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Abstract The goal of the paper is to propose a method for finding outcomes of
negotiations of multiple parties with a multi-criteria decision outcomes evaluation.
Firstly, the procedure for reduction of continuous set of options to large but finite crowd
of compromise recommendations is presented. Next, the crowd is integrated to a single
benchmark which is treated as a proposal of artificial auxiliary player called a lone wolf
as presented by Kersten and Szapiro (Proceedings of the international conference of
the society of systems and science. Budapest, 1987). The strategy of negotiation with
this artificial player is proposed to generate a benchmark evaluations scheme for real
negotiation. Finally, a multi-agent simulation approach for multi-lateral negotiation
process modeling is presented in order to estimate possible negotiation outcomes.

Keywords Negotiation support procedure · Reference point ·
Multi-agent simulation · Negotiation strategy

1 Introduction

Outcomes of negotiations are constant challenge for researchers of market economics
since they determine transactions’ results. The most natural approach—the game
theory—requires to abandon attempts to model dynamics but investigates states of
equilibrium. If an equilibrium exists then other states appear unstable—conflicting
goals of players can be satisfied achieving higher than current utilities of players. This
classical view inspired L. Hurwicz to question the silent assumption on stability of
economic mechanism creating players’ payoffs. In his seminal papers, Hurwicz raised
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two questions—on optimality of economic mechanism with respect to social goals and
on incentives for players to behave accordingly to their rationalities and achieve social
goals.

Sound theoretical results of game theory and of mechanism design theory deepen
our understanding of markets but do not provide applicable recipes for players. One
can prove existence of analytical solutions of equations describing future states, but
they are hardly computable and difficult to calibrate using real data. Wider discussion
of this issue is presented in survey of Axtell (2000) who advocates another approach—
multi-agent simulation (MAS). The MAS is based on modeling heterogeneously
described populations (including relations among individuals) in order analyze social
and economic behaviors of individuals and populations. This approach—provides
skyrocketing number of applications when describing measurable features of individ-
uals (agents) and their interactions. From point of view of negotiation modeling this
approach has important omission—it doesn’t model conflicts of agents’ rationalities.

The aim of the paper is to provide benchmarks for players in negotiation. The
concept of benchmark under consideration is similarly to equilibrium in game theory,
but it results from modeling dynamics of conflict resolution. The benchmarks are
constructed using assumptions on strategies of players thus simulation of artificial
players’ decisions leads to results—compromise or fallacy of negotiation process.
Knowledge of the of benchmarks allows player to locate the current position of other
players in resulting frame and verify and evaluate her own assumptions on unknown
strategies of others.

Each benchmarks is obtained through iterations simulating possible course of nego-
tiation as a way to forecast outcomes of negotiations. One considers all courses of
negotiations arriving thus to set of benchmarks. Different benchmarks can be viewed
either as result of different changes of preference of one player or as result of con-
stant preference of different players. We assume the later perspective and consider
increasing (in each round of negotiation) population of artificial players. Involvement
of growing number of negotiation courses into consideration corresponds to obser-
vation of growing number artificial players. The dynamics of negotiation assumes
use of procedure bireference interactive procedure (BIP) to provide each such player
with compromise recommendation. Consequently, in paper the term “recommendation
crowding” refers to this process.

Hence, the direct objective of the paper—creation of benchmarks - requires compu-
tational tool capable to follow all possible courses of negotiation using the knowledge
preference dynamics and to use this tool to forecast outcomes of negotiations.

In this paper the importance of distinguished states is appreciated like in game the-
oretical argument, however unstable dynamics of preference is included to the model.
On the other hand, heterogeneity of MAS inspired the presented approach to con-
sider simultaneously all possible subjective negotiation starting points and preference
changes. Thus we crowd negotiation recommendations through introducing artificial,
auxiliary players who are related with all possible outcomes of negotiations with the
different starting point and preference changes. Hence the dynamics of preference is
described using a control variable elicited from players. The knowledge on dependence
of their reactions to current situations enables simulation of results of a negotiation
process.
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The presented approach offers general procedure to present possible results of
negotiations. To perform the simulations one has to assume some arbitrarily accepted
assumptions. Without loss of generality, for the sake of clarity of presentation, in the
paper, a simplified version of assumptions is used. The procedure provides players with
interpretable benchmarks which can influence the way of persuading, communicating
and submitting statements on real compromise proposals.

An analysis of a multidimensional negotiation process here is restricted to inter-
section of couple only perspectives as in e.g. Harvard Business School Press (2000),
Kilgour and Eden (2010) and Zartman (1993). Firstly, it is a theoretical perspective.
While there exist in practice processes which possess features described here, we do
not address such specific processes but consider the general problem which is defined
by a collection of features which are treated as axioms. Secondly, we assume the
support scenario where the interaction among parties is assisted by negotiation ana-
lysts who provide parties with recommendations. A party in negotiation is not obliged
to use a recommendation since an optimality concept is used for the technical data
processing in partial individual decisions and not as a rationality principle. Thirdly
we assume, that the problem is complex enough to justify a formal description which
is needed to for a computer supported recommendation construction and that parties
agree to use such framework.

The support procedure considered in the paper assumes four axioms: bounded
rationality of players, asymmetry of information, agreement of players on use of
computer support as mediating tool providing reference as presented by Polak and
Szapiro (1997, 2000), and finally—MCDM-type framing of the negotiation problem.

More precisely, the bounded rationality axiom (Simon 1986) means that players can
be satisfied with solution if optimization fails. The asymmetry of information axiom
means that players do not have knowledge on other players’ utilities and criteria. The
agreement of players on use of computer support as mediating tool axiom means
that players accept use of the negoBIP method (see Szapiro 1997 and Kuszewski
et al. 1998) to support group decision making and the role of mediator is played by
computer software, see e.g. Szapiro and Matysiewicz (2001). Finally, the MCDM-type
framing of the negotiation problem axiom means that decisions can be characterized by
vectors and criteria—by linear vector valued mappings, while individual preferences
are described by cone dominance (Kersten and Szapiro 1986) .

Usually there are considered three modes for assistance of negotiation parties.
In the arbitrage mode the gain for parties results from the fact that the outcome of
a negotiation provided by an arbiter halts costs of the negotiation process. In the
advising mode advantage of advisor’s competence over party’s one, results in a better
data processing and a resultant outcome. In the mediator mode, the advantage raise
from the previous reason, but also is amplified due to use of all parties data. In the latter
case information in preserving confidentiality way and only proposal of compromise is
recommended. In the paper we consider the mediator perspective. Since the considered
procedure can be used also in advisor mode and the presentation is simpler in this case,
we start with advisor mode and expand this for mediator setting.

Next, in the procedure a population of recommendations is created. These recom-
mendations for each party are constructed as sets of all possible reactions to offers of
other parties. They are called individual crowds. Since the complexity of the crowd
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Fig. 1 The dynamics of
negotiation can be simulated
through a process which
involves two subsequent
aggregations. In the first one,
virtual answers of one party is
are aggregated, while the second
considers positions of different
parties. Obtained in this way
reference point (Lone Wolf) is
considered to represent
adversary to negotiate with

impedes optimization, the party under consideration is assumed to limit analytic ratio-
nality and simplify her model of situation. The simplification has dual characteris-
tics. Firstly, for each party the individual crowd is perceived as an aggregated offer
evaluation that balances all potential recommendations. Secondly, these aggregated
individual evaluations are integrated in one which is treated as an offer evaluation of
an auxiliary adversary called Lone Wolf. Given individual recommendation crowds,
in each round the Lone Wolf reference points are generated to provide recommen-
dation. The Lone Wolf represents alone the resultant position of all adversaries. The
negotiation is thus reduced to two party bargaining.

The negotiation therefore is transformed to sequence of interaction loops, where in
each loop consists of the phases shown on the Fig. 1.

In the next section the mathematical representation of negotiation is presented.

2 The Negotiation Model-Statics

The negotiation problem considered in the paper is owned by m parties who attempt
to compromise on a selected from the common (for all parties) set of options the final
compromise. To this end of all parties evaluate options and formulate offers.

We assume that options and evaluation can be expressed by mathematical objects.
We assume that realistic options form the feasible decision set X which is nonempty,
constrained by linear functions and thus it is convex.

Let m, m ∈ N, m > 1 be the number of negotiating parties decision makers (DM).
Let x, x ∈ X ⊂ Rn represent an offer (decision) that is evaluated by all negotiating
parties. We assume that the decision variables are known by all negotiating parties in
each round.

Let us moreover assume that mi , mi ∈ N, where i = 1, . . . , m, is the number
of outcomes evaluated by each negotiating party i, i = 1, . . . , m. The number of
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Fig. 2 A negotiation problem can be framed as an m-tuple of multiple criteria decision problems with the
same decision space. Above, one considers two parties with three and two criteria, respectively

outcomes for each DM is not known by the other DM—but it is presented to the
mediator. Let the mapping f i : X → Y i ⊂ Rmi , here yi (x) = f i (x) ∈ Y i ⊂ Rmi

represent outcomes for a particular decision x evaluated by the DM i . As mentioned
earlier, the outcome functions are revealed only to the mediator they are linear by
assumption (Fig. 2).

Let us assume that functions yi (x) = f i (x) ∈ Y i ⊂ Rmi representing outcomes
for a particular decision x evaluated by the decision maker i are linear. Thus for
i = 1, . . . , m. we consider the m problems of maximization of the vector objective
functions f i : X → Rmi, f i (x) = Cix, Ci ∈ Mmi×n, Ci = [ckl]mi×n are matrices with
mi rows representing mi criteria of the ith party.

Let us assume, that the feasible decision set X is linearly constrained and thus can
be defined as:

X =
{

x ∈ Rk
∣∣∣Ax ≤ b

}
, b =

[
b1, . . . , bm)

]
∈ R, A ∈ M(k × n). (1)

The option x′ is preferred to x′′ if its evaluation f(x′) dominate f(x′′). The solution
of problem of maximization requires determination the set YN D of non-dominated
outcomes and is defined by the triplet < A, b, C >.

The collections of goal functions f i (x), conveys all information known to parties on
their preference, as the mappings fi define as above cone dominance—partial orders in
outcomes spaces, see Yu (1985). Consequently there in no utility description. Parties
negotiate a decision from the set of feasible decision x, x ∈ X ⊂ Rn and try to
find a compromise that will maximize their unknown utilities accordingly to their
preference revealed by cone dominance in outcome space, i.e. if outcome fi(x′) is
dominated by fi(x′′) then x′′ is preferred to x′, otherwise preference (utility) is not
observable but it can be revealed in decisions of players which are made but not
elicited.

The incomplete preference description forces us to consider interactive interviewing
in search for control on decision making process.
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In general, eight major goals have been discussed for using information technol-
ogy to suport negotiations. These goals include: enabling asynchronous negotiations,
offering advice, providing checklists, reducing transaction costs, providing a rationale
for bargaining positions, structuring offers, managing negotiation data, and prescrib-
ing a negotiation process or protocol. To meet all of these goals it is necessary to create
multiple subsystems in a negotiation support system (NSS).

On the other hand, process-oriented NSS focus on providing general support of the
give-and-take process of negotiation (Chaudhury 1995; Kersten and Szapiro 1986).

3 The BiReference Procedure

There is a bundle of methods Based on the assumption the that search for information
should investigate subjective views of parties on their choices and should not phrased
in technical terms.

The lone wolf aggregation requires integration with a multi-criteria decision pro-
cedure meeting the following two assumption. Firstly, the procedure needs to be
interactive—i.e. allowing DM to interactively input information in the decision
process. The lone wolf aggregation enables to aggregate input from multiple negoti-
ating parties. Hence, an aggregated information becomes the input for an interactive
process. Secondly the interactive procedure must enable a DM in each step to select a
decision from a finite set of available options. In each step of the negotiation process
offers placed by negotiating parties are being aggregated to a decision that becomes
the input for the interactive procedure.

Any multi-criteria decision support method meeting the above two criteria (inter-
activity and decision making from a finite set of possible choices) can be utilized to
support for support of negotiation process with lone wolf aggregation. As an exam-
ple implementation we use the BIP presented by Michalowski and Szapiro (1989) to
this end (other procedures can be also used as the procedure has modular form—for
interactive procedures with instructive comments see e.g. classical surveys of Evans
1984 and Laritchev and Nikiforov 1987). Thus using BIP Procedure one can generate
an individual recommendation. Before we continue with idea of negotiation model
description let us recall the BiP Procedure and apply it to the abovementioned nego-
tiation context.

The BiReference Procedure uses the ideal point and the worst outcome as dual
reference which determines improvement direction and which is displaced accord-
ingly to DM requests. The DM controls this restructuring (set of feasible options, the
ideal and worst outcomes) qualitatively through the criteria split in the group of those
which are met, those which are to be improved and those to be worsened. Advantages
of this procedure result from decrease of random influence of the structure of a prob-
lem on recommendations. It also allows preference reversals as presented by Reilly
(1982).

The procedure starts with the definition of the vector of worst outcomes yW (0) ∈
Rm, representing the pessimistic expectation of a DM. Moreover she defines the col-
lection ε ∈ Rm of tolerances which serve as indifference subjective criteria. We neglect
here the index “i”, labeling the decision maker in order to clarify the presentation.
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In the rth iteration, r ≥ 1, the BIP Procedure defines the improvement direc-
tion using the displaced worst outcome yW (r) and the displaced recommendation
yT (r − 1) from the previous iteration, (if r = 1 the yT(0) = yU, where yU is the
ideal point of Y, yU = [y1

U, . . . , ym
U ]T where yj

U = max yj|[y1, . . . , ym]T ∈ Y, j ∈
{1, . . . , m}). The recommendation yT (r − 1) is communicated to DM who states
whether she is willing to keep, improve or worsen levels yT (r − 1)j representing par-
tial goal achievement by components of the outcome evaluation yT (r − 1). The split
{I+ (r), I 0 (r), I−(r)} of the set of all criteria in the rth iteration which corresponds to
this information is denoted by πr.

Given the split πr (the change in preference when facing the recommendation) the
procedure modifies problem structure (displaces the set of feasible evaluations, worst
outcome and the ideal point). The resultant set of feasible outcomes is of the form:

Yr =
{

y ∈ Y|∀j ∈ I0 (r) yj = yT (r − 1)j ∧ ∀j ∈ I+ (r) yj ≥ yT (r − 1)j
}

, (2)

Its ideal point is consequently denote by yU(r). The vector of worst outcomes is
given as

yw(r)i =
{

yT(r − 1)i dla i ∈ I0(r) ∪ I+(r)

yw(0)i dla i ∈ I−(r)
(3)

with natural interpretation. Displaced worst outcome and ideal define displaced
improvement direction: d (r) = yU (r) − yW (r). The procedure is halted by the fol-
lowing stop rule:

∀i ∈ {1, . . . , m}
∣∣∣yT (r)i − yT (r − 1)i

∣∣∣ < εi. (4)

Then the last trial solution yT(r) becomes the recommendation.
In the two parties negotiation context, the natural definition of worst outcome is

given as other party offer. The BIP Procedure serves as the vehicle to assist the DM
who therefore is equipped with qualitatively expressed control variables—splits of
criteria set.

4 The Negotiation Model-Dynamics Simulation

Splits of the set of outcome criteria are used to describe the dynamics model for the
negotiation under consideration.

4.1 The Recommendation Crowding

Using BIP Procedure to assist parties one can simulate all negotiation trajectories. To
this end let us consider for the party “i” the space �i of all triplets consisting of three
subsets of the set of criteria indices I = {1, . . ., mi} splits π = {I+, I0, I−} of the
set of all criteria. Let us also consider the set S(�i) of all sequences {πr } consisting
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of elements of πr , πr ∈ �i, r ∈ N (natural numbers). The space S(�i) consist of
many artificial negotiation trajectories. Let’s consider the subspace (P�i) = Pi of the
space S(�i) which consists of elements which are constant from some place (stop rule
effect) and satisfy other conditions characterizing negotiation processes compatible
with BIP support. The elements the subspace Pi are called protocols as they describe
the whole process of decision making of the ith party.

Although some general theorems on existence of convergent protocols can be
shown, the analytical investigation of the space of protocols and providing descrip-
tions of compromises and strategies is difficult since the space itself is complicated
(S�i), see Szapiro (1993). For that reason, in order to analyze negotiation strategies
we simulate all negotiation i.e. we generate the whole space of feasible protocols and
negotiation outcomes. This procedure is further referred to as individual recommen-
dations’ crowding.

The crowd of recommendations which we obtain in this way is too complex for infor-
mal human analyses, therefore—accordingly to bounded rationality assumption—we
simplify the information and arrive to the frame of the aggregate of crowding recom-
mendations, see Tversky and Kahneman (1985).

There are several methods to build the above mentioned aggregate. We follow the
firm negotiation rule which recommends slow concessions and only with respect one
issue simultaneously. Thus we consider the space of Pf of firm protocols (which corre-
spond to concessions with respect to one only objective—the first order concessions).
Firm protocols by definition are of the form π = {I+, I0, I−}, where I− consists of
one element only, I+ is empty and thus I0 consists of remaining indices of objectives.
Firm protocols describe all permutations of concessions with respect to one objective
made in belief that others will proceed in the same way.

In the simulation of party “1” dynamics, we assume that for each of her firm proto-
col, her evaluations y1(xi

r) of other parties offers xi
r, i �= 1, are considered to be worst

outcomes and a crowd of recommendations x1
π(xi

r) is generated following the BIP Pro-
cedure. Next, the party “1” submits the counteroffer x1

r+1 which is defined as randomly
selected option the non-dominated outcome in the set F1

(
Xcrowd

)
where Xcrowd =

{x1
π

(
xi

r

) : π ∈ Pf}. Next this procedure is performed for other parties and we arrive
to the set of all counteroffers. The set of counteroffers is then transformed with use of
firm protocols (excluding the one just used) into the next set of crowds and provide
next counteroffers. We proceed until the last firm protocol is used.

Theorem 4.1 The measure of the convex span of counteroffers obtained with use of
firm protocols decreases compared to initial set of offers.

The proof results from the fact that concessions increase the feasible regions and
non-dominated outcomes of different parties become closer.

Conclusion 4.1 If the measure of the convex span Z = Conv_span(xi
π r) is smaller,

then | ε |m then the procedure is halted since differences do not exceed tolerance and
any member of this set is accepted by stop rule.

If the condition from the Conclusion 4.1 cannot be met then second order conces-
sions are to be made. When for all protocols the condition is not met then the procedure
cannot provide solution recommendation.
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4.2 Lone Wolf Aggregation

If processing of the crowding procedure does not lead to the result, then the aggregation
of the second type (Lone Wolf aggregation) is performed. In this case, counter-offers
are aggregated in the outcome space to the center of gravity yLW of the span Z. This
outcome is said to represent the Lone Wolf strategy which represents the result of
forming coalition of adversaries of the party labeled “1” and presenting by them a
common counteroffer xLW evaluated as yLW by the party under consideration.

The interval B = [y1, yLW] represents then the bargaining area and the power
proportion can approximated as the quotient γ =1/m − 1. Thus the offer reflecting
the concession of the party “1” splits at a proportion γ the interval B.

Theorem 4.2 Let us assume that the measure of the convex span of counteroffers does
not satisfy the condition from the Conclusion 4.1 and Lone Wolf Aggregation was used.
Then the procedure is halted in a finite number of steps.

The proof results from monotonicity of lengths of bargaining intervals which con-
verge to point and therefore fire the stop rule.

4.3 The Algorithm

The following simulation algorithm is proposed:

1. The parties agree on the feasible decision set X, X ⊂ Rn (not evaluating decision
outcomes at this point).

2. Each party constructs her multi-criteria decision evaluation mappings (individual
outcome functions) and submits them to mediator (computer system).

3. The mediator creates an aggregated multi-criteria decision problems using out-
come functions of all negotiating parties.

4. The mediator determines the ideal and the worst outcomes by maximizing and
minimizing respectively individual functions yi (x), i = 1, . . . , m.

5. The individual improvement directions (defined by ideal and worst outcomes) and
a feasible trial solution are determined.

6. Negotiating party’s behavior is simulated iteratively according to procedure
described above i.e. for all parties the ideal point, worst outcome and improvement
direction are displaced based on protocols which simulate decisions on one step
concessions until recommendation is achieved.

7. Crowd of recommendation and their counteroffers is generated
8. If the stop rule halts then the negotiation compromise is achieved.
9. Otherwise a coalition—Lone Wolf—is considered aggregated evaluation of adver-

saries offers. This aggregate is used to simulate two party negotiation process based
on split of bargaining area in proportion to power of both parties.

10. A simulation of lone wolf strategy with parameter γ (resistance) is used to create
a reference curve xγ, which is presented to players as the reference to evaluate
current offers and counteroffers to supported parties.
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The algorithm uses Bi-Reference Procedure as presented by Michałowski and Sza-
piro (1992) to simulate the individual decision making processes and the Lone Wolf
strategy in simulation of negotiation dynamics.

4.4 Practical Applications—Simulated Negotiation Dynamics

The goal of this section is to present practical applications of the lone wolf approach.
The results presented in this have been obtained through numerical simulation. We
analyze group negotiations with three parties and a mediator. We present how the lone
aggregation can be utilized to analyze possible negotiation trajectories. The first sim-
ulation (Sect. 4.4.1) has been implemented as a spreadsheet model, while the second
simulation (Sect. 4.4.2) has been implemented as multi-agent negotiation model with
the MASON library in Java (see Luke et al. 2004). We take the point of view of the
first negotiator who decision point

4.4.1 Three Decision Variables and a Single Criteria

The goal of this subchapter is to present Lone Wolf aggregation in a simulated nego-
tiation process.

Let’s consider a company offering information technology outsourcing services.
The company has three independent branches based in three different European coun-
tries. All three branches share a common budget for internet advertising and web site
positioning. However in each of the three countries a different language is used and a
separate search engine optimization is required.

Branch directors are discussing on how the advertising budget should be divided
between them. Let x1, x2, x3, xi ∈ [0, 1], be the budget shares for the first branches
for branches 1, 2 and 3 respectively. Hence, three decision variables are considered
x1, x2, x3 such as xi ∈ [0, 1] and x1 + x2 + x3 = 1.

Each branch of the considered outsourcing company differently benefits from the
advertising budget. Let y1 = a1x1, y2 = a2x2 and y3 = a3x3 represent benefits of
each of the branches i, i = 1, 2, 3 arising from an advertising campaign. For simplicity
it has been assumed that each negotiating party has only one criteria evaluation for a
given negotiation outcome.

In each negotiation round r, r ∈ N each party i, i = 1, 2, 3 makes a compro-

mise offer x(i) (r) =
[
x (i)

1 (r) , x (i)
2 (r) , x (i)

3 (r)
]T

where x (i)
1 (r) , x (i)

2 (r) , x (i)
3 (r) are

offers of the budget share for the first, second and third player respectively.
We analyze the negotiation from the perspective of the player I. Let’s assume that the

player one can start with one of three initial bids: low, medium and high being, where
for the purposes of numerical analysis x(1) (1)LOW = [0.4, 0.3, 0.3]T , x(1) (1)MEDIUM
= [0.6, 0.2, 0.2]T and x(1)(1)HIGH = [0.8, 0.1, 0.1]T. After the proposal the first
player is made each of opponents can makes a counter proposal. The counter proposals
can be again be one of three natures : low, medium and high.

Let’s assume that in each negotiation opponents (2 and 3) use the offering strategy
(they both place an offer of either LOW, MEDIUM or HIGH variety. The player
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I does not know what counter offers will be played by the opponents. Hence,
player I creates artificial opponents pairs (x(2)(1)LOW, x(3)(1)LOW), (x(2)(1)MEDIUM,

x(3)(1)MEDIUM), (x(2)(1)HIGH, x(3)(1)HIGH). Next, the player 1 performs a lone wolf
(LW) aggregation for each opponent pair considering three possible biddings (low,
medium and high):

xLW(r)LOW =
[
(x (2)

1 (r)LOW + x (3)
1 (r)LOW)/2, (x (2)

2 (r)LOW

+x (3)
2 (r)LOW)/2, (x (2)

3 (r)LOW + x (3)
3 (r)LOW)/2

]T
,

xLW(r)MEDIUM =
[
(x (2)

1 (r)MEDIUM + x (3)
1 (r)MEDIUM)/2, (x (2)

2 (r)MEDIUM

+x (3)
2 (r)MEDIUM)/2, (x (2)

3 (r)MEDIUM + x (3)
3 (r)MEDIUM)/2

]T
,

xLW(r)HIGH =
[
(x (2)

1 (r)HIGH + x (3)
1 (r)HIGH)/2, (x (2)

2 (r)HIGH

+x (3)
2 (r)HIGH)/2, (x (2)

3 (r)HIGH + x (3)
3 (r)MEDIUM)/2

]T
,

In result in the first step we have three possible trajectories for the negotiation.
Subsequently we assume that player’s I decision are deterministic—i.e. calculated as

x(1)(r) =
[
(xLW

1 (r − 1) + x (1)
1 (r − 1))/2, (xLW

2 (r − 1)

+x (1)
2 (r − 1))/2, (xLW

3 (r − 1) + x (1)
3 (r − 1))/2

]T
,

while offers placed by the opponents are being treated as unknown – and for each
subsequent offer again three trajectories are analyzed. Hence, at a the step r there are
3r possible simulation trajectories.

The Fig. 3. presents compromises achieved in six steps depending on different initial
offers by the player I. The presented analyses can be extended by adding probabilities
of making LOW, MEDIUM and HIGH bids by players 1 and 2.

If we assume that all bids are equally possible (i.e. pLOW = pMEDIUM = pHIGH =
1/3) than the probabilities of negotiation outcome for the player I presents as on
Fig. 4a). If we rather assume that opponents are more likely to request more for them
(i.e. pLOW = 0.2pMEDIUM = 0.2pHIGH = 0.6) than the distribution of probability
of negotiation outcomes looks like presented on the Fig. 4b). Finally if the opponents
are very reluctant to compromise (i.e. pLOW = 0.05pMEDIUM = 0.1pHIGH = 0.85)
than the negotiation result might be much less profitable for the Player I as presented
in the Fig. 4c).

4.4.2 Two Decision Variables and a Multiple Criteria

The goal of this Section is to propose a simulation scenario that allows analyses pos-
sible negotiation outcomes. The proposed negotiation dynamics simulation scenario
will be based on the multi-agent approach (e.g. Axelrod 1997; Macal and North 2006).

123



454 T. Szapiro, P. Szufel

Fig. 3 Each series represents 36 = 729 possible simulation outcomes. The outcomes (simulation numbers)
are sorted by opponents willingness to compromise. The final compromise strongly depends on the first bid
made by the negotiator 1

Fig. 4 Simulated distribution of possible negotiation outcomes from the point of view of negotiator 1. The
outcomes depend on whether opponents—players 2 and 3 make offers randomly or aggressively

After justifying the need for multi-agent approach we propose a scenario for an experi-
ment scenario that will allow to benchmark the full-search approach versus simulation
approach.

Let us consider three companies interested in running for a government project. The
has high formal requirements regarding the annual income and number of employees.
None of the considered companies can apply independently for the contract. However,
the companies can form a consortium. The consortium will be big enough to apply
for the public tender and will have a reasonable chance to place a winning bid. Com-
pleting the project requires (among other tasks) to provide the government customer
with a tailor made software product. However, in the public tender announcement the
software requirements have not been described in enough detail. The consortium’s
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participants need to decide what information to place in their offer—however each of
three participants has slightly different goals.

Two decision variables are considered x1—number of months devoted to product
development and x2—number of features to be implemented in the software product.
The consortium participants have agreed that the product needs to be delivered in no
later than 25 months (x1 ≤ 25). Due to communication issues within the consor-
tium the software product cannot be delivered sooner than in 10 months (x1 ≥ 10).
The minimum number of features that will make the bid acceptable for the govern-
ment customer is 5 (x2 ≥ 5). However as the bid price will depend on the number
of implemented features the maximum number of features is 20 (x2 ≤ 20). Imple-
menting each additional feature over 10 requires to extend the project timeline for
at least half month (2x1 − x2 ≥ 10). Each feature and each month of development
increases project’s cost and there is a budget constraint (x1 + x2 ≤ 40). For the pur-
poses of numerical feasible decision set has been discretized and is presented on the
Fig. 6a.

We assume that the negotiator 1 considers three outcomes of the bid y1, y2, y3
where each outcome can be presented by a linear function. Firstly, the negotiator
being a software development company is interested in a large amount of features
having an income from each feature (y1 = 4x2, y1 → max). Secondly, extending
the project timeline influences the profit where the profit can be calculated as (y2 =
−2x1 +5x2, y2 → max). Lastly, the project’s risk depends on number of features and
decreases with the project timeline (y3 = −3x1 + x2, y3 → min).

In the presented algorithm as it was stated earlier at each step each negotiating party
can make three decisions regarding a negotiated criteriaπ = {I+, I0, I−}. It means that,
assuming that at each step negotiating party is agreeing to worsen at least one criteria,
at each negotiation turn 3n−m possible decisions can be made, where n is the number
of criteria and m is the number of negotiating parties. Requirement for simulation of
several negotiation steps further adds substantial computational complexity and makes
the problem computationally infeasible when a large number decision criteria needs
to be analyzed.

For supporting negotiation problems with a large number of dimensions n describ-
ing offer evaluations we propose a multi-agent approach. The multi-agent approach is
a way of a system simulation where the system is divided into independent elements—
agents. Macal and North (2006) define an agent as an independent entity in an envi-
ronment for which goals can be specified and that react to environmental changes to
satisfy those goals.

We postulate that in the multi-agent model each negotiating party is represented,
while the NSS is modeled as an environment. The mediator is also modeled as a part of
the environment. Agent’s goals can be defined as utility maximization. We assume that
for each simulation run, each agent has a set of linear goal functions with parameters
randomly chosen for each simulation run. In the negotiation environment an agent
reacts to offers placed by other agents and makes decisions leading to maximize its
utility function—thus for each negotiation step decisions by each agents are made. The
negotiating agents make their decisions in subsequent negotiation steps (see Fig. 3).
The final result of simulated negotiation process becomes a part of simulated crowded
values.
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The presented scenario is tested for 3 negotiating parties. In order to test the two
presented simulation scenarios (full-search and multi-agent) firstly for each negotiating
party a number of criteria (2 or 3) is randomly chosen and goal functions are generated.
Secondly a discrete random set of feasible decisions is generated. For the generated
simulation environment simulations can be carried out and allow to compare the two
presented approaches.

For each simulation a feasible decision space X, X ⊂ R2 is generated. Decision
space is represented as a set of points with integer values within a hexagon with side
length of 8 (see Fig. 4a).

For each of negotiators goal function parameters C1, C2, C3 are randomly generated
where linear goal functions of negotiators can be presented as Y1 = C1x, Y2 =
C2x, Y3 = C3x. It is assumed that the first negotiator has three goal functions, the
second has four goal functions and the third has five goal functions. Under above
assumptions for each negotiator her goal functions can be represented as gradients in
decision space X, X ⊂ R2. Figure 4b represents example set of goal function gradients
for each negotiating party.

In the simulation it is assumed that negotiating parties present their goal functions
to the mediator. After the goals are presented, the mediator aggregates goal functions
calculates the initial trial solution that takes into consideration the goal functions of
all negotiating parties. This process of achieving the initial trial solution consists of
three steps. Firstly, the goal multi-criteria goal functions Y1 Y2, Y3 are aggregated
and a new mult-criteria goal function YAgg is created where YAgg = [Y1Y2 Y3]T.
In the presented simulation scenario the considered aggregated goal function has
m = 3 + 4 + 5 = 12 outcomes i.e. YAgg ∈ Rm . Secondly, the ideal and worst
points are calculated in the outcome space Rm . As described in the BIP method the
ideal point yu, yu ∈ Rm is calculated by independently maximizing each of m goal
functions in regard to feasible decision set X, while the worst point yw, yw ∈ Rm

is calculated by minimizing those functions. Thirdly, the trial solution yt , yt ∈ Rm

is calculated as the point within feasible decision set that is as close as possible to
ideal outcome yu and as far as possible from worst outcome yw. More specifically
a difference between Euclidean distance from yt to yu and Euclidean distance from
yt to yw is minimized i.e. yt = arg miny∗(d(y∗, yu) − d(y∗, yw)), where d(a, b)

is Euclidean distance between a and b. The trial solution can be also represented in
decision space as xt ∈ X, X ⊂ R2. The feasible decision set is assumed to be con-
cave (in the presented example it is a hexagon) and therefore the trial solution and
subsequent solution lie on one of the feasible decision set’s borders as in Fig. 4c.

The software implementation of simulation algorithm can be divided into two parts:
setup (model preparation) and simulation, that are portrayed respectively in Figs. 5
and 6.

The model setup includes generation of its parameters and performing pre-
calculations (see Fig. 5). Parameters include a feasible decision set (that is constant
across simulations) and negotiators’ goal functions that are different in each simulation
run. The pre-calculations are performed in order to speed-up the simulation process.
As it was mentioned earlier the feasible decision set is represented as a hexagon for
all simulations (as in Fig. 4a). The goal function parameters are randomly gener-
ated as integer numbers from the range < −8; 8 >. Afterwards the values of goal
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Fig. 5 Representation of a discrete feasible decision set, randomly generated goal functions and an initial
trial solution (compromise) in a simulated negotiation process dynamics

Fig. 6 The multi-agent simulation model consists of one agent class—Negotiating party

functions for each negotiator are calculated across feasible decision set. This allows
later for faster simulation processing as the results of these calculations are used several
times.

After the simulation model is set up—possible simulation process trajectories are
analyzed. It is assumed that at each point each negotiating party is presented a current
trial solution yT and can make one of two decisions regarding each criteria: (1) worsen
the criteria (i.e. make a concession) or (2) keep the criteria at the same (or higher)
level. Further in the simulation it is assumed that in each negotiating step each party
makes exactly one concession (regarding one criteria) while requesting to keep other
criteria at the same level. As it was assumed that the first negotiating party has three
negotiation assessment criteria she can make one of 3 possible decision (eg. worsen
first criteria, worsen second, worsen third). Respectively the second party has four
criteria and can make one of four decisions at any point and the third party has five
criteria and can make one out of five decisions. In conclusion under above assump-
tions, after a trial solution is presented there are 3*4*5=60 possible decisions of the
negotiating parties. Each possible decision leads to a new trial solution. However
some of decisions could lead to the same trial solution while other lead to different
ones.

The number of possible negotiation trajectories grows exponentially at the rate of
60n. As in this rate of growth it is impossible to simulate every possible simulation
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Fig. 7 Simulation model setup includes generation of parameters for a particular simulation run and pre-
calculation performed in order speed up the later simulation.

Fig. 8 The multi-agent simulation model consists of one agent class—negotiating party

trajectory. Therefore in order to simulate negotiation lasting 3 turns or more we ran-
domly choose 10,000 possible negotiation trajectories and simulate for them 10,000
negotiation outcomes (e.g. new trial solutions that these decisions lead to). The algo-
rithm for the described process is presented in the Fig. 8.

An example simulation results are presented on Fig. 9. Firstly, in the left upper
corner the model setup (feasible decision set, goal function) is presented together with
the initial trial solution. For readability the goal function gradients are attached to the
middle of hexagon rather than in coordinate system origin. At the graph the initial trial
recommendation xT = (5, 0) is represented. For this recommendation goal function
values of all negotiating parties can be calculated (Figs. 8, 9).

For the given feasible decision set, goal functions and an initial trial solution nego-
tiation path trajectories have been simulated. Firstly, in the step 1, all possible rec-
ommendations for all possible 60 concessions are presented on a sunflower plot. The
amount of leaves depends on the percentage of decisions that lead to a particular
recommendation. It can be seen that among 60 possible concessions

• 35 lead to a trial solution with recommendation x1
T = (5, 0)

• 18 lead to a trial solution with recommendation x1
T = (2, 5)

• 5 lead to a trial solution with recommendation x1
T = (7, 0)

• 2 lead to a trial solution with recommendation x1
T = (4, 1)
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Fig. 9 After an initial trial solution (compromise) is negotiation process stages

After two negotiation turn the number of possible simulation trajectories amounts to
602 = 3, 600. For each of 3,600 possible negotiation scenarios trial solutions have
been simulated. The results are presented as a sunflower plot—again the amount of
sunflower leaves corresponds to the percentage of possible negotiation scenarios that
lead to a particular outcome. In the example presented for the step 2. It turns out
that out of 3,600 possible simulation trajectories around 70 % (=2,500/3,600) lead
to the trial recommendation of x1

T = (5, 0), around 27.5 % (=1,000/3,600) lead to
the trial recommendation of x1

T = (2, 5), around 1.5 % (=50/3,600) lead to the trial
recommendation of x1

T = (8, 0), around 1 % (35/3,600) lead to the trial recommen-
dation of x1

T = (4, 1), around 0.5 % (15/3,600) lead to the trial recommendation of
x1

T = (7, 0). The number of leave in the sunflower plot directly depends on the numbers
above.

After three negotiation turn the number of possible simulation trajectories grows to
603 = 3, 600. For each of 603 possible negotiation scenarios trial solutions could be
simulated. As the amount of needed simulation would be very large 10,000 random
simulation trajectories have been selected (see Fig. 8). Again the number of leaves in
three steps simulation is related to percentage of simulation trajectories that lead to a
particular recommendation—one of {(5,0), (2,5), (8,0), (4,1),(7,0)}.

Further plots show possible negotiation outcomes after four and five steps. We can
see that the recommendation crowd stabilizes with a similar percentage of negotiation
trajectories leading to a particular compromise.

The results show that despite of a large number of possible simulation trajectories
the simulation process ends in a limited number of points. The simulation results
can be useful twofold. Firstly, the presented approach can allow to estimate possible
negotiation outcomes together with possibility of reaching them. Secondly, when a
limited rationality is assumed in an extreme case negotiators make random concessions
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an each negotiation turns. In that case we can talk about probability of reaching a
particular compromise in a limited rationality negotiations.

5 Concluding Remarks

The paper presents a procedure to assist parties in a negotiation using their behavior
agent simulation. As the result one obtains a benchmark curve composed of points
representing such compromise proposals (recommendations) which respect a firm
party behavior (possibly small concessions) and the power of a coalition. The bench-
mark curve is obtained for arbitrary values of two control variables. The first arbitrary
choice is related to the equal treatment of concessions (consideration of all permuta-
tions without weighting their values). The second one is the power measure as count
of coalition members. Introduction of this variables in the simulation allows to more
flexibly model and assist the negotiation problem.

It is shown in the paper that the benchmarking curve exists for linearly constrained
problems with multiple linear criteria and bounded feasible set. This properties allow
to design a multi agent system to determine and visualize the benchmarking curve.
Here agents are representing negotiation parties and their interactions are modeled
using BIP Procedure. This visualization may serve to evaluate current positions in real
life negotiation and to modify their dynamics.

In order to validate the presented approach we have created simulation models: a
simulation for a single and a agent-based simulation for multi-criteria negotiation. The
simulation model allows to predict possible negotiation outcomes.

The proposed approach has several limitations. Firstly, we made the assumption
the negotiating parties were able to agree the feasible decision set and that the set is
linearly constraint. Secondly, we have assumed the multi-criteria decision evaluation
function is linear. Thirdly, we have assumed that the parties will decide to negotiate
with a mediator in the middle and they will follow a strict negotiation protocol enforced
by the interactive method.

However, the simulation results show that for the given negotiation scenario the
propose method allow to estimate a group a simulation results and see how they
depend on the attitude of negotiating parties.

The further research will focus on relaxing the assumptions on decision problem
modeling and simulation scenario. Also empirical experiments including human-in-the
loop simulation could be considered.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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