Skip to main content
Log in

Heterologous expression of Vitis vinifera SNF1-related kinase 1.1 gene in Arabidopsis akin10 mutant reveals sthe signaling regulatory network of sucrose metabolism

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Grapevine (Vitis vinifera L.) is the widely cultivated important fruit crop. The regulation of sucrose metabolism is relevant for the quality improvement of grape berry. Despite the fact that SnRK1 has been suggested to be a pivotal protein in sugar sensing and signal transduction, it remains unknown how Vitis vinifera SNF1-related kinase 1 (VvSnRK1) regulates sucrose metabolism. To investigate the exact regulatory pathway of VvSnRK1.1 in sucrose metabolism, VvSnRK1.1 gene from Cabernet Sauvignon grape berries was isolated, and then VvSnRK1.1-GFP was transformed into wild type and akin10 mutant (AtSnRK1.1 mutant type) Arabidopsis thaliana, respectively. The results suggested that the overexpression of VvSnRK1.1 transformed into wild type Arabidopsis thaliana increased ABA, glucose and fructose contents, but reduced sucrose accumulation. Furthermore, overexpression of VvSnRK1.1 up-regulated the expression of SuSy, SPS and ABA-responsive gene ABI3, whilst down-regulated all INVs (CWINV, CINV and VINV) expression. Meantime, The cross-talk between sucrose and ABA promoted the expression of INVs and SuSy, while ABA could make up for the inhibitory effect of glucose on INVs and SuSy expression. Phosphated glucose, ABA and their crosstalks up-regulated HXK, SPS and ABI3 expression. Taken together, these results demonstrate the central role of VvSnRK1.1 in regulating sucrose metabolism and its involved signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

taken from mature source leaves and data represent the means from six plants per line. gFW, gram fresh weight. VvSnRK1.1-wt, overexpressing VvSnRK1.1 in Arabidopsis plants. VvSnRK1.1-akin10, expressing VvSnRK1.1 in akin10 mutant Arabidopsisor. Wild Type (WT), without overexpressing VvSnRK1.1 in Arabidopsis plants. a, b and c indicate statistically significant differences by Student’s t test (P < 0.01)

Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvaro CI, Simón RL, Enrique G, Aenne E, Lothar W, Hugo PC (2016) GC–MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites. Metabolomics 12:39–56

    Google Scholar 

  • Baena-González E, Hanson J (2017) Shaping plant development through the SnRK1–TOR metabolic regulators. Curr Opin Plant Biol 35:152–157

    PubMed  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448(7156):938–942

    PubMed  Google Scholar 

  • Boneh U, Biton I, Schwartz A, Ben-Ar G (2012) Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci 187:89–96

    CAS  PubMed  Google Scholar 

  • Bush DR (2020) Identifying the pathways that control resource allocation in higher plants. Proc Natl Acad Sci USA 117(16):8669–8671

    CAS  PubMed  Google Scholar 

  • Chaiwanon J, Wang WF, Zhu JY, Oh E, Wang ZY (2016) Information integration and communication in plant growth regulation. Cell 164:1257–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YH, Hong JW, Kim EC, Yoo SD (2012) Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiol 158:1955–1964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coello P, Hirano E, Hey SJ, Muttucumaru N, Martinez-Barajas E, Parry MA, Halford NG (2012) Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK) 1 in wheat and activation of a putative calcium-dependent SnRK2. J Exp Bot 63:913–924

    CAS  PubMed  Google Scholar 

  • Crepin N, Rolland F (2019) SnRK1 activation, signaling, and networking for energy homeostasis. Curr Opin Plant Biol 51:29–36

    CAS  PubMed  Google Scholar 

  • Dekkers BJ, Schuurmans JA, Smeekens SC (2008) Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol 67:151–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36(1):17–29

    CAS  PubMed  Google Scholar 

  • Dominguez PG, Frankel N, Mazuch J, Balbo I, Iusem N, Fernie AR, Carrari F (2013) ASR1 mediates glucose-hormone cross talkby affecting sugar trafficking in tobacco plants. Plant Physiol 161:1486–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durán-Soria S, Pott DM, Osorio S, Vallarino JG (2020) Sugar signaling during fruit ripening. Front Plant Sci 11:564917. https://doi.org/10.3389/fpls.2020.564917

    Article  PubMed  PubMed Central  Google Scholar 

  • Emanuelle S, Doblin MS, Stapleton DI, Bacic A, Gooley PR (2016) Molecular insights into the enigmatic metabolic regulator, SnRK1. Trends Plant Sci 21:341–353

    CAS  PubMed  Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63:3367–3377

    CAS  PubMed  Google Scholar 

  • Fu Y, Lim S, Urano D, Tunc-Ozdemir M, Phan NG, Elston TC, Jones AM (2014) Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell 156:1084–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghillebert R, SwinnenE WenJ, Vandesteene L, Ramon M, Norga K (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278:3978–3990

    CAS  PubMed  Google Scholar 

  • Hanson J, Smeekens S (2009) Sugar perception and signaling: an update. Curr Opin Plant Biol 12:562–567

    CAS  PubMed  Google Scholar 

  • Hwang HH, Wang CH, Huang HW, Chiang CP, Chi SF, Huang FC, Yen HCE (2019) Functional analysis of McSnRK1 (SNF1 related protein kinase 1) in regulating Na/K homeostasis in transgenic cultured cells and roots of halophyte Mesembryanthemum crystallinum. Plant Cell Rep 38:915–926

    CAS  PubMed  Google Scholar 

  • Jamsheer M, Kumar M, Srivastava V (2021) SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. J Exp Bot. https://doi.org/10.1093/jxb/erab079

    Article  Google Scholar 

  • Jeong EY, Seo PJ, Woo JC, Park CM (2015) AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis. BMC Plant Biol 15(1):110–123

    PubMed  PubMed Central  Google Scholar 

  • Jia HF, Wang YH, Sun MZ, Li BB, Han Y, Zhao YX, Li XL, Ding N, Li C, Ji WL, Jia WS (2013) Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol 198:453–465

    CAS  PubMed  Google Scholar 

  • Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame HD, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59:316–328

    CAS  PubMed  Google Scholar 

  • Kleinschmidt JH, Tamm LK (2002) Secondary and tertiary structure formation of the β-barrel membrane protein OmpA is synchronized and depends on membrane thickness. J Mol Biol 324:319–330

    CAS  PubMed  Google Scholar 

  • Kuhn N, GuanL DZW, Wu BH, Lauvergeat V, Gomès E, Li SH, Godoy F, Arce-Johnson P, Delrot S (2014) Berry ripening: recently heard through the grapevine. J Exp Bot 65(16):4543–4559

    CAS  PubMed  Google Scholar 

  • Lastdrager J, Hanson J, Smeekens S (2014) Sugar signals and the control of plant growth and development. J Exp Bot 65:799–807

    CAS  PubMed  Google Scholar 

  • Liu XJ, Liu X, An XH, Han PL, You CX, Hao YJ (2017) An apple protein kinase MdSnRK1.1 interacts with MdCAIP1 to regulate ABA sensitivity. Plant Cell Physiol 58(10):1631–1641

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    CAS  Google Scholar 

  • Ljung K, Nemhauser JL, Perata P (2015) New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol 25:130–137

    CAS  PubMed  Google Scholar 

  • Nietzsche M, Schießl I, Börnke F (2014) The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Front Plant Sci 5:54–67

    PubMed  PubMed Central  Google Scholar 

  • Nukarinen E, Nägele T, Pedrotti L (2016) Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci Rep 6:31697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrotti L, Weiste C, Nägele T, Wolf E, Lorenzin F, Dietrich K, Mair A, Weckwerth W, Teige M, Baena-González E, Dröge-Laser W (2018) Snf1-RELATED KINASE1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival in extended darkness. Plant Cell 30:495–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control. Trends Plant Sci 12:20–28

    CAS  PubMed  Google Scholar 

  • Radchuk R, Emery RJN, Weier D, Vigeolas H, Geigenberger P, Lunn JE, Feil R, Weschke W, Weber H (2010) Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation. Plant J 61:324–338

    CAS  PubMed  Google Scholar 

  • Ramon M, Dang TVT, Broeckx T, Hulsmans S, Crepin N, Sheen J, Rolland F (2019) Default activation and nuclear translocation of the plant cellular energy sensor SnRK1 regulate metabolic stress responses and development. Plant Cell. https://doi.org/10.1105/tpc.18.00500

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, González-Guzmán M, Antoni R, Rodriguez PL, Baena-González E (2013) ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25:3871–3884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    CAS  PubMed  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Physiol 65:33–67

    CAS  Google Scholar 

  • Saha J, Chatterjee C, Sengupta A, Gupta K, Gupta B (2013) Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza. Comput Biol Chem 15:12–16

    Google Scholar 

  • Saumonneau A, Laloi M, Lallemand M, Rabot A, Atanassova R (2012) Dissection of the transcriptional regulation of grape ASR and responseto glucose and abscisic acid. J Exp Bot 63:1495–1510

    CAS  PubMed  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 6(13):274–279

    Google Scholar 

  • Tiznado-Hernandez ME, Orozco-Avitia JA, Ojeda-Contreras AJ, Gardea-Bejar AA (2013) Manipulation of photosynthesis in grape (Vitis Vinifera) CV. “Flame” by the application of two sucrose analogs. Am J Agric Biol Sci 8(1):28

    CAS  Google Scholar 

  • Tsai AY, Gazzarrini S (2012) AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. Plant J 69:809–821

    CAS  PubMed  Google Scholar 

  • Tsai AY, Gazzarrini S (2014) Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci 5(5):119–119

    PubMed  PubMed Central  Google Scholar 

  • Vlad F, Droillard MJ, Valot B, Khafif M, Laurière C (2010) Phospho-site mapping, genetic and in planta activation studies reveal key aspects of the different phosphorylation mechanisms involved in activation of SnRK2s. Plant J 63(5):778–790

    CAS  PubMed  Google Scholar 

  • Wang X, Peng F, Li M, Yang L, Li G (2012) Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. J Plant Physiol 169:1173–1182

    CAS  PubMed  Google Scholar 

  • Wang XQ, Li LM, Yang PP, Gong CL (2014) The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes. Plant Cell Rep 33:337–347. https://doi.org/10.1007/s00299-013-1533-z

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Zheng LL, Lin H, Yu F, Sun LH, Li LM (2017) Grape hexokinases are involved in the expression regulation of sucrose synthase- and cell wall invertase-encoding genes by glucose and ABA. Plant Mol Biol 94:61–78

    CAS  PubMed  Google Scholar 

  • Williams SP, Rangarajan P, Donahue JL, Hess JE, Gillaspy GE (2014) Regulation of sucrose non-fermenting related kinase 1 genes in Arabidopsis thaliana. Front Plant Sci 5:324–337

    PubMed  PubMed Central  Google Scholar 

  • Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O (2010) Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiol 154:665–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ, Schluepmann H (2012) Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol 158:1241–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wurzinger B, Nukarinen E, Nägele T, Weckwerth W, Teigea M (2018) The SnRK1 Kinase as central mediator of energy signaling between different organelles. Plant Physiol 176:1085–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P (2020) TOR dynamically regulates plant cell–cell transport. Proc Natl Acad Sci USA 117(9):5049–5058

    PubMed  Google Scholar 

  • Zhang X, Henriques R, Niu LSS, QW, Chua NH, (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646. https://doi.org/10.1038/nprot.2006.97

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Sun HL, Mei C, Wang XJ, Yan L, Liu R, Zhang XF, Wang XF, Zhang DP (2011) The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192:61–73

    CAS  PubMed  Google Scholar 

  • Zheng LY, Shang L, Chen X, Zhang LM, Yan X, Smith C, Bevan MW, Li YH, Jing HC (2015) TANG1, encoding a symplekin_C domain-contained protein, influences sugar responses in Arabidopsis. Plant Physiol 168:117–129

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants No.31972386, No.31372036 and No.31572101) and Fruit Quality Formation and Regulation of National key research and development program (2018yfd1000200). We thank Professor San-Dong Yoo from Seoul University, Korea to provide Arabidopsis thaliana SnRK1.1 deficient mutant akin10 seeds. We also thank that Professor Daqi Fu from China Agricultural University donated Tumefaciens (Agrobacterium) GV3101.

Author information

Authors and Affiliations

Authors

Contributions

XQW, SYZ and LHS conceived and designed research. SYZ, LHS and SZ conducted experiments. SYZ and LHS contributed new reagents or analytical tools. SYZ, LHS and SZ analyzed data. XQW, SYZ and LHS wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Xiuqin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Dawei Xue.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zheng, S., Sun, L. et al. Heterologous expression of Vitis vinifera SNF1-related kinase 1.1 gene in Arabidopsis akin10 mutant reveals sthe signaling regulatory network of sucrose metabolism. Plant Growth Regul 94, 245–259 (2021). https://doi.org/10.1007/s10725-021-00713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00713-9

Keywords

Navigation