
Group Decis Negot (2018) 27:33–59
https://doi.org/10.1007/s10726-017-9549-3

Multiple Criteria Assessment of Insulating Materials
with a Group Decision Framework Incorporating
Outranking Preference Model and Characteristic Class
Profiles
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Abstract We present a group decision making framework for evaluating sustainabil-
ity of the insulating materials.We tested thirteen materials on amodel that was applied
to retrofit a traditional rural building through roof’s insulation. To evaluate the mate-
rials from the socio-economic and environmental viewpoints, we combined life cycle
costing and assessment with an adaptive comfort evaluation. In this way, the perfor-
mances of each coating material were measured in terms of an incurred reduction of
costs and consumption of resources, maintenance of the cultural and historic signif-
icance of buildings, and a guaranteed indoor thermal comfort. The comprehensive
assessment of the materials involved their assignment to one of the three preference-
ordered sustainability classes. For this purpose, we used a multiple criteria decision
analysis approach that accounted for preferences of a few tens of rural buildings’
owners. The proposed methodological framework incorporated an outranking-based
preference model to compare the insulating materials with the characteristic class
profiles while using the weights derived from the revised Simos procedure. The ini-
tial sorting recommendation for each material was validated against the outcomes of
robustness analysis that combined the preferences of individual stakeholders either at
the output or at the input level. The analysis revealed that the most favorable materi-
als in terms of their overall sustainability were glass wool, hemp fibres, kenaf fibres,
polystyrene foam, polyurethane, and rock wool.
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1 Introduction

This paper presents a group decision framework for evaluating sustainability of the
insulating materials to retrofit traditional rural buildings. The importance of this
research derives from the previous studies on both retrofitting solutions tailored to
traditional rural buildings as well as judging an overall desirability of coating mate-
rials (see, e.g., Krarti 2015; Fabbri et al. 2012; Ma et al. 2012; Yung and Chan 2012;
Martínez-Molina et al. 2016). These studies prove that energy efficiency and thermal
comfort are crucial for the maintenance of historic buildings.

The context of the study is that of a typical farmhouse in central Italy. The incor-
porated building model derives from the analysis of over 800 farmhouses surveyed
by the census of the scattered rural buildings of the municipality of Perugia (Umbria
region). The high landscape values of traditional buildings and the legislation about
their preservation prevent external alterations (Mazzarella 2015). Therefore, the most
viable solutions are to intervene on the roof of these structures, increasing their ther-
mal inertia with coating materials (Verbeeck and Hens 2005; Kumar and Suman 2013;
Taylor et al. 2000).

We comprehensively evaluate the materials for the roof insulation by considering
economic, social, and environmental viewpoints. For this purpose, we incorporate a
life cycle costing (LCC) approach, a life cycle assessment (LCA), and a dynamic
thermal simulation for the evaluation of energy savings and thermal comfort. As such,
we aim at identifying the materials that guarantee the indoor thermal comfort, at the
same time reducing the consumption of resources in their entire life cycle as well as
maintaining cultural and historic significance of the buildings. In this perspective, we
differentiate from the vast majority of previous studies concerning coating materials
which incorporate a mono-disciplinary approach (Copiello 2017).

To provide an overall sustainability assessment of coatingmaterials, we incorporate
Multiple Criteria Decision Analysis (MCDA). MCDA offers a diversity of approaches
designed for providing the decision makers (DMs) with a recommendation concern-
ing a set of alternatives evaluated in terms of multiple conflicting points of view. Few
applications of MCDA methods for the evaluation of building materials, which are
reported in the literature (Ginevicius et al. 2008) deal mainly with the environmental
sustainability of materials (Papadopoulos and Giama 2007; Khoshnava et al. 2016).
Some combinations of LCA and MCDA were considered by Santos et al. (2017)
and Piombo et al. (2016). Applications which included both LCC and LCA for the
definition of criteria to be used in MCDA are still rare (Piombo et al. 2016). Deci-
sion analysis methods used in the above-mentioned studies involved different variants
of AHP (Motuziene et al. 2016; Khoshnava et al. 2016), PROMETHEE II (Kumar
et al. 2017), Weighted Sum, TOPSIS (Čuláková et al. 2013), VIKOR, and COPRAS
(Ginevicius et al. 2008).

From the viewpoint of MCDA, our study differs from the aforementioned ones in
terms of the following major aspects:
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Multiple Criteria Assessment of Insulating Materials… 35

• We formulate the considered problem in terms of multiple criteria sorting, thus
aiming at assigning the materials to a set of pre-defined and ordered sustainability
classes (categories) rather than at ordering them from the best to the worst;

• Weassess the insulatingmaterialswhile taking into account preferences ofmultiple
DMs (owners of rural houses), thus incorporating group decisionmaking tools into
the evaluation framework;

• The adopted assignment procedure builds upon outranking-based comparison of
the insulating materials with the characteristic profiles composed of the per-class
most representative performances on all criteria (Kadziński et al. 2015b);

• The research results are validated against the outcomes of robustness analysis that
takes into account all sets of weights compatible with either the ranking of criteria
provided by each DM within the revised Simos (SRF) procedure (Figueira and
Roy 2002) or a group compromise ranking of criteria that is constructed with an
original procedure proposed in this paper.

The remainder of the paper is organized in the following way. In the next section,
we review the existing group decision making methods for multiple criteria sorting.
Section 3 describes a three-stage decision aidingmethod that has been used to evaluate
the insulating materials while taking into account preferences of a group of stakehold-
ers. Section 4 exhibits comprehensive results of multiple criteria assessment of the
insulating materials. The last section concludes.

2 Review of Multiple Criteria Sorting Group Decision Methods

The objective of the case study presented in this paper is to give an easily inter-
pretable comprehensive assessment of the insulating materials’ sustainability. This is
achieved by assigning them to a set of pre-defined and ordered decision classes based
on their performances on multiple criteria (Kadziński et al. 2015b). While computing
the sorting recommendation, we account for the preferences of a group of experts and
stakeholders. This requires implementation of a group decision making framework.

As real-world situations often involve multiple stakeholders, some methods have
been proposed to support groups in making collective sorting decisions (Daher and
Almeida 2010). These approaches can be distinguished at different levels. In partic-
ular, they differ in terms of a preference model employed to represent preferences
of the DMs. Furthermore, an underlying classification rule may involve analysis of
a single preference model instance or all sets of parameters compatible with the DMs’
preference information. Moreover, sorting methods can be divided with respect to the
level onwhich individual viewpoints are aggregated (Dias and Climaco 2000). Finally,
some approaches account for the importance degrees of the involved DMs, while other
methods assume that all DMs play the same role in the committee.

Among multiple criteria sorting group decision methods, outranking-based
approaches are prevailing. Most decision support systems in this stream incorporate
Electre TRI-B (Yu 1992; Roy 1996). For example, Dias and Climaco (2000) proposed
an approach that admits eachDM to specify imprecise constraints on the parameters of
an outranking model, then exploits a set of compatible parameters using robust assign-
ment rule, and finally aggregates individual perspectives in a disjunctive or conjunctive
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manner (thus, not accounting for the DMs’ powers). The former accepts an assignment
if it is justified by at least one DM, whereas the latter confirms some classification
only if it is consistent with the preferences of all DMs. In this way, a group may agree
on some result even if its members do not share the same model parameters. This
idea was extended by Damart et al. (2007) to an interactive preference disaggregation
approach that accepts assignment examples provided by different DMs. The method
incorporates robustness analysis by deriving for each DM the possible class assign-
ments (confirmed by at least one compatible preferencemodel instance) and guides the
group on sorting exemplary alternatives by exhibiting the levels of consensus between
the DMs. Analogously, Shen et al. (2016) developed an adaptive approach under intu-
itionistic fuzzy environment that allows to reach a classification with an acceptable
individual and group consensus levels. Moreover, de Morais Bezerra et al. (2017)
enriched Electre TRI-B with the tools for visualizing the comparison of individual
results and procedures for guiding the changes of model parameters for deriving a
better consensus.

Furthermore, Jabeur and Martel (2007) proposed a framework, which derives a
collective sorting decision at the output level from the individual non-robust classi-
fications by additionally accounting for the relative importance of group members.
Then, Morais et al. (2014) used a stochastic variant of Electre TRI-B, called SMAA-
TRI, to consider uncertainty in criteria weights and to derive for each DM the shares
of the relevant parameter vectors that assign a given alternative to a certain category.
An overview of thus obtained individual results leads to a collective recommendation.
Conversely, Cailloux et al. (2012) employed assignment examples provided by mul-
tiple DMs for reaching an agreement at the input level. In particular, they proposed
some linear programming models for deriving a joint set of boundary class profiles
and veto thresholds.

As far as outranking-based sorting approaches incorporating a model typical for
PROMETHEE are concerned, Nemery (2008) extended the FlowSort method to group
decision making. His proposal derives an assignment for each alternative from its rela-
tive comparison (strength and weakness) against the boundary or central class profiles
specified by each individual DM. A similar idea was implemented by Lolli et al.
(2015) in FlowSort-GDSS. The underlying procedure derives class assignments by
comparing comprehensive (global) net flows of alternatives and reference profiles.
The proposed sorting rules distinguish between scenarios in which analysis of the
individual assignments leads to either univocal or non-unanimous recommendation.
Although the viewpoints of different DMs are aggregated at the output level, the
method defines some consistency conditions on the preference information (in partic-
ular, reference profiles) provided by the individual DMs.

The majority of existing value-based approaches derive a sorting recommendation
incorporating robustness analysis and not differentiating between the roles played by
the DMs. In particular, the UTADISGMS-GROUPmethod (Greco et al. 2012) accounts
for the assignment examples provided by each DM and derives collective results that
concern two levels of certainty. The first level refers to the necessary and possible
consequences of individual preference information,which is typical forRobustOrdinal
Regression (ROR) (Greco et al. 2010;Kadziński et al. 2015b). The other level is related
to the necessity or possibility of a support that a particular assignment is given in the
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set of DMs. This method was further adapted by Liu et al. (2015) to account for the
uncertain evaluations represented with the evidential reasoning approach, to provide
somemeasures on the agreement between the DMs, and to derive a collective univocal
assignment.

Conversely, Kadziński et al. (2013) aimed at a joint representation of assignment
examples provided by all DMs by a set of additive value functions and investigating
the necessary and possible consequences of applying the latter on the set of alterna-
tives. When there is no value function compatible with preferences of all DMs, some
linear programming techniques can be used to remove aminimal subset of inconsistent
assignment examples. A similar approach was proposed by Cai et al. (2012), though
additionally accounting for the DMs’ priorities. The latter ones intervene in the selec-
tion of a representative value function and in resolving inconsistency in the provided
assignment examples. These priorities are updated with the progressive preference
elicitation process to reflect the preciseness, quantity and consistency of the example
decisions supplied by each DM.

Finally, when it comes to using “if…then…” decision rules for representing prefer-
ences of theDMs, one proposed various extensions of theDominance-basedRoughSet
Approach (DRSA) (Greco et al. 2001). These accept preference information in form of
individual assignment examples. First, Greco et al. (2006) introduced some concepts
(e.g., multi-union and mega-union) related to dominance with respect to minimal pro-
files of evaluations provided by different DMs. Then, Chen et al. (2012) proposed to
aggregate the recommendations suggested by individual linguistic decision rules into
an overall assignment be means of a Dempster–Shafer Theory. The crucial concepts
incorporated in the DRSA sorting method proposed by Sun and Ma (2015) are a dom-
inance relation on the set of multiple sorting decisions (each provided by an individual
DM) and a multi-agent conflict analysis framework. Furthermore, Chakhar and Saad
(2012) and Chakhar et al. (2016) illustrated how to combine individual approxima-
tions of class unions and derive collective decision rules that permit classification of
all alternatives in a way consistent with the judgments of all DMs. These approaches
measure the contribution of each expert to the collective assignment in terms of the
individual quality of classification. Finally, Kadziński et al. (2016) adapted the prin-
ciple of ROR to a group decision framework with DRSA, thus considering all sets
of rules compatible with the individual assignment examples and combining their
indications only at the output level.

In this paper, we propose an outranking-based group decision approach that incor-
porates Electre TRI-rC. Thus, it derives the assignments by comparing alternatives
with the characteristic class profiles rather than with the boundary profiles as in Elec-
tre TRI-B. The basic procedure we use takes into account a single preference model
instance (incorporating criteria weights derived from the SRF procedure) for each DM
and aggregates the individual viewpoints at the output level. While still aggregating
the preferences at the output level, we extend the basic framework to offer results of
robustness analysis with multiple sets of parameters compatible with the DMs’ value
systems. Additionally, we propose a new algorithm for constructing a group com-
promise ranking of criteria, hence offering aggregation of the individual viewpoints
also at the input level. At all stages, we assume that the involved stakeholders have
the same importance degrees. Moreover, instead of providing precise assignments,
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our framework offers acceptability indices indicating the support that is given to the
assignment of each alternative to various classes by different DMs and/or preference
model instances compatible with their preferences.

3 Multiple Criteria Decision Analysis Method for the Assessment of
Insulating Materials

This section describes a three-stage multiple criteria decision analysis method that has
been used to evaluate the insulating materials while taking into account preferences
of a group of stakeholders. Firstly, we discuss the Electre TRI-rC method (Kadziński
et al. 2015b) that has been employed to assign the materials to a set of pre-defined
and ordered classes. It incorporates the SRF procedure to compute the criteria weights
(Figueira and Roy 2002). The method has been extended to a group decision setting
to derive for each material some group class acceptability indices, which indicate the
proportion of stakeholders that accept an assignment of the material to a given class.
Secondly, we have adapted Stochastic Multi-criteria Acceptability Analysis (SMAA;
Lahdelma and Salminen 2001; Tervonen and Figueira 2008; Tervonen et al. 2007) to
the context of Electre TRI-rC and SRF procedure. It has been used to conduct robust-
ness analysis (Roy 2010) for the results obtained in the first part, i.e., to validate their
certainty while avoiding the arbitrary choice of criteria weights, which is conducted by
the SRF procedure. Thirdly, we have proposed an algorithm for constructing a group
compromise ranking of criteria based on the orders provided by the individual DMs.
This ranking of criteria has been used as an input for SMAA to offer yet another view
on the stability of computed results.

Let us use the following notation (Kadziński et al. 2015a):

• A = {a1, a2, . . . , an} is a set of alternatives (insulating materials);
• G = {g1, g2, . . . , gm} is a family of evaluation criteria that represent relevant
points of view on the quality of assessed alternatives;

• g j (a) is the performance of alternative awith respect to criterion g j , j = 1, . . . ,m
(when presenting themethod, without loss of generality, we assume that all criteria
are of gain type, i.e., the greater the performance, the better);

• C1,C2, . . . ,Cp are the preference ordered classes to which alternatives should be
assigned; we assume that Ch is preferred to Ch−1 for h = 2, . . . , p.

3.1 Assessment of Insulating Materials Within a Group Decision Framework
Incorporating Electre TRI-rC and the SRF Procedure

In this section, we present the Electre TRI-rC method (Kadziński et al. 2015b) that is
used to assign the materials to a set of pre-defined and ordered classes. The method
derives for each material a possibly imprecise assignment by constructing and exploit-
ing an outranking relation S (Figueira et al. 2013). This relation quantifies an outcome
of the comparison between the materials and a set of characteristic class profiles
(Rezaei et al. 2017). In what follows, we discuss the main steps of the incorporated
approach.
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Step 1 For each class Ch , provide the most typical (representative) performances
on all criteria g j , j = 1, . . . ,m, thus specifying the characteristic profiles bh , h =
1, . . . , p (Almeida Dias et al. 2010). Defining such profiles was found intuitive and
manageable by the involved experts, which was the main reason for incorporating
Electre TRI-rC in the study. The set of all characteristic profiles is denoted by B.

Steps 2–7 are conducted separately for each DecisionMaker (DMk , k = 1, . . . , K )

in ∂K = {DM1, DM2, . . . , DMK }.
Step 2 Determine the weight wk

j of each criterion g j , j = 1, . . . ,m, using the SRF
procedure (Figueira and Roy 2002). This method expects DMk to:

• Assign some importance rank lk ( j) to each criterion g j ; this is attained by ordering
the cardswith criteria names from the least to themost important (the greater lk ( j),
the greater wk

j ; some criteria can be assigned the same rank, thus being judged
indifferent);

• Quantify a difference between importance coefficients of the successive groups
of criteria judged as indifferent, Lk

s and Lk
s+1, by inserting eks white (empty)

cards between them (the greater eks , the greater the difference between the weights
assigned to the criteria contained in Lk

s+1 and Lk
s );

• Specify ratio Zk between the importances of the most and the least significant
criteria denoted by Lk

v(k) and Lk
1.

These inputs are used to derive the criteria weights as follows (Figueira and Roy 2002;
Corrente et al. 2016):

wk
j = 1 +

(
Zk − 1

) [
lk ( j) − 1 + ∑l( j)−1

s=1 eks
]

v (k) − 1 + ∑v−1
s=1 e

k
s

.

Steps 3–6 are conducted for each pair consisting of alternative a and profile bh .
Step 3 For each criterion g j compute a marginal concordance index ckj (a, bh)

defined as follows:

ckj (a, bh) =
{
1 if g j (a) − g j (bh) ≥ 0,
0 if g j (a) − g j (bh) < 0.

The index quantifies a degree to which a is at least as good as bh on g j . Let us remark
that in our study the experts defined the performances of characteristic profiles on
all criteria by selecting them from the performances of the considered materials. This
facilitated the preference elicitation processwhen dealingwith a set of criteriawith het-
erogeneous performance scales. In this perspective, when comparing the alternatives
with the characteristic class profiles, we decided to exploit only the ordinal character of
criteria and not use the discrimination (indifference and preference) thresholds, which
can be, in general, employed in Electre. That is, in our application, the outranking of
alternative a over profile bh on g j means that g j (a) is at least as good as the most
typical (representative) performance for class Ch on g j of some considered material.
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Step 4 Compute a comprehensive concordance index σ k (a, bh) defined in the fol-
lowing way:

σ k (a, bh) =
∑m

j=1 wk
j c

k
j (a, bh)

∑m
j=1 wk

j

.

The index quantifies a joint strength of a subset of criteria supporting the hypothesis
about a outranking bh (aSkbh). Note that in our study, no criterion was judged strong
enough to be attributed a power to veto against the outranking relation. Thus, no
discordance effect has been considered.

Step 5 Specify the cutting level λk (also called majority threshold), and compare
σ k (a, bh) with λk to verify the truth of a crisp outranking relation aSkbh in the
following way:

σ k (a, bh) ≥ λk ⇒ aSkbh .

The truth of relation bhSka can be verified analogously.
Step 6 Use information on the truth or falsity of aSkbh and bh Ska to check the

validity of:

• a being preferred to bh (aSkbh ∧ not
(
bhSka

) ⇒ a �k bh);
• bh being preferred to a (bhSka ∧ not

(
aSkbh

) ⇒ bh �k a);
• a being indifferent with bh (aSkbh ∧ bhSka ⇒ a ∼k bh);
• a being incomparable with bh (not

(
aSkbh

) ∧ not
(
bhSka

) ⇒ a?kbh).

Step 7 For alternative a determine its desired class intervalCk (a) = [
Ck
L (a) ,Ck

R (a)
]

by applying the assignment rules of ELECTRE TRI-rC (Kadziński et al. 2015b). To
compute the worst class Ck

L (a), compare a successively to bh , for h = p − 1, . . . , 1,
seeking the first (i.e., the best) characteristic profile bh such that:

a �k bh ∧ σ k (a, bh+1) > σ k (bh, a) ,

and select Ck
L (a) = Ch+1. When no such a profile is found, Ck

L (a) = C1.
To compute the best class Ck

R (a), compare a successively to bh , for h = 2, . . . , p,
seeking the first (i.e., the worst) characteristic profile bh such that:

bh �k a ∧ σ k (bh−1, a) > σ k (a, bh) ,

and select Ck
R (a) = Ch−1. In case no such a profile is found, Ck

R (a) = Cp.
Step 8 Combine the individual class assignments for all DMs into group class

acceptability indices E∂ (a, h) (Damart et al. 2007; Kadziński et al. 2016). These
are defined as the proportion of DMs (stakeholders) that accept an assignment of
alternative a to class Ch , i.e.:

E∂K (a, h) =
∑K

k=1 E
k (a, h)

K
,
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where for k = 1, . . . , K :

Ek (a, h) =
{
1 i f Ch ∈ Ck (a) ,

0 i f Ch /∈ Ck (a) .

This measure indicates a cumulative support given to the assignment of a to Ch by all
group members.

3.2 Stochastic Multi-criteria Acceptability Analysis with Electre TRI-rC

The SRF procedure derives the precise weight values from the ranking of criteria,
intensities of preference, and ratio between the most and the least important criteria
provided by DMk applying some arbitrary rule (Figueira and Roy 2002). However,
there exist multiple weight vectors compatible with such incomplete preference infor-
mation. Recently, many researchers have raised the robustness concern in view of the
SRF procedure to quantify the impact of uncertainty in the selection of an arbitrary
weight vector on the stability of computed recommendation. In particular, Siskos and
Tsotsolas (2015) proposed a set of robustness rules for the SRF procedure to obtain
tangible and adequately supported results. Then, Govindan et al. (2017) suggested
to exploit the whole set of compatible weight vectors to construct the necessary and
possible results being confirmed by, respectively, all or at least one compatible vector.
Further, Corrente et al. (2017) adapted the stochastic analysis of recommendation with
the SRF procedure to the context of Electre III. We follow the latter research direction
and integrate Stochastic Multi-criteria Acceptability Analysis (Lahdelma and Salmi-
nen 2001; Tervonen et al. 2007) to handle possibly impreciseweight values compatible
with the ranking of criteria and to derive robust recommendation with Electre TRI-rC.

SMAA applies the Monte Carlo simulation to provide each DM with the accept-
ability indices whichmeasure the variety of different preferences (in particular, weight
vectors) that confirm the validity of particular elements of the recommendation. In our
case, the space wk(SRF) of weight vectors compatible with preferences of DMk is
defined by the following constraint set Ek(SRF) :

[O1] wk
i > wk

j , for all gi ∈ Lk
t , g j ∈ Lk

s and t > s,
[O2] wk

i = wk
j , for all gi , g j ∈ Lk

s ,

[O3] wk
i = Zkwk

j , for all gi ∈ Lk
v(k), g j ∈ Lk

1 ,

[O4] wk
j+1 − wk

j > wk
p+1 − wk

p, if ekj > ekp,
[O5]

∑m
j=1 wk

j = 1,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Ek (SRF)

where the interpretation of different constraints is as follows:

• [O1] ensures that criteria ranked better by DMk will be assigned greater weight;
• [O2] guarantees that criteria deemed indifferent by DMk will be assigned equal
weights;

• [O3] sets the ratio Z between weights of the most and the least significant criteria;
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• [O4] respects the intensities of preference for different pairs of criteria that have
been quantified with the number of inserted empty cards;

• [O5] normalizes the weights.

These constraints also ensure that all weights are positive. For each DMk , each weight
vector w ∈ wk (SRF) and each alternative a ∈ A, we compute the resulting class

assignment Ck
w (a) =

[
Ck

w,L (a) ,Ck
w,R (a)

]
with Electre TRI-rC.

We define the class range stochastic acceptability index CRSAI k (a, [L , R])
(Kadziński et al. 2013) on a range of classes

[
Ck
L (a) , . . . ,Ck

R (a)
]
with L ≤ R

as the proportion of compatible weights w ∈ wk (SRF) that assign alternative a pre-
cisely to the range of classes

[
Ck
L (a) , . . . ,Ck

R (a)
]
. Formally, the index is computed

as follows:

CRSAI k (a, [hL , hR]) = ∫w∈wk (SRF) m (w, a, [hL , hR]) dw,

where m (w, a, [hL , hR]) is the class range membership function:

m (w, a, [hL , hR]) =
{
1, i f Ck

w,L (a) = ChL and Ck
w,R (a) = ChR ,

0, otherwise.

Further, we compute the proportion of w ∈ wk (SRF) for which Ch is within[
Ck

w,L (a) ,Ck
w,R (a)

]
, i.e., the proportion of weights that either precisely or impre-

cisely assign a to Ch (Kadziński and Tervonen 2013; Kadziński et al. 2014). Let us
define such a cumulative class stochastic acceptability index CuCSAI k (a, h) as:

CuCSAI k (a, h) =
∑

[hL ,hR ]:h∈[hL ,hR ]
CRSAI k (a, [hL , hR]) .

We estimate CRSAI s with acceptable error bounds by sampling the space wk (SRF)

with the Hit-And-Run (HAR) algorithm (Tervonen et al. 2013). Overall, CRSAI k(a,

[hL , hR]) and CuCSAI k (a, h) can be interpreted as a support given by DMk to the
assignment of a to, respectively,

[
ChL ,ChR

]
or Ch .

To measure a cumulative support given to the assignment of a to Ch by all
DMs in ∂K, we consider a cumulative group class stochastic acceptability index
CuCSAI ∂K (a, h), defined as follows (Kadziński et al. 2016, 2018):

CuCSAI ∂K (a, h) =
∑K

k=1 CuCSAI k (a, h)

K
.

3.3 Selection of a Group Compromise Ranking of Criteria

In this section, we introduce a procedure for deriving a compromise complete ranking
of criteria based on the rankings provided individually by each DMk within the SRF
procedure. The procedure builds on the algorithm that was introduced by Govindan
et al. (2017) for constructing a utilitarian ranking of alternatives. Hence, we adopt an
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Table 1 Definition of distances δ
(
R jl
k′ , R

jl
k′′

)
between different pairwise relations

R jl
k′

∖
R jl
k′′ g j �k′′ gl

(
� jl
k′′

)
g j ≺k′′ gl

(
≺ jl
k′′

)
g j ∼k′′ gl

(
∼ jl
k′′

)

g j �k′ gl
(
� jl
k′

)
0 2 1

g j ≺k′ gl
(
≺ jl
k′

)
2 0 1

g j ∼k′′ gl
(
∼ jl
k′

)
1 1 0

idea of minimizing a sum of of distances between the compromise ranking and all
individual rankings.

When considering a complete ranking of criteria for DMk , for each pair (g j , gl)
one of the three relations holds: g j is preferred to gl (g j �k gl), or g j is indifferent

with gl (g j ∼k gl), or gl is preferred to g j (g j ≺k gl). Let R
jl
k′ and R jl

k′′ denote the
relations holding between g j and gl in the rankings provided by, respectively, DMk′

and DMk′′ (e.g., R jl
k′ is � jl

k′ or ∼ jl
k′ or ≺ jl

k′ ). The distances δ(R jl
k′ , R

jl
k′′) between R jl

k′
and R jl

k′′ are provided in Table 1 (for a detailed justification of these values, see Roy
and Słowiński 1993). A distance between two rankings of criteria provided by DMk′
and DMk′′ involving all ordered pairs of criteria (g j , gl) is defined as follows:

∑

j,l: j<l

δ
(
R jl
k′ , R

jl
k′′

)
.

In what follows, we present a Binary Linear Program (BLP) for constructing a
compromise ranking of criteria for group ∂K involving K DMs. Following Govindan
et al. (2017), for each pair of criteria (g j , gl), we introduce two binary variables p jl

∂

and i jl∂ (see constraint [R1] in E∂ (SFR)) with the following interpretation:

• p jl
∂ represents a weak preference of g j over gl in the compromise ranking (i.e.,

in case p jl
∂ = 1, then g j �∂ gl or g j ∼∂ gl); note that p

jl
∂ and pl j∂ can be used

to instantiate one of the three relations � jl
∂ , ∼ jl

∂ , or ≺ jl
∂ for g j and gl ; that is, if

p jl
∂ = 1 and pl j∂ = 0, then g j �∂ gl ; if p

jl
∂ = 0 and pl j∂ = 1, then g j ≺∂ gl ; if

p jl
∂ = 1 and pl j∂ = 1, then g j ∼∂ gl ;

• i jl∂ represents an indifference ∼∂ between g j and gl (i.e., in case p jl
∂ = 1 and

pl j∂ = 1, then i jl∂ = 1 and g j ∼∂ gl ; see [R3]).

Since we impose completeness and transitivity on a weak preference relation, we
require that p jl

∂ = 1 or pl j∂ = 1 (see [R2]) and that p jr
∂ = 1 and prl∂ = 1 imply

p jl
∂ = 1 (see [R4]). When constructing a utilitarian complete ranking of criteria,

we aim at minimizing a comprehensive distance between relations (�∂ , ≺∂ , or ∼∂ )

instantiated for all pairs of criteria in the compromise ranking and relations observed
for these pairs in the individual DMs’ rankings (for DMk , the relation between g j and

gl ( j < l) is denoted by R jl
k ):

123



44 M. Kadziński et al.

min
∑

j,l: j<l

K∑

k=1

[
p jl
∂ δ

(
R jl
k ,� jl

∂

)
+ pl j∂ δ

(
R jl
k ,≺ jl

∂

)

+i jl∂

[
δ
(
R jl
k ,∼ jl

∂

)
− δ

(
R jl
k ,� jl

∂

)
− δ

(
R jl
k ,≺ jl

∂

)]]

[RI ] for all j, l = 1, 2, . . . ,m : j �= l

[R1] p jl
∂ , i jl∂ ∈ {0, 1} ,

[R2] p jl
∂ + pl j∂ ≥ 1,

[R3] i jl∂ = p jl
∂ + pl j∂ − 1,

[RI I ] for all j, l, r = 1, 2, . . . ,m : j �= l �= r

[R4] p jl
∂ ≥ p jr

∂ + prl∂ − 1.5.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

E∂ (SFR)

If g j �∂ gl (p
jl
∂ = 1, pl j∂ = 0, and i jl∂ = 0), g j ≺∂ gl (p

jl
∂ = 0, pl j∂ = 1, i jl∂ = 0),

or g j ∼∂ gl (p
jl
∂ = 1, pl j∂ = 1, i jl∂ = 1) has been instantiated in the compromise

ranking, it contributes with, respectively,
∑K

k=1 δ
(
R jl
k ,� jl

∂

)
,
∑K

k=1 δ
(
R jl
k ,≺ jl

∂

)
or

∑K
k=1 δ

(
R jl
k ,∼ jl

∂

)
to a value of the objective function (for a detailed explanation, see

Govindan et al. 2017).
Once a group compromise ranking of criteria is constructed, we conduct robustness

analysis with SMAA in the same way as described in the previous section for an
individualDM.This leads us to deriving cumulative group compromise class stochastic
acceptability indices CuCCSAI ∂K (a, h).

3.4 Decision Aiding with the Proposed Approach

Multiple criteria sorting decisions can be aided with the proposed group decision
making framework through the process illustrated in Fig. 1. It starts with specifying the
sets of alternatives, criteria, and ordered classes as well as the alternatives’ evaluations
(performances) on the criteria.

Then, the preference information is elicited from the involved experts and/or stake-
holders. Each stakeholder is required to provide a cutting level as well as a ranking
of criteria that incorporates the intensities of preference and the ratio between the
importance coefficients of the most and the least significant criteria, as required by
the SRF procedure. Moreover, the experts are expected to define a characteristic pro-
file for each class. In our study, the profiles were agreed by multiple experts, but, in
general, the methodological framework admits that each stakeholder provides his/her
individual set of profiles.

Further, the method derives three types of results. These indicate a support that is
given to the assignment of considered alternatives to different classes via the applica-
tion of Electre TRI-rC for different sets of weights and cutting levels compatible with
the preferences of the involved experts. In two cases, the preferences of the individ-
ual stakeholders are aggregated only at the output level. Depending on whether these
individual preferences are processed using the SRF procedure or the Monte Carlo
simulation, the method computes, respectively, group class acceptability indices or
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DMK

DM1 DMK

DM1

Fig. 1 Decision aiding process with the proposed group decision methodological framework

cumulative group class stochastic acceptability indices. In the third case, the prefer-
ences are aggregated at the input level by constructing a group compromise ranking
of criteria. Then, the method applies SMAA to derive cumulative group compromise
class stochastic acceptability indices.

Finally, these three types of outcomes should be analyzed and combined into the
recommended assignments. This is straightforward in case the support given to the
assignment of alternatives to decision classes by different results is similar. In case of
ambiguous indications by different procedures, the inconsistency needs to be raised
by a decision analyst.

Obviously, it is not required to use all three types of procedures and respective
results for each study. This may be useful when offering different viewpoints on the
robustness of sorting recommendation is desired. Otherwise, one can employ just a
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46 M. Kadziński et al.

single procedure for processing the experts’ preferences depending on whether they
should be aggregated at the input or output level and whether the robustness analysis
should be incorporated into a particular study.

4 Results of Multiple Criteria Assessment of Insulating Materials with
the Outranking Preference Model and Characteristic Class Profiles

The study aims at evaluating overall sustainability of coating materials used in build-
ings retrofitting. We consider 13 materials listed in Table 2 (they are denoted by
A = {a1, a2, . . . , a13}). All materials having a thickness of 15cm were placed inter-
nally on the roof of a model building typical for central Italy, and evaluated from the
socio-economic and environmental viewpoints. The six relevant criteria which have
been used to assess the materials are: hour of discomfort (g1; DH),CO2 avoidance
(g2); Net Present Value (g3; NPV), human health (g4); ecosystem quality (g5), and
consumed resources (g6). In what follows, we explain their meaning.

Discomfort degreeHour (g1; the less, the better) evaluates a thermal performance of
a building on an annual basis (CEN 2007) in accordance with the EN 15251 standard.
Thus defined, it serves as ameasure of comfort. The performance on g1 is quantified as
an overall time during which the temperature falls outside the second comfort category
that was considered in the study (Carlucci and Pagliano 2012), and then weighing it by
how much the limit has been exceeded. For this purpose, we have used the following
equation:

g1 (a) =
8760∑

i=1

10

60
|CC2 − OTi |

where CC2 is the lower or upper limit of the assumed comfort category, OTi is the
operative temperature at hour ì, and the multiplier 10

60 refers to an employed time step
of 10 minutes.

CO2 avoidance (g2; the more, the better) measures the energy saved during the
building life by using a particular insulating material when compared to the case of
no insulation in the following way:

g2 (a) = ES ∗ 277.78 ∗ 406.31

106

where ES is the estimated Energy Saved in GJ at time t with a time horizon of 25
years, 277.78 is a conversion factor to GJ in kWH, while 406.31 is the conversion
factor for Italy from kWH to kg of CO2 per year (EIA, 2015). Therefore, the CO2
avoided refers only to the use phase, which is not considered in the LCA study.

Net present value (g3; the more, the better) is the difference between the present
values of cash outflows and inflows. On one hand, the outflows involve Primary Energy
Input (PE I ) cost, installation cost I at time t =0, and the dismissing cost ELT after
the lifespan T of the investment (25 years). On the other hand, the inflows refer to
the Cost of Energy Saved ESt in different time periods t . Overall, we have computed
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N PV as follows:

g3 (a) = −PE I − I +
T∑

t=0

ESt
(1 + i)t

− ELT

(1 + i)T

where i is the discount rate. For a detailed justification of this measure, see Menconi
and Grohmann (2014). Thus defined, N PV can be seen as an outcome of Life Cycle
Costing, which is an economic methodology for assessing the profitability of using
different alternatives by taking into account the costs they incur at different stages of
a life cycle (e.g., construction, operations, and maintenance).

For the assessment of environmental impacts, we have used the Eco-indicator 99
method (Goedkoop and Spriensma 2001) implemented in the SimaPro software (Prod-
uct Ecology Consultants 1990). The method aggregates the results of Life Cycle
Assessment into a set of parameters that can be interpreted as damage categories.
In general, LCA is useful for identifying the environmental implications of a given
alternative through the quantification of consumed resources (e.g., energy, raw mate-
rials, water) and related emissions (e.g., emissions into the air, water and soil, waste
and co-products) (Paolotti et al. 2017). We used the following three environmental
Eco-indicators expressed on a dedicated point scale:

• Human health (g4; the less, the better) which is derived from the analysis of the
following normalized impact categories: carcinogens, respiratory organics and
inorganics, climate change, radiation, and ozone layer;

• Ecosystem quality (g5; the less, the better) which is made up by the following three
normalized impact categories: ecotoxicity, acidification/eutrophication, and land
use;

• Resources (g6; the less, the better) which aggregates two normalized impact cate-
gories: minerals and fossil fuels.

The LCA focused on the production phase, starting from the production of a raw
material to the obtaining of its complete version. We omitted the use and disposal
phases, hence implementing an LCA “from cradle to gate” (Paolotti et al. 2016). All
the impactswere calculated considering a functional unit of 1m3 of insulatingmaterial.

The performances of 13 insulating materials with respect to 6 criteria are provided
in Table 2. For all materials but hemp fibres, Ecoinvent Database (Ecoinvent 2010)
was used as a source of foreground and background data related to both production
and assembly processes as well as to the transport, electricity and fuel consumption.
Instead, for the hemp processes the underlying data was derived from Zampori et al.
(2013).

The objective of the case study is to give an easily interpretable comprehensive
assessment of the materials’ sustainability. This is achieved by assigning them to a
set of three pre-defined and ordered classes: C1 (low sustainability), C2 (medium
sustainability), and C3 (high sustainability).

The study involved elicitation of preferences from the two groups of stakeholders.
On one hand, a characteristic profile bh for each classCh , h = 1, 2, 3, has been collec-
tively specified by the experts from the university-based engineering team specialized
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Table 2 Performances of 13 insulating materials with respect to 6 criteria

Insulating material a g1 g2 g3 g4 g5 g6
Performance unit – Hours kg of CO2 e Points Points Points

Autoclave aerated complete a1 4889.339 158.63 283.41 0.009703 0.000636 0.015876

Corkslab a2 3974.451 178.49 282.01 0.022122 0.018376 0.040660

Expanded perlite a3 3893.646 179.11 326.26 0.006451 0.000759 0.043280

Fibreboard hard a4 3657.799 185.29 243.45 0.039111 0.014516 0.136345

Glass wool a5 3681.898 187.35 316.92 0.010608 0.001307 0.033364

Gypsum fibreboard a6 7051.231 103.24 135.88 0.047131 0.003916 0.070469

Hemp fibres a7 3921.449 182.59 334.10 0.002336 0.003079 0.008207

Kenaf fibres a8 3685.510 186.82 341.79 0.004760 0.015137 0.003079

Mineralized wood a9 4392.808 167.63 245.45 0.042932 0.004548 0.083149

Plywood a10 7636.502 87.58 71.26 0.095717 0.201332 0.126167

Polystyrene foam a11 3750.482 187.13 322.02 0.002801 0.000217 0.016521

Polyurethane a12 3357.309 194.18 330.35 0.013225 0.000564 0.043280

Rock wool a13 3659.441 188.45 346.14 0.019183 0.000825 0.009846

Table 3 Performances of the characteristic profiles for three classes

Profile g1 g2 g3 g4 g5 g6

b1 7051.231 158.63 135.88 0.042932 0.015137 0.083149

b2 4392.808 182.59 283.41 0.013225 0.003079 0.043280

b3 3659.441 187.35 330.35 0.004760 0.000636 0.009846

in the materials and retrofitting of rural buildings. On the other hand, the preferences
on the importance of individual criteria have been elicited individually from mul-
tiple stakeholders who were owners of rural buildings interested in a renovation of
their houses for improving the energetic performance. Thus, they can be perceived as
potential consumers of the insulating materials.

When it comes to the characteristic profiles, the experts decided to define them by
indicating one of the performances observed in the set of materials. The consensus
between the experts on the most typical performance levels for each class has been
reached during an interactive focus group. These levels are summarized in Table 3.

4.1 Results of Multiple Criteria Assessment of the Insulating Materials Within
a Group Decision Framework Incorporating Electre TRI-rC and the SRF
Procedure

The weights representing the importance of individual criteria have been elicited
from the rural buildings’ owner. In what follows, we call them stakeholders. Over-
all, we approached 63 owners by explaining them the characteristics of different
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materials, the interpretation of all criteria and their relation to different phases of
the materials’ life cycle. Among them, 38 stakeholders (let us denote them by
∂K = {DM1, DM2, . . . , DM38}) claimed to understand the meaning and role of dif-
ferent criteria, and expressing their willingness to provide preferences on the criteria
importance.

In Table 4, we present the incomplete preference information required by the SRF
procedure, which was provided by three selected stakeholders. We also report the
computed weights wk

j and cutting level λ
k . All stakeholders agreed that λk should be

equal to the sum of weights of the three most important criteria. The complete data
for all group members is provided in the supplementary material available as an e-
Appendix (the same remark applies to the results discussed in the following sections).

The results of a comprehensive comparison between 13 materials and 3 char-
acteristic profiles are quantified with the comprehensive concordance indices. In
Table 5, we present such indices for four exemplary materials for DM1. Table 5
exhibits also the justification of delivered assignment for the exemplary materials.
For instance, a precise assignment of a6 to C1 can be explained with b2 being pre-
ferred to a6 and there existing sufficiently strong support in favor of b1 outranking a6
(σ 1 (a6, b2) = 0.000 < σ 1 (b1, a6) = 0.524).

In Table 6, we report the assignments obtained for all materials for differ-
ent DMs. In particular, for DM1 there are 6 materials assigned to the best
class (a5, a7, a8, a11, a12, a13), 3 materials whose quality is evaluated as medium
(a1, a2, a3), and 4 materials judged as bad (a4, a6, a9, a10). The assignments for DM5
are the same except for a4 being imprecisely assigned to [C1, C2].

The spaces of consensus and disagreement with respect to the assignments obtained
for all DMs are quantified with the group class acceptability indices E∂ (a, h) (see
Table 7). For example, for a1 none stakeholder confirmed its assignment to the worst
class C1, 36 out of 38 stakeholders supported its assignment to the medium class C2,
and 3 stakeholders suggested the assignment of a1 to the best classC3. These numbers
have been translated to the followinggroup acceptability indices: E∂ (a1, 1) = 0

38 = 0,
E∂ (a1, 2) = 36

38 = 0.95, and E∂ (a1, 3) = 3
38 = 0.08. On the contrary, for a2 all

stakeholders agreed with respect to its assignment to C2 (E∂ (a2, 2) = 38
38 = 1.0),

while the results obtained for 6 of them additionally indicated hesitation in terms of
its assignment to C1(E∂ (a2, 1) = 6

38 = 0.16).
The analysis of E∂ (a, h) leads to indicating the assignments which are necessary

(in case E∂ (a, h) = 1), possible (if E∂ (a, h) > 0), and impossible (if E∂ (a, h) = 0)
in terms of the support they are provided in the group of stakeholders. Additionally,
these results clearly indicate themost and the least probable assignments. In particular,
for each material we are able to indicate the class with the greatest support among all
stakeholders. It is C1 for a6, a9 and a10, C2 for a1, a2, a3 and a4, or C3 for a5, a7, a8,
a11, a12, and a13. The support which is given to the assignment of the materials to
other classes is significantly smaller. For clarity of presentation, in all tables exhibiting
stochastic acceptability indices (Tables 7, 8, 9 and 11), the text in bold indicates the
class with the greatest support for a given material.
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Table 5 Credibility indices and class assignments obtained with ELECTRE TRI-rC for four exemplary
materials for DM1 (cutting level λ1 = 0.714)

b1 b2 b3
[
C1
L (a) ,C1

R (a)
]

b1 b2 b3
[
C1
L (a) ,C1

R (a)
]

a1 � � ≺ [C2,C2] a6 ? ≺ ≺ [C1,C1]

σ 1 (a1, bh) 1.000 0.799 0.238 σ 1 (a6, bh) 0.585 0.000 0.000

σ 1 (bh , a1) 0.177 0.286 1.000 σ 1 (bh , a6) 0.524 1.000 1.000

a11 � � ? [C3,C3] a12 � � ≺ [C3,C3]

σ 1 (a11, bh) 1.000 1.000 0.476 σ 1 (a12, bh) 1.000 1.000 0.524

σ 1 (bh , a11) 0.000 0.000 0.524 σ 1 (bh , a12) 0.000 0.476 0.738

Table 6 Class assignments obtained with Electre TRI-rC for all materials and different stakeholders

a DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 · · · DM38

a1 [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] · · · [C2,C2]

a2 [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] · · · [C2,C2]

a3 [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] [C2,C2] · · · [C2,C2]

a4 [C1,C1] [C2,C2] [C1,C1] [C2,C2] [C1,C2] [C1,C1] [C2,C3] [C2,C2] [C2,C3] [C2,C2] · · · [C2,C2]

a5 [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] · · · [C3,C3]

a6 [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] · · · [C1,C1]

a7 [C3,C3] [C3,C3] [C3,C3] [C2,C3] [C3,C3] [C3,C3] [C3,C3] [C2,C3] [C3,C3] [C3,C3] · · · [C3,C3]

a8 [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] · · · [C3,C3]

a9 [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C2,C2] [C1,C1] [C2,C2] [C1,C1] · · · [C1,C1]

a10 [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] [C1,C1] · · · [C1,C1]

a11 [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] · · · [C3,C3]

a12 [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] · · · [C3,C3]

a13 [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C3,C3] [C2,C3] [C3,C3] [C3,C3] [C3,C3] · · · [C3,C3]

Table 7 Group class acceptability indices E∂ (a, h)

h \ a a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

1 0.00 0.16 0.00 0.34 0.00 1.00 0.00 0.00 0.76 1.00 0.00 0.00 0.00

2 0.95 1.00 1.00 0.76 0.00 0.00 0.21 0.16 0.24 0.00 0.00 0.00 0.08

3 0.08 0.00 0.00 0.24 1.00 0.00 0.97 1.00 0.00 0.00 1.00 1.00 1.00

4.2 Results of Stochastic Multi-criteria Acceptability Analysis with Electre
TRI-rC

To validate the recommendation for insulating materials against the arbitrary choice of
weights conducted with the SRF procedure, we applied SMAA. For each stakeholder,
we considered a sample of 10000 uniformly distributed weight vectors compatible
with the ranking of criteria (s)he provided within the SRF procedure.
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Table 8 Class range stochastic acceptability indices CRSAI 1 (a, [L , R]) and cumulative class stochastic
acceptability indices CuCSAI 1 (a, h) for all materials for DM1

CRSAIs CuCSAIs

a [C1,C1] [C1,C2] [C2,C2] [C1,C3] [C2,C3] [C3,C3] C1 C2 C3

a1 0.000 0.000 0.825 0.000 0.000 0.175 0.000 0.825 0.175

a2 0.000 0.175 0.825 0.000 0.000 0.000 0.175 1.000 0.000

a3 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000

a4 0.717 0.000 0.283 0.000 0.000 0.000 0.717 0.283 0.000

a5 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000

a6 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

a7 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000

a8 0.000 0.000 0.000 0.000 0.175 0.825 0.000 0.175 1.000

a9 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

a10 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

a11 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000

a12 0.000 0.000 0.000 0.000 0.175 0.825 0.000 0.175 1.000

a13 0.000 0.000 0.000 0.000 0.175 0.825 0.000 0.175 1.000

The analysis of class range stochastic acceptability indices CRSAI k (a, [L , R])
and cumulative class stochastic acceptability indices CuCSAI k (a, h) indicates the
potential variability of the recommendation that can be obtained for each DM for
different compatible weight vectors. For illustrative purpose, in Table 8 we provide
these indices for DM1. For some materials, all compatible weight vectors confirm the
same assignment. These parts of the recommendation can be deemed as robust (e.g.,
CRSAI 1 (a3, [2, 2]) = 1 or CRSAI 1 (a9, [1, 1]) = 1). The same conclusion can be
derived from the analysis of the indices which are equal to zero, thus excluding the
possibility of the respective assignment. Further, for some other materials the accept-
ability indices express hesitation with respect to the recommended class though often
offering greater support to a particular assignment. For example, although bothC2 and
C3 are possible for a1, the probability of the previous (C2) is significantly greater than
of the latter (C3). Finally, the recommendation obtained for various compatible weight
vectors can be different, but their intersection can be non-empty. Then, a robust rec-
ommendation is confirmed with CuCSAI 1 (a, h)=1. It is the case for, e.g., a13 which
is assigned imprecisely to [C2,C3] or precisely to C3, thus always confirming C3 as
the possible assignment.

When it comes to a groupdecisionperspective, the cumulative group class stochastic
acceptability indices CuCSAI ∂K (a, h) are presented in Table 9. Their values are
very similar to the group class acceptability indices E∂ (a, h) reported in the previous
section. Themain differences concern a slightly increased support given to theminority
class for some alternatives (see, e.g., a1 to C3, or a2 to C1, a8, and a12 to C2).

Overall, the prevailing assignments for all materials are the same as in Sect. 4.1. In
this regard, let us emphasize thatCuCSAI ∂K (a, h) = 1 (see, e.g., a10 toC1, a3 toC2,
or a5 toC3) confirms an agreement with respect to assignment of a toCh for all weight
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Table 9 Cumulative group class stochastic acceptability indices CuCSAI ∂
K

(a, h) for all materials

h\a a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

1 0.018 0.226 0.000 0.338 0.000 1.000 0.000 0.000 0.794 1.000 0.000 0.000 0.000

2 0.897 0.995 1.000 0.760 0.000 0.000 0.188 0.222 0.206 0.000 0.000 0.063 0.107

3 0.131 0.000 0.000 0.213 1.000 0.000 0.986 0.998 0.000 0.000 1.000 1.000 0.999

Table 10 The numbers of
stakeholders indicating a
preference or indifference (in the
round brackets) for all pairs of
criteria

g j g1 g2 g3 g4 g5 g6

g1 – 14 (2) 22 (8) 15 (2) 11 (2) 10 (2)

g2 22 (2) – 25 (2) 17 (9) 4 (16) 3 (16)

g3 8 (8) 11 (2) – 12 (1) 9 (2) 9 (1)

g4 21 (2) 12 (9) 25 (1) – 6 (10) 7 (10)

g5 24 (2) 18 (16) 27 (2) 22 (10) – 1 (31)

g6 26 (2) 19 (16) 28 (1) 21 (10) 6 (31) –

vectors compatible with preferences of all stakeholders. Thus, such a recommendation
needs to be treated with certainty. Conversely, CuCSAI ∂K (a, h) = 0 (e.g., a2 to C3,
a3 toC1, or a9 toC3) indicates the no classificationmodel of any stakeholder confirmed
the respective assignment. This makes it excluded from the potential recommendation.

4.3 Results of Stochastic Multi-criteria Acceptability Analysis for a Group
Compromise Ranking of Criteria

The results presented in the previous sections were derived by aggregating the out-
comes obtained individually for each stakeholder. In this section, we offer another
perspective on the stability of results by searching for a compromise between differ-
ent stakeholders already at the stage of provided preferences. In Table 10, we report
the numbers of DMs indicating preference or indifference for all pairs of criteria in the
ranking they provided for the purpose of applying the SRF procedure. For example,
14 out of 38 stakeholders preferred g1 to g2, 22 stakeholders opted for an inverse
preference, and only 2 stakeholders judged this pair indifferent. Conversely, when
comparing g5 to g6, 31 experts opted for an indifference, and only one claimed that
g5 was more important than g6.

The information from the DMs’ individual rankings has been used as an input for
the algorithm constructing a compromise utilitarian ranking of criteria, i.e., the one
which is on average the closest to 38 individual rankings. In this way, the following
group compromise order of criteria has been constructed:

g5 ∼∂ g6 �∂ g2 ∼∂ g4 �∂ g1 �∂ g3.

Thus, the greatest importance has been attributed to ecosystem quality (g5) and
resources (g6), while the least important criteria are NPV (g3) and hour of discomfort
(g1). The relation instantiated for different pairs of criteria is consistent with the opin-
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Table 11 Cumulative group compromise class stochastic acceptability indicesCuCCSAI ∂
K

(a, h) for all
materials

h\a a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

1 0.000 0.419 0.000 0.533 0.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000

2 0.581 1.000 1.000 0.467 0.000 0.000 0.000 0.419 0.000 0.000 0.000 0.000 0.000

3 0.419 0.000 0.000 0.000 1.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000

ion expressed by the significant number of stakeholders. For example, 24 stakeholders
ranked g5 and g6 as the two most important criteria, while 19 of them ranked this pair
tied for the first place. Furthermore, 21 stakeholders judged g3 as the least important
criterion.

Obviously, one needs to bear in mind that the compromise ranking of criteria min-
imizes the sum of distances between relations observed for all pairs of criteria in all
individual rankings. In this perspective, it may not be considered representative by all
individuals (see, e.g., DM7, DM9, DM12, DM17, DM19, DM20, or DM36) whose
preferences are represented in the compromise ranking to a marginal degree (i.e., an
overall distance between their ranking and the compromise one is substantial).

Such a compromise ranking of criteria has been used to simulate DMs’ joint prefer-
ences within SMAA. Consistently with the previous sections, the cutting level λ was
assumed to be equal to the sum of weights of the three most significant criteria. The
results of robustness analysis are materialized with the cumulative group compromise
class stochastic acceptability indices CuCCSAI ∂K (a, h) (see Table 11).

For most materials, the variability of results is lesser than in case of deriving
the recommendation by aggregating the individual viewpoints. Indeed, for 11 out
of 13 materials there is some class which is recommended with certainty (then,
CuCCSAI ∂K (a, h)=1). Also, for all materials but a4 the class assignments with
the greatest support have not changed with respect to those reported in the previous
sections. The main differences concern a lesser support for the assignment of a1, a4
and a9 to C2 in favor of judging the quality of a1 as high (C3) and the quality of a4
or a9 as low (C1). Finally, although the assignments of a2 and a8 to, respectively, C2
and C3 are robust, the acceptability for their assignment to some worse classes (C1
and C2, respectively) has increased to 0.419.

4.4 Summary

In view of the results derived from an application of a three-stage multiple criteria
decision aiding method to our study (see Tables 7, 9, and 11), we recommended the
following assignments for the insulating materials:

• Low (C1): gypsum fibreboard (a6), mineralized wood (a9) and plywood (a10);
• Low (C1) or medium (C2): fibreboard hard (a4);
• Medium (C2): autoclave aerated complete (a1), corkslab (a2), and expanded perlite
(a3);
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Table 12 Subsets of criteria on which the materials attain at least as good performances as these of the
characteristic profiles b1, b2, and b3 of three decision classes

Insulating material a b1 b2 b3

Autoclave aerated a1 g1, g2, g3, g4, g5, g6 g3, g4, g5, g6 g5
Corkslab a2 g1, g2, g3, g4, g6 g1, g3, g6
Expanded perlite a3 g1, g2, g3, g4, g5, g6 g1, g3, g4, g5, g6
Fibreboard hard a4 g1, g2, g3, g4, g5 g1, g2, g3 g1
Glass wool a5 g1, g2, g3, g4, g5, g6 g1, g2, g3, g4, g5, g6 g2
Gypsum fibre board a6 g1, g3, g6
Hemp fibres a7 g1, g2, g3, g4, g5, g6 g1, g2, g3, g4, g5, g6 g3, g4, g6
Kenaf fibres a8 g1, g2, g3, g4, g5, g6 g3, g4, g6 g3, g4, g6
Mineralized wood a9 g1, g2, g3, g4, g5, g6 g1, g3
Plywood a10
Polystyrene foam a11 g1, g2, g3, g4, g5, g6 g1, g2, g3, g4, g5, g6 g4, g5
Polyurethane a12 g1, g2, g3, g4, g5, g6 g1, g2, g3, g4, g5, g6 g1, g2, g3, g5
Rock wool a13 g1, g2, g3, g4, g5, g6 g1, g2, g3, g4, g5, g6 g1, g2, g3, g6

• High (C3): glass wool (a5), hemp fibres (a7), kenaf fibres (a8), polystyrene foam
(a11), polyurethane (a12), and rock wool (a13).

The probability of other assignments was often non-negligible though significantly
lower than for the above indicated classes. Nevertheless, the results obtained from the
stochastic analysis allowed to nullify the risk of a false declaration that some material
was assigned to a class which was not confirmed by any compatible set of weights for
any expert.

For each insulatingmaterial, the recommended decision can be justified by compar-
ing its performances on different criteria with those of the characteristic class profiles.
In Table 12, we indicate the subsets of criteria on which the materials outrank (i.e., are
at least as good as) the characteristic profiles. In this regard, let us explicitly explain
the most likely assignments suggested for some materials:

• a10 is worse than b1 on all criteria, thus being assigned to the worst classC1; in the
same spirit, a6 is worse than b1 on g2, g4, and g5 (thus, on 3 out of 4 considered
environmental criteria), and not better than b2 on any criterion, which makes C1
its most desired class;

• a3 is better than b1 and worse than b3 on all criteria, which makes its performance
vector typical for C2;

• a12 and a13 are at least as good as b2 on all criteria and better than b3 on four criteria
(g1, g2, g3, g5 or g1, g2, g3, g6, respectively (note that both scenarios include two
accounted socio-economic criteria, g1 and g3)), which makes their assignment to
C3 the most justified.
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5 Conclusions

We considered a multiple criteria problem of sustainability assessment of insulating
materials. We combined Life Cycle Costing, Life Cycle Assessment, and adaptive
comfort evaluation to derive performances of these materials on six socio-economic
and environmental criteria. The comprehensive assessment of the materials involved
their assignment to three preference-ordered sustainability classes. The classification
was performed with a group decision counterpart of the Electre TRI-rC method that
compares alternatives with the characteristic class profiles defined by the experts.

To derive a recommendation that would reflect viewpoints of a wide spectrum of
potential customers, we accounted for the preference information of a few tens of rural
buildings’ owners being interested in the roof’s insulation. The initial recommendation
was derived by computing the proportion of stakeholders who accepted an assignment
of a particular material to a given class. These results were subsequently validated
against the outcomes of a two-fold robustness analysis realized with the Monte Carlo
simulation. The latter exploited the space of all criteria weights compatible with either
each stakeholder’s preference information provided in the SRF procedure or collective
ranking of criteria that was derived with an original algorithm proposed in this paper.

The three-stage analysis revealed that the most sustainable materials were glass
wool, hemp fibres, kenaf fibres, polystyrene foam, polyurethane, and rock wool. This
was mainly due to their favorable performances quantified with the Net Present Value
and Eco-indicators. On the contrary, gypsum fibreboard, mineralized wood and ply-
wood were assessed as the least sustainable materials. This can be justified in terms
of their poor performances on thermal comfort, human health, and ecosystem quality.
Overall, the proposed method provided greater clarity for decision making and guar-
anteed credibility in the eyes of the traditional rural houses’ owners. Moreover, all
research results—concerning both materials’ performances on the individual criteria
and comprehensive sorting recommendation—were well perceived by the experts on
insulating materials in Italy.

The proposed framework can be applied to other decision contexts than that of
a typical farmhouse in central Italy. This would require, however, accounting for a
comfort model as well as warm and cold periods suitable to a particular geographical
context, specification of a relevant lifespan for the investment, and adapting life cycle
assessment to the reality of a particular study.

From the methodological viewpoint, we envisage the following future develop-
ments. Firstly, we plan to extend the SRF procedure to a group decision context so
that it tolerates intensities of preference for different pairs of criteria and accepts
information on different roles (weights) of the decision makers. Secondly, we aim at
extending the proposed group decision framework to methods dealing with choice
and ranking problems. This would require elaboration of the algorithms for deriving
a compromise recommendation that would appropriately combine results of robust-
ness analysis computed individually for each stakeholder.
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