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Abstract One of the challenges in managing cloud
computing clusters is assigning resources based on
the customers’ needs. For this mechanism to work
efficiently, it is imperative that there are sufficient
resources reserved to maintain continuous operation,
but not too much to avoid overhead costs. Additionally,
to avoid the overhead of acquisition time, it is impor-
tant to reserve resources sufficiently in advance. This
paper presents a novel reliable general-purpose mech-
anism for prediction-based resource usage reservation.
The proposed solution should be capable of operating
for long periods of time without drift-related problems,
and dynamically adapt to changes in system usage. To
achieve this, a novel signature-based ensemble pre-
diction method is presented, which utilizes multiple
distinct prediction algorithms suited for various use-
cases, as well as an anomaly detection mechanism used
to improve prediction accuracy. This ensures that the
mechanism can operate efficiently in different real-life
scenarios. Thanks to a novel signature-based selection
algorithm, it is possible to use the best available predic-
tion algorithm for each use-case, even over long peri-
ods of time, which would typically lead to drifts. The
proposed approach has been evaluated using real-life
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historical data from various production servers, which
include traces from more than 1,500 machines col-
lected over more than a year. Experimental results have
demonstrated an increase in prediction accuracy of
up to 21.4 percent over the neural network approach.
The evaluation of the proposed approach highlights
the importance of choosing the appropriate prediction
method, especially in diverse scenarios where the load
changes frequently.

Keywords Cloud computing - Resource usage
prediction - Signature analysis - Machine learning -
Long-term prediction - Anomaly detection

1 Introduction

An important aspect of cloud computing is managing
the resources available, both from the cloud owner’s
and the customer’s perspectives [17]. These resources
are typically reserved to meet the maximum predicted
load that could be experienced, with the assumption
that this threshold will never be exceeded, in order to
ensure that no service outage will occur as a result of
insufficient resources. This results in increased costs for
the customer and for the provider, as it means unnec-
essarily reserving resources that could be assigned to
other customers.

With advancements in automated prediction systems
and the growing popularity of infrastructure as a service
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(TaaS), such manual reservation is often relinquished
in favor of automatic resource management solutions.
These can be further divided into two groups — reac-
tive [21] and proactive [15]. Both of these automat-
ically increase and decrease the amount of resources
reserved based on the demands, the difference being
the time at which it is done. Reactive solutions adjust
the reservations based on current system load, while
proactive systems adjust them based on predicted load.
The disadvantage of a reactive system is that there is
a noticeable time overhead after every change, which
requires an appropriate buffer so that the system is not
overloaded during the initial increase in load. Proac-
tive solutions can reduce this buffer, which leads to a
decrease in costs. However, these solutions must accu-
rately predict the amount of resources required by each
individual customer so that no under-provision is expe-
rienced while keeping the costs of those resources as
low as possible at the same time.

The objective of this research is to develop a novel
algorithmic approach based on machine learning to
accurately predict the amount of resources needed by
a customer’s virtual machines to fulfill the aforemen-
tioned goal of providing sufficient resources while
keeping costs low. The concept of ensemble learn-
ing (which uses multiple machine learning algorithms)
is not new and has been studied in the time-series
forecasting area; however, the selection variant (such
as Dynamic Regressor Selection (DRS) [5]) is fairly
new and research on optimal selection approaches is
ongoing. The ensemble proposed here utilizes a novel
signature-based selection method, which is able to
extract various features from input data to increase its
dimensionality and allow the system to correlate certain
trends represented by these signatures with the most
competent prediction model available.

The major contributions of this paper can be sum-
marized as follows:

e a novel signature-based selection method that
allows additional features to be extracted from low-
dimensional data in order to identify usage scenar-
10s;

e a self-adapting algorithm has been proposed that
can utilize historical data to select the most appro-
priate available prediction models in a continuous
fashion;
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e performance has been evaluated using data obtained
from more than 1,500 virtual machines from 2
providers;

e the experiments conducted showed up to 21.4 per-
cent increase in prediction accuracy over the neural
networks method.

The rest of this paper is structured as follows:
Section 2 contains a description of related work,
Section 3 focuses on the description of an adaptive
resource usage prediction system and its components,
Section 4 describes the experiments performed and
their results, and Section 5 contains the conclusion and
further work.

2 Related Work

The main component of the proposed framework is the
signature generation method, which is responsible for
matching up the best suited prediction models to the
current state of the cloud computing cluster. The sig-
natures are obtained using techniques from the pattern
analysis domain. In this work, anomaly detection tech-
niques are used to prepare suitable data for prediction.
The literature describes various studies devoted to pat-
tern analysis, anomaly detection and resource usage
prediction.

2.1 Pattern Analysis

Pattern analysis is a data analysis method that allows
for discovering patterns and regularities in data. The
subject of pattern analysis is most often studied in the
context of signal analysis and fingerprint generation.
Fingerprint is a more specific type of pattern that should
ideally characterize a single entity, in this case a sample
or a sequence of samples.

Through pattern analysis, it is possible to recognize
familiar patterns, enabling a range of useful applica-
tions. Typical approaches include classification, clus-
tering, ensemble learning, regression, and other meth-
ods. Pattern analysis is especially useful in fields that
commonly deal with regular types of data. Cloud com-
puting is a good example of such a field as trends can
be observed, especially in relation to user-generated
traffic.
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In this paper, the system leverages methods com-
monly employed in the signal analysis domain due to its
general application to time-series data, and specifically
methods used to discover patterns within signals. An
example of such work is an algorithm often employed
in content-based copy detection systems, such as audio
copyright detectors, as presented in [25]. The method
presented enables audio fingerprints to be generated
that consist of multiple samples with varying degree
of detail, which allows accurate detection even where
noise is introduced into the audio sample. The approach
presented is not the most recent, although for the pur-
poses of the proposed signature generation mechanism,
the techniques it involves are still valid and useful.

Using the assumption that specific trends in resource
usage can be represented as a signal, it is possible to
employ a similar technique to generate such finger-
prints for them. The proposed solution’s goal is to gen-
erate a signature that can correspond to multiple sim-
ilar patterns for easier identification of a certain class
of behaviors, as opposed to unique audio fingerprints.

Another such approach was analyzed in the context
of cloud computing in [1], where the authors developed
a solution that was capable of generating fingerprints
characterizing a user’s behavior. Based on this informa-
tion, it was possible to classify the behaviors as normal
or anomalous. The approach presented in this paper dif-
fers, as it is based on analyzing data from a cluster as
opposed to the behavior of an individual user. The goal
of pattern analysis in the context of signature genera-
tion is to extract as many features describing a window
of samples as possible. While the research presented
is not the most recent, the subject of pattern analysis
as defined above has not been thoroughly explored to
date.

The proposed approach utilizes techniques com-
monly used in signal processing, taking inspiration
from the audio fingerprinting approaches presented
above, to generate signatures based on the current cloud
workload. The signature generation algorithm is differ-
ent, however, since its goal is not to uniquely identify
each workload, but rather certain types. Additionally,
as opposed to the audio domain, in cloud computing
multiple time series measurements (like hardware per-
formance metrics) are often available, and these are
also used in this approach. Together, this enables our
solution to select the most appropriate prediction algo-
rithm.

2.2 Anomaly Detection

The process of anomaly detection consists of identi-
fying data elements that are outliers compared to the
majority.

The analysis of various approaches and classes of
anomalies was conducted in [9]. There, the authors find
that classic and deep machine learning have proven
to be among the most popular ones due to their high
accuracy and robustness. Due to these findings, the pre-
sented approach utilizes deep learning techniques such
as LSTM-based anomaly detection.

Most work in the anomaly detection area in the con-
text of cloud computing resource usage prediction was
carried out by the authors of this article in [22]. The
solution presented in this paper utilizes the presented
mechanisms to increase the accuracy of the model.

State-of-the-art mechanisms utilize the concept known
as lifelong anomaly detection, which was analyzed by
the authors in [6]. The idea is to utilize lifelong learning
to constantly update the normal state, which describes
the standard operating parameters of the model, while
“forgetting” the oldest data (by removing it). This
ensures that the normal state is always up to date with
the state of the system. The solution presented in this
paper utilizes this approach to allow the anomaly detec-
tion mechanisms to adapt to the changes in the system.
Another such solution is [27], in which the authors
employ a novel approach which mimics the workings
of the cerebral cortex in unsupervised learning. The
solution can both learn and detect anomalies online. It
does not require large amounts of data and outperforms
other evaluated models. However, both these solutions
were not evaluated in the context of resource usage
prediction.

Research is also being conducted on another type
of anomaly detection, which utilizes prediction mech-
anisms for anomaly detection, thus allowing the system
to prepare for upcoming anomalies. One such work is
[32], in which three models were combined in ensem-
ble (similarly to the approach presented in this article)
to predict when the anomalies would occur. Another
predictive solution was presented in [7]. The authors
used highly accurate LSTM networks in stacked con-
figuration and their bidirectional variants, which were
tested on a load simulated within the OpenStack envi-
ronment. Another such approach is [11], which puts
more focus on analyzing not just anomalies but also
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the cloud’s state in order to detect potential attacks,
such as Spectre or Meltdown. The goal of the presented
mechanism is to work with as many types of work-
loads as possible. The PCA method was used to obtain
anomaly markers from hardware performance metrics.
The above solutions show promise in utilizing predic-
tive anomaly detection; however, they do not detect
anomalies for the purpose of resource usage prediction
and allocation, as opposed to the presented approach.

In [10], the authors present an unsupervised approach,
which allows them to learn from unlabeled data, since
it is difficult to ensure that the training datasets did not
contain anomalies. The solution is unique in utilizing
the topological data provided that describe the archi-
tecture of the underlying system, which are then used
to enhance detection accuracy. However, this method
does not leverage lifelong anomaly detection, which
is needed for long-term unsupervised operation and is
used in the presented approach.

All of the presented approaches are valid in the con-
text of anomaly detection; however, none of them have
been evaluated in the context of resource usage pre-
diction. This area still requires more in-depth analysis,
since predicting the resources required by a service is
strongly linked to the quality of data that the prediction
model can use, and this directly impacts its accuracy.

2.3 Resource Usage Prediction

Resource usage prediction is a general term for predict-
ing the amount of resources required, for example by a
cloud computing cluster, at a given point in future. The
resources in this context are physical (or virtualized)
parameters of the virtual machines, such as the amount
of CPU cores, RAM, disk space and speed, network
speed.

Machine learning algorithms are often used in
research related to predicting cloud resource consump-
tion. In [29], the authors propose a method of auto-
matic preparation and training of prediction models
using machine learning in time-series scenarios. In
[24], the authors used FLNNs (Functional Link Neu-
ral Networks) trained with the PSO genetic algorithm to
predict resource consumption. Selecting such a method
with lower computational complexity shortened train-
ing time and yielded results faster. The LSTM model
is a type of a recurrent neural network, which is
known to work well with various types of data, often
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outperforming simpler models [13]. Also in [8], neu-
ral networks including BLSTM (bidirectional LSTM)
were used for prediction purposes, which produced
significantly better results than the reference ARIMA
(Autoregressive Integrated Moving Average) model. A
study on the prediction of CPU consumption using an
RNN (Recurrent Neural Network) alongside evolution-
ary optimization algorithms was presented in [18]. The
method used yielded better results compared to lin-
ear regression and a classical neural network. In [12],
the authors present a method of training a neural net-
work with the use of a genetic algorithm to dynamically
adjust its parameters. The method was used to generate
predictions for up to 60 minute intervals.

Inrecent studies, LSTM-based solutions have gained
popularity. One such study is [14], in which the BiL-
STM network is stacked with the GRU network to
improve accuracy. The authors used the open-source
Google dataset and achieved an MSE 5% lower than
the reference individual models. A similar approach
was also employed in [32], where the BILSTM model
is combined together with the GridLSTM prediction
model, with the hybrid model using layers from both.
In [7], the authors have used a different approach which
combines convolutional neural networks with various
models that are used in succession to preprocess data,
before feeding them into the GRU network in multivari-
ate prediction. The evaluation showed an improvement
of 2-28% compared to baseline models. In [31], vari-
ous neural network architectures were evaluated, where
the BILSTM showed the greatest improvement again.
A different approach was presented in [9], where the
LSTM network was used predicting container load per
virtual machine, which was then used to balance the
containers between the machines. All of these stud-
ies deal with prediction and many of the recent ones
are leaning towards combined models or LSTM-based
approaches; however, combinations of multiple hetero-
geneous models are still being explored. Additionally,
none of the solutions presented incorporate anomaly
detection mechanisms, and none deal with long-term
prediction, with the longest time range analyzed being
a month, due to the lack of sufficient public datasets.
The approach presented in this article utilizes anomaly
detection together with multiple diverse predictors,
and evaluates its performance on a dataset that spans
over a year. This gives a better understanding of long-
term performance which in real-life scenarios may be
reduced over time due to model drift.
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In the context of long-term prediction, most of the
studies were carried out by the authors of this paper.
In [22], the authors describe a long-term prediction
solution for a cloud computing system with additional
anomaly detection mechanisms. The solution utilizes
multiple algorithms to generate predictions, with the
inclusion of a weighted average function that aggre-
gates their outputs using statically defined weights. In
this research, the impact of multiple prediction mod-
els and dynamic selection function is explored, which
alleviates the problem of manually defining weights.
Additionally, more accurate prediction algorithms are
used.

In [30], the authors explore the possibility of long-
term prediction via virtual machine plan reserva-
tion. The experimental solution utilizes a single deep
learning-based prediction model. The solution pro-
posed in this paper is capable of operating on lower-
level data, managing cluster resources instead of reser-
vation plans, and utilizes multiple prediction models
at once for increased accuracy. The solution proposed
in this paper utilizes multiple prediction algorithms, as
well as additional mechanisms like anomaly detection
and signature generation.

In [23], the authors describe preliminary research
and propose a machine learning-based solution which
employs multiple prediction models along with a selec-
tion module that decides which one should be used
at which moment. The selection module proposed
extracts certain predefined features, and subsequently
the system correlates the samples with the best match-
ing prediction models. This paper continues the pre-
liminary research presented to date. The new selection
algorithm is based on signatures, which work similarly
as described above, although they contain more fea-
tures to improve the chance of discovering relations
between them and the competence of prediction mod-
els. Additionally, the solution proposed is not limited
to operating in discrete steps, but is instead able to out-
put predictions continuously, given samples spanning a
defined period of time in order to warm up. The above
solutions proposed by the authors enable not just long-
term predictions, but also short-term ones.

Another work that employs a similar approach is
[2], in which the authors propose the use of ARIMA
and LSTM models together with a selection algorithm
that decides whether to use the former or latter of the
prediction models based on data analysis. If the data
is highly random, then LSTM is a better choice, while

if the data has a high degree of seasonality, ARIMA is
better suited. In this research, a more advanced selec-
tion algorithm was employed to enable the automatic
discovery of relationships between samples and predic-
tion model competence. Additionally, it allows the user
to seamlessly integrate new models without the need to
manually add new selection criteria.

Research is also conducted that does not use resource
consumption predictions but still allows optimiza-
tion. In [19], the authors propose a genetic algorithm
approach to optimizing the usage of cloud resources.
The authors noted that their solution outperformed
other analyzed approaches.

At the same time, studies are conducted on dynamic
selection multiple classifier systems (DSMCSs). Such
systems provide a taxonomy in which multiple clas-
sifiers or regressors (further referred to as models)
are employed in an ensemble together with a selec-
tion function. The idea is that since traditional ensem-
bles increase the accuracy of the entire ensemble, thus
additionally selecting the most competent models for a
given sample improves the accuracy further. The mod-
els employed can either be homogeneous, meaning a
variation of a single prediction model — for instance a
set of deep neural networks with varying architectures —
or heterogeneous. A heterogeneous ensemble consists
of a diverse set of prediction models, which is expected
in the context of time-series forecasting, since models
tend to specialize in different areas.

In [4], the authors present a comprehensive analysis
of different methods used in DSCMSs, describing vari-
ous ensemble types and selection methods. Most of the
research, however, is focused on the classification task,
which differs from regression. As shown in the compar-
ison presented, the prevalent selection method utilized
k-nearest neighbors search, and this requires multi-
dimensional data as opposed to our solution, which can
utilize a single metric and generate additional features
from it through pattern analysis. Additionally, most
often just a single metric (accuracy) is utilized for mea-
suring competence for a given sample, whereas in this
paper the solution includes additional metrics which
measure over- and under-provision, since if these were
to occur, they would have a negative business impact.

In [20], the authors presented a framework for the
selection of regressors in the context of prediction. The
method described makes it possible to utilize more than
one competence metric and facilitates the preparation
of such models. The selection method itself is based
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on the behavior of prediction models, whereas in this
paper the signature generation system provides the data
for prediction models.

In [26], a similar multi-criterion approach was pre-
sented where models are selected based on a com-
bination of available competence metrics. The met-
rics are various statistical measurements, such as error,
noise, variation, and deviation. In this paper, the multi-
criterion selection is also explored; however, the met-
rics have been picked specifically for the cloud com-
puting scenario.

In [28], the authors describe a method for dynam-
ically selecting the most promising combination of
prediction models from an ensemble. The combined
competence is calculated using the nearest neighbors
method. The solution proposed in this paper selects a
single best prediction model instead of a set, using a
signature generation method.

2.4 Summary

Significant research has been underway in the pattern
analysis, anomaly detection and prediction areas, with
many new advances in the dynamic selection area; how-
ever, the measurement of competence of individual pre-
diction models in the context of resource usage pre-
diction in cloud computing still remains a fairly new
subject, especially in the context of long-term predic-
tion. The most noticeable shortcoming of many recent
approaches is the lack of long-term datasets, with the
longest available amounting to around a month. This
is insufficient to analyze the drift and long-term capa-
bilities of the model. Additionally, at the time of writ-
ing there are few ongoing research projects concern-
ing multiple prediction regressors, and there are none
that also utilize behavioral selection functions with
anomaly detection mechanisms. The selection function
used in the multiple regressor system is also being stud-
ied, since while there are known good approaches, there
is no single one that would be universally optimal.
This paper proposes the use of the signature gen-
eration algorithm to improve prediction accuracy in
the context of cloud computing where the system may
experience drifts over longer operation periods. This
algorithm allows the system to utilize multiple predic-
tors and select them based on current system usage
patterns, making it possible for the system to work
autonomously and dynamically respond to changes in
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usage without the need for long-term changes in con-
figuration, while reducing drift. Additionally, the pre-
diction solution is evaluated on real-life data from pro-
duction clusters, which contain more than one year of
samples, as opposed to most research relying on public
datasets, which do not exceed one month.

3 Signature-based Adaptive Cloud Resource
Usage Prediction System

The signature-based adaptive resource usage predic-
tion system (SARUPS) is a type of DSMCS with a
custom selection function consisting of four modules -
anomaly detection, signature generation, selection and
prediction ensemble. This paper presents a method for
extracting usage signatures based on their individual
characterization in terms of their patterns, and describes
its impact in the prediction context.

Additional refinement is achieved through the em-
ployment of the anomaly detection method, which
removes outliers in the sample window as these may
introduce unwanted noise to predictions. Through the
use of these signatures, which are matched with the best
prediction model by their accuracy, under-provision
and over-provision characteristics, it is possible to
achieve greater prediction accuracy than when using
raw metrics.

Additionally, by employing diverse prediction mod-
els, it is possible to conduct prediction in the cloud
computing cluster over long periods of time, during
which the machine learning models may experience
drift. Drift occurs when the data that the machine learn-
ing model was trained upon becomes outdated, for
example when the usage of the system changes — the
scenario that the presented framework aims to handle
properly by dynamically adapting to these changes.

The concept for the SARUPS is presented in Fig. 1
and the prediction process utilized by the SARUPS is
presented in Algorithm 1.

The method for selecting the prediction model uses
four modules: the Anomaly Detection Module, the Sig-
nature Generation Module, the Selection Module and
the Prediction Ensemble Module. This paper proposes
a novel approach, which is capable of enhancing over-
all prediction by utilizing the signatures generated from
the filtered measurement of resource usage with addi-
tional anomaly detection mechanisms. This signature
generation method serves as one part of the dynamic
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Fig.1 Concept of the SARUPS system

Algorithm 1 Prediction process in the SARUPS sys-
tem, configured to work with a sample window of 24

hours.

1: wl <24

2: ms <« MetricSource()

3: sig_gen < SignatureGenerator()
4: ad < AnomalyDetector()

5: selector <— SelectionModule()

6: ensemble < PredictionEnsemble()
7

8

9

> Window Length

: while True do
sw <— ms.get_samples(wl) > Obtain Sample Window
fsw <« ad.filter_sample(sw); © Filter the anomalies from
SW

10:  sig < sig_gen.generate_signature(fsw)
signature from FSW

11: selected_predictor < selector.select_predictor(sig)

12:  prediction < ensemble.predict(selected_predictor, sw)
> Use selected predictor within ensemble to obtain predictions
based on SW

13: end while

> Generate

selection approach, the other part being the algorithm
correlating the signatures with the most competent pre-
diction model. Signature generation makes it possible
to dynamically adjust the behavior of the ensemble to
the current needs of the system, while anomaly detec-
tion mechanisms are used to filter out noise, therefore
increasing accuracy.

The proposed framework can easily be adapted to
work in different domains; however, the presented

Algorithm 2 Anomaly Detection Module.

1: procedure FILTERSAMPLE(sample_window)

2:  da <— DDM(CurrentState) > Obtain drift analyzer from
current state

3:  af < AnomalyFilter > Prepare anomaly filter

4:  da.analyse(sample_window) > Use DA to decide
whether the system has undergone a change

5 if state of da equals ”"Warning” then
6: return af filter(sample_window);
7 end if

8 if state of da equals "Change” then

9: da.update(sample_window)

10:  endif

11: return sample_window;
12: end procedure

configuration is specifically tailored for the cloud
computing context. The predictors were selected on
the basis of their abilities, such as seasonality and trend
detection, high accuracy, ability to work with multiple
input metrics and diversity and high configurability,
which makes them suitable for this scenario.

3.1 Metrics Database
The Metrics database is the source of aggregated data

in the SARUPS, which is provided by the cluster, and
is a general term for each measurable characteristic of
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the system, usually used for diagnostic purposes. These
characteristics include, but are not limited to: CPU
usage, memory usage, network activity and reserved
VM count. Additionally, depending on cluster config-
uration it may be possible to utilize custom metrics,
such as incoming request count per time unit, error
logs, etc. The source should be able to provide those
metrics, either in batches (sliding windows of n sam-
ples) or as individual samples. Additionally, it should
be possible to obtain samples from a specified period
if such a need arises.

In this paper, information about the current num-
ber of virtual machines reserved is used in univariate
prediction (multiple metrics are used to determine a
single value — how many virtual machines are required
at the moment), since it is the most versatile and most
regular metric available. Other metrics can be used for
multivariate prediction; however, due to the use of a
load balancer and the aggregation of metrics within
the cluster, it is impossible to analyze individual vir-
tual machines, and additionally their load should ide-
ally stay constant in time. Using the virtual machine
count yields an additional benefit: for comparison pur-
poses, the cost of operating a single virtual machine
in the context of biggest cloud service providers such
as AWS or Azure, where the user pays for a specific
virtual machine configuration, is constant.

3.2 Anomaly Detection Module

The Anomaly Detection Module is responsible for
removing anomalous readings from the samples. It
receives aggregated time-series data consisting of
timestamps and the relevant metric values measured,
and outputs data in the same format with the anomalies
removed. This allows the system to generate predic-
tions from denoised samples, and therefore increases
prediction accuracy. The module keeps track of its
internal state, allowing it to detect drift in the system’s
nominal state, which is used in comparison to the cur-
rent state. By analyzing the nominal state and the cur-
rent one it is possible to decide whether an anomaly
was encountered and thus the data should be removed.
If the system’s nominal state changes, for example due
to drift, it is dynamically updated. Algorithm 2 outlines
the basics of the module’s operation.
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3.3 Signature Generation Module

The goal of the Signature Generation Module is to
obtain a tensor of features that represent a certain type
of behavior exhibited in the sample. Behavior types
are a way of describing specific types of trends that
appear in the given sample. From the technical point
of view, there may be no changes at all in the metric,
certain seasonalities may be present or the sample may
be completely chaotic.

An example of typical behavior is a web server
where resources are used more heavily during daytime,
since more users are active during this time, while some
systems run computational tasks constantly, resulting
in nearly constant or chaotic resource usage. A cloud
computing system may exhibit many such types of
behaviors (for example in a multi-user computing clus-
ter), and therefore by selecting the most accurate pre-
diction model greater accuracy can be achieved than
with a single model.

The Signature Generation Module is calibrated to
return features extracted from the pattern (as opposed to
aunique fingerprint) in order to allow the system to rec-
ognize similar patterns. The module obtains time-series
data from the Anomaly Detection Module and generates
signatures on this basis. Typical approaches leverage
multi-dimensional data and clustering methods to cal-
culate competence, while the proposed approach can
also work with low-dimensional data. A sample con-
sists of a series of measurements of configurable length,
which makes it possible to analyze the trends exhibited
by the system during a given period. The features con-
tain various metrics, which are local to each sample.
These include amplitude, highest value, lowest value,
spectral entropy, cycle length (if found, otherwise 0).

Based on the signature (line 8 in Algorithm 1), the
SARUPS selects the most suitable algorithm. Spectral
entropy is a measure of spectral power density in the
signal. The idea is that a sample (a set of measurements
made over time) with higher randomness contains more
information and therefore has a higher entropy. In terms
of trends, low entropy is correlated with a sample with
relatively minor changes, and thus low entropy would
mean a more stable usage pattern (easy to predict)
and high entropy would mean a chaotic usage pattern
(hard to predict). Spectral entropy is based on Shan-
non entropy [16] and calculated as follows. First, the
spectrum X (w;) is calculated, where w; is a single
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measurement in the sample. Subsequently, the Power
Spectral Density (PSD) [3] is calculated as:

! 2
P(wi) = <1 X (@) 6]

where N is the number of bins. The calculated PSD
needs to be normalized so it can be viewed as a Proba-
bility Density Function:

pi = P(w;) (2)
LY P

Finally, Power Spectral Entropy (PSE) can be calcu-

lated as:

n
PSE=-> pilnp 3)

i=1

To calculate the length of the cycle, the Fast Fourier
Transform is used and the frequency of highest peak is
used (if different from 0).

3.4 Selection Module

The Selection Module (further referred to as selector)
serves as the core of the system along with the Sig-
nature Generation Module, deciding which predictor
should be used based on the signature provided. The
selector algorithm receives the signature and on the
basis of its training with model results, it can decide
which of the models available is the most competent
at the given time. The signature is a vector that con-
tains various features provided by the generation algo-
rithm. It outputs a vector containing confidence values
for all available models which can be used to calcu-
late the final prediction. In this paper, the selector is a
machine learning algorithm, more specifically a Ran-
dom Forest. It was trained in a supervised manner on
the scores achieved by individual predictors and the sig-
nature accompanying the given timeframe, as well as
on over- and under-provisioning metrics. The objective
is to select the prediction model with highest accuracy
and the lowest over-/under-provision, as this metric was
also included in the dataset based on the predictors’
individual results. This allows the selector to discover
the relation between the signature, which is based on the

behavior of the actual system, and prediction accuracy.
The Selection Module returns the selected predictor,
which is its index in the ensemble array.

3.5 Prediction Ensemble Module

The Prediction Ensemble consists of heterogeneous
machine-learning prediction models due to their high
accuracy with time-series data and the ability to dis-
cover non-obvious patterns in loosely coupled data.
The goal of utilizing heterogeneous models is to pro-
vide a diverse set of prediction models that are well-
suited to work in various scenarios, which are differen-
tiated with the help of the aforementioned pattern anal-
ysis algorithms. The models selected are Convolutional
Neural Network, Dense Neural Network, Long-Short
Term Memory (LSTM) and the Autoregressive Recur-
rent Neural Network based on LSTM. The frequently
used ARIMA model was skipped, as it requires cali-
brating for each scenario based on the problem and is
not well-suited to continuous operation, only allowing
predictions based on the initial fit, additionally being
very sensitive to noisy data.

The algorithms selected are in general highly accu-
rate in the context of prediction based on historical data,
capable of working with seasonalities and discovering
trends. If the models are to be able to predict seasonal
data, it is important to provide them with a sufficient
amount of historical lag to make the predictions. This
can either be configured manually, provided that the
cycle is known, or calculated using techniques like Fast
Fourier Transformation. In this paper, a one-day cycle
was selected, with data being sampled at 1 hour inter-
vals, and therefore the prediction models are provided
with 24-sample windows and output 24 samples of pre-
dictions. This choice was dictated by two factors: the
firstis the dataset sampling frequency, which is roughly
5 minutes. The second reason is that the cluster pro-
vides real-time service to users who interact with it
with varying intensity throughout the day. This leads
to noticeable cycles during the day, which can be mod-
eled. Itis possible to select a greater frequency to allow
the system to respond to changes more quickly.

The module receives the same data that is being
fed to Signature Generation Module together with the
selection vector from Selection Module and uses this
data to generate predictions and combine them after

@ Springer



46 Page 10 of 15

Journal of Grid Computing (2024) 22:46

applying confidence values to each of them. The final
result is the recommended amount of resources needed
in future.

4 Evaluation

The proposed SARUPS is implemented in the Python3
language due to its flexibility, community support and a
wide choice of analytic libraries. The framework used
for training was Keras with Tensorflow. All training
was conducted using a consumer-grade PC running
the Linux operating system, using the AMD Ryzen 7
5700X CPU @3.40GHz with 32GB of RAM.

The datasets are real-life historical data obtained
from production clusters during a period spanning more
than a year. The servers provide user-facing services
(including web servers), and therefore their load is
reliant on user interactions. The datasets contain indi-
vidual data from more than 1,500 virtual machines
with various simple metrics, such as CPU usage, mem-
ory usage, disk access and network usage, and more
complex ones such as the number of virtual machines
reserved, count of diagnostic errors per minute and
count of requests per minute per single virtual machine
— all of those provided by the orchestration backend,
which conducts autoscaling. The autoscaler takes into
account the average amount of resources such as CPU
and RAM and when the thresholds are crossed, it adds
or removes machines to maintain optimal load. The
resulting virtual machine (VM) count is recorded as a
metric. The datasets contain roughly one year of real-
life data from two different production clusters, used
in different scenarios. No synthetic datasets were used
at any point.

4.1 Dataset and Model Configuration

The datasets were split into two sets of training and
validation datasets by date (90% of training data and
10% of validation data), since both the prediction algo-
rithms and selection algorithm require training. The
most recent part of the dataset (about two months) was
left out for evaluation purposes. This ensures that every
machine, potentially with varying usage behaviors, is
included in the training data; however, the disadvan-
tage is that important parts of data, which can contain
seasonal trends, may potentially be missed.

@ Springer

All of the available predictors were trained on the
first training dataset and validated on the corresponding
validation set. For the sake of simplicity, only the count
of virtual machines reserved at any single time was used
for experiments, since the main goal is to demonstrate
the increased accuracy of the ensemble over its individ-
ual components. The calibration of hyper-parameters
was carried out via cross-validation. The loss metric
used was mean squared error with Adam optimizer.
Subsequently, the prediction models were used to gen-
erate predictions and their competence was measured
on the second training dataset, never seen before by the
prediction models, to obtain training data for the selec-
tion system. Finally, the entire ensemble was evaluated
on the remaining data.

4.2 Goals of the Experiments

The main evaluation goal is to ascertain whether a
signature-based ensemble algorithm performs better
than individual predictors of which it is composed and
whether the signature-based selection method outper-
forms typical approaches. The secondary goal is to
determine the usefulness of the approach in different
scenarios, in this case in a stable environment (experi-
encing fairly cyclical loads) and in a chaotic one (where
there are no trends that would be easy to spot). The
visualization of all prediction models compared to the
actual usage of virtual machines is presented in Fig. 2.
Compared to the other models available, the ensemble
model follows the actual line most accurately. Addi-
tionally, its accuracy over longer time periods has been
evaluated and is presented in Fig. 3.

This is easy to verify, as it is possible to compare
the baseline performance of each individual predic-
tor and compare them against the performance of the
SARUPS algorithm. Performance is measured as the
Mean Square Error (MSE) of the prediction — the actual
value for each time step, with the inclusion of weighted
under- and over-provision metrics. A lower MSE value
means a smaller difference between the prediction and
actual data, and therefore higher accuracy. The under-
provision and over-provision metrics were measured as
an average of absolute positive and negative difference,
and are defined in Algorithm 3. The unit for all metrics
is the number of virtual machines, for example under-
provision equal to 6 means that the system would need
6 more virtual machines to operate properly. On the
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Fig. 2 Visualization of
prediction accuracy of
different models

VM Instances

other hand, significant over-provision means that the
additional machines are not needed, but generate costs.

When accuracy is high, these metrics are close to
zero, but in a scenario where it is difficult to select
a competent algorithm (for example due to high data
randomness), they support making the decision which
algorithm should be used to reduce the risk of under-
provision, which can be problematic from a cloud
user’s perspective, as under-provision may lead to ser-
vice outages, because there are not enough resources —
virtual machines — to handle the incoming traffic and
this may lead to the service being unresponsive or to
its complete outage.

4.3 Cloud Resource Usage Prediction

Experiments were carried out for highly regular data
(with stable daily and weekly cycles), and also for
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Fig. 3 Visualization of long-term prediction of Ensemble model
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Algorithm 3 Calculation of over- and under-provision
supporting metrics.

1: actual_values: Array;

2: predicted_values: Array;

3: up_sum <« 0;

4: op_sum <« 0O;

5: up_count < 0;

6: op_count < 0;

7: for i from O to length(actual_values) do

8 if predicted_values|i] < actual_values[i] then

9: up_sum < up_sum + (actual_values]i]
10: - predicted_values|i]);

11: up_count < up_count + 1;

12:  endif

13:  if predicted_values|i] > actual_values[i] then

14: op_sum <— op_sum + (predicted_values]i]
15: - actual_values[i]);

16: op_count < op_count + 1;

17: end if

18: end for

19: average_up <— abs(up_sum / up_count);
20: average_op <— abs(op_sum / op_count);

H
/
|
|
|
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Time [h]
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highly random data in order to compare the perfor-
mance of the system for data that are, respectively,
relatively easy and difficult to predict. The evaluation
consists of analyzing the performance of the ensem-
ble with different selection methods and the signature-
based ensemble compared to its individual compo-
nents. They should be analyzed from the point of MSE,
under-provisioning and then over-provisioning since
the system was calibrated to prioritize these metrics in
this order. These measurements use virtual machines as
their unit, which is useful for interpretation purposes —
under-provision and over-provision show directly how
many virtual machines were needed, but not requested,
or reserved unnecessarily. The selection method com-
parison includes the evaluation of three different selec-
tion methods —neural network-based, which uses a sim-
ple dense network to correlate samples with the most
competent algorithm, completely random selection and
finally the signature-based selection method.

First, a stable dataset was analyzed. In this scenario,
it is clear that utilizing the selection method yields
noticeable improvements, as both neural network-
based and signature-based methods outperform the ran-
dom selection method, with marginally better results
(by about 1 percentage point) for the neural network-
based method. Both of them achieved MSEs of roughly
3 percentage points, while for the random method the
value was 6 percentage points. The results are similar
for both under- and over-provision for both of these
methods.

Subsequently, the chaotic dataset was analyzed.
First, selection method performance was examined.
While the overall results are noticeably worse (on the
order of 20 virtual machines), the signature method out-
performs both random (by about 3 machines or 12%)
and the neural network method (by 6 virtual machines
or 21%), although with relatively high over-provision.
The data obtained via these experiments is presented
in Table 1. While the relative differences of MSE in

the stable dataset are small, the best performing algo-
rithm is Neural Network, closely followed by Signa-
tures. Random is higher in MSE but also in Under-
Provision, with Neural Network and Signatures being
close. Over-Provision is almost identical. This estab-
lishes that employing a tailored approach instead of
randomly selecting prediction algorithms does indeed
increase accuracy, although if ensemble algorithms are
already accurate to start with, the differences are small.
The Signatures algorithm might be performing worse
due to insufficient calibration. In the chaotic dataset, the
MSE is noticeably higher for all algorithms, with Sig-
natures as the best one, although its Under-Provision
is marginally higher than Neural Network’s which is
the second best. Over-Provision is almost equally high.
These results might suggest that the Signatures algo-
rithm performs better when there is a use-case for mul-
tiple prediction algorithms.

Next, the performance of the ensemble with the
signature-based selection method was compared with
its individual components to verify whether it was pos-
sible for this method to outperform their individual
results. The experiment included comparison of the
MSE of the individual prediction models — Convolu-
tional Neural Network (Convolutional), Dense Neural
Network (Dense), Long-Short Term Memory Recur-
rent Neural Network (LSTM), Autoregressive Recur-
rent Neural Network (Autoregressive) and Ensem-
ble with signature-based selection (Ensemble). In this
experiment, the two best results are achieved by the
LSTM and Ensemble models, with a difference of
about 2 virtual machines between them. Subsequently,
the ensemble with the signature selection method is
compared to individual prediction models. Again, the
MSE of the ensemble model with the signature selec-
tion method is the best, with a difference of 1 virtual
machine compared to its best component. The results
of those experiments are presented in Table 2.

Table 1 Comparison of different selection methods metrics over two different datasets

Stable dataset

Chaotic dataset

MSE Under-provision Over-provision MSE Under-Provision Over-provision
Random 6 20.3 12.1 35 3.6 524
Neural 2.5 14.8 11.2 28.1 2.6 53
Network
Signatures 32 15.1 11.6 22.1 4.8 54.2
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Table 2 Comparison of prediction MSE over two different
datasets

Stable Chaotic
Convolutional 6.7 26.1
Dense 11 24.2
LSTM 2.7 28.4
AutoRegressive 4.7 223
Ensemble 4.5 20.3

It is clear that the selection method increases accu-
racy, with fairly similar results for all non-random
methods for the stable (easy to predict) dataset, and
noticeably better MSE results for the chaotic dataset.
However, with the regular dataset, the improvements
are negligible in the evaluated scenario, although
the employment of drift detection may be utilized
to increase the performance of the network over a
longer period of time when service usage may undergo
changes. If one of the predictors performs well, it will
continue to perform in this way as long as the usage pat-
tern does not change. The real benefit of employing the
ensemble-based solution lies in utilizing it in evolving
systems where resource usage is constantly changing,
since multiple prediction models with diverse compe-
tences can outperform individual models.

Finally, to assess the efficiency of the solution devel-
oped in the context of cost savings, a rough estimate of
possible savings was generated. The pricing is based
on a popular cloud service provider’s billing model
which assumes a flat price per instance per hour. Using
such billing, at the assumed rate of $0.04 per hour
(based on Amazon AWS pricing) the monthly cost
of running the experimental cluster was calculated as
the sum of virtual machine counts during individual
hours. Then, using the same approach, costs were cal-
culated for this cluster when run using the predic-
tions generated by the Ensemble model with the Neural
Network and Signatures selection methods. The final
result is $917.67 for the default autoscaler, compared
to $861.12 for the Ensemble model with the Neural
Network and $851.08 for the Ensemble model with
the Signatures selection method. In conclusion, sav-
ings under this common billing model amounted to
more than 7% using the Ensemble model with the
Signatures selection method, which would result in
significant savings for large systems using cloud ser-
vices.

4.4 Anomaly
Detection

The evaluation of anomaly detection was carried out
both for the stable and chaotic datasets, using a
fairly standard and simple anomaly filter. The pri-
mary goal was to ascertain whether using anomaly
detection yields any noticeable improvements. Exper-
iments on the stable dataset generated almost identical
results, with some improvements for anomaly detec-
tion, although those were negligible. In the chaotic
dataset, however, the differences were much more
noticeable, with the Ensemble algorithm achieving an
MSE lower by 20 percentage points than in an identical
scenario without anomaly detection (a decrease from
44.87 to 34.96 virtual machines). The Anomaly Detec-
tion mechanism had a noticeable impact on almost all
the models (on the order of 10-15%), with the exception
of LSTM, which was quite accurate from the beginning.
The results suggest that such a mechanism can indeed
impact a model’s learning abilities. This approach is
similar to employing dropout layers in convolutional
networks.

5 Conclusion

In this paper, the usage of a signature-based adaptive
prediction algorithm is explored and its accuracy is
compared to traditional solutions. The proposed solu-
tion performs better than a single prediction algorithm
for a broader spectrum of use-cases. The algorithm
proposed achieved a 21.4 percent increase in accuracy
over directly correlating prediction models to samples
via a neural network (Table 1, comparison of Neural
Network and Signatures MSE in the Chaotic dataset).
Additionally, the authors analyzed various predictors
and evaluated their suitability for resource usage pre-
diction in cloud computing as well as their competence
for various usage patterns discovered through pattern
analysis. The competence of the proposed system was
evaluated on two different real-life datasets, without
the use of synthetic data, to ascertain its performance
in various scenarios. Finally, the comparison included
new metrics not seen in the literature analyzed, such as
under- and over-provision, which are useful in cloud
computing scenarios since they help uphold service
level agreements.

The experiments conducted show that the ensemble
approach is viable and it performs best in chaotic sce-
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narios where prediction via traditional means proves
difficult. The increase in accuracy is not extreme, but
noticeable. It is important to keep in mind that the
results were achieved for basic implementation with-
out precise model tuning. Moreover, employing the
anomaly detection method yields further improvements
of prediction accuracy, which are most pronounced in
unstable environments where the data provided by the
system contains anomalies. The research highlights the
importance of selection methods in a multiple classi-
fier system, since they are the crucial component with a
significant impact on overall accuracy. Additionally, it
presents the advantages of utilizing pattern recognition
in prediction. The proposed system can be adapted for
use in the cloud as an auto-scaling solution to decrease
over-provisioning costs.

The most important limitations of the research con-
ducted were primarily related to the inadequate quan-
tity and diversity of data. This led to possibly insuffi-
cient fine-tuning of the models, failure to fully analyze
the impact of anomaly detection, the absence of more
advanced pattern analysis, the absence of multivariate
evaluation and the inability to evaluate drift-resilience
capabilities of the system.

The most important directions of further research
planned by the authors, after obtaining new appro-
priately diversified data, are fine-tuning the predic-
tion algorithms, improving anomaly detection algo-
rithms for the multi-variate approach and fine-tuning
the signature generation algorithm which could yield
significant improvements in overall system accuracy.
Additionally, the behavior of the trained system dur-
ing longer periods require further evaluation to ascer-
tain whether the drift detection method yields notice-
able improvements, especially in the case of sea-
sonal events that render prediction models inaccurate.
Finally, it may be beneficial to incorporate anomaly
detection mechanisms in other modules, such as predic-
tion outputs or the model selection method to eliminate
errors.
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