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Abstract
Drought stress exposure adversely affects plant growth and productivity. Various seed priming techniques are experimented 
to mitigate the adverse effect of drought stress on plant performance. It is a low-cost and sustainable technology that proved 
to be of immense potential to enhance drought tolerance and increase crop productivity. Drought episodes are followed by 
recovery through rain or irrigation and help the plants to recuperate from the damages caused by drought stress. The sever-
ity of drought-associated damages determines the recovery kinetics of plants. Under the recurrent cycle of drought events, 
recovery kinetics has immense importance in predicting the stress tolerance potential and survival status of a plant. Many 
processes like DNA damage repair, de-novo synthesis of nucleic acids and proteins, osmotic adjustment through the accu-
mulation of osmolytes, the potential activity of antioxidant machinery occurring during seed priming play a significant role 
during recovery from drought stress. Alleviation of the severity of drought stress through the accumulation of osmolytes, 
the augmented activity of antioxidant machinery, improved photosynthetic performance, and the upregulated expression of 
stress-responsive genes attributed by seed priming will complement the recovery from drought stress. Although the beneficial 
effects of seed priming on drought tolerance are well explored, priming influenced recovery mechanism has not been well 
explored. There is a lacuna in the field of research related to the beneficial effects of seed priming for recovery from drought 
stress, and that is the focus of this paper.
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Introduction

Plants are frequently exposed to multitudes of unfavorable 
environmental conditions such as excessive light intensity, 
heat, ultraviolet radiation, drought, cold, salinity, nutrient 
deficiency and environmental pollutants (Banerjee and Roy-
choudhury 2017; Martinez et al. 2018; Gharechahi et al. 
2019). Drastic and frequent occurrence of stress exposure 

adversely affects plant performance and productivity and 
thereby causes a negative impact on the food and agricul-
ture system, which fails to meet the demands of the growing 
global population (Zandalinas et al. 2017; Zhou et al. 2017). 
The plants growing in these adverse conditions modulate 
their metabolic processes to maintain normal functionality 
(Hussain et al. 2019; Ansari et al. 2021). The changes in 
the morphological, physiochemical, and molecular charac-
teristics of plants help them to withstand the unfavourable 
conditions during a threshold period in which the plants may 
be able to rescue themselves from the stress exposure (Song 
et al. 2019).

The extreme rise in the earth’s atmospheric temperature 
and the subsequent effect of global warming creates a sig-
nificant impact on global agricultural production by limit-
ing water availability and intensifies the occurrence of the 
drought period. Among the various abiotic stresses, drought 
is the most crucial one, which directly affects plant metabo-
lisms, development and productivity (Reddy et al. 2004; 
Abdel-Ghany et al. 2020). Prolonged and recurrent drought 
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episodes may eventually lead to the desertification of arable 
land and increase the gravity of food scarcity and starvation. 
Current researches are focused on finding out the best strat-
egy to overcome the cumulative effects of drought stress on 
crop production and to boost up the overall performance and 
yield of plants amidst frequent and extreme weather events.

Various strategies like conventional breeding and modern 
methods such as genetic engineering, mutation breeding, 
and polyploidy breeding are being experimented to develop 
plants that can endure environmental stresses. However, 
these techniques have several limitations, such as huge 
human resources, biosafety and ethical issues (Jisha et al. 
2013). Priming is an alternative technique to overcome these 
limitations and serves as a means to boost up the stress tol-
erance potential of plants (Sen and Puthur 2020a; Thomas 
et al. 2020). Seed priming is the treatment of seeds with dif-
ferent factors of natural and synthetic origin to induce a mild 
dose of stress (Paparella et al. 2015). Seed treatments prior 
to germination induce a particular physiological state called 
primed state, which augments several cellular responses 
(Wojtyla et al. 2016). As a result, plants are equipped to 
respond quickly to further stress exposure (Farooq et al. 
2020). The seedlings emerging from primed seeds are char-
acterized by early and uniform germination, and an overall 
enhancement in various growth features can be noted in 
its life span (Jisha et al. 2013; Huang et al. 2020; Khalaki 
et al. 2021). Seed priming techniques such as hydropriming, 
osmopriming, halopriming, UV-B priming, and chemical 
priming induces mild stress on plants and thereby activating 
stress-responsive genes and proteins like late embryogenesis 
abundant (LEAs), that potentially induces drought stress tol-
erance (Chen and Arora 2013; Sen et al. 2020; Thomas et al. 
2020). Studies suggest that earlier mild stress exposure can 
imprint epigenetic memory in plants and make the plants 
ready to encounter similar stress or with different stress 
(Bruce et al. 2007; Ding et al. 2013; Marcos et al. 2018; 
Hossain et al. 2018).

The transitory nature of stress periods complicates the 
process of drought stress cascades (Ding et al. 2012; Crisp 
et al. 2016). Most drought events are brief in nature and 
are followed by favorable conditions enabling the recovery 
of plants from stress. At the onset of recovery, most of the 
modifications induced by drought are reverted to the initial 
state, and plants try to recover from the damages caused by 
drought (Zhang et al. 2018; Ammar et al. 2020). The extent 
of damages induced by the stress determines the recovery 
kinetics of plants, depending on the threshold in which the 
plants may be able to re-establish homeostasis upon new 
minimum favorable conditions (Rivas et al. 2016). Research-
ers have found that earlier exposure to mild stress, which was 
termed priming, made plants alert for another event of stress 
(Bruce et al. 2007). This could be accomplished through 
the imprinting of priming memory. Treatment of seeds with 

mild doses of stress agents activates signaling molecules and 
thereby provides drought stress tolerance to plants. Various 
reports on the attainment of drought tolerance potential in 
plants emerged from primed seeds of important crops. But, 
under the transitory nature of stress periods, the quickness 
of stress recovery plays a vital role in predicting the survival 
status of plants subjected to stress. Inherent tolerance poten-
tial attributed to various seed priming techniques can reduce 
the drought-induced damages and may help the plants to 
speed up the process of stress recovery. As the technique 
does not use any environmentally hazardous substances, it 
can serve as an environmentally safe and effective strategy 
to reduce crop loss due to various stressors. The physio-
chemical and molecular modulations achieved through seed 
priming complementing the recovery from drought stress are 
represented in Fig. 1.

There are scanty records on the beneficial effects of 
seed priming in the recovery kinetics of drought-stressed 
plants. This review not only focuses on the priming-induced 
drought tolerance potential of plants but also deals with the 
recovery kinetics of drought-stressed plants as influenced by 
seed priming. Also, it addresses the possible mechanisms 
by which priming aid in faster and efficient recovery from 
drought.

Impact of drought stress on plant growth

Drought stress may affect normal plant growth, stomatal 
conductance, photosynthetic efficiency, ion homeostasis and 
causes oxidative damage by the over-accumulation of reac-
tive oxygen species (ROS), impeding normal plant growth 
(Farooq et al. 2009a; Matos et al. 2010). The oxidative stress 
caused by ROS generation harms the cell integrity by dis-
rupting cell membranes and eventually leads to the degra-
dation of proteins and nucleic acids (Gill and Tuteja 2010). 
There exists a delicate equilibrium between ROS genera-
tion and their scavenging (Choudhury et al. 2017). Efficient 
detoxification of ROS is essential for the normal functioning 
of a cell. Modulation of ROS is carried out with the help 
of potent antioxidant enzymes like superoxide dismutase 
(SOD), peroxidase (POD), catalase (CAT), and glutathione 
reductase (GR), and non-enzymatic free radical scavengers 
like ascorbate (AsA), glutathione (GSH) and phenolics are 
also involved in antioxidative function (Mittler et al. 2004; 
Zandalinas et al. 2017). But under severe stress conditions, 
this equilibrium is disturbed.

Plants have developed several mechanisms for survival 
under drought stress. Stress signals elicit the accumulation of 
compatible solutes as osmoprotectants to maintain osmotic 
balance and to stabilize the integrity of cellular structures 
(Bohnert et al. 1995; Choluj et al. 2008). It assists the plants 
in enhancing their survival status under the environment of 
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Fig. 1  Augmented drought stress tolerance potential of seedlings emerged from primed seeds alleviates the drought induced damages and 
thereby facilitates rapid recovery from drought stress upon re-watering through rain or irrigation
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stress (Wang et al. 2019). Better plant water status is main-
tained by the increased accumulation of osmolytes, aiding 
in the reduction of oxidative damage (Wang et al. 2019). 
These osmoprotectants are mainly classified under three 
chemical categories: sugar and polyols, betaines, amino 
acids and their derivatives. Furthermore, drought signal-
ling facilitates modifications in the biosynthetic pathways 
of hormones, especially abscisic acid (ABA). The synthesis 
of ABA induces a cascade of signalling and gene expression, 
ending up in the closure of stomata and prevention of exces-
sive water loss (Peleg and Blumwald 2011; Takahashi et al. 
2018). Phytohormone signalling pathways (ABA, ethylene 
and jasmonic acid) are activated during drought stress along 
with the upregulated activity of drought inducible transcrip-
tion factors (TFs), which may promote drought tolerance in 
plants (Wu et al., 2019; Zhu et al. 2019). Accumulation of 
secondary metabolites during stress periods also serves as 
an adaptive strategical response to counteract the adverse 
effects caused by drought conditions (Alhaithloul et al. 
2020).

Plant response to drought stress involves complicated sig-
nalling machinery (Takahashi et al. 2018). Under a water 
deficit scenario, plants orchestrate their gene expressions 
to cope with the unfavourable state. This leads to physi-
ochemical modulations inside the plant cell (Abdel-Ghany 
et al. 2020). With the depletion of the water supply, drought 
tolerance responses in plants start to show up quickly (Pan-
dey and Shukla 2015). Deciphering the actual mechanism 
of drought tolerance is highly essential for the mitigation 
of the adverse effects of drought stress on plant perfor-
mance. Drought-modulated genes show complex regulatory 
mechanisms and subsequent responses during water deficit 
conditions, imparting tolerance to the plants under stress 
(Chiappetta et al. 2015; Begcy et al. 2019). The regulation 
and governing of gene expression occur at different levels, 
including transcriptional, post-transcriptional, translational, 
and post-translational levels (Wang et al. 2010; Zhang et al. 
2014). Transcriptional signal transduction is mediated 
through ABA-dependent and ABA-independent pathways. It 
comprises various TFs such as apetala2/ethylene responsive 
factor (AP2/ERF), myeloblastosis (MYB), myelocytomato-
sis (MYC), WRKY, basic-leucine zipper (bZIP), NAC and 
dehydration-responsive element binding protein (DREB), 
which in turn activates genes which induce drought toler-
ance. Mitogen-activated protein kinase (MAPK) and cal-
cium-dependent protein kinases (CDPK) also play an impor-
tant role in drought signaling (Singh and Laxmi 2015). A 
proper understanding of these molecular mechanisms would 
be helpful in improving the genetic potential of plants for 
drought tolerance.

Expression of stress-responsive genes was directed by 
several TFs and expression levels of these TFs vary greatly 
among the tolerant and sensitive genotypes, and upregulation 

of these are generally shown in tolerant genotypes (Begcy 
et al. 2019). Drought upregulated TFs help gene expression 
of stress-specific proteins, which may have a crucial role in 
alleviating the deleterious effects of drought stress (Abdel-
Ghany et al. 2020). Drought switches on these TFs and acti-
vates downstream signalling cascade. Major drought-related 
TFs include Dehydration Responsive Element Binding pro-
tein (DREB) and Abscisic acid Responsive Element Binding 
protein (AREB), which play a vital role in offering stress 
survival under water-scarce conditions (Joshi et al. 2016; 
Kudo et al. 2017; Takahashi et al. 2018).

Another interesting drought stress regulator is LEA 
proteins, a class of hydrophilic proteins having a potential 
role in protection against abiotic stresses and are widely 
distributed in the plant kingdom (Brini et al. 2007; Wang 
et al. 2007; Magwanga et al. 2018). Dehydrins (Group 2 
LEA) are a family of LEA proteins that provide enhanced 
plant adaptation during drought stress (Chen et al. 2012a, 
b; Charfeddine et al. 2015). They provide better protection 
against dehydration stress. Xiao et al. (2007) reported that 
overexpression of an LEA protein gene, OsLEA3-1, offered 
drought resistance in rice without a significant yield pen-
alty. In cotton plants, during drought stress conditions, dif-
ferent plant organs showed differential expression levels of 
LEA genes (Magwanga et al. 2018). The upregulation of 
genes following drought stress signalling helps to analyze 
the molecular mechanisms of drought tolerance (Chiappetta 
et al. 2015).

Priming equips the plants for repeated 
stress

Plants are exposed to multiple cycles of stress events. Ear-
lier exposure to stress may help the plant to imprint stress 
memory and thereby elicit quicker responses on exposure 
to further stress (Bruce et al. 2007; Marcos et al. 2018). 
Hence, the transcriptional activities upon the repeated cycle 
of drought stress are different from that of single stress expo-
sure (Ding et al. 2012). Studies in Arabidopsis thaliana 
showed transcriptional stress memory through the upregula-
tion of transcription and increased in the level of transcripts 
of stress-responsive genes upon repeated stress exposure 
(Ding et al. 2012). A study of dehydration response genes 
in A. thaliana revealed that there are two categories of genes 
showing differential transcriptional responses. One group 
of genes produce transcripts at a similar level during each 
stress event and others showing upregulated transcript level 
after each stress exposure. The latter set of genes are termed 
memory genes. These memory genes finely tune the plants 
to alert them for the next event of stress (Ding et al. 2013). 
Expression levels of the stress-responsive genes were higher 
in plants of primed state than the non-primed state. This 
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reveals the phenomenon of complicated stress imprinting by 
accumulating stress signaling proteins (Bruce et al. 2007). 
Drought priming before anthesis in wheat enhanced the rate 
of photosynthesis and activities of ascorbate peroxidase and 
also reduced membrane damage during grain filling, and 
this could play a significant role in protection from later 
occurring stress (Wang et al. 2014). Hence a plant exposed 
to an earlier stress event can perform better than a plant 
that did not face any earlier stress. This plant acclimation 
strategy associated with the stress memory of environmental 
perturbations elicits signalling processes and offers better 
protection during further stress exposure.

Seed priming: a means of memory boosting

The ability to remember past events is highly a boon for 
organisms to live in a fluctuating hostile environment (Ding 
et al. 2013; Marcos et al. 2018). Seed priming is a promising 
strategy to develop stress-tolerant plants by treating seeds 
with various natural and synthetic factors in mild doses 
(Jisha et al. 2013; Thomas and Puthur 2020). It induces 
the triggering of mild stress in plants and thereby alerts the 
system and partially activates stress-responsive genes and 
proteins that potentially induce stress tolerance (Chen and 
Arora 2013). It is well documented that priming promotes 
early and uniform germination of seedlings by reducing 
the seedling emergence time and improve the performance 
and productivity of seedlings that emerged from the primed 
seeds (Farooq et al. 2013; Jisha et al. 2013). Studies in Oryza 
sativa revealed that seed priming techniques improve the 
tolerance potential of tolerant varieties and provide stress 
tolerance to sensitive varieties (Sen and Puthur 2020a). In 
both these cases, the priming carried out in the seed stage 
allows the priming effects to be carried over to the seedlings, 
which is a clear indication that priming imprints are carried 
over to different stages of the life cycle of a plant (Sen and 
Puthur 2020b).

It is possible to develop stress memory in plants through 
priming strategies, which hasten the molecular responses 
related to stress tolerance upon subsequent stress exposure. 
It was also established that the priming memory gets passed 
from parents to the progeny (Wojtyla et al. 2016). This 
transgenerational memory provides stress tolerance to the 
proceeding generations, and it is being studied that whether 
it will pass on from generation to generation in equal vigour 
or will it fade off with passing off the generations. Beneficial 
effects of priming could get imprinted in plants after expo-
sure to the stress exerted by the unfavourable environment 
(Martinez-Medina et al. 2016) and would help the plant for 
the augmentation of abiotic stress tolerance response, on 
being encountered with the same stress or even different 
stress. The effect of various seed priming techniques and 

the physiological and molecular responses of primed plants 
towards drought stress are highlighted in Table 1. Stress tol-
erance mechanisms attributed through seed priming strate-
gies in turn compliment the process of drought recovery.

How seed priming complement recovery 
from drought stress

Drought stress is followed by a favorable period with water 
availability by rain or irrigation, and plants try to recover. 
During recovery from stress, plants need to recover from 
the damages caused by drought. The severity of the drought 
and the extent of damage caused by the stress determine the 
recovery kinetics of plants (Rivas et al. 2016). The lesser 
the damage induced by drought, the more will be the rate 
and kinetics of recovery (Chen et al. 2016). Hence drought 
recovery has a vital role in plant drought stress adaptation. 
Studies revealed that various priming techniques such as 
hydropriming, osmopriming, UV-B priming and chemi-
cal priming generally experiment for the enhancement of 
drought stress tolerance in plants (Wojtyla et al. 2016). The 
same priming techniques could be equally good in aiding the 
plant for a quick and effective recovery from drought stress. 
It will be interesting to see what all features and effects of 
priming would aid the plant for recovery from drought stress.

Priming‑mediated osmolyte accumulation 
and recovery kinetics

Plants being highly susceptible to environmental condi-
tions, maintenance of better water status is a prerequisite 
for drought stress recovery (Blackman et al. 2009; Dien et al. 
2019; Ammar et al. 2020). Effective osmotic regulation dur-
ing drought stress helps to maintain better plant water status 
and to reduce the membrane damage caused by drought in 
primed plants (Farooq et al. 2009b). This was mainly accom-
plished through the enhanced accumulation of compatible 
solutes such as sugars, amino acids, proline, and glycine 
betaine during priming (Tabassum et al. 2018; Khan et al. 
2019). Greater accumulation of osmolytes indicated a higher 
tolerance level of plants (Tabassum et al. 2018). Studies 
revealed that the accumulation of osmolytes during different 
seed priming techniques provides drought stress tolerance in 
plants (Khan et al. 2019; Farooq et al. 2020). When encoun-
tering stress, sorghum and barley seedlings emerged from 
osmoprimed seeds increased the production of amino acids, 
glycine betaines and total soluble sugars (Zhang et al. 2015; 
Tabassum et al. 2018). Increased levels of proline, total solu-
ble sugars, and total free amino acids were also noted in 
hydroprimed, haloprimed and UV-B primed rice subjected 
to osmotic stress (Sen and Puthur 2020a). Enhanced produc-
tion of proline in primed rice seedlings indicated their ability 
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Table 1  Plant response to drought stress influenced by various seed priming techniques

Sl. no. Plant species Priming treatment Priming dosage and dura-
tion

Plant response under 
osmotic stress

References

1 Lens culinaris Osmopriming-  (CaCl2) 1% for 12 h Early, uniform germina-
tion, accumulate sugar, 
calcium, reduced lipid 
peroxidation

Farooq et al. (2020)

2 Medicago truncatula Hydropriming 2 h and 4 h Faster and uniform ger-
mination, upregulated 
activity of SOD and APX 
gene along with FPG 
gene involved in base 
excision repair

Forti et al. (2020)

3 Arachis hypogaea Brassinosteroid priming 0.15 ppm for 8 h Improved yield compo-
nents (number of pods 
per plant, hundred pod 
weight, hundred kernel 
weight)

Huang et al. (2020)

4 Brassica napus Gibberellic acid 500 mg  L−1 for 6 h Activation of antioxidant 
machinery, Increased 
yield traits under drought 
and reduced MDA 
content

Khan et al. (2020)

5 Brassica napus Melatonin priming 500 µM for 6 h Reduction of  H2O2 and 
MDA content, reduced 
yield loss

Khan et al. (2020)

6 Oryza sativa UV-B priming 4  kJm−2 Osmolyte accumulation 
and enhanced activity 
of antioxidants (Cu/Zn 
SOD, CatA and APx1) 
and stress related proteins 
such as HSP90 and 
Group3 LEA

Sen et al. (2020)

7 Oryza sativa UV-B priming 4  kJm−2 Improved the activity of 
PSI and PSII, upregu-
lated expression of SOD, 
CAT and APX genes

Thomas et al. (2020)

8 Brassica napus Melatonin priming 500 µM for 6 h Enhanced antioxidant 
activity, osmolyte accu-
mulation

Khan et al. (2019)

9 Zea mays Silicon priming 6 mM for 16 h Increased root and 
shoot length, biomass. 
Enhanced photosynthetic 
activity and activity of 
SOD, POD and CAT 

Parveen et al. (2019)

10 Hordeum vulgare Osmopriming  (CaCl2) 1.5% for 12 h Improved plant water sta-
tus, osmolyte accumula-
tion and reduced lipid 
peroxidation

Tabassum et al. (2018)

11 Oryza sativa BABA priming 1 mM for 6 h Osmolytes and Antioxi-
dant activity enhanced, 
photosynthetic efficiency, 
nitrate reductase activity, 
reduced MDA content

Jisha and Puthur (2016a)

12 Vigna radiata BABA priming 1 mM for 12 h Accumulation of 
osmolytes, increased 
activity of antioxidants 
and nitrate reductase

Jisha and Puthur (2016b)

13 Medicago sativa Osmopriming (PEG) 20% for 24 h Improved nutritional status 
of plant, nodulation and 
nitrogen fixation rate

Mouradi et al. (2016)
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to adjust the osmotic potential. At the time of recovery, it can 
also serve as a reservoir of carbon and nitrogen (Thomas and 
Puthur 2019). Moreover, compatible solutes offer protec-
tion to macromolecules and stabilize enzymes (Wang et al. 
2019). Maintenance of higher water content through the 
priming-induced augmentation of osmolytes may also help 
in rapid recovery from drought stress.

Augmented activity of antioxidant machinery 
facilitates rapid recovery

The efficient functioning of the antioxidant system is very 
crucial for alleviating the adverse effects of drought stress 
(Mittler et al. 2004). Under severe stress conditions, ROS 
get accumulated inside the cells and cause damages to cel-
lular membranes and biomolecules (Choudhury et al. 2017). 
Enhanced activity of enzymatic antioxidants and accumula-
tion of non-enzymatic antioxidants helps to reduce the extent 
of drought-induced damages to the cell (Gill and Tuteja 
2010). The lesser the injury to the cellular structure more 
will be the rate of recovery (Rivas et al. 2016). Pre-germi-
native events taking place during seed priming activates the 
antioxidant system to scavenge ROS and reduce oxidative 
damage (Paparella et al. 2015). This augmentation of anti-
oxidants occurring due to seed priming results in alleviation 
of the oxidative damage caused by drought stress (Zheng 
et al. 2016; Khan et al. 2020).

Studies revealed that UV-B priming in rice reduced 
the content of hydrogen peroxides and superoxides and 
increased the level of antioxidant potential by accumulat-
ing SOD, CAT, APX, ascorbate and glutathione (Sen et al. 
2020; Thomas et al. 2020). Augmentation of the mRNA 
level expression of SOD, CAT and APX were also noticed 
in UV-B primed rice (Thomas et al. 2020). Similar results 
were also seen in rice subjected to spermidine priming 

with increased activities of SOD, POD and CAT (Zheng 
et al. 2016). Hydropriming in Brassica juncea enhanced 
the activities of SOD and GR under osmotic stress (Sriv-
astava et al. 2010). Similarly, hydropriming of Medicago 
truncatula seeds for 2 h and 4 h resulted in the upregulated 
expression of APX and SOD genes (Forti et al. 2020). The 
activities of antioxidant enzymes such as APX, SOD, POD 
and CAT were also upregulated in osmoprimed sorghum 
(Zhang et al. 2015). Seedlings that emerged from the BABA 
primed seeds of Vigna radiata and Oryza sativa showed 
enhancement in antioxidant activity (Jisha and Puthur 2016a, 
b). Yi et al. (2016) suggested that the improved activity of 
antioxidant machinery helps to protect the cellular struc-
tures from drought stress and aid in rapid stress recovery. 
Drought-resistant variety showed greater modulation of anti-
oxidants and thereby showed faster recovery (Wang et al. 
2019). Such a response was reflected in the case of seed 
priming also, wherein priming offered more stress tolerance 
to the tolerant variety (Sen and Puthur 2020a). The efficient 
functioning of antioxidant machinery attributed to various 
priming techniques will certainly help plants to recover and 
restore their normal activity as earlier as possible, on being 
relieved from stress.

Priming aids in faster photosynthetic recovery

Among the various biochemical processes, photosynthesis is 
highly sensitive to drought and more responsive to recovery 
(Hayano-Kanashiro et al. 2009; Zhang et al. 2018). Photo-
synthetic recovery is the immediate result of re-watering. 
The extent of stress recovery relies on the pre-drought inten-
sity, duration and plant species (Rivas et al. 2016; Ammar 
et al. 2020). During drought recovery, plants restore their 
photosynthetic activity, which can be noted as an increase 
in the rate of photosynthesis (Zhang et al. 2018). Two weeks 

Table 1  (continued)

Sl. no. Plant species Priming treatment Priming dosage and dura-
tion

Plant response under 
osmotic stress

References

14 Oryza sativa Spermidine priming 0.5 mM  L−1 for 24 h Improved seed germination 
and seedling perfor-
mance, Enhanced activity 
of SOD, CAT and POD

Zheng et al. (2016)

15 Sorghum bicolor Osmopriming (PEG) 20% for 48 h Osmolyte accumulation 
and Antioxidant activity

Zhang et al. (2015)

16 Triticum aestivum Ascorbic acid priming 2 mM for 10 h Improved germination, 
plant growth, chlorophyll 
content, antioxidant 
activity and maintain bet-
ter plant water status

Farooq et al. (2013)

17 Brassica juncea Hydropriming, chemical 
priming  (CaCl2), hormo-
nal priming (ABA)

100 µM for 18 h Osmolyte accumulation, 
enhanced activity of 
SOD and GR

Srivastava et al. (2010)
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of drought exposure followed by re-watering resulted in the 
formation of new leaves, and thereby improve stomatal con-
ductance, chlorophyll content, and net photosynthetic rate of 
Ficus carica (Ammar et al. 2020). Similar results were also 
seen in the case of maize seedlings subjected to recovery 
from drought stress, wherein recovery was indicated by the 
higher chlorophyll content and maximum quantum yield of 
PSII photochemistry (Fv/Fm) and lesser injury of photosyn-
thetic apparatus (Chen et al. 2016).

Recovery elevated the transcript level of chlorophyll syn-
thesis-related genes such as Mg protoporphyrin IX methyl-
transferase (CHLM), porphobilinogen deaminase (PBGD), 
glutamate-1-semialdehyde aminotransferase (GSA), 5-ami-
nolevulinic acid dehydratase (ALAD), coprogen oxidase 
(CPO) and chlorophyll synthase (CHLG), at the same time 
decreased the transcript level of chlorophyll degradation-
related genes (red chlorophyll catabolite reductase (RCCR 
), pheophorbide a oxygenase (PaO), pheophytinase (PPH) 
and non-yellowing 1 (NYE1), in Craterostigma plantag-
ineum (Liu et al. 2019). According to Yi et al. (2016), rapid 
photosynthetic recovery upon re-watering the cotton plant 
was attributed to the stability of photosystems. Similarly, 
Hura et al. (2018) showed an unchanged level of rieske 
protein of cytochrome  b6f complex during drought as well 
as re-watering and was found to be one of the reasons for 
the complete recovery of winter triticales after stress expo-
sure. In contrast, a prolonged drought event may lead to the 
destruction of chloroplast structure, and hence the recov-
ery process becomes incomplete. Hence the duration and 
severity of stress determine the rate and kinetics of recovery 
(Miyashitha et al. 2005). Priming has a role in reducing the 
severity of stress and thus supporting a quick recovery.

Various seed priming techniques improved the photo-
synthetic performance of different plants, such as BABA 
priming and hydropriming in Vigna radiata (Jisha and 
Puthur 2016b, 2018), biopriming and osmopriming in bar-
ley (Tabassum et al. 2018), ascorbic acid priming in wheat 
(Farooq et al. 2013). According to Sen et al. (2020), UV-B 
priming of rice seeds reduced the photosystem damage 
in seedlings subjected to osmotic stress. The rehydration 
behaviour of tolerant and susceptible genotypes varies 
greatly during drought recovery. Improved photochemical 
activity and leaf gas exchange are shown by the tolerant 
variety helped to reduce the photosynthetic damage dur-
ing drought stress and favoured early recovery (Rivas et al. 
2016). Tolerant genotypes showed rapid recovery in terms 
of net photosynthetic rate, stomatal conductance, and plant 
water status (Hayano-Kanashiro et al. 2009). This was sup-
ported by the fact that greater modulation in the expression 
of differentially expressed genes encoding different TFs 
occurs in the tolerant genotype during drought and subse-
quent recovery (Hayano-Kanashiro et al. 2009; Zheng et al. 
2010; Zhang et al. 2018). Likewise, seed priming of rice 

with UV-B radiation improved the photochemical efficiency 
of photosystems in the tolerant variety more profoundly than 
in the sensitive variety (Sen et al. 2020). Priming induced 
improvement in the photosynthetic efficiency by reducing 
the damages to the photosynthetic machinery may aid in 
rapid recovery from stress and the complete restoration of 
photosynthesis function.

Priming mediated DNA repair mechanisms 
enhances the recovery rate

DNA repair is an important event taking place during the 
early phase of rehydration. A sudden transition from qui-
escent to the active metabolic stage causes osmotic imbal-
ance inside the seeds and leads to the accumulation of ROS, 
which causes breaks in nuclear DNA and subsequent arrest 
in cell division (Bray and West 2005). Early and controlled 
imbibition during the seed priming activates DNA repair 
pathways and antioxidant machinery (Kubala et al. 2015; 
Forti et al. 2020). This preserves seed vigor and enhances 
the germination and performance of seedlings that emerged 
from primed seeds (Paparella et al. 2015). The main repair 
pathways, such as nucleotide excision repair and base exci-
sion repair, are activated during the initial phase of germina-
tion, preserving the integrity of the genome (Macovei et al. 
2010; Chen et al. 2012a, b; Paparella et al. 2015). Activa-
tion of DNA repair mechanism during imbibition, before 
the onset of cell division, ensured proper germination and 
seedling growth (Fig. 2). The upregulated expression of 
AtOGG1, a DNA glycosylase involved in base excision 
repair in Arabidopsis during seed imbibition, helped to 
remove DNA lesions and showed enhanced abiotic stress 
tolerance (Chen et al. 2012a). During seed germination 
in Arabidopsis, DNA ligase VI and IV genes, AtLIG6 and 
AtLIG4, had a major role in ligating the double-strand breaks 
in DNA and determine the quality and longevity of seeds 
(Waterworth et al. 2010). Similarly, hydropriming of Med-
icago truncatula seeds resulted in the upregulation of genes 
involved in DNA damage repairs and antioxidation machin-
ery. Hydropriming treatment for 4 h enhanced the activity 
of formamidopyrimidine DNA glycosylase (FPG) involved 
in base excision repair (Forti et al. 2020). Accumulation of 
tubulin subunits upon hydropriming and osmopriming in 
Arabidopsis seeds also indicated the role of seed priming 
in the reactivation of the cell cycle (Gallardo et al. 2001).

Similar to the DNA repair processes during early ger-
mination, stress recovery also relies on the DNA and 
organelles' damage repair mechanism. During recovery, 
plants rearrange most of the metabolic pathways to repair 
drought-induced damages (Chen et al. 2016). Recovery 
was aided by the reactivation of cell cycle events (Woj-
tyla et al. 2016). The accumulation of glycine betaine and 
proline in Beta vulgaris at the final stage of drought event 
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indicated their role in the repair of damage rather than 
osmoregulation (Wedeking et al. 2018). Similar results 
were also found in cowpea, wherein an increase in the con-
tent of proline only at the time of severe stress indicated 
that they are not only involved in osmotic adjustment but 
assisted in damage repair (Souza et al. 2004). Proper DNA 
and organelle damage repair mechanism activated during 
the seed priming techniques helps to reduce the deleterious 
effects of rapid rehydration and also improves the toler-
ance and subsequently enhances the rate and kinetics of 
stress recovery, just as in the case of seeds subjected to 
rapid hydration during germination.

Beneficial effects of priming memory to encounter 
recurrent stress

Stress memory is a boon for plants to cope with the recur-
rent cycle of stress and recovery (Ding et al. 2013; Liu 
et al. 2019). More accumulation of stress-related genes or 
proteins upon repeated stress exposure reveals the role of 
earlier stress exposure to imprint memory in plants and the 
subsequent development of alertness for memorizing the 
past event (Liu et al. 2019). Several studies have shown that 
prior drought stress exposure results in the imprinting of 
the stress memory in plants (Ding et al. 2012; Marcos et al. 

Fig. 2  Priming mediated DNA repair mechanisms enhances seeds quality and vigour and as a result, the seedlings emerged from primed seeds 
shows improved performance and uniform germination
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2018). The role of certain genes in stress memory was evi-
dent in a study carried out with the resurrection plant Crater-
ostigma plantagineum. When subjected to multiple cycles of 
dehydration and recovery, it was showed elevated transcript 
level of stress-induced LEA genes (LEA-like 11–24, LEA2 
6–19 and LEA 13–62), and early dehydration responsive 
1 (EDR1), upon each dehydration stress and the memory 
persist up to 6 days of recovery (Liu et al. 2019). Similarly, 
Ding et al. (2012) showed an increased rate of transcription 
of stress response genes (RD29B and RAB18) in Arabidopsis 
on exposure to each cycle of stress, and it was found that the 
memory related to this gene lasts for 5 days during recovery.

Earlier stress exposure equips the plant for the upcoming 
stress similar to the past stress (Gamir et al. 2014). This 
sort of prior exposure to mild stress is called priming. Seed 
priming with a mild dose of stress agents activates stress 
memory in plants and thereby equips them for a future stress 
encounter (Bruce et al. 2007). Retention of the stress toler-
ance mechanism even after recovery is helpful to keep the 
plant ready for repeated drought events (Nawaz and Wang 
2020). The priming memory can be accomplished through 
epigenetics and metabolic imprinting (Schwachtje et al. 
2019). Priming mediated stress memory helps to improve 
the tolerance potential of plants through the accumulation 
of stress-responsive proteins and activation of genes, which 
will facilitate quick recovery from stress. The exposure of 
mild stress during the vegetative stage of a plant exhibits an 
enhanced tolerance potential during the second exposure to 
severe stress. Evidence for this was found in wheat plants 
subjected to drought priming during the tillering stage, 
showing enhanced performance in terms of higher photo-
synthesis rate and antioxidants and reduced yield loss upon 
further drought exposure at the time of post-anthesis. This 
implicates the possibility of stress memory getting imprinted 
during priming (Abid et al. 2016).

Studies showed that the rate of recovery largely depends 
on pre-stress exposure. According to Ammar et al. (2020), 
the plants subjected to earlier stress regain their growth 
through the emergence of new leaves and subsequently 
improved photochemical activities during stress recovery 
than the plants that did not encounter any past stress experi-
ence. This finding suggested the role of pre-stress exposure 
in the recovery kinetics of plants. Leaf proteome analysis 
in Beta vulgaris showed that some stress-related proteins 
did not revert very quickly during drought recovery, and 
the involvement of these proteins was found to be more 
involved in drought memory and acclimation (Schneider 
et al. 2019). A second increase in the amino acids content 
was noted in the leaves of B. vulgaris after the transient 
normalization of most of the metabolites within 8 days of 
re-watering. This second increase of amino acids might be 
indicating an imprint left behind after a stress episode, which 
turns out to be beneficial during future drought episodes 

(Wedeking et al. 2018). Hence, metabolic imprinting also 
has a vital role in inducing tolerance in the altered environ-
ment (Schwachtje et al. 2019).

Accumulation of several TFs and signaling proteins dur-
ing seed priming provides greater stress tolerance and cross-
tolerance to the seedlings that emerged from primed seeds 
(Chen and Arora 2013). The findings of our own research 
group have provided the first report on the effectiveness of 
UV-B seed priming in stress imprinting and cross-tolerance 
mechanism of rice seedlings, where cross-tolerance was 
shown towards NaCl stress after imparting UV-B prim-
ing to the seeds (Thomas et al. 2020). Activation of stress 
signalling pathways through the enhanced expression of 
heat shock proteins (HSP) and LEA proteins was reported 
in UV-B primed seedlings of rice (Sen et al. 2020). Aug-
mentation of such stress-responsive genes and proteins dur-
ing seed priming enhances the tolerance potential towards 
abiotic stresses and makes the plants alert for future stress 
events. Hence, under the recurrent cycle of drought stress 
and recovery, stress memory is highly beneficial for plants 
to shift their metabolism in accordance with the changing 
circumstances.

Priming and retention of stress memory

Epigenetics is an interesting concept in the field of stress 
biology. Modifications in the chromatin architecture governs 
the gene expression by regulating the accessibility of genes 
for transcriptional machinery (Banerjee and Roychoudhury 
2017). These modifications involve DNA methylation, his-
tone modification or chromatin remodeling (Bruce et al. 
2007). Abiotic stress exposure alters the expression levels 
of various TFs involved in stress metabolism. Long-term 
changes in gene expression is also brought about by the 
epigenetic modifications enabling the plant to retain some 
memory regarding the past experience, even after the reliev-
ing of stress (Bruce et al. 2007). These heritable epigenetic 
modifications retain stress memory through genome imprint-
ing and lead to the persistence of memory over multiple 
generations. Priming of plants was found to create long-term 
stress memory in plants (Tabassum et al. 2017). When plants 
encounter with further stress exposure, this epigenetic stress 
memory will be helpful for plants to respond quickly and to 
recover rapidly from drought induced injuries (Abid et al. 
2018). Beneficial effects of epigenetic memory in counter-
acting multiple cycle of drought stress and alleviating the 
drought induced damages for favouring recovery is provided 
in Fig. 3.

Even though, some stress marked epigenetic signatures 
may reset into the initial state upon stress removal, the 
process of resetting may not occur in full strengths. At the 
time of recovery, the expression of drought stress induced 
genes reset to their basal level and this process necessitates 
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nucleosome rearrangements. During post drought recovery 
it was examined that an immediate deacetylation occurs 
at the H3K9ac sites, followed by the eventual elimina-
tion of RNA polymerase II. On the other hand, histone 
H3 Lys4 tri-methylation (H3K4me3), progressively 
decreased following rehydration but still remained at low 
levels without total disappearance. Therefore, H3K4me3 
can very well serves as a stress related epigenetic marker 
(Kim et al. 2012). Based on the reversibility, methylation/

demethylations sites differs. During recovery 70% of the 
methylation/demethylation sites were restored to their 
original state, and 29% of the sites persists even after 
recovery (Wang et al. 2010) During recovery from stress 
the level of H3K4me3 decrease but even after the recov-
ery some stress memory is retained (To and Kim 2014). 
This memory is beneficial in easing the process of drought 
stress recovery.

Fig. 3  Epigenetic modifications induced by priming is helping in imprinting stress memory. It is beneficial under recurrent drought exposure and 
also favours rapid stress recovery
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Molecular events during stress recovery can 
be influenced by seed priming

Molecular events taking place during stress recovery 
may be considered similar to the pre-germinative events 
occurring during seed priming. Hence, the rate and kinet-
ics of drought recovery can be positively influenced by 
seed priming techniques (Fig. 4). The recovery phase is 
primarily characterized by the process of damage repair, 
re-start of cell division, and reactivation of mRNA, and 
synthesis of new proteins (Dace et al. 1998). Priming in 
seeds also activates similar events such as DNA repair, 

activation of antioxidants and de-novo synthesis of nucleic 
acids and proteins, and metabolic reactivation (Paparella 
et al. 2015). Drought stress recovery in tomato showed 
upregulated expression of histone variants, which lead to 
the reactivation of DNA replication and restoration of cell 
cycle activity (Iovieno et al. 2016). Likewise, seed prim-
ing also involves the activation of specific enzymes, early 
DNA replication, and synthesis of DNA and RNA (Bray 
et al. 1989). Which, in turn, contributes to early and uni-
form germination, improved growth, and performance of 
seedlings emerged from primed seeds (Parveen et al. 2019; 
Farooq et al. 2020).

Fig. 4  Physio-chemical events 
taking place during seed prim-
ing and drought recovery. The 
processes common to both seed 
priming and recovery reveals 
the beneficial effects of seed 
priming for faster recovery from 
drought stress
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Seed germination triggered the production of ROS. 
The upregulated activity of antioxidant genes during seed 
priming complements the process of faster germination 
and seedling establishment. Cu/Zn SOD, CatA and APx1 
genes were upregulated in UV-B primed rice seedlings (Sen 
et al. 2020; Thomas et al. 2020). Also, enhanced expres-
sion patterns of most stress-response genes such as LEA 
and HSP were reported in plants subjected to different seed 
priming treatments. HSP90 and group 3 LEA genes were 
upregulated in UV-B primed rice varieties (Sen et al. 2020). 
Similar trends were also noticed in osmoprimed Spinacia 
oleracea, wherein the relative expression of genes coding 
for dehydrin-like proteins were upregulated, and it was still 
more under drought stress (Chen et al. 2012a, b). Enhanced 
expression of these stress-induced genes in plants subjected 
to priming and exposed to stress may be advantageous at the 
time of stress recovery.

During re-watering, photosynthetic genes were upregu-
lated, which leads to photosynthetic restoration and subse-
quently promotes plant growth (Iovieno et al. 2016). Upreg-
ulated expression of FtsH homologue, ATP-dependent zinc 
metalloprotein is involved in the turnover of the oxidized D1 
protein of PSII reaction centre during recovery from drought 
stress and helps for faster recovery from photosystem dam-
age (Zhang et al. 2014; Iovieno et al. 2016). Evidence sug-
gests that through various seed priming techniques, plants 
achieve improved photochemical activity and maintains 
the stability of photosynthetic apparatus even during stress 
periods. This could serve as one of the possible roles of 
seed priming in facilitating rapid recovery from stress. The 
upregulated activity of Drought-Responsive genes RD1 and 
RD2 of AP2/ERF family in the seedlings of primed seeds 

under drought stress enhanced the drought tolerance poten-
tial in rice (Samota et al. 2017). In a different study, expres-
sion of PSII gene in Brassica oleracea revealed that the 
upregulated expression of PSbI in the variety botrylis and 
PSbM in the variety capitate upon jasmonic acid and methyl 
jasmonate priming was involved in the formation of PSII 
dimer and maintains photosystem stability, and this may 
facilitate rapid photosynthetic recovery upon re-watering 
(Sirhindi et al. 2020). This finding reveals the role of prim-
ing in maintaining the stability of photosynthetic apparatus 
during the drought, which may turn to be very crucial during 
the recovery for the quick regain of photosynthetic capacity.

Genes involved in osmolyte synthesis and hormone bio-
synthesis, aquaporin genes, signalling molecules, and sev-
eral TFs, modulates their expression during drought and 
recovery (Bhargava and Sawant 2013; Iovieno et al. 2016). 
Table 2 list the changes in the expression levels of various 
stress-related genes during recovery from drought stress. 
Overexpression of aquaporin gene MaPIP2-7 enhanced the 
stress tolerance potential through the maintenance of better 
plant water status (Xu et al. 2020), which is a prerequisite 
for seed germination. Increased activity of OePIP2.1, a PIP2 
aquaporin gene during drought stress recovery, implicates 
the beneficial role of aquaporin water channels in facilitat-
ing water absorption and subsequent recovery from drought 
(Secchi et al. 2007). There are reports of similar events tak-
ing place during seed priming. Upregulation of aquaporin 
genes SoPIP1;1, SoPIP1;2, SoPIP2;1, and SoδTIP offers 
drought tolerance in S. oleracea upon seed priming with 
PEG, which in turn favours water imbibition for the ini-
tiation of germinative events and further seedling growth 
(Chen et al. 2013). These sorts of molecular events will turn 

Table 2  Expressions of various genes in different plants during recovery from drought

Sl. no Plant species Gene Expression during recovery References

1 Craterostigma plantagineum Chlorophyll synthesis (CHLM, 
PBGD, GSA, ALAD, CPO and 
CHLG)

Upregulated expression Liu et al. (2019)

2 Saccharum officinarum Late embryogenesis abundant 
(LEA)

Increased gene expression Devi et al. (2019)

3 Zea mays Photosynthetic genes (PSAK and 
PSAH-2)

Expressions were induced Zhang et al. (2018)

4 Camellia sinensis ABA biosynthesis (NCED1 and 
NCED4)

Downregulated during recovery Liu et al. (2016)

5 Solanum lycopersicum Histone gene families and photo-
system genes

Re-activated during recovery Iovieno et al. (2016)

6 Vigna radiata Pyrroline-5-carboxylate synthetase 
(P5CS)

Activity reached to the control 
level

Sengupta et al. (2013)

7 Nicotiana tabacum Dehydrin gene (NtERD10B) Downregulated Dobrá et al. (2011)
8 Zea mays Pyrroline-5-carboxylate dehydroge-

nase (P5CDH)
Decreased activity Hayano-Kanashiro et al. (2009)

9 Olea europaea Aquaporin gene (OePIP2.1) Upregulated expression Secchi et al. (2007)
10 Craterostigma plantagineum Transketolase (tkt7) Increased activity Bernacchia et al. (1996)
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out to be beneficial for the plants not only during the phase 
of stress but during the recovery from stress. The molecular 
mechanism of drought tolerance and the possible means of 
recovery response attributed by seed priming are represented 
in Fig. 5.

Conclusion and future perspective

Augmentation of stress tolerance potential through various 
seed priming techniques is a promising strategy to mitigate 
the detrimental effects of drought stress on plant growth and 
productivity. Just as priming enhancing the drought toler-
ance potential, it can also complement rapid and successful 
recovery from stress impacts. Maintenance of better plant 
water status, enhanced antioxidation machinery, improved 
photochemical efficiency, DNA and organelle damage repair, 
and denovo synthesis of nucleic acids and proteins attributed 
by seed priming reduces the severity of drought-induced 
damages on plant performances. These physiochemical mod-
ulations taking place during seed priming could favour most 
of the processes essential for a plant to recover quickly from 
drought stress. Hence, at the onset of a favourable environ-
ment through rain or irrigation, plants emerged from primed 
seeds recoup in a faster and improved manner. There is a 
prominent gap of information regarding the influence of 
seed priming on the recovery kinetics of plants subjected to 
drought stress. This eco-innovation augments the inherent 
stress tolerance potential of plants and thereby contributes 
towards better crop production. Environmental and ethical 
safeness offered by various seed priming techniques makes it 
a promising and sustainable strategy to ensure food security.
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