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Abstract
Increased fluorine pollution represents a serious limitation for the productivity of important crops such as beans. The present 
study was conducted to detect antagonistic/synergistic ion mobility during seed germination in the presence of F contamina-
tion (KF and NaF). NaCl was used as a benchmark. The results showed that germination of Jesca, an African (Tanzania) bean 
variety, significantly dropped with high F levels (10% KF and 3% NaF). High F levels reduced Jesca growth and decreased 
root and shoot biomass (by 50% and 95% with KF and NaF, respectively). NaF 200 mg kg−1 had the most depressive effect 
on the seedling stage. Elevated F levels negatively affected seedling health, revealing toxicity symptoms such as chlorophyll 
degradation and low photosynthetic activities that degraded after a threshold level of 80 mg kg−1. In addition, an inhibitory 
effect of F on the mineral status of the seedlings, especially on the Ca content, was observed. An opposite trend of endogenous 
Ca response to NaCl stress was observed. Indeed, while endogenous Ca content increased with increasing NaCl concentra-
tion, it decreased when the F level increased. Therefore, tolerance to F at the germination and seedling stages might be used 
as a criterion for selecting F-tolerant bean varieties.
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Introduction

Fluoride (F) is one of the major global contaminants that is 
drawing increasing attention due to its long long-term persis-
tence in air, soil, and water even at low levels (Weerasoori-
yagedara et al. 2020). F is contained in several rocks and 

minerals that gradually leach out by natural weathering and 
precipitation (Loganathan et al. 2013; Vithanage et al. 2014). 
As a consequence, the availability of F in the environment 
is destined to increase over time, inducing its entry into the 
food chain (He et al. 2021). Furthermore, F can pollute the 
environment through man-made industrial processes such 
as coal combustion and water or waste coming from various 
industrial processes, including steel manufacture, primary 
aluminum, copper and nickel production, phosphate ore pro-
cessing, phosphate fertilizer production and use, glass, brick 
and ceramic manufacturing, and glue and adhesive produc-
tion (Kimambo et al. 2019). Mineral and industrial effluents 
mainly increase F in the aquatic environment. In addition, 
volcanic activity, as well as coal combustion, contributes 
to F pollution, generating gas residues that induce F con-
tamination at the airborne level (He et al. 2021). Although 
the presence of volcanic bedrock and arid or semiarid cli-
matic conditions, as well as Ca2+-deficient Na–HCO3-type 
groundwater, are factors promoting F contamination and 
accumulation (Raj and Shaji 2017; Kumar et al. 2019), F 
availability in soils is influenced by soil pH, which acts in 
fluorine adsorption by soil minerals (Samal et al. 2015).
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Low levels of F, since it is considered an essential micro-
nutrient, have a positive effect on human health, reducing 
the risk of dental caries and inducing strengthened bones 
and teeth (Yu and Yang 2020). Conversely, exposure to high 
levels of F can cause several health problems called fluo-
rosis, which represents a serious issue in many countries 
worldwide (Singh et al. 2018; Yang et al. 2020). High F 
concentrations have been found in groundwaters of a belt 
extending from Syria through Jordan, Egypt, Libya, Alge-
ria, Morocco, and the Rift Valley. Another contaminated 
area is a belt extending from Turkey through Iraq, Iran and 
Afghanistan to India, northern Thailand and China (World 
Health Organization 1984). In particular, the East African 
Rift valley (Ethiopia, Kenya, Tanzania) is a naturally F-rich 
zone due to its geophysical and geochemical characteristics 
(Davies 2008). Overall, fluorosis symptoms are currently 
prevalent in more than 40 countries with a wide range of 
degrees, and they induce serious public health concerns (Ren 
et al. 2022).

F is adsorbed by the soil, and plant uptake is usually very 
low (Álvarez-Ayuso et al. 2011; Ropelewska et al. 2016). 
However, in soils polluted with F and/or under low pH, F 
availability and solubility are increased, and plants may take 
up it in excess, leading to plant damage or excess F in the 
human or animal diet (Álvarez-Ayuso et al. 2011), causing 
severe problems for agriculture and human health.

Excess F levels in soil or solution culture affect plant ger-
mination, root and shoot growth, chlorosis, leaf tip burn, leaf 
necrosis and reduction in grain yield (Datta et al. 2012; Dey 
et al. 2012; Maitra et al. 2016). High levels of F inside plant 
cells have negative effects on physiological cycles, nutri-
ent mobility and water usage and reveal toxicity symptoms, 
such as chlorophyll degradation, low seedling establishment, 
growth rate and photosynthetic activities, high reactive oxy-
gen species (ROS) generation and consequently membrane 
damage (Panda 2015; Yadu et al. 2016). Several studies have 
been conducted on the effect of salinity based on NaCl on 
the germination and emergence of different plant species, 
while only a few data are available for F-contaminated seeds 
in this stage of development. The effect of F on germination 
has been only partially explored in a few species, such as 
rice (Oryza sativa L.) (Chakrabarti and Patra 2015); gram 
seed (Cicer arietinum) (Datta et al. 2012), tomato (Solanum 
lycopersicum) (Singh et al. 2012), wheat (Triticum aestivum) 
(Kumar Aske and Iqbal 2014), maize (Zea mays), soybeans 
(Glycine max), sorghum, (Sorghum vulgare) (Fina et al. 
2016) and bean (Cyamopsis tetragonoloba) (Sabal et al. 
2006; Chahine et al. 2022).

Common bean (Phaseolus vulgaris L.) is a grain legume 
extensively grown and consumed all over the world and rep-
resents one of the main food sources in Africa (Binagwa 
et al. 2018). In Africa, beans are shifting from a traditional 
subsistence to a market-oriented crop, playing the main 

role in the livelihoods of smallholder farmers in Tanzania 
and Kenya as a food security crop and source of income 
(Binagwa et al. 2018).

Seed germination is one of the most fundamental and 
vital phases in the growth cycle of a crop. Salinity hampers 
germination and seedling growth due to the lower osmotic 
potential of germination media (Khan and Weber 2008). In 
addition, it causes toxicity, which affects the activities of 
enzymes of nucleic acid metabolism (Gomes-Filho et al. 
2008), alters protein metabolism (Dantas et al. 2007), inter-
rupts hormonal balance (Khan and Rizvi 1994), and reduces 
the utilization of seed reserves (Othman et al. 2006).

The soluble fluorine fraction in soil is absorbed by roots 
and transported in plants. Although F contamination causes 
severe limitations in plant yield, a complete exploration of 
morphological, mineral, and metabolic profile responses in 
plants has only been partially explored.

To the best of our knowledge, this study represents one of 
the first explorations of the impact of two sources of F (KF 
and NaF) on the mineral status at germination and seedling 
growth in an African local bean variety (Jesca). We hypoth-
esized that the mineral nutrition of seedlings and the produc-
tion of photosynthetic pigments were influenced by the F 
concentration and that a possible antagonistic or synergistic 
effect of ions on seed germination in relation to the kind of 
salt-containing F could exist.

The main aims of this research were: (a) to assess the 
effect of F on the germination and seedling growth of an 
African local bean variety (Jesca); (b) to compare the 
response of the plant to two sources of F (NaF and KF) 
at the germination stage; and (c) to analyze the effect of 
different sources of F salt and sodium chloride treatments 
on the morphological, mineral nutrition and photosynthetic 
pigments of germinated Jesca seeds.

Materials and methods

Plant material and experimental conditions

Mature seeds of Phaseolus vulgaris L. var. Jesca, commonly 
grown in Tanzania (Laizer and Mbwambo 2022), were used 
for a germination experiment. Seeds were provided by 
Nelson Mandela University of Science and Technology, 
Tanzania. Three salt sources (sodium fluoride, NaF; potas-
sium fluoride, KF; and sodium chloride, NaCl) were added 
directly to the silica sand (substrate). The germination test 
was conducted in plastic containers (58 × 72 mm filled with 
approximately 90 g of washed sand). Overall, the experi-
mental design consisted of four treatments and four levels 
as follows:

Treatments:
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•	 Control (0): sand without salt
•	 Sand + NaF
•	 Sand + KF
•	 Sand + NaCl

 Level of each salt:

•	 0
•	 15 mg kg−1

•	 80 mg kg−1

•	 200 mg kg−1

 NaF, KF and NaCl were added directly to the substrate 
according to the level indicated. The correct amount of salt 
was verified (before seed planting) using an ion-selective 
electrode (ORION 4 star) (F) and inductively coupled 
plasma (ICP) atomic emission spectrometry (PerkinElmer) 
(Na and K).

Each treatment × level was indicated with salt type and 
level (i.e., NaF15; NaF80; NaF200). The choice of the salt 
concentration levels explored in the experiment was based 
on the range of soil F contents observed in F-rich sites of 
the East African Rift Valley in Tanzania, as reported by 
Rizzu et al. (2020). Two seeds per container were placed, 
and for each treatment*level combination, 15 replicates 
were used. The experiment was carried out in a growth 
chamber (24 ± 2 °C, 18 h photoperiod, with an average 
irradiance of 1500 lx), and it was repeated twice. Two mil-
liliters of tap water were used every 2 days for irrigation.

Germination and growth measurement

Jesca seeds were considered germinated when the radicle 
reached a length of at least 2 mm. Germination was moni-
tored daily and recorded for 14 days. The percentage of 
germinated seeds (%G) was measured as follows:

At the end of the experiment, at the stage of two full 
leaves (first leaf pair unfolded) (BBCH scale 12) (Weber 
and Bleiholder 1990; Feller et al. 1995), the shoot length 
(SL) and root length (RL) were measured using ImageJ 
software (Image processing and analysis in Java). Root 
length (RL) was estimated using GIA ROOTS soft-
ware (Galkovskyi et al. 2012). Five replicates from each 
treatment*level combination were stocked at − 80 °C for 
chlorophyll, carotenoid, and total phenol analysis.

The remaining ten plants were oven-dried at 65 °C until 
a constant weight was reached and were used for root and 
shoot dry weight (DW) determinations.

%G =
no. seeds germinated

Total no. seeds
∗ 100

Determination of chlorophyll content, total 
carotenoids and phenols

Total chlorophyll (Tot Chl), chlorophyll a (Chl a), chloro-
phyll b (Chl b), total carotenoids (Tot carot) and phenols 
(Tot phenol) were determined by extraction using 99.9% 
methanol as the solvent (0.1 mL of methanol for mg of 
fresh weight). Samples were incubated with the solvent for 
48 h at − 20 °C, and the solution was replaced after 24 h. 
Quantitative chlorophyll and carotenoid determinations were 
carried out immediately after extraction. Absorbance read-
ings were performed at 665.2 and 652.4 nm for chlorophyll 
pigments and 470 nm for total carotenoids. Total chlorophyll 
and carotenoid contents were calculated using Lichtenthaler 
and Buschmann (2001) methods. Total phenol was deter-
mined by directly measuring the extracts at 320 nm (Mag-
gini et al. 2018). Chlorophylls, total carotenoids and phenols 
are expressed as µg g−1 of leaf fresh weight (FW).

Determination of F and cation contents in Jesca 
seedlings

Dried samples of roots and shoots were powdered, and 
150 mg was digested with 2 mL of nitric acid (65%), 3 mL 
of hydrogen peroxide (30%) and 5 mL of deionized water 
in a microwave digestion unit (Milestone Ethos Easy, Mile-
stone s.r.l, Sorisole (BG), Italy) (Rocha et al. 2013). Then, 
the samples were placed in a closed vessel in a refrigerated 
bath (− 30 °C) for 30 min to avoid losses of F in the form 
of hydrogen fluoride (HF) (Rizzu et al. 2020). Neutraliza-
tion with aqueous sodium hydroxide (NaOH, 8 M) was car-
ried out in vessels. The extractant solution was mixed with 
10% (v/v) total ionic strength adjustment buffer “TISAB 
III” solution. The mixture was analyzed by an ion-selective 
electrode (ORION 4 star). The digestion was applied at least 
in triplicate to each of the samples analyzed. The amounts of 
F in roots and shoots are expressed in mg kg−1 DW.

Concentrations of Na, K, Ca, and Mg were analyzed by 
inductively coupled plasma (ICP) atomic emission spec-
trometry (PerkinElmer, Norwalk, USA) after perchloric acid 
digestion (Maggio et al. 2000). The amounts of Na, K, Ca, 
Mg in roots and shoots are expressed in mg g−1 DW.

Statistical analysis

A matrix made of all variables was obtained as the difference 
between each observed value minus the average of the con-
trol treatment. A 3 × 3 factorial, unbalanced (nr. replicates 
were dependent on treatment) analysis of variance was per-
formed using the generalized linear model function (GLM) 
in the RStudio application of R software (version 3.5.1) 
(R Core Team 2018). Factors were the type of salt (KF, 
NaCl, NaF) and salt levels (15, 80 and 200 mg kg−1). When 
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significant differences were observed (P ≤ 0.05), means were 
compared by orthogonal contrasts (P ≤ 0.05). All data are 
presented as the average ± standard error.

Results

Germination percentage and seedling growth

The results of % G are shown in Fig. 1. Jesca was tolerant to 
salinity caused by NaCl, since seeds were able to germinate 
under all levels, showing 94% %G under NaCl200. A sig-
nificant reduction in % G was observed using F (P < 0.001). 
Jesca seeds expressed their sensitivity to F starting from 
80 mg kg−1 by significantly reducing the % G of 7% and 17% 

under KF and NaF, respectively. Under the highest F level 
(200 mg kg−1), germination was deeply compromised: only 
10% (KF) and 3% (NaF) of seeds germinated.

To assess the effects of salt stress on Jesca seedling 
growth, both shoot and root lengths were recorded. Shoot 
and root length significantly decreased in the presence of 
NaF and KF (Table 1; Supplementary Fig. 1). Moreover, the 
application of F at the highest level in both forms severely 
reduced shoot length (− 45% and − 36% under KF200 and 
NaF200, respectively, compared to the control) (P = 0.002 
and P < 0.001, respectively). Similarly, a significant decrease 
was observed in root length (− 51% and − 92% under KF200 
and NaF200, respectively, compared to the control). Con-
versely, the addition of NaCl to the substrate did not impact 
seedling growth (Table 1). As predicted, as a consequence 

Fig. 1   Germination (%) of 
seeds treated with 0, 15, 80 and 
200 mg kg−1 of NaF, KF and 
NaCl. Different letters indicate 
significant differences based on 
levels within each salt treatment 
and the control
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Table 1   Shoot and root length 
(L) and dry weight (DW) of 
bean seedlings

Jesca seeds were subjected to ten treatments: 0, 15, 80 and 200 mg kg−1 of KF, NaF and NaCl. The average 
value of three replicates ± standard error is presented in the table. Different letters indicate significant dif-
ferences based on levels within each salt treatment and the control

Treatment Shoot Root

Salt F level (mg 
kg−1)

L (cm) DW (g) L (cm) DW (g)

Control 0 8.51 ± 0.30 0.201 ± 0.01 9.23 ± 0.39 0.310 ± 0.06
KF 15 9.43 ± 0.38a 0.210 ± 0.01a 8.22 ± 0.41a 0.210 ± 0.03a

80 9.66 ± 0.35a 0.200 ± 0.01a 7.80 ± 0.42a 0.191 ± 0.02a
200 3.85 ± 0.63b 0.025 ± 0.00b 4.73 ± 0.24b 0.045 ± 0.10b

NaF 15 10.37 ± 0.39b 0.180 ± 0.01a 7.70 ± 0.45a 0.190 ± 0.03a
80 9.14 ± 0.29a 0.180 ± 0.01a 5.91 ± 0.37a 0.060 ± 0.01b
200 3.04 ± 0.53c 0.025 ± 0.04b 0.80 ± 0.01b 0.001 ± 0.00c

NaCl 15 9.70 ± 0.46ab 0.210 ± 0.01 8.72 ± 0.46 0.191 ± 0.02a
80 10.05 ± 0.53a 0.191 ± 0.01 8.83 ± 0.41 0.200 ± 0.03a
200 7.76 ± 0.23b 0.202 ± 0.01 8.10 ± 0.50 0.160 ± 0.02b

Probability level of significance (ANOVA)
Salt (A) 0.0002 0.1018  < 0.0001 0.0015
Level (B)  < 0.0001 0.0001  < 0.0001 0.0001
AXB 0.0009 0.0001 0.0005 0.008
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of seedling growth reduction under F salts, a significant 
decrease in shoot and root DW was also recorded (Table 1). 
Major effects were detected using the 200 mg kg−1 level in 
shoot DW (− 87% and − 88% under KF200 and NaF200, 
respectively) and root DW (85% and − 99% under KF200 
and NaF200, respectively). In addition, NaCl 200 mg kg−1 
impacted only the root dry weight, with a significant reduc-
tion in Jesca biomass of 48% compared to the control.

F content in shoot and root tissues

A significant increase in F uptake was recorded for Jesca 
grown under increasing levels of KF and NaF (Fig. 2). 
Overall treatment and level and treatment × level were sta-
tistically significant in both plant tissues (Supplementary 
Table 1). F uptake was calculated from DW of organs, 
and it ranged from a minimum of 2.40 mg g−1 to a maxi-
mum of 112.84 mg g−1 (shoot control and shoot NaF200, 
respectively). The shoots and roots showed different F 

uptake, and in general, higher F uptake was detected 
under NaF treatments than under KF treatments. At the 
highest F level (200 mg kg−1), regardless the salt source 
used, shoots showed more efficient uptake of F than roots 
(Fig. 2b). As a result, Jesca accumulated 47.63 mg kg−1 and 
75.70 mg kg−1 F in roots and shoots, respectively, when 
treated with KF, whereas under NaF treatment, Jesca accu-
mulated 73.64 mg kg−1 and 112.84 mg kg−1 F in roots and 
shoots, respectively.

Photosynthetic pigments, total carotenoids 
and phenols

Leaf chlorophylls (total chlorophyll, Tot Chl; chlorophyll 
a, Chl a; chlorophyll b, Chl b), total phenols (Tot phenols) 
and carotenoids (Tot carot) were estimated for all treatments 
in fresh tissue. A significant reduction in chlorophylls and 

Fig. 2   Total F in shoots (S) (A) 
and roots (R) (B). Two different 
sources of F (KF; NaF) and 
four levels of F for each treat-
ment (0, 15, 80, 200 mg kg−1) 
were applied. The average 
value ± standard error of three 
replicates is presented in the 
figure. Different letters indicate 
significant differences based on 
levels within each salt treatment 
and the control
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carotenoids with increasing F levels was observed under KF 
(Table 2).

Indeed, Chl a, Chl b and Tot Chl reached the minimum 
value under KF200 (69%, 7% and 62%, respectively) com-
pared to the control. A similar trend was observed under 
NaF200, where a significant reduction in Chl a and Tot Chl 
was recorded (59% and 45%, respectively), while an increase 
in Chl b (74%) was revealed. Nevertheless, NaCl treatment 
at 200 mg kg−1 induced a smooth increase in the content 
of all chlorophyll pigments compared to the control (Chl 
a, + 4%; Chl b, + 143%; and Tot Chl, + 20%). In addition, 
in contrast to the F salt treatment, at the lowest NaCl level, 
minor contents of Chl a, Chl b and Tot Chl were observed.

Tot carot decreased by 56% and 72% under KF200 and 
NaF200, respectively. Conversely, under NaCl stress, Tot 
carot increased significantly with increasing salt level 
(P < 0.001). Tot phenol significantly decreased when F 
was applied at KF200, reaching the minimum value of 
5.81 µg g−1 (plant FW).

Micronutrient content

The mobility of Na, Ca, K and Mg was explored. Mineral 
data were not detected for seedlings cultivated under NaF200 
due to the scarcity of plant material available because of 
severe damage induced by salt stress. Significance of the 
effects of salts, levels and their interaction on mineral con-
tent (F, Na, Ca) in Jesca shoot and root is shown in Supple-
mentary Table 1. All mineral contents are expressed as mg 
g−1 of plant organ DW.

The Na content significantly varied with the seedling 
organ (root and shoot) and salt used (Fig. 3). Obviously, 
under NaF and NaCl treatments, higher Na levels were 
found in roots and shoots than in the control or under KF 
treatments. In particular, in roots, a higher content of Na 
was found under NaF compared to NaCl treatments. Under 
NaF80, which represents the highest Na level monitored, 
roots accumulate more than five times more Na than the 
control, achieving a maximum value of 28.65  mg  g−1. 
Under NaCl200, minor accumulation of Na compared to 
NaF80 was found, and roots reached the maximum value 
of 14.03 mg g−1.

The Na content in shoots was approximately ten times 
lower than that in roots (Fig. 3). In general, the Na content 
showed a similar trend in both seedling organs. In addition, 
although the Na content detected in shoots was low, con-
sistent accumulation was observed in plants treated with 
NaCl, reaching a maximum value of 2.3 mg g−1. Regard-
ing the Ca content in roots and shoots, two opposite trends 
were recorded based on the salt used: F or NaCl (Fig. 4). 
A significant decrease in Ca content in roots was observed 
in F-treated plants by − 38% and − 44% under KF80 and 
NaF80 treatments, respectively. At the highest level of KF 
(200 mg kg−1), Ca in roots decreased by 86% compared to 
the control. A similar trend was observed in shoots. Ca in 
shoots decreased by 28% and 13% under KF80 and NaF80, 
respectively. Overall, under F treatments, roots presented 
higher content of Ca compared to shoot, ranging from 
a minimum of 1.36 mg g−1, under KF200 treatment, to a 
maximum of 4.67, under control treatment in the absence 
of salts. In the presence of NaCl, a decrease of 10% in Ca in 

Table 2   Chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Tot Chl), carotenoids (Tot carot) and total phenols (Tot phenol) concen-
trations under three types of salt treatments (KF, NaF, and NaCl) in four concentrations (0, 15, 80 and 200 mg kg−1)

The average value of three replicates ± standard error is presented in the table. Different letters indicate significant differences based on levels 
within each salt treatment and the control

Salt (A) Level (B) 
(mg kg−1)

Chl a (µg g−1 FW) Chl b (µg g−1 FW) Tot Chl (µg g−1 FW) Tot carot (µg g−1 FW) Tot phenol (µg g−1 FW)

Control 0 12.32 ± 0.50 1.5 ± 0.41 13.81 ± 0.90 2.18 ± 0.06 10.67 ± 0.43
KF 15 15.39 ± 0.73a 3.85 ± 0.16a 19.25 ± 0.82a 3.14 ± 0.22a 10.61 ± 0.57a

80 11.49 ± 0.67b 4.08 ± 0.18a 15.57 ± 0.81b 2.56 ± 0.20b 11.09 ± 0.45a
200 3.83 ± 0.03c 1.40 ± 0.00b 5.23 ± 0.03c 0.96 ± 0.05c 5.81 ± 0.01b

NaF 15 13.03 ± 0.44a 3.12 ± 0.23ab 16.15 ± 0.58a 2.08 ± 0.13a 9.65 ± 0.42b
80 12.37 ± 0.79a 3.52 ± 0.30a 15.89 ± 1.08a 2.27 ± 0.19a 8.83 ± 0.64b
200 5.04 ± 0.04b 2.61 ± 0.01b 7.65 ± 0.04b 0.60 ± 0.00b 12.41 ± 0.41a

NaCl 15 8.96 ± 0.39b 1.35 ± 0.34b 10.31 ± 0.38b 1.56 ± 0.24c 9.30 ± 0.44
80 14.33 ± 0.57a 3.20 ± 0.27a 17.52 ± 0.83a 3.19 ± 0.10b 9.94 ± 0.51
200 12.85 ± 1.29a 3.65 ± 0.74a 16.51 ± 1.77a 3.86 ± 0.23a 9.29 ± 0.93

Probability level of significance (ANOVA)
Salt (A) 0.0054 0.2744 0.1121  < 0.0001 0.1296
Level (B)  < 0.0001 0.0009  < 0.0001  < 0.0001 0.3497
AXB  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001
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roots was observed (NaCl15 and NaCl80). Furthermore, an 
increase in Ca in roots was detected in NaCl200, reaching 
the maximum value of 5.20 mg g−1 (Fig. 4). However, the Ca 
in shoots showed a constant increase with NaCl treatments, 
reaching a maximum value of 6.20 mg g−1 (Fig. 4).

Finally, the K and Mg contents were also evaluated. 
The effect of the salt, level and the interaction between 
salt × level was also explored (Supplementary Table 1). 
As expected, K in roots increased with increasing KF level 
from 9.19 mg g−1 (control) to 40.32 mg g−1 (KF200). In 
the presence of NaF and NaCl, a slight decrease in K con-
tent was observed among the control (9.19 mg g−1), NaF80 
(4.25 mg g−1) and NaCl200 (3.56 mg g−1) (Fig. 4). In shoots, 
the K content presented a slight increase from 27.78 mg g−1 
(control) to 30.04  mg  g−1 (NaF80) and 29.33  mg  g−1 
(NaCl200). Mg trend was also explored. In general, little 
variation in Mg content was found in roots and shoots. At 

KF200 and NaCl200, roots presented a slight increase in 
Mg concentration. Under NaF80, a similar Mg content was 
found with the control. In shoots, Mg increased in all treat-
ments except for KF200, where its content reached a mini-
mum (2.07 mg g−1) compared to the control.

Discussion

In agricultural lands contaminated by fluoride, bean cultiva-
tion has to face both germination and seedling development 
in hard conditions, as confirmed by our results with Jesca. 
Indeed, a consistent inhibition of germination was recorded 
for both NaF and KF when the highest F level (200 mg kg−1) 
was taken into account. Similar results regarding the effect 
of F on seed germination and seedling development were 
already reported by Chahine et al. (2022) for different bean 

Fig. 3   Increase in Na concentra-
tions in roots (A) and shoots 
(B) of bean treated with KF, 
NaF, and NaCl at 0, 15, 80 
and 200 mg kg−1. The average 
value ± standard error of three 
replicates is presented in the 
figure. Different letters indicate 
significant differences based on 
levels within each salt treatment 
and the control
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varieties, Sreedevi and Damodharam (2011) for chickpeas, 
and Saini et al. (2013) and Dulska et al. (2019) for small 
shrubs such as Prosopis juliflora, Colobanthus apetalus, and 
Colobanthus quitensis.

Seedling exposure to F induced a general reduction in 
seedling growth, with a significant decrease in shoot and 
root length (Table 1), as well as their weight, as already 

reported for lettuce (Wang et al. 2022). Moreover, the F 
treatments had a more consistent effect on the DW of both 
shoot and root portions than NaCl.

Therefore, the decrease in shoot and root DW in Jesca 
under salt stress should be related to the changes in the 
allocation of assimilates between roots and shoots (Mon-
dal 2017; Sabal et al. 2006). The reduction in root growth, 

Fig. 4   Ca, K and Mg content 
in roots (R) and shoots (S) 
treated with KF, NaF, and NaCl 
0, 15, 80 and 200 mg kg−1 
(A–C respectively). The average 
value ± standard error of three 
replicates is presented in the 
figure. Different letters indicate 
significant differences based on 
levels within each salt treatment 
and the control
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therefore, could be the result of the F effect on phytin (Ram 
et al. 2014). It is well known that during germination, phytin 
is broken down by the activity of the enzyme phytase to sup-
ply seedlings with inorganic phosphate. F inhibits phytase 
enzyme, mineral nutrition, and amylase activity, thus delay-
ing seedling development (Panda 2015; Yadu et al. 2016). A 
similar trend was found in other seeds exposed to F, such as 
rice (Chakrabarti and Patra 2015; Chakrabarti et al. 2012; 
Mondal 2017), wheat (Gautam and Bhardwaj 2010; Tak 
and Asthir 2017), tomato, wheat, mustard and cluster bean 
(Sabal et al. 2006). In all these experiments, a reduction in 
roots and shoots with increasing NaF levels was found.

Furthermore, Kabata-Pendias (2010) suggested that the 
fraction of F translocated in leaves depends on the Mg2+ 
and Ca2+ concentrations in the medium. Considering the 
role of Ca and Mg in F uptake and tissue accumulation, 
the content of these two anions in Jesca seedlings was also 
explored (Fig. 4).

Our results showed a lower Ca content in root seedlings 
as a consequence of F exposure. These data could be due to 
the sequestration of F in root vacuoles (Banerjee and Roy-
choudhury 2019). The compartmentalized F was probably 
immobilized by cations such as Al3+, Fe3+, Ca2+, and Mg2+ 
and/or by organic compounds. The formation of such com-
plexes reduced the Ca2+ content in roots, which disturbed 
membrane stability and signal transduction. This hypothesis 
will justify the response of plants exposed to NaCl, in which 
the root content of Ca did not change. Comparing the Ca 
content in the shoots of plants under different F treatments, 
Jesca showed the lowest content of Ca under KF (regardless 
of the level), which represents the less toxic F salt used. 
The mechanisms by which F is toxic are thought to involve 
inhibition of enzymes and interference with membrane per-
meability through precipitation with Ca2+ (Stevens et al. 
1998). If the Ca content in plants is still high, the plants 
would be more tolerant of F exposure. Changes in membrane 
permeability could overcome the barrier to F uptake in the 
root cortex and increase the F concentration in plants. Some 
explanations could be proposed justifying the Ca response 
to F compared to NaCl: (i) Ca might change the properties 
of the cell wall (Ruan et al. 2004), (ii) Ca might bind F to 
form the CaF2 complex, which interferes with membrane 
permeability (Cai et al. 2014), and (iii) a Ca2+-dependent 
signaling mechanism might be inhibited by F uptake (Zhang 
et al. 2015).

The toxic action of F is also thought to involve the inac-
tivation of Mg2+ at its sites of physiological activity. Ca 
is intensely competitive with Mg, and the binding sites on 
the root plasma membrane appear to have less affinity for 
the highly hydrated Mg2+ than for Ca2+ (Marschner 1995). 
Overall the impact of F in mineral nutrition of plant is only 
partially, Reddy and Kaur 2008, Li and Ni 2009, Panda 
2015). Our investigation revealed that the Mg concentration 

was higher in the shoot than in the root, and the Mg uptake 
in the shoot decreased with the increase of F level, whereas 
in the root, an opposite trend was observed. Higher F levels 
(i.e. KF200, NaF80) increased the Mg uptake in shoots and 
decreased it in roots, revealing two opposite trends. One of 
the hypotheses is that F may disturb the ion uptake, thereby 
altering the selectivity and permeability of cell membranes.

Potassium (K) in roots decreased as overall NaF and NaCl 
levels increased. This could be attributed to the increase in 
Na in substrate solutions, which inhibits the uptake of K by 
interfering with K ion channels in the plasma membrane of 
the root and competes with K for binding sites (Ghassemi-
Golezani and Farhangi-Abriz 2019; Zouari et al. 2017). The 
increase in Na and K in plant shoots can be directly tied to 
the increasing NaCl–KF and NaF levels of the substrate. 
Similar results were found by Carter et al. (2005) for Limo-
nium perezii, in which the levels of Na and Cl− in plant tis-
sues were directly influenced by the NaCl concentration of 
the substrate solutions. The amount of Na in plants exposed 
to NaF was higher than that found in plants exposed to NaCl, 
which could be related to the mobility of Na in the presence 
of F compared to Cl−.

Furthermore, the increased Na in the shoots under F stress 
might also be related to a possible decrease in Na exclu-
sion. It is well known that many plants have a Na exclusion 
mechanism through a Na+/H+ antiport, such as salt overly 
sensitive 1 (SOS1), exchanging cytoplasmic Na+ with exter-
nal H+ (Li et al. 2010; Munns and Tester 2008). In contrast, 
in the case of KF treatment, K is preferentially transported 
against the Na concentration gradient. As a result, K levels 
in the Jesca leaves increased with increasing KF-salinity. 
The higher germination percentage of seeds treated with KF 
than of those treated with NaF can be related to the less tox-
icity effect of K compared to Na (Massa et al. 2009; Massa 
and Melito 2019). Furthermore, the substitution of K by Na 
may lead to nutritional imbalance.

The chlorophyll and total carotenoid contents of leaves 
showed different behaviors based on the salt used. Photo-
synthesis was found to be affected by F toxicity above a 
threshold level (80 mg kg−1). As reported by Sahariya et al. 
(2021), chloroplasts are one of the primary targets of F. 
Several studies have reported a negative effect of F on pho-
tosynthetic pigments such as anthocyanins, chlorophyll-a, 
chlorophyll-b and carotenoids (Gadi et al. 2021). Under the 
highest F level, plant tissue net photosynthesis was reduced, 
suggesting that F may interfere with pigment biosynthesis, 
which is a primary symptom of F-induced chlorosis (Mondal 
2017; Baunthiyal and Ranghar 2014).

However, based on chlorophyll content, Jesca was 
shown to be a salt-tolerant genotype to NaCl salinity since 
its chlorophyll content under medium and high NaCl lev-
els showed comparable values to the control. These data 
suggested that Jesca presents, as previously observed in 
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other African varieties, a protection system against oxida-
tive damage caused by salt treatment (NaCl), which might 
negatively affect photosynthesis (Yasar et al. 2008).

In our study, we observed two opposite trends of carot-
enoids in response to NaCl and F (NaF and KF). In the 
first case, an increase in carotenoid content was observed 
as a consequence of salinity stress associated with NaCl. 
Carotenoids, which include carotenes and their derived 
molecules, have several functions that range from a direct 
role in photosynthesis to their involvement in oxidative 
stress defense mechanisms (Gill and Tuteja 2010). Sev-
eral studies have demonstrated that most salt-resistant 
plants present an enhanced production of carotenoids 
(Juan et al. 2005; Coesel et al. 2008). In our study, the 
total carotenoid content increased with increasing levels 
of NaCl, suggesting its role in Jesca protection against 
NaCl salt stress. However, in the presence of F, a dramatic 
decrease in carotenoids was detected under both sources 
of F. Carotenoids are important antioxidants that protect 
photosynthesis, avoiding the production of singlet oxygen 
by quenching the excited state of chlorophyll (Chakrabarti 
and Patra 2015).

Salt stress often creates both ionic and osmotic stress in 
plants, resulting in the accumulation or decrease of spe-
cific secondary metabolites in plants. In this study, for 
instance, although the reduced growth of bean seedlings 
as consequence of F stress was detected under NaF200, 
unlike under NaCl and KF treatments, there was an 
increase in the concentration of phenolic compounds.

In conclusion, F deeply impacts Jesca germination, 
seedling growth, and pigment and chlorophyll contents, 
with a stronger effect associated with NaF than with KF. 
Indeed, alteration of the mineral (Na, Mg, K, Ca) status of 
the seedlings was observed. The endogenous Ca content 
showed two opposite trends in response to F and NaCl 
stress: while endogenous Ca increased with increasing 
NaCl, it decreased when the F level increased. Future stud-
ies should explore the dynamics of F in soils and uptake 
by crops grown on F-affected soils.
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