 
in it and the assertiveness of these classifiers are taken into account. For the classifier, 
the two defined before coefficients (the partial involvement of the classifier in the 

(5)mx
ag

= (card{Cx
j
∶ ag ∈ Cx

j
})−1,

(6)

∑
ag∈Cx

j

sdx
ag∑m

j=1

∑
ag�∈Cx

j

sdx
ag�

.

Table 1  Test object x 
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

x 1 1 0 2 1 0 2 2 1 2 2 2 1 2 1
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Table 3  Vectors �̄�
ag
(x) and �

ag
(x)

Classifier �̄�ag(x) �ag(x) sdx
ag

—standard devia‑
tion of normalized 
�̄�ag(x)

ag1 [0.8, 0.4, 0.6, 0.4, 1] [2,4,3,4,1] 0.166
ag2 [0.6, 0.6, 0.6, 0.6, 0.4] [1,1,1,1,2] 0.065
ag3 [0.2, 0.4, 0.8, 0.6, 1] [5,4,2,3,1] 0.215
ag4 [0.67, 0.67, 0.33, 0.33, 0.33] [1,1,2,2,2] 0.159
ag5 [0.67, 0.67, 0.33, 0.67, 1] [2,2,3,2,1] 0.144
ag6 [1, 0.33, 0.67, 0.67, 0.67] [1,3,2,2,2] 0.144
ag7 [0.8, 0.4, 0.6, 0.8, 0.8] [1,3,2,1,1] 0.107

Table 4  Information systems
Formula 1

U v1 v2 v3 v4 v5
ag1 –1 –1 –1 –1 +1
ag2 +1 +1 +1 +1 –1
ag3 –1 –1 –1 –1 +1
ag4 +1 +1 –1 –1 –1
ag5 –1 –1 –1 –1 +1
ag6 +1 –1 –1 –1 –1
ag7 +1 –1 –1 +1 +1

Formula 2
U v1 v2 v3 v4 v5
ag1 0 –1 –1 –1 +1
ag2 +1 +1 +1 +1 0
ag3 –1 –1 0 –1 +1
ag4 +1 +1 0 0 0
ag5 0 0 –1 0 +1
ag6 +1 –1 0 0 0
ag7 +1 –1 0 +1 +1

Table 5  Function values—
Approach 1

ag1 ag2 ag3 ag4 ag5 ag6 ag7

ag1

ag2 1
ag3 0 1
ag4 0.6 0.4 0.6
ag5 0 1 0 0.6
ag6 0.4 0.6 0.4 0.2 0.4
ag7 0.4 0.6 0.4 0.6 0.4 0.4
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formation of the coalition and the standard deviation of the generated vector) are multi‑
plied. The weight for the coalition Cx

j
 is calculated as follows

The fourth method—the unambiguous of the decisions made by the coalition. At 
first glance this method looks the same as the second method. However, the basic 
difference is that this time when calculating the weight of the coalition, a vector that 
was generated based on the aggregated decision table of the coalition is considered. 
The value of the weight is not dependent on the decisions taken by the coalition’s 
members, but on aggregate knowledge of the coalition. Analogously to the second 
method, the standard deviation SDx

j
 of the vector �j(x) is calculated for each coali‑

tion. The weight for the coalition Cx
j
 is calculated as follows

where Cx
1
,… ,Cx

m
 are the coalitions for object x.

The method of generating the final decision is as follows. A vector equal to the 
weighted average of the vectors generated based on the aggregated tables is calculated

where �x
j
 is the weight generated for the coalition Cx

j
 and the test object x according 

to one of the four approaches described above. Then, as before, a decision with a 
maximum vector’s coordinates is chosen. Finally, the DBSCAN algorithm is used in 
order to select a set of decisions that are densely located around the decision with 
the maximum support of the classifiers.

(7)
∑
ag∈Cx

j

mx
ag
⋅ sdx

ag
.

(8)
SDx

j∑m

k=1
SDx

k

,

∑
j

�x
j
⋅ �j(x),

Fig. 1  A graphical representa‑
tion—Approach 1 ag7 ag1

ag2

ag3

ag4

ag5

ag6
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5  Example of Applying the Coalitions’ Weights in a Dispersed System

In this section, an example of the use of three approaches to creating coalitions of clas‑
sifiers and four methods of calculating coalitions weights will be presented. The exam‑
ple will also illustrate the differences in the results generated by these methods.

We assume that we have the set of seven classifiers (interpreted as agents in the 
Pawlak’s model) U = {ag1, ag2, ag3, ag4, ag5, ag6, ag7} and the set of five decision 
values A = {v1, v2, v3, v4, v5} . Each classifier is built based on one decision table 
Dagi

= (Uagi
,Aagi

, dagi), i ∈ {1,… , 7} , in this example we assume that the condi‑
tional attributes in decision tables are qualitative. For the test object x, the classifier 
ag, generates a vector of ranks rag(x) by using the m1‑nearest neighbor algorithm. We 

Table 7  Vectors of coalitions—Approach 1

Coalition Vector Vector transformation SDx
j
—

standard 
deviation

{ag1, ag3, ag5, ag6, ag7} [0.800,0.500,0.692,0.750,0.867] [0.222,0.139,0.192,0.208,0.240] 0.035
{ag2, ag4} [0.625,0.625,0.500,0.500,0.375] [0.238,0.238,0.190,0.190,0.143] 0.036
{ag4, ag6} [0.833,0.500,0.500,0.500,0.500] [0.294,0.176,0.176,0.176,0.176] 0.047

Table 8  Coalitions’ weights and weighted average of the vectors—Approach 1

Coalition Weight Vector

First method—coefficients mx
ag

 {ag1, ag3, ag5, ag6, ag7} 4.5∕7 = 0.643 [0.143,0.089,0.123,0.134,0.154]
 {ag2, ag4} 1.5∕7 = 0.214 [0.051,0.051,0.041,0.041,0.031]
 {ag4, ag6} 1∕7 = 0.143 [0.042,0.025,0.025,0.025,0.025]
 Sum [0.236,0.165,0.189,0.200,0.210]

Second method—coefficients sdx
ag

 {ag1, ag3, ag5, ag6, ag7} 0.595 [0.132,0.082,0.114,0.124,0.143]
 {ag2, ag4} 0.172 [0.041,0.041,0.033,0.033,0.025]
 {ag4, ag6} 0.233 [0.068,0.041,0.041,0.041,0.041]
 Sum [0.241,0.165,0.188,0.198,0.209]

Third method—coefficients mx
ag
⋅ sdx

ag

 {ag1, ag3, ag5, ag6, ag7} 0.704 [0.156,0.097,0.135,0.146,0.169]
 {ag2, ag4} 0.145 [0.034,0.034,0.028,0.028,0.021]
 {ag4, ag6} 0.152 [0.045,0.027,0.027,0.027,0.027]
 Sum [0.235,0.159,0.189,0.201,0.216]

Fourth method—coefficients SDx
j

 {ag1, ag3, ag5, ag6, ag7} 0.295 [0.065,0.041,0.057,0.061,0.071]
 {ag2, ag4} 0.401 [0.072,0.072,0.058,0.058,0.043]
 {ag4, ag6} 0.304 [0.118,0.071,0.071,0.071,0.071]
 Sum [0.256,0.184,0.185,0.190,0.185]
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assume that m1 = 1 and the test object is presented in Table  1. The nearest objects 
from each decision class of the decision tables and the values of the Gower similarity 
measure s(x, y) (that in the case of qualitative attributes is equivalent to the Hamming 
measure) are given in Table 2. Based on these similarity values, the vectors of val‑
ues �̄�ag(x) = [�̄�ag,1(x),… , �̄�ag,c(x)] , ag ∈ U, c = card{A} are generated, and then the 
rank vectors �ag(x) = [rag,1(x),… , rag,c(x)] are determined. Both are given in Table 3. 
In order to determine the coalitions of classifiers, the information system S = (U,A) is 
defined. Depending on the approach (Approach 1, Approach 2 or Approach 2), this is 
carried out in accordance with Formula 1 or Formula 2. Both information systems are 
presented in Table 4.

Based on the information systems, the values of the function of distance between 
agents (Formula 3) or the values of the conflict function (Formula 4) are determined, 
depending on the approach. From now on, the example will be solved separately for 
each approach.

5.1  Approach 1

In Approach 1 we use the first method of defining an information system (For‑
mula 1). In this case both functions (Formula 3 and Formula 4) are equivalent. The 

Table 9  Function values—
Approach 2

ag1 ag2 ag3 ag4 ag5 ag6 ag7

ag1

ag2 0.8
ag3 0.2 0.8
ag4 0.6 0.3 0.7
ag5 0.3 0.6 0.4 0.5
ag6 0.4 0.5 0.5 0.5 0.5
ag7 0.4 0.4 0.5 0.5 0.4 0.3

Fig. 2  A graphical representa‑
tion—Approach 2 ag7 ag1

ag2

ag3

ag4

ag5

ag6
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Table 11  Vectors of coalitions—Approach 2

Coalition Vector Vector transformation SDx
j
—

standard 
deviation

{ag1, ag3, ag5} [0.500,0.500,0.700,0.500,1] [0.156,0.156,0.219,0.156,0.313] 0.062
{ag1, ag5, ag7} [0.800,0.500,0.600,0.750,0.900] [0.225,0.141,0.169,0.211,0.254] 0.040
{ag1, ag6, ag7} [0.875,0.375,0.625,0.750,0.818] [0.254,0.109,0.182,0.218,0.238] 0.052
{ag2, ag4} [0.625,0.625,0.500,0.500,0.375] [0.238,0.238,0.190,0.190,0.143] 0.036
{ag2, ag7} [0.800,0.600,0.600,0.625,0.500] [0.256,0.192,0.192,0.200,0.160] 0.031

Table 12  Coalitions’ weights and weighted average of the vectors—Approach 2

Coalition Weight Vector

First method—coefficients mx
ag

 {ag1, ag3, ag5} 1.833/7=0.262 [0.041,0.041,0.057,0.041,0.082]
 {ag1, ag5, ag7} 1.167/7=0.167 [0.038,0.023,0.028,0.035,0.042]
 {ag1, ag6, ag7} 1.667/7=0.238 [0.061,0.026,0.043,0.052,0.057]
 {ag2, ag4} 1.5/7=0.214 [0.051,0.051,0.041,0.041,0.031]
 {ag2, ag7} 0.833/7=0.119 [0.030,0.023,0.023,0.024,0.019]
 Sum [0.220,0.164,0.192,0.193,0.230]

Second method—coefficients sdx
ag

 {ag1, ag3, ag5} 0.299 [0.047,0.047,0.065,0.047,0.093]
 {ag1, ag5, ag7} 0.238 [0.054,0.033,0.040,0.050,0.060]
 {ag1, ag6, ag7} 0.238 [0.060,0.026,0.043,0.052,0.056]
 {ag2, ag4} 0.128 [0.030,0.030,0.024,0.024,0.018]
 {ag2, ag7} 0.098 [0.025,0.019,0.019,0.020,0.016]
 Sum [0.216,0.155,0.192,0.193,0.244]

Third method—coefficients mx
ag
⋅ sdx

ag

 {ag1, ag3, ag5} 0.342 [0.053,0.053,0.075,0.053,0.107]
 {ag1, ag5, ag7} 0.163 [0.037,0.023,0.028,0.034,0.041]
 {ag1, ag6, ag7} 0.235 [0.060.0.026,0.043,0.051,0.056]
 {ag2, ag4} 0.192 [0.046,0.046,0.037,0.037,0.027]
 {ag2, ag7} 0.068 [0.017,0.013,0.013,0.014,0.011]
 Sum [0.213,0.161,0.195,0.189,0.242]

Fourth method—coefficients SDx
j

 {ag1, ag3, ag5} 0.279 [0.044,0.044,0.061,0.044,0.087]
 {ag1, ag5, ag7} 0.183 [0.041,0.026,0.031,0.039,0.046]
 {ag1, ag6, ag7} 0.235 [0.060,0.026,0.043,0.051,0.056]
 {ag2, ag4} 0.162 [0.039,0.039,0.031,0.031,0.023]
 {ag2, ag7} 0.142 [0.036,0.027,0.027,0.028,0.023]
 Sum [0.219,0.161,0.193,0.193,0.235]
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function values are shown in Table 5. For example, the value �A(ag1, ag4) is calcu‑
lated as follows

because values for v1, v2, v5 and ag1 , ag4 are different in the information system. Then 
the relations between the agents are determined (allied, conflict and neutrality). A 
graphical representation of the conflict situation is shown in Fig. 1. In this represen‑
tation classifiers are circles and if classifiers are allied then circles are linked. Coali‑
tions are the subset of vertices such that every two vertices are linked. There are 
three coalitions {ag1, ag3, ag5, ag6, ag7} , {ag2, ag4} and {ag4, ag6} . In the next step 
for each coalition an aggregated decision table is generated. For this purpose the 
method of approximation aggregation is used, we assume that m2 = 1 . This means 
that one object with the greatest similarity with the test object is selected from each 
decision class of the local decision table. Then objects from the same decision class 
that have consistent values on common attributes are written as one object in the 
aggregated table. The aggregated tables are presented in Table 6. For example, the 
third object from the aggregated table for the coalition {ag1, ag3, ag5, ag6, ag7} was 
created by combining objects x1

1
∈ Uag1

, x3
1
∈ Uag3

 and x6
1
∈ Uag6

 , because they are 
from the same decision class. For attributes a12 and a13 , we have values ?, because it 
was not possible to select objects from the universe Uag5

 and Uag7
 and decision class 

�A(ag1, ag4) =
card{v1, v2, v5}

card{A}
=

3

5
,

Table 13  Function values—
Approach 3

ag1 ag2 ag3 ag4 ag5 ag6 ag7

ag1

ag2 1
ag3 0.4 1
ag4 1 0.4 0.8
ag5 0.4 1 0.8 0.8
ag6 0.8 0.6 0.6 0.2 0.8
ag7 0.6 0.6 0.4 0.6 0.8 0.4

Fig. 3  A graphical representa‑
tion—Approach 3 ag7 ag1

ag2

ag3

ag4

ag5

ag6
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v1 that would have matching values on common attributes. Then for each aggregated 
table a vector of values is determined. The vector’s coordinate for a given decision 
value is equal to the maximum similarity of objects from the decision class and the 
aggregated table to the test object. The values of the similarity measure are given in 
Table 6. When we calculate these values, we ignore the attributes for which we have 
value ?. The vectors [�j,1(x), … ,�j,5(x)] , j ∈ {1,… , 7} that were determined based 
on the similarity values and those which were obtained after the transformation (so 
that the sum of the coefficients will be equal to 1) are shown in Table 7. Then the 
weights for the coalitions are calculated in one of four ways and the weighted sum of 
the vectors is calculated.

In the first method, the coefficients mx
ag

 are calculated for each classifier (For‑
mula  5). We have mx

ag4
= mx

ag6
=

1

2
 , because these classifiers belong to two coali‑

tions. For other classifiers, the coefficient is equal to 1. Thus, the coefficients for the 
first, second and third coalition are respectively equal to 4.5, 1.5 and 1. The vectors 
of coalitions that were multiplied by the weights and the weighted average of the 
vectors are given in Table 8.

In the second method, the standard deviations of the vectors’ coordinates that 
were generated by classifiers are calculated. These values are given in Table 3. The 
coefficients for the first, second and third coalition that were determined in accord‑
ance with Formula 6 are respectively equal to 0.595, 0.172 and 0.233. The vectors of 
coalitions that were multiplied by the weights and the weighted average of the vec‑
tors are given in Table 8.

In the third method, the weights for coalitions are determined according to For‑
mula 7. This method is a combination of the two previous methods. The weights are 
equal to 0.704, 0.145, 0.152 for the first, second and third coalition respectively. The 
vectors of coalitions that were multiplied by the weights and the weighted average of 
the vectors are given in Table 8.

In the last method, the standard deviations of the vectors generated by the coali‑
tions are calculated (Table 7). The coefficients for the first, second and third coali‑
tion that were determined in accordance with Formula 8 are respectively equal to 
0.295, 0.401 and 0.304. The vectors of coalitions that were multiplied by the weights 
and the weighted average of the vectors are given in Table 8.

Table 15  Vectors of coalitions—Approach 3

Coalition Vector Vector transformation SDx
j
—

standard 
deviation

{ag1, ag3} [0.500,0.400,0.700,0.500,1] [0.161,0.129,0.226,0.161,0.323] 0.069
{ag1, ag5} [0.800,0.667,0.600,0.429,1] [0.229,0.191,0.172,0.123,0.286] 0.055
{ag2, ag4} [0.625,0.625,0.500,0.500,0.375] [0.238,0.238,0.190,0.190,0.143] 0.036
{ag3, ag7} [0.800,0.400,0.800,0.800,0.875] [0.218,0.109,0.218,0.218,0.238] 0.046
{ag6, ag7} [0.875,0.375,0.625,0.750,0.750] [0.259,0.111,0.185,0.222,0.222] 0.050
{ag4, ag6} [0.833,0.500,0.500,0.500,0.500] [0.294,0.176,0.176,0.176,0.176] 0.047
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It should be noted that each method of calculating weights generates com‑
pletely different values. In the first, second and third methods, the first coalition 
{ag1, ag3, ag5, ag6, ag7} was recognized as the strongest. However, there are differ‑
ences in the ranking of remaining coalitions. The last method of calculating weights 
recognized the second coalition {ag2, ag4} as the strongest.

After calculating the weighted sum of vectors according to one of the meth‑
ods discussed above (see the last line in Table  8), the decision with the highest 

Table 16  Coalitions’ weights and weighted average of the vectors—Approach 3

Coalition Weight Vector

First method—coefficients mx
ag

 {ag1, ag3} 1/7=0.143 [0.023,0.018,0.032,0.023,0.046]
 {ag1, ag5} 1.5/7=0.214 [0.049,0.041,0.037,0.026,0.061]
 {ag2, ag4} 1.5/7=0.214 [0.051,0.051,0.041,0.041,0.031]
 {ag3, ag7} 1/7=0.143 [0.031,0.016,0.031,0.031,0.034]
 {ag6, ag7} 1/7=0.143 [0.037,0.016,0.026,0.032,0.032]
 {ag4, ag6} 1/7=0.143 [0.042,0.025,0.025,0.025,0.025]
 Sum [0.233,0.167,0.193,0.178,0.229]

Second method—coefficients sdx
ag

 {ag1, ag3} 0.212 [0.034,0.027,0.048,0.034,0.069]
 {ag1, ag5} 0.173 [0.040,0.033,0.030,0.021,0.050]
 {ag2, ag4} 0.125 [0.030,0.030,0.024,0.024,0.018]
 {ag3, ag7} 0.180 [0.039,0.020,0.039,0.039,0.043]
 {ag6, ag7} 0.140 [0.036,0.016,0.026,0.031,0.031]
 {ag4, ag6} 0.169 [0.050,0.030,0.030,0.030,0.030]
 Sum [0.229,0.155,0.197,0.180,0.240]

Third method—coefficients mx
ag
⋅ sdx

ag

 {ag1, ag3} 0.190 [0.031,0.025,0.043,0.031,0.061]
 {ag1, ag5} 0.227 [0.052,0.043,0.039,0.028,0.065]
 {ag2, ag4} 0.145 [0.034,0.034,0.028,0.028,0.021]
 {ag3, ag7} 0.161 [0.035,0.018,0.035,0.035,0.038]
 {ag6, ag7} 0.126 [0.033,0.014,0.023,0.028,0.028]
 {ag4, ag6} 0.152 [0.045,0.027,0.027,0.027,0.027]
 Sum [0.229,0.161,0.195,0.176,0.240]

Fourth method—coefficients SDx
j

 {ag1, ag3} 0.227 [0.037,0.029,0.051,0.037,0.073]
 {ag1, ag5} 0.181 [0.042,0.035,0.031,0.022,0.052]
 {ag2, ag4} 0.118 [0.028,0.028,0.022,0.022,0.017]
 {ag3, ag7} 0.153 [0.033,0.017,0.033,0.033,0.036]
 {ag6, ag7} 0.166 [0.043,0.018,0.031,0.037,0.037]
 {ag4, ag6} 0.155 [0.046,0.027,0.027,0.027,0.027]
 Sum [0.228,0.154,0.196,0.179,0.243]
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coefficient is determined and its group is generated using the DBSCAN algorithm. 
In each method, the decision v1 has the highest vector’s coefficient. However, com‑
paring the vectors generated in each of the methods we can see the differences 
that affect the result in the DBSAN method. For example, for the parameters value 
� = 0.019 and minPts = 2 of the DBSCAN algorithm, the third method generates 
the set {v1, v3, v4, v5} while all others methods generate the set {v1} . For the param‑
eters value � = 0.01 and minPts = 2 of the DBSCAN algorithm, all the methods 
determine the set {v1}.

5.2  Approach 2

In Approach 2 we use the second method of defining an information system (For‑
mula  2) and the function of distance between agents (Formula  3). The function 
values are shown in Table  9. For example, the value �∗

A
(ag1, ag4) is calculated as 

follows

because �∗
v1
(ag1, ag4) = �∗

v3
(ag1, ag4) = �∗

v4
(ag1, ag4) = �∗

v5
(ag1, ag4) = 0.5 and 

�∗
v2
(ag1, ag4) = 1 . Similarly as before, a graphical representation of the conflict situ‑

ation was prepared (Fig. 2). As can be seen, there are five coalitions {ag1, ag3, ag5} , 
{ag1, ag5, ag7} , {ag1, ag6, ag7} , {ag2, ag4} and {ag2, ag7}.

For each coalition an aggregated decision table is generated (see Table 10). The 
vectors that were determined for each aggregated table are given in Table 11. Then 
the weights for coalitions are calculated in one of four ways and the weighted sums 
of the vectors are calculated. These values are given in Table 12.

This time the decision v5 received the greatest support of the coalitions, dif‑
ferently than for Approach 1. Of course, also completely different vectors were 

�∗
A
(ag1, ag4) =

0.5 + 1 + 0.5 + 0.5 + 0.5

card{A}
=

3

5
,

Table 17  Example—comparison of results

Approach Coalitions Method of Result

calculating weights � = 0.019 � = 0.01

Approach 1 {ag1, ag3, ag5, ag6, ag7},
{ag2, ag4},
{ag4, ag6}

1
2
3
4

{v1}

{v1}

{v1, v3, v4, v5}

{v1}

{v1}

{v1}

{v1}

{v1}

Approach 2 {ag1, ag3, ag5},
{ag1, ag5, ag7},
{ag1, ag6, ag7},
{ag2, ag4} , {ag2, ag7}

1
2
3
4

{v1, v5}

{v5}

{v5}

{v1, v5}

{v1, v5}

{v5}

{v5}

{v5}

Approach 3 {ag1, ag3} , {ag1, ag5},
{ag6, ag7},
{ag4, ag6}

1
2
3
4

{v1, v5}

{v1, v5}

{v1, v5}

{v1, v5}

{v1, v5}

{v5}

{v5}

{v5}
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obtained for all four methods of determining the coalitions’ weights. As a conse‑
quence, we get different results. For the parameters value � = 0.019 and minPts = 2 
of the DBSCAN algorithm, the first and the last methods generate the set {v1, v5} 
while the second and the third methods generate the set {v5} . For the parameters 
value � = 0.01 and minPts = 2 of the DBSCAN algorithm, only the first method 
determines the set {v1, v5} , while the rest of the methods generate the set {v5}.

5.3  Approach 3

In Approach 3 we use the second method of defining an information system (For‑
mula  2) and the conflict function (Formula  4). The function values are shown in 
Table  13 and a graphical representation of the conflict situation is presented in 
Fig.  3. As can be seen, there are six coalitions {ag1, ag3} , {ag1, ag5} , {ag2, ag4} , 
{ag3, ag7} , {ag6, ag7} and {ag4, ag6}.

The aggregated decision tables for the coalitions are given in Table 14 and the 
vectors that were generated based on the aggregated tables are presented in Table 15.
The coalitions’ weights and the weighted sum of the vectors are given in Table 16.

The results obtained for Approach 3 are significantly different from the two previ‑
ously considered approaches. This time the decision v1 received the greatest support 

Table 18  Comparison the methods of determining the strength of the coalition (Approach  1 and Soy‑
bean)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 1/3/0.0031 0.021 0.271 1.886
2 1/3/0.0031 0.021 0.271 1.886
3 1/3/0.0031 0.021 0.271 1.886
4 1/3/0.0031 0.021 0.271 1.886

DSAg5 1 8/2/0.0028 0.032 0.295 2.093 8/2/0.0021 0.053 0.255 1.529
2 8/2/0.0026 0.035 0.295 2.037 8/2/0.0021 0.053 0.255 1.516
3 8/2/0.0027 0.035 0.295 2.027 8/2/0.0021 0.053 0.255 1.524
4 8/2/0.0023 0.035 0.290 2.043 8/2/0.0016 0.059 0.234 1.476

DSAg7 1 10/5/0.003 0.053 0.383 1.965 10/5/0.0018 0.069 0.316 1.529
2 10/5/0.0026 0.051 0.375 2.112 10/5/0.0016 0.074 0.309 1.521
3 10/5/0.0029 0.053 0.386 2.085 10/5/0.0017 0.072 0.314 1.529
4 10/5/0.0017 0.069 0.338 2.005 10/5/0.0011 0.077 0.311 1.564

DSAg9 1 6/2/0.0027 0.043 0.351 2.000 6/2/0.0017 0.061 0.301 1.548
2 6/2/0.0026 0.045 0.343 1.963 6/2/0.0015 0.064 0.285 1.492
3 6/2/0.0028 0.037 0.354 2.112 6/2/0.0016 0.064 0.285 1.495
4 1/3/0.0024 0.032 0.391 1.984 1/3/0.0015 0.045 0.319 1.521

DSAg11 1 7/2/0.0024 0.109 0.426 1.968 7/2/0.0016 0.144 0.388 1.540
2 7/2/0.0024 0.104 0.420 1.880 7/2/0.0015 0.138 0.383 1.559
3 7/2/0.0024 0.104 0.420 1.894 7/2/0.0016 0.138 0.386 1.551
4 4/3/0.0015 0.136 0.410 1.904 4/3/0.0009 0.144 0.391 1.561
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for the first method of calculating weights, for rest of the methods the decision v5 
received the biggest support. We get different results than before. For the param‑
eters value � = 0.019 and minPts = 2 of the DBSCAN algorithm, all the methods of 
calculating weights generate the set {v1, v5} . For the parameters value � = 0.01 and 
minPts = 2 of the DBSCAN algorithm, the first method determines the set {v1, v5} , 
while rest of the methods generate the set {v5}.

A comparison of the results obtained using three approaches to creating coali‑
tions and four methods of calculating coalitions weights is presented in Table 17. As 
can be seen, Approach 1 determined the largest coalitions, while Approach 3 gener‑
ated the smallest coalitions. The decisions v1 and v5 are preferred by all methods. 
However, the exact indication depends on the approach and the method of calculat‑
ing the weights. Even within one approach, the use of weights can affect that another 
decision has the greatest support of classifiers. It can be generalized that Approach 1 
considers that the best decision is the decision v1 , while Approaches 2 and 3 recog‑
nize that the best decision is the decision v5.

Table 19  Comparison the methods of determining the strength of the coalition (Approach  2 and Soy‑
bean)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 2/3/0.0031 0.021 0.271 1.886
2 2/3/0.0031 0.021 0.271 1.886
3 2/3/0.0031 0.021 0.271 1.886
4 2/3/0.0031 0.021 0.271 1.886

DSAg5 1 9/2/0.00273 0.037 0.290 2.013 9/2/0.0021 0.053 0.255 1.508
2 9/2/0.00259 0.035 0.295 2.043 9/2/0.0021 0.053 0.253 1.468
3 9/2/0.00266 0.037 0.290 2.024 9/2/0.0021 0.053 0.253 1.473
4 9/2/0.00238 0.035 0.290 2.040 9/2/0.00168 0.056 0.245 1.535

DSAg7 1 4/6/0.0029 0.040 0.356 2.080 4/6/0.00196 0.064 0.314 1.513
2 10/10/0.00266 0.045 0.346 2.093 10/10/0.00196 0.053 0.311 1.556
3 4/6/0.0028 0.043 0.348 2.069 4/6/0.00175 0.064 0.311 1.527
4 6/6/0.00224 0.051 0.367 1.989 6/6/0.00147 0.064 0.314 1.543

DSAg9 1 8/2/0.00238 0.035 0.324 1.902 8/2/0.00168 0.051 0.279 1.545
2 8/2/0.00266 0.032 0.327 2.069 8/2/0.00154 0.043 0.276 1.556
3 8/2/0.00273 0.029 0.335 2.082 8/2/0.00161 0.048 0.274 1.532
4 10/2/0.00168 0.032 0.319 1.955 10/2/0.00091 0.051 0.274 1.492

DSAg11 1 4/2/0.00245 0.066 0.370 1.785 4/2/0.00168 0.085 0.330 1.551
2 4/1/0.0028 0.056 0.420 2.104 4/1/0.00168 0.077 0.338 1.527
3 4/1/0.00259 0.059 0.386 1.856 4/1/0.00168 0.080 0.332 1.511
4 4/3/0.00182 0.072 0.394 1.785 4/3/0.00119 0.077 0.338 1.537
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6  Experimental Protocol

In this section, a description of the experiments that were carried out is included. 
Datasets and evaluation measures are presented.

Three datasets from the UCI repository were selected for the experiments: Soy‑
bean, Vehicle Silhouettes and Landsat Satellite. These sets were randomly dispersed 
into five different versions. The version with three, five, seven, nine and eleven local 
decision tables was considered. The dispersion was not intended to increase sys‑
tem efficiency but to provide dispersed knowledge, that is why the process was not 
optimized in any way. These sets were also used in the previous work (Przybyła‑
Kasperek and Wakulicz‑Deja 2014a, b, 2016), where you can find a detailed descrip‑
tion of the data used and the process of dispersion.

We use the following designations for dispersed systems:

• DSAg3—dispersed system with 3 tables,
• DSAg5—dispersed system with 5 tables,
• DSAg7—dispersed system with 7 tables,
• DSAg9—dispersed system with 9 tables,
• DSAg11—dispersed system with 11 tables.

Table 20  Comparison the methods of determining the strength of the coalition (Approach  3 and Soy‑
bean)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 2/3/0.0031 0.021 0.271 1.886
2 2/3/0.0031 0.021 0.271 1.886
3 2/3/0.0031 0.021 0.271 1.886
4 2/3/0.0031 0.021 0.271 1.886

DSAg5 1 1/2/0.0027 0.016 0.303 2.106 1/2/0.0017 0.032 0.242 1.439
2 1/2/0.0027 0.021 0.306 2.088 1/2/0.0016 0.040 0.245 1.439
3 1/2/0.0027 0.019 0.311 2.011 1/2/0.0014 0.040 0.234 1.386
4 1/2/0.00259 0.024 0.324 2.077 1/2/0.0014 0.051 0.239 1.410

DSAg7 1 1/2/0.0022 0.013 0.322 1.793 1/2/0.0017 0.027 0.293 1.574
2 1/2/0.0021 0.016 0.338 1.832 1/2/0.0014 0.029 0.295 1.519
3 1/2/0.0019 0.013 0.324 1.771 1/2/0.0014 0.029 0.285 1.516
4 5/6/0.00147 0.037 0.324 1.936 5/6/0.00105 0.048 0.285 1.564

DSAg9 1 2/3/0.0027 0.021 0.338 2.066 2/3/0.0017 0.053 0.247 1.319
2 2/3/0.0027 0.035 0.332 2.029 2/3/0.0016 0.061 0.245 1.311
3 2/3/0.0026 0.035 0.332 2.008 2/3/0.0017 0.053 0.253 1.351
4 1/3/0.00245 0.011 0.335 1.973 1/3/0.00119 0.045 0.255 1.346

DSAg11 1 2/4/0.003 0.029 0.311 1.883 2/4/0.0022 0.037 0.277 1.511
2 2/2/0.0027 0.029 0.332 1.777 2/2/0.0022 0.037 0.293 1.505
3 2/2/0.0024 0.027 0.314 1.593 2/2/0.0021 0.035 0.279 1.505
4 2/5/0.00203 0.040 0.407 1.894 2/5/0.00133 0.064 0.314 1.471
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In this paper, the quality of classification of a dispersed system with three differ‑
ent approaches to conflict analysis and four different methods of determining the 
strength of a coalition is examined. For this purpose, the train and test methodol‑
ogy was used, since it is suitable for dispersed data, as was explained in detail in 
Przybyła‑Kasperek and Wakulicz‑Deja (2016). For the Landsat Satellite data set 
validation, training, and test sets were used.

Because the method of density‑based algorithm that was used generates a set 
of decisions rather than a single decision, so the appropriate measures of quality 
of classification are used. There are:

• estimator of classification error 

Table 21  Comparison of the 
efficiency of inference using 
Approaches 1, 2, 3 and without 
the strength of the coalition 
(Soybean)

System m1/m2/� e eONE dDS t

Approach 1
 DSAg3 1/6/0.0043 0.021 0.295 1.939 0.17
 DSAg5 6/2/0.0043 0.051 0.290 1.973 0.10

6/2/0.0024 0.061 0.253 1.484 0.10
 DSAg7 10/6/0.005 0.059 0.378 2.027 2.58

10/6/0.0032 0.069 0.327 1.561 2.58
 DSAg9 6/3/0.0044 0.048 0.340 1.997 2.27

6/3/0.0024 0.064 0.309 1.559 2.27
 DSAg11 8/3/0.00425 0.106 0.399 2.037 5.25

8/3/0.0023 0.141 0.378 1.481 5.25
Approach 2
 DSAg3 1/6/0.0043 0.021 0.295 1.861 0.16
 DSAg5 9/2/0.003 0.053 0.261 1.564 0.10
 DSAg7 4/10/0.0044 0.059 0.319 1.676 5.36

4/10/0.0041 0.061 0.311 1.535 5.36
 DSAg9 5/3/0.0026 0.037 0.316 1.718 2.19

5/3/0.0023 0.048 0.279 1.527 2.19
 DSAg11 4/2/0.00575 0.056 0.407 1.992 1.55

4/2/0.00425 0.074 0.319 1.516 1.55
Approach 3
 DSAg3 1/3/0.0041 0.021 0.277 1.883 0.08
 DSAg5 1/2/0.00605 0.019 0.290 2.045 0.07

1/2/0.00365 0.048 0.245 1.481 0.07
 DSAg7 1/10/0.0082 0.019 0.362 2.003 0.46

1/10/0.006 0.029 0.306 1.585 0.46
 DSAg9 6/3/0.0066 0.045 0.364 2.011 2.05

6/3/0.004 0.066 0.279 1.383 2.05
 DSAg11 2/5/0.0101 0.045 0.348 1.819 7.11

2/5/0.0077 0.056 0.293 1.505 7.11
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 where I(d(x) ∉ d̂DS(x)) = 1 , when d(xi) ∉ d̂DS(x) and I(d(x) ∉ d̂DS(x)) = 0 , when 
d(x) ∈ d̂DS(x) ; d̂DS(x) is a set of global decisions generated by the system for the 
test object x

• estimator of classification ambiguity error 

 where I(d(x) ≠ d̂DS(x)) = 1 , when {d(x)} ≠ d̂DS(x) and I(d(x) ≠ d̂DS(x)) = 0 , 
when {d(x)} = d̂DS(x)

• the average size of the global decisions sets 

In the first stage of experiments, optimization of system’s parameters m1 , m2 and � 
was performed. As was mentioned earlier, the parameter m1 is used in the process 

e =
1

card{Utest}

∑
x∈Utest

I(d(x) ∉ d̂DS(x)),

eONE =
1

card{Utest}

∑
x∈Utest

I(d(x) ≠ d̂DS(x)),

dDS =
1

card{Utest}

∑
x∈Utest

card{d̂DS(x)}.

Table 22  Comparison the methods of determining the strength of the coalition (Approach 1 and Vehicle 
Silhouettes)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 1/9/0.0021 0.118 0.476 1.520 1/9/0.0009 0.185 0.366 1.217
2 1/9/0.0022 0.122 0.508 1.543 1/9/0.001 0.201 0.374 1.213
3 1/9/0.0022 0.122 0.508 1.543 1/9/0.001 0.201 0.374 1.213
4 2/9/0.0022 0.134 0.531 1.539 2/9/0.001 0.213 0.417 1.236

DSAg5 1 3/8/0.0016 0.169 0.524 1.516 3/8/0.0009 0.205 0.413 1.256
2 3/8/0.0018 0.157 0.539 1.535 3/8/0.0009 0.217 0.406 1.228
3 3/8/0.0018 0.157 0.539 1.535 3/8/0.0009 0.217 0.406 1.228
4 3/10/0.0016 0.240 0.610 1.524 3/10/0.0007 0.327 0.508 1.244

DSAg7 1 4/8/0.0019 0.094 0.465 1.531 4/8/0.0007 0.197 0.378 1.232
2 5/8/0.0019 0.098 0.480 1.551 5/8/0.0008 0.177 0.370 1.240
3 5/8/0.0019 0.098 0.480 1.551 5/8/0.0008 0.177 0.370 1.240
4 1/5/0.0014 0.189 0.594 1.555 1/5/0.0007 0.272 0.480 1.256

DSAg9 1 5/4/0.001 0.126 0.528 1.555 5/4/0.0005 0.224 0.421 1.248
2 5/4/0.0011 0.142 0.512 1.528 5/4/0.0005 0.240 0.425 1.224
3 5/5/0.0012 0.130 0.520 1.551 5/5/0.0005 0.244 0.429 1.232
4 4/5/0.001 0.193 0.591 1.579 4/5/0.0005 0.276 0.461 1.280

DSAg11 1 2/2/0.0009 0.122 0.480 1.524 2/2/0.0004 0.185 0.354 1.224
2 3/1/0.0009 0.134 0.512 1.512 3/1/0.0005 0.193 0.398 1.244
3 3/1/0.001 0.146 0.528 1.539 3/1/0.0005 0.193 0.382 1.228
4 2/3/0.0008 0.181 0.567 1.535 2/3/0.0003 0.248 0.437 1.217
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of selecting the relevant objects based on which the vectors �̄�ag(x) are defined. 
The parameter m2 is used, analogously, when defining the aggregated tables. In 
order to determine the optimal values for these parameters, experiments with dif‑
ferent parameter’s values ( m1,m2 ∈ {1,… , 10} for Soybean and Vehicle data sets 
and m1,m2 ∈ {1,… , 5} for Satellite) and the voting method (instead of the den‑
sity algorithm) were performed (so that the � parameter was not needed at this 
stage). Then the arguments for which the function

reaches the minimum values were chosen. In this way optimization of the param‑
eter values m1 and m2 was carried out taking into account two measures of quality 
of classification e and dDS . Then the value of � was optimized. For this purpose, 
a number of experiments with different values of this parameter were performed. 
The smallest analyzed value was 0.0001, and was increased by 0.00005. Finally, 
the values of � for which the greatest improvement in the quality was obtained and 
that ensures the average size of the global decisions sets comparable with the results 
presented in Przybyła‑Kasperek (2017) were selected. Optimal parameter values are 
given in the tables with results, which are presented in the next section.

f (m1,m2) = 0.6 ⋅ e + 0.4 ⋅ dDS

Table 23  Comparison the methods of determining the strength of the coalition (Approach 2 and Vehicle 
Silhouettes)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 1/9/0.0022 0.110 0.469 1.539 1/9/0.001 0.189 0.370 1.232
2 3/2/0.0024 0.110 0.484 1.520 3/2/0.0011 0.197 0.382 1.217
3 3/2/0.0024 0.110 0.488 1.524 3/2/0.0011 0.197 0.382 1.217
4 3/2/0.0022 0.130 0.496 1.520 3/2/0.0011 0.213 0.398 1.224

DSAg5 1 2/1/0.0016 0.154 0.543 1.555 2/1/0.0009 0.224 0.433 1.260
2 7/1/0.0019 0.157 0.547 1.528 7/1/0.0009 0.236 0.449 1.260
3 6/1/0.0017 0.167 0.547 1.520 6/1/0.0008 0.232 0.429 1.236
4 6/1/0.0016 0.236 0.591 1.535 6/1/0.0008 0.291 0.476 1.260

DSAg7 1 2/8/0.0021 0.110 0.472 1.524 2/8/0.0008 0.177 0.362 1.232
2 2/5/0.0022 0.091 0.480 1.535 2/5/0.0009 0.173 0.354 1.228
3 6/6/0.0019 0.114 0.472 1.508 6/6/0.0008 0.177 0.346 1.220
4 6/6/0.0018 0.146 0.516 1.528 6/6/0.0009 0.248 0.409 1.228

DSAg9 1 5/4/0.001 0.122 0.512 1.543 5/4/0.0005 0.213 0.378 1.220
2 2/4/0.0012 0.126 0.524 1.535 2/4/0.0006 0.228 0.421 1.248
3 5/4/0.0011 0.134 0.524 1.539 5/4/0.0005 0.217 0.413 1.256
4 5/4/0.0011 0.165 0.535 1.539 5/4/0.0005 0.264 0.417 1.228

DSAg11 1 1/1/0.0009 0.122 0.484 1.520 1/1/0.0005 0.177 0.378 1.256
2 1/1/0.0011 0.118 0.504 1.528 1/1/0.0005 0.197 0.374 1.236
3 1/1/0.0011 0.130 0.496 1.531 1/1/0.0006 0.185 0.378 1.252
4 1/1/0.001 0.154 0.520 1.539 1/1/0.0004 0.244 0.402 1.236
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7  Experiments and Discussion

In this section, the results of experiments with the division on the analyzed data‑
sets will be presented. Then comparison of the results with regards to three conflict 
analysis methods and four methods of determining the strength of the coalition will 
be made in the last part of this section.

7.1  Results with the Soybean Data Set

The results of the experiments with the Soybean data set are presented in 
Tables 18, 19, 20. Each table illustrates approach that was used to generate the coali‑
tions: Approach 1, 2 and 3. The following information is given in the tables:

• the version of dispersion (System)
• the methods of determining the strength of the coalition (Weights): 1—the size 

of the coalition, 2—the unambiguous of the decisions made by the classifiers, 

Table 24  Comparison the methods of determining the strength of the coalition (Approach 3 and Vehicle 
Silhouettes)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 1/7/0.0022 0.114 0.457 1.504 1/7/0.001 0.193 0.378 1.228
2 5/10/0.0026 0.110 0.496 1.531 5/10/0.0012 0.189 0.366 1.217
3 5/10/0.0026 0.110 0.496 1.531 5/10/0.0012 0.189 0.366 1.217
4 2/4/0.0026 0.110 0.496 1.543 2/4/0.0011 0.209 0.378 1.213

DSAg5 1 1/8/0.00168 0.150 0.531 1.559 1/8/0.00102 0.224 0.433 1.264
2 9/4/0.002 0.189 0.555 1.500 9/4/0.0011 0.248 0.433 1.236
3 9/4/0.002 0.189 0.555 1.500 9/4/0.0011 0.248 0.433 1.236
4 1/1/0.0018 0.213 0.571 1.504 1/1/0.0008 0.287 0.484 1.232

DSAg7 1 1/7/0.0019 0.102 0.472 1.528 1/7/0.0009 0.189 0.374 1.236
2 5/7/0.00202 0.087 0.469 1.535 5/7/0.0008 0.181 0.335 1.217
3 5/7/0.00202 0.087 0.469 1.535 5/7/0.0008 0.181 0.335 1.217
4 1/8/0.0018 0.161 0.551 1.539 1/8/0.0007 0.236 0.417 1.228

DSAg9 1 5/4/0.00105 0.126 0.528 1.543 5/4/0.0005 0.232 0.421 1.248
2 5/1/0.0011 0.146 0.516 1.535 5/1/0.0005 0.256 0.429 1.228
3 4/2/0.0012 0.154 0.539 1.547 4/2/0.0006 0.248 0.425 1.232
4 4/4/0.001 0.201 0.551 1.492 4/4/0.0005 0.299 0.465 1.224

DSAg11 1 1/1/0.001 0.114 0.500 1.535 1/1/0.0005 0.181 0.370 1.260
2 5/3/0.001 0.130 0.480 1.496 5/3/0.0005 0.177 0.346 1.224
3 5/3/0.0011 0.118 0.496 1.547 5/3/0.0005 0.181 0.350 1.224
4 2/3/0.001 0.173 0.539 1.535 2/3/0.0005 0.217 0.394 1.236
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3—the size of the coalition and the unambiguous of the taken decisions, 4—the 
unambiguous of the decisions made by the coalition

• the optimal parameters values m1 , m2 and �
• the measures to determine the quality of inference: e, eONE and dDS

In Tables 18, 19, 20 the best results were in bold.

Table 25  Comparison of the 
efficiency of inference using 
Approaches 1, 2, 3 and without 
the strength of the coalition 
(Vehicle Silhouettes)

System m1/m2/� e eONE dDS t

Approach 1
 DSAg3 1/2/0.0036 0.134 0.500 1.535 0.05

1/2/0.0018 0.197 0.425 1.272 0.05
 DSAg5 1/2/0.0033 0.228 0.626 1.535 0.06

1/2/0.00195 0.295 0.480 1.224 0.06
 DSAg7 1/7/0.00405 0.201 0.614 1.547 0.47

1/7/0.0018 0.268 0.492 1.260 0.47
 DSAg9 10/2/0.00225 0.232 0.614 1.508 0.15

10/2/0.0015 0.303 0.528 1.276 0.15
 DSAg11 10/4/0.0027 0.197 0.602 1.532 5.10

10/4/0.00135 0.252 0.449 1.236 5.10
Approach 2
 DSAg3 9/2/0.003 0.118 0.500 1.539 0.07

9/2/0.0018 0.181 0.417 1.268 0.07
 DSAg5 2/10/0.00315 0.217 0.602 1.531 0.52

2/10/0.00135 0.283 0.465 1.220 0.52
 DSAg7 10/6/0.0039 0.146 0.535 1.535 1.02

10/6/0.0021 0.205 0.425 1.276 1.02
 DSAg9 10/5/0.003 0.205 0.567 1.528 9.43

10/5/0.0015 0.264 0.457 1.252 9.43
 DSAg11 9/3/0.00315 0.154 0.531 1.531 2.46

9/3/0.00135 0.205 0.421 1.252 2.46
Approach 3
 DSAg3 1/2/0.00495 0.102 0.472 1.535 0.04

1/2/0.0024 0.177 0.390 1.256 0.04
 DSAg5 1/9/0.0048 0.177 0.520 1.524 0.11

1/9/0.0021 0.264 0.449 1.232 0.11
 DSAg7 10/6/0.0063 0.154 0.516 1.500 0.21

10/6/0.0033 0.205 0.413 1.244 0.21
 DSAg9 1/1/0.0054 0.189 0.543 1.512 0.08

1/1/0.00255 0.268 0.457 1.260 0.08
 DSAg11 3/1/0.00465 0.154 0.520 1.520 0.40

3/1/0.0024 0.213 0.409 1.272 0.40
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Comparing the results presented in Tables 18, 19 and  20 the following conclu‑
sions can be drawn. Approach 3 of creating coalitions of classifiers generates the 
best results. The improvement of the quality of classification is significant compared 
to Approaches 1 and 2. In general it can be said that the worst results were obtained 
using Approach 1. Approach 2 improves the quality of classification compared to 
Approach 1. However, both are much worse than Approach 3. These conclusion 
apply to ensemble of more than three classifiers. For three classifiers, method of 
conflict analysis and method of determining the strength of the coalition are irrel‑
evant. It is easy to justify this result. Simply, three classifiers are too small to gener‑
ate any meaningful coalitions. It can not be concluded that any of the methods of 
determining the strength of the coalition is better than others.

The results obtained using the coalitions’ strength were compared with the results 
obtained when the weights were not used. These results are shown in Table 21. The 
best results within this table were in bold. It was noted that the use of coalitions’ 
weights significantly improved the quality of classification. But the most spectacu‑
lar improvement was obtained for Approach 3. Such results are not surprising as 
already in the paper (Przybyła‑Kasperek 2017) it was shown that Approach 3 rec‑
ognizes relations between classifiers in the best way and reflects them in the form 
of coalitions. This is why, in this approach, the strengthening of the importance of 

Table 26  Comparison the methods of determining the strength of the coalition (Approach 1 and Landsat 
Satellites)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 1/4/0.0013 0.044 0.409 1.745
2 1/4/0.0013 0.044 0.409 1.745
3 1/4/0.0013 0.044 0.409 1.745
4 1/4/0.0013 0.044 0.409 1.745

DSAg5 1 1/4/0.0015 0.015 0.381 1.656 1/4/0.0007 0.045 0.222 1.240
2 1/4/0.0015 0.015 0.381 1.656 1/4/0.0007 0.045 0.222 1.240
3 1/4/0.0015 0.015 0.381 1.656 1/4/0.0007 0.045 0.222 1.240
4 1/4/0.0015 0.015 0.381 1.656 1/4/0.0007 0.045 0.223 1.241

DSAg7 1 2/4/0.0013 0.015 0.371 1.612 2/4/0.0006 0.054 0.226 1.237
2 2/4/0.00135 0.016 0.384 1.647 2/4/0.0006 0.054 0.226 1.237
3 2/4/0.00135 0.016 0.384 1.647 2/4/0.0006 0.054 0.226 1.237
4 2/4/0.00135 0.015 0.384 1.650 2/4/0.0006 0.053 0.226 1.238

DSAg9 1 1/2/0.00105 0,035 0,404 1,612 1/2/0.0005 0.078 0.264 1.236
2 1/2/0.00105 0.034 0.404 1.613 1/2/0.0005 0.082 0.265 1.234
3 1/2/0.00105 0.035 0.405 1.612 1/2/0.0005 0.079 0.263 1.237
4 1/2/0.00105 0.037 0.408 1.610 1/2/0.0005 0.086 0.270 1.233

DSAg11 1 1/1/0.00105 0.022 0.386 1.616 1/1/0.0005 0.063 0.231 1.223
2 1/1/0.00105 0.024 0.383 1.607 1/1/0.0005 0.064 0.231 1.220
3 1/1/0.00105 0.022 0.384 1.611 1/1/0.0005 0.062 0.233 1.226
4 1/1/0.0011 0.025 0.398 1.646 1/1/0.0005 0.064 0.236 1.229
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coalitions gives the best results. As was previously stated, for ensemble of three 
classifiers the use of weights have not changed the quality of classification.

7.2  Results with the Vehicle Silhouettes Data Set

The results of the experiments with the Vehicle Silhouettes data set are presented in 
Tables 22, 23, 24. Each table illustrates approach that was used to generate the coali‑
tions: Approach 1, 2 and 3. The information in the tables is similar to the previous 
tables.

In Tables 22, 23, 24 the best results were in bold.
Based on the results given in Tables 22, 23 and 24 it can be concluded that for 

the Vehicle Silhouettes data set, there were no such significant differences between 
the results obtained using Approaches 1, 2 and 3 as it was in the case of the Soybean 
data set. One can certainly be said that Approaches 2 and 3 are better than Approach 
1. Note that, Approach 3 generates only slightly better results than Approach 2. 
Comparing the methods of determining the strength of the coalition, most often, the 

Table 27  Comparison the methods of determining the strength of the coalition (Approach 2 and Landsat 
Satellites)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 2/4/0.0013 0.041 0.405 1.738
2 2/4/0.0013 0.041 0.404 1.734
3 2/4/0.0013 0.041 0.404 1.734
4 4/4/0.0013 0.041 0.404 1.733

DSAg5 1 1/2/0.0015 0.015 0.381 1.651 1/2/0.0007 0.044 0.229 1.240
2 1/4/0.0015 0.018 0.380 1.640 1/4/0.0007 0.045 0.216 1.224
3 2/4/0.0015 0.018 0.378 1.636 2/4/0.0007 0.044 0.222 1.233
4 2/4/0.0015 0.017 0.378 1.638 2/4/0.0007 0.047 0.223 1.235

DSAg7 1 1/1/0.0013 0.014 0.371 1.619 1/1/0.00062 0.043 0.231 1.244
2 1/1/0.0013 0.013 0.372 1.628 1/1/0.0006 0.045 0.229 1.236
3 2/4/0.00135 0.014 0.377 1.628 2/4/0.0006 0.050 0.218 1.222
4 1/2/0.00135 0.011 0.376 1.637 1/2/0.0006 0.048 0.226 1.242

DSAg9 1 1/2/0.00115 0.024 0.413 1.648 1/2/0.0005 0.065 0.252 1.230
2 1/2/0.00115 0.028 0.412 1.641 1/2/0.0005 0.063 0.254 1.234
3 1/2/0.00115 0.027 0.411 1.642 1/2/0.0005 0.067 0.252 1.226
4 1/4/0.0012 0.026 0.395 1.650 1/4/0.0005 0.063 0.250 1.240

DSAg11 1 1/1/0.0011 0.016 0.395 1.646 1/1/0.0005 0.056 0.232 1.236
2 1/2/0.00115 0.017 0.403 1.656 1/2/0.0005 0.052 0.235 1.240
3 1/3/0.00115 0.018 0.395 1.644 1/3/0.0005 0.050 0.228 1.236
4 1/2/0.0011 0.017 0.399 1.653 1/2/0.0005 0.055 0.245 1.250



585

1 3

Coalitions’ Weights in a Dispersed System with Pawlak Conflict…

best results were generated by the size of the coalition method and the unambiguous 
of the decisions made by the classifiers method.

Table 25 shows the results obtained without the use of coalitions’ weights. The 
best results within this table were in bold. Comparing results that were presented 
in Tables  22–25, it can be said that much better results were generated when the 
strength of the coalition are taken into account. When there is a larger number of 
classifiers we can expect a greater improvement. For three classifiers this improve‑
ment is negligible, or as for Approach 3, even worse results were obtained. This situ‑
ation seems to be logical and it was already been commented earlier.

7.3  Results with the Landsat Satellites Data Set

The results of the experiments with the Landsat Satellites data set are presented 
in Tables 26, 27, 28. Each table illustrates approach that was used to generate the 
coalitions: Approach 1, 2 and 3. The information in the tables is similar to the 
previous tables.

In Tables 26, 27, 28 the best results were in bold.
For the Landsat Satellites data set, the best results were generated using 

Approach 3, while the worst for Approach 1. Differences in the quality of 

Table 28  Comparison the methods of determining the strength of the coalition (Approach 3 and Landsat 
Satellites)

System Weights m1/m2/� e eONE dDS m1/m2/� e eONE dDS

DSAg3 1 1/4/0.0014 0.023 0.406 1.768
2 1/4/0.0014 0.022 0.402 1.751
3 1/4/0.0014 0.021 0.402 1.754
4 1/4/0.00135 0.022 0.396 1.721

DSAg5 1 5/2/0.00147 0.013 0.372 1.643 5/2/0.0007 0.042 0.230 1.241
2 2/2/0.0015 0.014 0.378 1.632 2/2/0.0007 0.045 0.224 1.232
3 3/2/0.00155 0.013 0.384 1.653 3/2/0.0007 0.044 0.224 1.230
4 4/5/0.0015 0.017 0.376 1.643 4/5/0.0007 0.045 0.220 1.232

DSAg7 1 1/1/0.0014 0.012 0.383 1.655 1/1/0.0007 0.045 0.227 1.244
2 1/1/0.0014 0.014 0.378 1.653 1/1/0.0007 0.042 0.225 1.242
3 1/1/0.0014 0.013 0.377 1.636 1/1/0.0007 0.043 0.225 1.242
4 1/2/0.00135 0.011 0.385 1.640 1/2/0.0006 0.051 0.230 1.236

DSAg9 1 1/2/0.00125 0.017 0.392 1.630 1/2/0.0006 0.050 0.240 1.244
2 1/5/0.0014 0.017 0.387 1.639 1/5/0.0007 0.051 0.234 1.242
3 3/5/0.0013 0.023 0.407 1.667 3/5/0.0006 0.050 0.247 1.258
4 1/2/0.0012 0.021 0.393 1.633 1/2/0.0006 0.063 0.257 1.253

DSAg11 1 1/1/0.00125 0.014 0.387 1.632 1/1/0.0006 0.044 0.224 1.245
2 1/1/0.0013 0.013 0.387 1.627 1/1/0.0006 0.046 0.218 1.229
3 1/1/0.0013 0.014 0.389 1.648 1/1/0.0006 0.044 0.222 1.239
4 1/1/0.0012 0.018 0.384 1.622 1/1/0.0005 0.053 0.218 1.220
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classification are noticeable, especially for a greater number of classifiers. 
Thus, using the weights, it was possible to translate better ability to recognize 
the relationship between the classifiers of Approach 3 (which was already been 
demonstrated in paper Przybyła‑Kasperek 2017) on the quality of classification. 
It should be noted that for Approach 1, the method that was used to calculate 
weights of coalitions is irrelevant. For all four methods the same results were 
obtained. This is due to poor quality of coalitions that were built using Approach 
1. It can not be stated that one of the methods of calculating the weights of coa‑
litions is the best. The only thing that can be said is that the method consider‑
ing the unambiguous of the decisions made by the coalition usually generates the 
worst results.

Table 29  Comparison of the 
efficiency of inference using 
Approaches 1, 2, 3 and without 
the strength of the coalition 
(Landsat Satellites)

System m1/m2/� e eONE dDS t

Approach 1
 DSAg3 1/3/0.0013 0.041 0.409 1.758 4.47
 DSAg5 1/1/0.0014 0.018 0.360 1.607 5.19

1/1/0.0007 0.045 0.235 1.245 5.19
 DSAg7 3/5/0.0013 0.014 0.366 1.596 20.34

3/5/0.0006 0.051 0.224 1.241 20.34
 DSAg9 2/50.0012 0.042 0.400 1.618 42.58

2/5/0.0006 0.077 0.263 1.253 42.58
 DSAg11 1/3/0.00153 0.041 0.376 1.632 38.55

1/3/0.0009 0.071 0.264 1.259 38.55
Approach 2
 DSAg3 1/3/0.0013 0.038 0.401 1.720 4.49
 DSAg5 4/3/0.00154 0.019 0.379 1.627 6.41

4/3/0.0008 0.048 0.238 1.258 6.41
 DSAg7 1/5/0.0015 0.027 0.375 1.611 18.06

1/5/0.0008 0.043 0.231 1.243 18.06
 DSAg9 1/4/0.0015 0.043 0.378 1.606 27.49

1/4/0.0008 0.066 0.256 1.239 27.49
 DSAg11 1/3/0.00157 0.039 0.387 1.622 34.09

1/3/0.0008 0.062 0.245 1.233 34.09
Approach 3
 DSAg3 1/3/0.0015 0.035 0.388 1.711 5.02
 DSAg5 2/2/0.0018 0.028 0.382 1.607 5.59

2/2/0.001 0.047 0.240 1.245 5.59
 DSAg7 1/3/0.0021 0.031 0.371 1.612 7.39

1/3/0.0013 0.049 0.246 1.240 7.39
 DSAg9 1/1/0.0027 0.043 0.389 1.613 6.56

1/1/0.0015 0.071 0.253 1.237 6.56
 DSAg11 1/1/0.0032 0.041 0.377 1.635 7.45

1/1/0.0019 0.063 0.244 1.245 7.45
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Comparison of results obtained without the use of the strength of the coalition was 
also performed for the Landsat Satellites data set. Results are presented in Table 29. 
The best results within this table were in bold. It has been noted that for Approaches 
1 and 2 not always the use of weights improves the quality of classification. However, 
for a greater number of classifiers improving is noticeable. Only for Approach 3 we can 
always be sure of improving the results when using weights, this improvement is very 
significant and noticeable.

7.4  Comparison of Methods of Coalitions’ Generation and Methods 
of Determining Coalitions’ Strength

Based on the results described in the previous sections, it was found that the use 
of coalitions’ strength has improved the quality of classification, regardless of the 
approach to creating coalitions that was used. It is difficult to designate which of 
the ways of calculating weights is the best. However, the results show that the last 
method—the unambiguous of the decisions made by the coalition—achieves the 
worst results. The first method—the size of the coalition—very often produces good 
results. A statistical analysis was performed to confirm this observations.

The results were divided into five groups—four groups for different methods of 
calculating weights and one group consists of the values of error obtained without 

Fig. 4  Comparison of the classification error e for four different methods of determining coalitions’ 
strength and for approach without any weights
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calculating the weights. The Friedman’s test was performed at first. The test con‑
firmed that the differences between the classification error in these five groups are 
significant with a level of p = 0.000001 . Then, in order to determine the pairs of 
methods between which statistically significant differences occur, a nonparamet‑
ric Wilcoxon each pair test and a parametric t‑test for dependent groups were per‑
formed. Both tests shown that there is no significant difference between pairs of 
methods 2, 3 (the unambiguous of the decisions made by the classifiers and the size 
of the coalition and the unambiguous of the taken decisions) and methods 4, 5 (the 
unambiguous of the decisions made by the coalition and without calculating the 
weights). For all other pairs the importance of differences was confirmed at a signifi‑
cance level less than 0.05.

The box–whiskers chart which presents statistics for these five groups was cre‑
ated (Fig. 4). It can be clearly seen that the box for the first method for calculating 
the weights of the coalitions is located the lowest in the graph. The second and the 
third methods have comparable boxes, and the boxes for the last method of calculat‑
ing weights and approach without weights are the largest and are at the top of the 
graph.

The final conclusion is that the first method is the best for use. The second and 
the third methods are in the second position, and it does not make sense to use the 
fourth method.

Fig. 5  Comparison of the classification error e for three different approaches to generating coalitions
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Similar tests were made to find out which of the approaches to coalition crea‑
tion is the best. In the previous sections it was stated that Approach 3 is the best, 
and Approach 1 is the worst. In order to statistical justification of this, all results 
are divided into three groups, each representing different approach. The Friedman’s 
test confirmed that the differences between the classification error for these three 
approaches are significant with a level of p = 0.000001 . Both tests—a nonparamet‑
ric Wilcoxon each pair test and a parametric t‑test for dependent groups—confirmed 
that for all pairs of different approaches the differences are statistically significant at 
a significance level less than 0.0004.

The box–whiskers chart that presents statistics for these three groups is shown on 
Fig. 5. The smallest median of error values is observed for Approach 3 and the larg‑
est for Approach 1. The final conclusion is that the best way of creating coalitions is 
Approach 3.

8  Summary

In this paper, three approaches to use the Pawlak’s conflict model in order to ana‑
lyze relations between classifiers and to creation coalitions of classifiers were 
considered. Four methods of calculating coalitions weights, in order to take 
advantage of the generated coalitions, were proposed. The results of the experi‑
ments on three data sets that were dispersed in five different versions were pre‑
sented. The obtained results were compared and hypotheses were statistically jus‑
tified. It has been found that Approach 3 to coalition creation generates the best 
results. In terms of the weights of the coalitions the method that is based on the 
size of the coalition is the best. A little worse results were generated by the unam‑
biguous of the decisions made by the classifiers method and the size of the coali‑
tion and the unambiguous of the taken decisions method.

In this paper it was shown that the use of coalitions’ weights improves the 
quality of classification as long as the coalitions are correctly identified. Three 
approaches of using Pawlak’s analysis model were used to determine the coali‑
tions, but only one of them has the ability to generate well‑formed coalitions. 
Further modifications of application Pawlak’s conflict analysis method to a dis‑
persed system are planned in the future work. It is planned to use the approaches 
proposed in Lang et  al. (2017); Yao (2019) to develop ideas presented in this 
paper.
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