Skip to main content
Log in

Knockdown of OsSAE1a affects acquisition and mobilization of nitrogen, and growth and development of rice

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Sumoylation, ubiquitination, and phosphorylation are pivotal post-translational modifications that play key roles in regulating the homeostasis of nitrogen (N). Sumoylation comprises conjugation/deconjugation of Small Ubiquitin-like Modifier (SUMO) proteins to other proteins thereby modifying their functions. The first step in SUMO conjugation is catalyzed by the heterodimeric E1 activating enzyme. It comprises small SAE1 and large SAE2 subunits, which are encoded by three (SAE1a, SAE1b1, and SAE1b2) and one (SAE2) gene, respectively in Arabidopsis. OsSAE1a is the ortholog of Arabidopsis in rice. Here, the role of OsSAE1a in the acquisition and mobilization of N, and its influence on the growth and development of rice was investigated. The qRT-PCR assay revealed a significant increase in the relative expression level of OsSAE1a in the roots of the seedlings grown hydroponically under LN condition (0 mM NH4NO3) compared with the roots of the seedlings grown under NN (1.25 mM NH4NO3) condition for 1 day. Further, the reverse genetics approach was used by generating rice transgenic lines with RNAi-mediated knockdown of OsSAE1a. Although there was an increase in the influx of 15N-NH4+, the root/shoot ratio of RNAi lines reduced compared with the wild-type during N deficiency. N deficiency also triggered up-regulation of some of the genes (OsAMT1;2, OsAMT1;3, OsNRT2.1, OsNRT2.2, OsNRT2.3a, OsNRT2.4, and OsNAR2.2) in RNAi lines that are implicated in regulating the acquisition and/or mobilization of N. Further, RNAi lines also exhibited adverse effects on several traits (panicle length, per cent seed set, and total N concentration in the lower leaf blade) during growth to the maturity in a potting mix. The study thus highlighted the regulatory influences of OsSAE1a on the acquisition and mobilization of N, and some of the traits governing growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMTs:

Ammonium transporters

N:

Nitrogen

NH4 + :

Ammonium

NO3 :

Nitrate

NUE:

N use efficiency

OsSIZ1 :

Oryza sativa SAP (scaffold attachment factor, acinus, protein inhibitor of activated signal transducer and activator of transcription) and Miz1 (Msx2-interacting zinc finger)

O2 :

Oxygen

Pi:

Phosphate

PTM:

Post-translational modification

qRT-PCR:

Quantitative reverse transcription-PCR

SAE:

SUMO-activating enzyme

SUMO:

Small Ubiquitin-Like Modifier

References

  • Abbott A (2009) Plant genetics database at risk as funds run dry. Nature 462:258–259

    Article  CAS  PubMed  Google Scholar 

  • Ai H, Cao Y, Jain A et al (2020) The ferroxidase LPR5 functions in the maintenance of phosphate homeostasis and is required for normal growth and development of rice. J Exp Bot 71:4828–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption by barley. Plant Physiol 99:1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boggio R, Passafaro A, Chiocca S (2007) Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J Biol Chem 282:15376–15382

    Article  CAS  PubMed  Google Scholar 

  • Bradstreet RB (1954) Kjeldahl method for organic nitrogen. Anal Chem 26:185–187

    Article  CAS  Google Scholar 

  • Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH4+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258

    Article  CAS  PubMed  Google Scholar 

  • Chaikam V, Karlson DT (2010) Response and transcriptional regulation of rice SUMOylation system during development and stress conditions. BMB Rep 43:103–109

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Datta M, Kaushik S, Jyoti A, Mathur N, Kothari SL, Jain A (2018) SIZ1-mediated SUMOylation during phosphate homeostasis in plants: looking beyond the tip of the iceberg. Semin Cell Dev Biol 74:123–132

    Article  CAS  PubMed  Google Scholar 

  • Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F (2011) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Wang Y, You S, Liu Z, Wang S, Ding Y (2016) Digital gene expression analysis reveals nitrogen fertilizer increases panicle size by repressing Hd3a signaling in rice. Plant Growth Regul 79:47–54

    Article  CAS  Google Scholar 

  • Elrouby N (2015) Analysis of Small Ubiquitin-Like Modifier (SUMO) targets reflects the essential nature of protein SUMOylation and provides insight to elucidate the role of SUMO in plant development. Plant Physiol 169:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA 113:7118–7123

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Yan M, Fan X, Li B, Shen Q, Miller AJ, Xu G (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2332

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LM, de Souza VM, Tavares OCH, Zonta E, Santa-Catarina C, de Souza SR, Fernandes MS, Santos LA (2015) OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnol Rep 9:221–229

    Article  Google Scholar 

  • Friso G, van Wijk KJ (2015) Posttranslational protein modifications in plant metabolism. Plant Physiol 169:1469–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goff SA (1999) Rice as a model for cereal genomics. Curr Opin Plant Biol 2:86–89

    Article  CAS  PubMed  Google Scholar 

  • Haynes RJ, Goh KM (1978) Ammonium and nitrate nutrition of plants. Biol Rev 53:465–510

    Article  CAS  Google Scholar 

  • Ikehashi H (2007) The origin of flooded rice cultivation. Rice Sci 14:161–171

    Article  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1:95–99

    Article  Google Scholar 

  • Jung KH, An G, Ronald PC (2008) Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 9:91–101

    Article  CAS  PubMed  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Kirk GJD, Siddiqi MY, Glass ADM (1998) Effects of hypoxia on 13NH4+ fluxes in rice roots. Kinetics and compartmental analysis. Plant Physiol 116:581–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119:1041–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:335–337

    Article  CAS  PubMed  Google Scholar 

  • Ledford H (2010) Plant biologists fear for cress project. Nature 464:154

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Fan XR, Shen QR (2008) The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ 31:73–85

    PubMed  Google Scholar 

  • Li C, Tang Z, Wei J, Qu H, Xie Y, Xu G (2016) The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genom 43:639–649

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  PubMed  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    Article  PubMed  Google Scholar 

  • Miura K, Hasegawa PM (2010) SUMOylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20:223–232

    Article  CAS  PubMed  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Oiestad AJ, Martin JM, Giroux MJ (2019) Yield increases resulting from AGPase overexpression in rice are reliant on plant nutritional status. Plant Growth Regul 89:179–190

    Article  CAS  Google Scholar 

  • Park HC, Kim H, Koo SC et al (2010) Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant Cell Environ 33:1923–1934

    Article  CAS  PubMed  Google Scholar 

  • Pearson J, Stewart GR (1993) The deposition of atmospheric ammonia and its effects on plants. New Phytol 125:283–305

    Article  CAS  PubMed  Google Scholar 

  • Pei W, Jain A, Sun Y et al (2017) OsSIZ2 exerts regulatory influences on the developmental responses and phosphate homeostasis in rice. Sci Rep 25:12280

    Article  Google Scholar 

  • Pei W, Jain A, Ai H, Liu X, Feng B, Wang X, Sun Y, Xu G, Sun S (2019) OsSIZ2 regulates nitrogen homeostasis and some of the reproductive traits in rice. J Plant Physiol 232:51–60

    Article  CAS  PubMed  Google Scholar 

  • Pei W, Jain A, Zhao B, Feng B, Xu D, Wang X (2020) Knockdown of OsSAE1a affects the growth and development and phosphate homeostasis in rice. J Plant Physiol 255:153275

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Santamaria P, Elia A (1997) Producing nitrate-free endive heads: effect of nitrogen form on growth, yield, and ion composition of endive. J Am Soc Hortic Sci 122:140–145

    Article  Google Scholar 

  • Sasakawa H, Yamamoto Y (1978) Comparison of the uptake of nitrate and ammonium by rice seedlings. Plant Physiol 62:665–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamoto K, Kyozuka J (2002) Rice as a model for comparative genomics of plants. Annu Rev Plant Biol 53:399–419

    Article  CAS  PubMed  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1.1-1.3) in rice. Plant Cell Physiol 44:726–734

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Jain A, Xue Y et al (2020) OsSQD1 at the crossroads of phosphate and sulfur metabolism affects plant morphology and lipid composition in response to phosphate deprivation. Plant Cell Environ 43:1669–1690

    Article  CAS  PubMed  Google Scholar 

  • Ta TC, Ohira K (1981) Effects of various environmental and medium conditions on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Sci Plant Nutr 27:347–355

    Article  CAS  Google Scholar 

  • Ta TC, Tsutsumi M, Kurihara K (1981) Comparative study on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Sci Plant Nutr 27:83–92

    Article  Google Scholar 

  • Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160:2052–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangasamy S, Guo CL, Chuang MH, Lai MH, Chen J, Jauh GY (2011) Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol 189:869–882

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya NM, Surin B, Ramm K, Gaudron J, Schünmann PHD, Taylor W, Waterhouse PM, Wang MB (2000) Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. Aust J Plant Physiol 27:201–210

    CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ, Glass ADM (1993) Ammonium uptake by rice roots. I. Fluxes and subcellular distribution of 13NH4+. Plant Physiol 103:1249–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Makeen K, Yan Y, Cao Y, Sun S, Xu G (2011) OsSIZ1 regulates the vegetative growth and reproductive development in rice. Plant Mol Biol Rep 29:411–417

    Article  CAS  Google Scholar 

  • Wang H, Sun R, Cao Y et al (2015) OsSIZ1, a SUMO E3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice. Plant Cell Physiol 56:2381–2395

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Li Z, Jin X, Liang G, Struik PC, Gu J, Zhou Y (2019) Phenotyping flag leaf nitrogen content in rice using a three-band spectral index. Comput Electron Agric 162:475–481

    Article  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34:1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Chen H, Fan T, Huang Y, Yu S, Chen S, Hong X (2012) Rice flag leaf physiology, organ and canopy temperature in response to water stress. Plant Prod Sci 15:92–99

    Article  CAS  Google Scholar 

  • Yang S, Hao D, Cong Y, Jin M, Su Y (2015) The rice OsAMT1;1 is a proton-independent feedback regulated ammonium transporter. Plant Cell Rep 34:321–330

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lei J, Zheng D, Liu Z, Li G, Wang S, Ding Y (2017) Amino acid composition of leaf, grain and bracts of japonica rice (Oryza Sativa ssp. Japonica) and its response to nitrogen fertilization. Plant Growth Regul 82:1–9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese National Natural Science Foundation (31672226).

Author information

Authors and Affiliations

Authors

Contributions

SS and XW developed the ideas, designed and supervised all the experiments. Experiments and analyses were performed by XW, WP, ZH and XH, AJ and XW prepared the final manuscript.

Corresponding author

Correspondence to Shubin Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Zhong-Hua Chen.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jain, A., Pei, W. et al. Knockdown of OsSAE1a affects acquisition and mobilization of nitrogen, and growth and development of rice. Plant Growth Regul 94, 221–231 (2021). https://doi.org/10.1007/s10725-021-00706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00706-8

Keywords

Navigation