
https://doi.org/10.1007/s10723-023-09679-6

RESEARCH

DAScheduler: Dependency-Aware Scheduling Algorithm
for Containerized Dependent Jobs

Abdullah Alelyani · Amitava Datta ·
Ghulam Mubashar Hassan

Received: 26 March 2023 / Accepted: 9 July 2023
© The Author(s) 2023

Abstract Containers have emerged recently as a
cloud technology for improving and managing cloud
resources. They improve resource sharing by allow-
ing instances to run on top of the host’s operating
system. Container-based virtualization runs and man-
ages hosted instances via the host kernel. Resource
sharing can cause resource contention. In addition,
dependent jobs, which may be deployed across mul-
tiple hosts, require frequent communication, result-
ing in a high volume of network traffic and network
contention. The majority of existing research focuses
on load balancing, with no consideration for the fact
that network contention also plays a significant role in
container performance. In this research, we propose a
Dependency-aware Scheduling algorithm (DASched-
uler) that deploys jobs into containers while account-
ing for both load balancing and job dependencies. The
experimental results show that DAScheduler reduces
network traffic by more than half and balances the
loads. In comparison to one of the existing state-of-the-
art techniques, DAScheduler improves overall cloud
performance.

A. Alelyani (B)· A. Datta · G.M. Hassan
Department of Computer Science and Software
Engineering, The University of Western Australia, 35
Stirling Highway, Crawley 6009, WA, Australia
e-mail: abdullah.alelyani@research.uwa.edu.au

A. Datta
e-mail: amitava.datta@uwa.edu.au

G.M. Hassan
e-mail: ghulam.hassan@uwa.edu.au

Keywords Containers · Load balance · Scheduling ·
Network traffic · VMs

1 Introduction

Virtualization technology has been used to improve
resource utilization. Today, sharing the physical machine
(PM) resources across multiple tenants is a benefit of
using virtualization. It allows each tenant to run its
own software while sharing the physical infrastructure
of the host, such as CPU and memory. Virtualization
increases resource availability and decreases service
costs, resulting in improved cloud computing perfor-
mance. [1,2].

Cloud computing involves virtualization, where
managing the resources of PMs plays a key role in
improving its performance. Virtual machine monitor-
ing (VMM) is the layer that manages virtual machines
(VMs) in each PM. It is a resource management compo-
nent that comes on top of the host’s operating system,
called hypervisor, which enables each VM to create its
own operating system. As a result, VMM improves VM
instance security.

One of the main objectives of VM is to improve
the utilization and provision of resources of the PM.
Due to advancements in VM technology, businesses
including Google, Amazon, and Microsoft are able to
share resources with the public users of the cloud [1,2].
Based on the needs of the clients, cloud resources are
provisioned to run the client’s job. The use of resources

123

Journal of Grid Computing (2023) 21:46

/ Published online: 1 August 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-023-09679-6&domain=pdf
https://orcid.org/0000-0003-3670-4133
https://orcid.org/0000-0001-6916-7907
https://orcid.org/0000-0002-6636-8807

Journal of Grid Computing (2023) 21:46

varies over time. However, once the resources are allo-
cated to the job, the performance of the job is limited
by the allocated resources.

Recently, container was introduced as a lightweight
technology that is less restrictive on the isolation of
jobs. It allows the hosted jobs to share the host operat-
ing system as well as the resources [3]. Depending on
the capacity of the resources, each physical machine
can run more containers than virtual machines, as con-
tainers do not require their own operating system.

Microservices is a new technology that builds appli-
cations from small, loosely dependent services rather
than as a single monolithic application [4]. Container
technology is widely used in implementing microser-
vices [5], allowing for scaling, isolation, and manage-
ment of individual microservices, without affecting the
entire system. Containers provide a standardized envi-
ronment for running microservices, which is especially
useful for complex systems like Netflix that consist
of over 500 distributed microservices across different
zones, including edge resources. According to [6], such
infrastructures require a network policy to facilitate
communication between microservices.

Scheduling containers into PMs is a critical prob-
lem that has attracted a lot of attention in the literature
[7–9]. Proposing an efficient schedule is a challenging
task. Many aspects are required to be considered while
developing the schedule, such as allocating resources
to containers, balancing the load, cloud performance,
energy consumption, etc. However, load balancing and
resource contention are the two most important factors
influencing the performance of the container [10].

There are two main types of resource contentions:
1) local contention, which occurs when the resource,
such as CPU, memory and I/O, are utilized intensively
by hosted containers; and 2) network contention, which
occurs when massive data is sent or received by con-
tainers at the same time across the network.

Load-balancing algorithms are widely used in data
centres to enhance container performance and pre-
vent service level agreement violations. However, such
approaches often result in resource waste, including
inefficient utilization of CPU and memory resources.
Moreover, limiting container network traffic or prior-
itizing load balancing over traffic management may
improve quality of service (QoS) but at the cost
of increased latency. Therefore, achieving optimal
QoS while improving resource efficiency and network

latency remains an ongoing challenge in cloud com-
puting research.

Local resource contention has negligible effects on
container performance, whereas network contention
affects latency and decreases throughput. To address
issues related to network traffic and load balancing, we
propose DAScheduler, a scheduling algorithm that con-
siders container dependencies and balances the load to
reduce traffic overhead. Our research makes the fol-
lowing contributions:

1. Evaluating the limitations of deploying dependent
jobs on containers without considering the depen-
dencies between them. In this research, a Round-
Robin algorithm is employed to deploy jobs while
considering the resource requirement constraint
only.

2. Investigating the degradation of the performance
caused by network contention.

3. Proposing and evaluating a novel scheduling algo-
rithm for managing the network traffic, balancing
the load, and improving the performance of con-
tainers.

The rest of the paper is organized as follows: Sec-
tion 2 discusses the previous research on resource con-
tention on containers. Section 3 defines the problem
and its formulation. Section 4 discusses the proposed
algorithm. Section 5 introduces the evaluation metrics.
Section 6 illustrates the experiments used for evaluat-
ing the algorithm, and the analysis of the experiments.
Finally, the conclusion is presented in the last section.

2 Related Work

In this section, existing state-of-the-art techniques
related to container performance and resource man-
agement are discussed, which include resource con-
tentions, resource utilization, and managing the quality
of service. The aim is to shed light on research findings
that have addressed network costs and performance in
the cloud environment. Additionally, we identify the
gaps in current research that need to be addressed.

A framework, known as ConTuner, was proposed
in [7] to resolve the problem of resource contentions.
The study aims to automate the procedure of setting
the parameters of resource utilization. The proposed
framework consists of two parts: 1) a configuration

123

46 Page 2 of 18

Journal of Grid Computing (2023) 21:46

pool that optimizes the utilization of resources for con-
tainers by tuning configuration parameters, and 2) a
configuration optimizer that clusters the new jobs into
a single historical group known as new job group.
It then uses the optimized configuration pool to set
the resource requirement parameters for this new job
group. During the experiment, the framework was
used to set the Docker parameters, such as the pro-
portion of CPU, memory, and I/O. ConTuner ensures
that all containers that share the same resources uti-
lize the resources comprehensively and efficiently. The
experimental results demonstrate that ConTuner can
accurately predict resource contention and optimize
resource usage for new containers running new arriving
jobs. Overall, the framework improves the efficiency
and accuracy of container resource utilization.

According to McDaniel et al., [8], managing the
quality of service (QoS) and minimizing resource con-
tention assists in achieving the desired performance.
The study proposed an algorithm for tackling I/O con-
tention at the cluster and node levels. In addition, an
API was developed to give clients control over the
I/O of the containers to set the utilization priority
and the percentage of I/O utilization. Furthermore, it
allows to monitor all containers at the cluster layer
and guarantees the implementation of QoS. The results
show that the two-tiered approach effectively enhances
QoS by monitoring I/O usage in Docker containers. It
also shows improvements in the performance of I/O-
intensive applications.

A locality-aware scheduling algorithm was pro-
posed to improve container performance by schedul-
ing them on PMs that are close to their dependent
containers [9]. The algorithm considers the distances
between dependent containers and aims to minimize
these distances by grouping containers in the same
PMs, resulting in reducing network I/O contentions.
However, local I/O contentions may increase due to
grouping dependent containers on the same PMs. To
balance the two types of contentions, a statistical model
was proposed. Experimental results show that the pro-
posed algorithm reduces network latency, leading to
improved container performance. However, load bal-
ancing between PMs was not considered, which may
cause local resource contentions. Overall, the schedul-
ing algorithm improves container performance by con-
sidering the locality of data sources and reducing net-
work latency.

In [11], the authors proposed a container traffic ana-
lyzer (COTA) to manage the network traffic between
containers, which in turn enhances the time spent scal-
ing resources. COTA proposed to enhance the net-
work traffic by managing the following: 1) collects
traffic data from host PMs, 3) reports violations to the
manager, and 3)balances network traffic using scaler-
provided tools. The study proposed an algorithm called
Least Traffic Load Balancing (LTLB) to balance net-
work traffic across containers. In addition, COTA has a
resource prediction approach, which allows for enhanc-
ing the proactive auto-scaling efficiency, making it a
promising approach for optimizing resource utilization
in container environments.

A multi-objective algorithm was proposed in [12] to
enhance container performance. The algorithm aimed
to achieve multiple objectives, such as increasing the
utilization of CPU and memory, and reducing net-
work traffic. The proposed algorithm involved group-
ing similar jobs together in containers and finding the
optimal physical machine (PM) to provision resources
for new containers. The algorithm performs similarly
to the Docker Swarm strategies. The results showed
that clustering similar containers in a group improved
the scheduling process. In addition, the experimental
results show that the algorithm outperforms three well-
known algorithms namely Spread, Binpack, and Ran-
dom in terms of resource utilization and load balancing.
However, the time complexity of the algorithm is sig-
nificantly high compared to other algorithms. Finally,
the proposed algorithm has the ability to consider mul-
tiple objectives while scheduling containers.

A multi-criteria approach that uses swarm tech-
niques was proposed in [13]. The spread and bin pack-
ing algorithms were used, to select the PM that hosts
containers. Three inputs were considered during the
deployment of containers to PMs: 1) the number of con-
tainers in each PM; 2) the number of available CPUs;
and 3) the amount of available memory. A multi-criteria
decision-making algorithm, namely, order of prioritisa-
tion by similarity to ideal solution (TOPSIS) [13] was
used, which selected the best PMs to run the containers.
TOPSIS aims to optimize resource allocation and better
load balancing. The experimental results indicate that
this technique has the potential to outperform existing
scheduling strategies in some scenarios.

Microservice architecture is a complex distributed
system that heavily relies on communication between

123

Page 3 of 18 46

Journal of Grid Computing (2023) 21:46

microservices. Recently, researchers have focused on
optimizing resource utilization and reducing network
traffic for microservices in distributed systems. Three
recent studies [14–16] share the common goal of
improving microservice deployment and scheduling by
taking into account different factors that affect resource
utilization and network traffic. The Microservice-
Oriented Topology-Aware Scheduling Framework
(MOTAS) [14] partitions the microservices graph
based on dependencies and eliminates nodes that vio-
late resource balance provisions. In [15], the authors
use machine learning models to optimize network
utilization between nodes in the edge network and
the cloud platform by predicting upcoming network
usage. Lastly, [16] proposes a modification to Kuber-
netes to consider network requirements between nodes
and application topology, taking into account run-time
resource utilization. Overall, these studies contribute to
the optimization of microservice architecture and pro-
vide insights into improving resource utilization and
network traffic in distributed systems.

A comparison in Table 1 is presented which illus-
trates the features and differences between the tech-
niques discussed in this section.

The cost of network traffic, including latency along
with the impact of load balancing on container perfor-
mance, has not been adequately addressed in the exist-
ing research. Furthermore, the topology of the data cen-
tre, which plays a significant role in scheduling depen-
dent containers, has been lacking consideration in cur-
rent studies. We aim to address these gaps by proposing
an algorithm that minimizes network I/O contentions
and balances load in modern data centres.

3 Problem Formulation

Definitions and assumptions are introduced before pro-
ceeding with the problem formulation.

1. Job refers to the workload that the user submits to
the cloud for execution.

2. We refer to the small and isolated environment that
runs the job as container. If two containers are
allocated to two dependent jobs, the containers are
dependent, and they need frequent communications
either locally or over the network.

3. A data centre is a collection of heterogeneous PMs
that communicate via a network. The data centre
is also physically distributed across the world in

various zones. Each zone has a limited number of
PMs that can be expanded. We assume that zones
are connected via the internet or a private network.

In addition to the terms listed above, there are other
terms that are defined in Table 2.

There are three categories of jobs in terms of
resource utilization: storage-intensive, I/O-intensive,
and computation-intensive. We denote arriving jobs
as a set of jobs J={ j1,τ1 , j2,τ2 , ... jn,τi }, where n rep-
resents different jobs and τk, 1 ≤ k ≤ i represents
the arrival time of job k. We assume that each job
j ∈ J requires a certain amount of resources, which
are known at the submission stage as part of a service
level agreement (SLA). The resources that are required
by a job are 1) CPU cores; 2) memory; and 3) I/O,
and we denote them as the set R= {RCPU ,Rmem ,Rio}.
We also denote j Ri as the requirements of resources
R by job i . The cloud offers a set of cells denoted as
C ={c1, c2, ...cm} that are accommodated by various
PMs. Each cell ci ∈ C consists of the heterogeneous
capacity of resources denoted as cr={cCPU , cmem , cio}.
We assume that each cell is a container. We assume that
each container can host a limited number of jobs and
that these jobs utilize the resources of the host up to
a maximum level, as defined by an upper threshold
(UT S). Specifically, the utilization of the resources by
the container denoted as UR, should not exceed the
UT S. The scheduling process ensures that the require-
ments of each job are met and that the maximum utiliza-
tion of each container is below theUT S. The following
equation expresses this constraint:

crm >= j Ri : ∀ {t} UR(cm) <= UT S

subject to :
cCPU
m >= jC PU

i

cmem
m >= jmem

i

ciom >= j ioi
(1)

Scheduling jobs to containers optimally is an NP-
Complete problem with a high time complexity [17].
For instance, if we have to schedule s jobs into d con-
tainers, the time complexity can be as high as O(sd).
Therefore, the best practice to minimize the complex-
ity is to divide the containers into groups of zones
Z . Containers should have similar resources across
zones and are represented as Zr={ZCPU , Zmem , Zio}.

123

46 Page 4 of 18

Journal of Grid Computing (2023) 21:46

Ta
bl
e
1

C
om

pa
ri

so
n

of
te

ch
ni

qu
es

in
th

e
lit

er
at

ur
e

on
co

nt
ai

ne
r

re
so

ur
ce

m
an

ag
em

en
ta

nd
pe

rf
or

m
an

ce

St
ud

y
Pr

ob
le

m
A

dd
re

ss
ed

Pr
op

os
ed

So
lu

tio
n

Pa
ra

m
et

er
s

co
ns

id
er

ed
R

es
ou

rc
e

ut
ili

za
tio

n
C

PU
M

em
or

y
I/

O
co

nt
en

tio
ns

co
nt

en
tio

n
co

nt
en

tio
n

co
nt

en
tio

n

C
ai

et
al

.(
20

19
)

[7
]

R
es

ou
rc

e
co

nt
en

tio
n

C
on

T
un

er
fr

am
ew

or
k:

au
to

m
at

ic
�

�
�

�

pa
ra

m
et

er
se

tti
ng

fo
r

re
so

ur
ce

ut
ili

za
tio

n

M
cD

an
ie

le
ta

l.
(2

01
5)

[8
]

Q
ua

lit
y

of
se

rv
ic

e
(Q

oS
)

m
an

ag
em

en
t

A
lg

or
ith

m
fo

r
m

an
ag

in
g

I/
O

co
nt

en
tio

n
�

Z
ha

o
et

al
.(

20
20

)
[9

]
C

on
ta

in
er

pe
rf

or
m

an
ce

L
oc

al
ity

-a
w

ar
e

sc
he

du
lin

g
al

go
ri

th
m

�
�

K
im

et
al

.(
20

17
)

[1
1]

R
es

ou
rc

e
ut

ili
za

tio
n

Pr
oa

ct
iv

e
sc

al
in

g
ba

se
d

on
pr

ed
ic

te
d

ne
tw

or
k

tr
af

fic
�

�
�

�

L
iu

et
al

.(
20

18
)

[1
2]

C
on

ta
in

er
pe

rf
or

m
an

ce
M

ul
ti-

ob
je

ct
iv

e
al

go
ri

th
m

fo
r

co
nt

ai
ne

r
sc

he
du

lin
g

�
�

M
en

ou
er

&
D

ar
m

on
(2

01
9)

[1
3]

R
es

ou
rc

e
al

lo
ca

tio
n

M
ul

ti-
cr

ite
ri

a
ap

pr
oa

ch
fo

r
co

nt
ai

ne
r

sc
he

du
lin

g
�

�
�

L
ie

ta
l.

(2
02

3)
,B

ao
et

al
.(

20
23

)
C

om
m

un
ic

at
io

n
be

tw
ee

n
M

O
TA

S,
M

ac
hi

ne
le

ar
ni

ng
�

�
an

d
M

ar
ch

es
e

&
M

ic
ro

se
rv

ic
es

A
lg

or
ith

m
an

d
K

ub
er

ne
te

s

To
m

ar
ch

io
(2

02
2)

[1
4–

16
]

pl
ug

in
in

an
d

m
od

ifi
ca

tio
ns

123

Page 5 of 18 46

Journal of Grid Computing (2023) 21:46

Table 2 Summary of definitions and notations

Name abbreviation definitions

Physical machine PM Physical computer system or a server that is composed of hardware
components and operating system

Service level agreement SLA Contract between a service provider and a user that outlines the level
of service that the provider guarantees to deliver.

Upper threshold UTS Value representing the maximum level of utilization of a particular
resource.

UR UR Utilization of resources by a container

Current utilization of resources Ur Percentage of a resource that is currently being used.

Current utilization of CPU UCPU Percentage of CPU that is currently being used.

Current utilization of memory Umem Percentage of memory that is currently being used.

Current utilization of I/O Uio Percentage of I/O that is currently being used.

Furthermore, the zones are spread across different geo-
graphical areas. During scheduling, a job is deployed
to the zone that meets its requirements of resources.
For instance, if the zone meets the minimum resource
requirements for running a job and the zone has an
unoccupied container Cm , job jn will be assigned to it.
The constraint is explained by the following equation:

Zk −Ur >= j Ri
subject to :

ZCPU
k −UCPU >= jC PU

i

Zmem
k −Umem >= jmem

i

Zio
k −Uio >= j ioi

(2)

where Ur is the current utilization of the resources. In
addition, UCPU ,Umem, and Uio are the current uti-
lization of CPU, memory and I/O respectively.

When a user submits one or more applications to
the cloud for execution, each application is treated as
an individual task. The job has at least one task, job
j is defined as a collection of tasks, where j = {t1,
t2,... tw}. However, there are two types of jobs: depen-
dent and independent. In contrast to independent jobs,
dependent jobs rely on other jobs or services to be per-
formed. If dependent jobs are distributed across multi-
ple containers that are located in different zones, they
are required to use local or network I/O. The depen-
dencies may not be known at the time of the arrival
of a job. During the job scheduling process, only the
CPU and memory requirements are known. It is also
possible that dependent jobs will be distributed across

multiple zones. As a result, the network will be heavily
used, resulting in congestion, packet loss, and latency.

Congestion of network traffic also results in high
communication latency among dependent jobs and
system failure [18,19]. Redundant paths guarantee a
reduction in the risk of the above issues. Therefore, we
assume that the infrastructure of the network in each
zone is multi-path. Furthermore, we assume that each
zone is contained within PMs that have a similar capac-
ity of containers as shown in Fig. 1. The term network
traffic refers to the stream of packets travelling through
a network. However, the latency that is caused by the
congestion of the traffic is denoted as the cost of traffic.

Platforms such as Docker use a bridge network to
isolate containers [20]. The bridge interface is called
docker0 and it routes the packets between contain-
ers [21]. Edge computing, in contrast, employs con-
tainers to run microservices in resources close to the
client. However, because of the limited resources in
the node of the edge, containers could be distributed
across multiple edges.

A platform such as Kubernetes is used to distribute
containers into PMs. Also, it is used to map pods to
available nodes.Anode could be a PM that is located on
either the edge or on the cloud [4]. In addition, Kuber-
netes supports inter-communication between microser-
vices [6] which is the type of communication between
microservices in different PMs.

In summary, our research focuses on the use of con-
tainers to run microservices. Therefore, a communica-
tion policy is needed for these microservices to inter-
act with each other, whether through interfaces if they
are located in the same PM or through the network if

123

46 Page 6 of 18

Journal of Grid Computing (2023) 21:46

Fig. 1 Zones 1 and 2 represent distinct geographical regions within a single data centre. To handle traffic, a multi-path topology is
proposed, in which the internet is used to connect zones within a single data centre

they are distributed across multiple zones. According
to [22], network traffic in the data centre is classified
as:

1. Inter-traffic: the traffic between the zones of the
data centre that are located in different geographical
locations.

2. Intra-traffic: the traffic between PMs within a single
data centre.

A cloud network is represented as a graph of vertices
and edges as g = {V, E}. The vertices represent the
zones, while the edges represent the network. The cost
of utilizing the network is calculated as 1) the number
of edges in the path between dependent jobs; 2) the cost
of each edge; and 3) the total time of using the path.

Network cost(NC)=
L∑

i=1

L∑

j=1

Di j ∗ Ti j ∗ Mi j

where :

Di j =
{1 i f App i and j dependent

0 otherwise

(3)

where D denotes the dependency matrix between con-
tainers that run jobs. Furthermore, Ti j represents the
cost of edges connecting dependent containers running
jobs i and j . We assume that only the shortest paths
between dependent containers are taken into account.

Mi j is the number of paths between the container i and
container j . Finally, the total number of containers is
denoted by L .

It should be noted that we refer to containers as jobs
to run. In addition, we refer to migrating jobs as the pro-
cess of migrating the containers. The state of the con-
tainers (memory state) is migrated from the source host
to the destination host during the migration process.

Additionally, we take into account the cost of migrat-
ing containers from one PM to another during the
migration process. The size of the moved containers
may make migration more expensive than sending or
receiving packets through the network. However, dur-
ing a particular time frame, the total cost of network
traffic between dependent containers located in differ-
ent zones could be higher than the cost of container
migration.

4 The Algorithm Design and Policy

The first part of this section describes DAScheduler and
its architecture. The policy of the algorithm is described
in the second part of this section.

4.1 Proposed algorithm

Two factors are considered to have a significant impact
on container performance: 1) workload balance, and 2)

123

Page 7 of 18 46

Journal of Grid Computing (2023) 21:46

the intensive use of the network between containers that
are located in different zones. DAScheduler, presented
in Fig. 2 consists of three main steps aiming to enhance
the overall performance of the containers. The steps
are 1) initial scheduling, 2) monitoring system, and 3)
making a decision. These three steps aim to reduce the
cost of using the network as well as balancing the load.

During the initial scheduling step, DAScheduler
distributes newly arriving jobs into containers using
a round-robin algorithm (RR). The initial schedul-
ing expedites the process of accommodating incoming
jobs.

In the second step, DAScheduler monitors container
resource utilization, including network usage and con-
tainer performance. This stage of our algorithm incor-
porates benchmarking tools such as Linpack [23], Y-
Cruncher [24], NBENCH [25], STREAM [26], Net-
perf [27], and the Linux/Unix dd command [28–31].
The algorithm then calculates the total cost associated
with network usage, load balancing, and container per-
formance, which aids the decision-making process in
the subsequent step.

The last step is to group dependent containers in
the same zones. As mentioned in Section 3, there are
two types of edges: 1) the edges between dependent
containers in the same zone that carry intra-traffic;
and 2) the edges between dependent containers in dif-
ferent zones that carry inter-traffic. In this study, the
NC mentioned in (3) for the second type is consid-
ered costly, while the first is considered negligible.
By treating this situation as a Max-Cut problem, we
intend to partition the graph into subsets in order to
minimize the inter-traffic cost between zones. The par-
titioning is then repeated until the minimum cost is
reached.

Fig. 2 DAScheduler contains three stages: initial scheduling,
monitoring and decision-making

Finally, independent containers located in over-
loaded PMs are rescheduled to underloaded PMs. This
step contributes to improving the load balance of the
containers, which improves overall performance.

4.2 Scheduling Policy

Firstly, when new jobs arrive at containers, DASched-
uler assigns them to a list La . The jobs are then sorted
based on their arrival time. It is assumed that contain-
ers of similar capacities are assigned to the same zone.
Secondly, the zones are assigned to lists {L1,L2,....L p}
based on their capacities. Then, DAScheduler sorts the
lists of zones based on resource capacity. The RR algo-
rithm is then used to distribute the jobs into zones.
Throughout the rest of this study, we use the term “con-
tainers“ to refer to the job placeholders that run and uti-
lize resources. At this stage, only one constraint is con-
sidered which is to meet the resource requirements of
each job. We believe that DAScheduler will distribute
containers into zones equally. This step boosts the per-
formance of the container in terms of response time,
availability and flexibility. Nevertheless, we expect that
the latency will be increased due to the intensive use of
the network by dependent containers.

The next step focuses on optimizing network costs
by grouping dependent containers within the same
zone. It is a well-known “max-cut“ problem. To tackle
this problem, we utilize a modified local search algo-
rithm (MLSA) that comprises the following steps:

1. Calculating the number of external dependencies,
which are the dependencies between containers in
different zones.

2. Assign dependent containers into list Lapp.
3. Choose a container from Lapp, then find its neigh-

bours based on the highest network traffic cost and
add them to Lneg .

4. Sort Lneg list by decreasing traffic cost, and then
assign containers from Lapp to the zone of the first
neighbouring container on Lneg .

5. If both containers are in different zones, group them
in the zone with the most available resources. Oth-
erwise, select the next container from Lneg .

6. Steps 3, 4 and 5 are repeated until the last container
in Lapp is reached.

The decision to redeploy independent contain-
ers from overloaded zones to underloaded zones is

123

46 Page 8 of 18

Journal of Grid Computing (2023) 21:46

considered a step towards balancing the load of the
containers. Algorithm 1 illustrates our algorithm pol-
icy and steps.

Algorithm 1 Proposed Algorithm.
1: La ← j where j ∈ Ji ;
2: z ← c where c ∈ Cc;
3: L p ← Zk ;
4: SORT (La, tarr) in ascending order ; � tarr - job arrival time
5: SORT (L p, zcapc) in ascending order; � zcapc- zone

capacity
6: RR(L p ,La);
7: for each cm do
8: dep ← ∑L

1 Dl ;
9: Lneg ← cm,d ;� where cm,d is dependent container for cm
10: Sort (Lneg ,dep) in decreasing order;
11: while Lneg != ∅ do
12: dc ← Lneg ;
13: if Zc 	= Zd and depc 	= 0 then
14: Group cm and dc in one zone;
15: Remove dc from Lneg ;
16: dep ← dep − depc;
17: end if
18: end while
19: end for
20: for each overloaded zone zover L do
21: for each cn /∈ Lneg and cn ∈ zover L do
22: if zunder L then
23: zunder L ← cn ;
24: end if
25: end for
26: end for

5 Performance Evaluation

In this section, the metrics that are used to evaluate
DAScheduler are discussed. These metrics measure
load balancing and network traffic cost. Moreover, the
objective function of our research is also introduced in
this section.

5.1 Load Balancing Metric

Balancing the load of containers plays a key role in
reducing the latency [32]. Therefore, managing and
monitoring load balancing is considered by DAScheduler.

Zhao et al. used the adjusted coefficient of variation
(CV) to measure the load balancing for each zone [9].
We aim to use the same method. However, as the num-
ber of running containers in each zone represents a dif-
ferent sample of distribution, we expect that CV would

produce a different result each time the load balance
changes, and will be zero when all zones have the same
number of deployed containers. Therefore, we aim to
minimize the CV to achieve the highest load balancing.
The CV is given as:

min(CV) = σ

μ

where,

σ =
√√√√ 1

‖Z‖
n∑

i=0

(Az,n − μ)2

μ =
∑n

i=0 Ai

‖Z‖

(4)

In the given equation, Az,n represents the container
number in a particular zone, where Z represents the
zone and n represents the container number within that
zone.

We observe that CV may give the same result for
different samples of distributions and its worst load
balance occurs when CVworst = 1/

√‖Z‖. Therefore,
the load balance for each zone is divided by the worst
case, and the proportion of the outcome will indicate
the proportion of the load balancing for all zones, as
shown in (5):

LoadBalance(LB) = 100√‖Z‖ (1 − CV) (5)

5.2 Network Traffic Cost Metric

High network traffic affects the latency and through-
put. Therefore, improving network use should improve
latency and network throughput. Guo et al. [33] claimed
that for a single day, the maximum total latency in a data
centre is found to be approximately 1397.63 millisec-
onds (ms). It was also mentioned that the maximum
latency between containers located in different zones
for the data centre was 1.34 ms, whereas 0.268 ms for
containers within the zone. Furthermore, the latency in
Amazon EC2 in Singapore and North California was
385 ms and 34 ms respectively [9,34].

Based on these observations, the values of 10,
100, and 1000 were chosen as reasonable approxima-
tions of network latency in data centres for measuring
intra-traffic, inter-traffic, and container migration costs,
respectively. While these values are not tied to specific

123

Page 9 of 18 46

Journal of Grid Computing (2023) 21:46

physical units of measurement, they can be interpreted
as cost units or network traffic units for the purpose of
clarity in the context of the network architecture being
analyzed.

DAScheduler takes into account the type of edges
in the graph and therefore, (3) becomes:

Network cost(NC) =
L∑

i=1

L∑

j=1

(Di j ∗ Cty) ∗ Mi j

where :

Di j =
{1 i f App i and j dependent

0 otherwise

(6)

whereCty is the cost of using edge based on traffic type:
inter, intra or migrating container traffic, resulting Cty

to be 10, 100, or 1000 respectively.

5.3 The Container Performance Metric

Load balance and network traffic are the two factors
that influence container performance. A direct correla-
tion between load balancing and cloud container per-
formance is reported in [35]. Therefore, the best per-
formance for cloud containers is obtained when all
resources of the zones are utilized at the same level.
In our research, we assume that the best preference is
achieved when all zones have the same number of con-
tainers.

On the other hand, network traffic and container per-
formance are inversely related. Therefore, it is ideal for
all the containers to be either independent or dependent
containers grouped in the same zones. To optimize per-
formance, both load balancing and network traffic must
be minimized.

Performnce = α + β

NC + CV
(7)

where α is the factor of traffic and β is the factor of
load balancing.

5.4 The proposed objective function

The proposed objective function has two parts: 1) to
reduce the cost of network use, and 2) to balance the

load. The network traffic can be minimized by grouping
dependent containers into the same zones or minimiz-
ing the number of edges between zones, denoted as D.
Similarly minimizing CV for all zones will result in
maximizing load balancing. Thus, the objective func-
tion is given as:

arg min
k∑

i

Di,k +
z∑

1

CV

subject to : Z(i) 	= Z(k)

(8)

where Z(i) and Z(k) are the different zones where
dependent containers i and k are located respectively.

6 Experimental Results

In this section, the experimental setup is explained, fol-
lowed by the evaluation of the performance of our pro-
posed algorithm.

6.1 Experimental Setup

DAScheduler was implemented by simulating the
cloud container deployment system. The GO program-
ming language was used to develop the simulation and
was run on the Mac operating system with a hardware
capacity of 2 GHz on an Intel Core i7 CPU and 4 GB
of RAM.

The simulation is divided into four parts that handle
scheduling jobs into containers. These parts are:

1. Initializing the scheduler, which configures the con-
tainers and zones.

2. Employing initial scheduling by applying the Round-
Robin algorithm.

3. Monitoring process involves calculating the net-
work utilization using a metric described in Section
5.2 and load balancing using a metric described in
Section 5.1. This process is repeated over a period
of time t to assess the efficacy of the algorithm. In
addition, the metrics mentioned in Section 4.1 are
used for monitoring other resource utilization, such
as CPU and memory.

4. Improving the cloud system by migrating contain-
ers.

123

46 Page 10 of 18

Journal of Grid Computing (2023) 21:46

6.2 The Dataset and Experimental Results

DAScheduler was evaluated using two test cases with
details of the datasets as shown in Table 3. In com-
parison to the first test case, the second test case has a
significantly higher number of dependencies between
jobs. The rest of this section is divided into subsections
based on the two test cases.

6.2.1 First Test Case

When a stream of jobs arrived at the cloud, requesting
to be deployed into containers, DAScheduler assigned
them in a queue. Then the RR algorithm was used to
deploy them into the zones. The jobs were equally
divided into four zones based on their requirements.
Thus, each zone hosted ten jobs. Table 4 shows the
names of jobs and their hosted zone.

Dependencies between containers that hosted depen-
dent jobs, were not considered at this stage. For
instance, the dependency matrix in Fig. 3 shows that
there was dependency between jobs A0 and A12 and
the jobs were deployed in different zones, as shown
in Table 4. However, load balancing was 100%, which
means that all zones have the same number of running
containers.

To model the real-world utilization of the network,
we assume a cumulative growth of network traffic cost
over time. This means that network utilization increases
cumulatively as a result of dependent containers com-
municating. We consider a rate r to represent the growth
of network traffic over time t . In our experiment, we
capture and analyze the network traffic costs at the
beginning and end of the experiment to observe the
overall utilization of the network. The cumulative net-
work traffic at time t is given by:

T (t) = T 0 + r t (9)

Table 3 Details of two test cases including the number of jobs,
zones and dependencies between the jobs for each test case

Test Case Number jobs Zones Dependencies

1 40 4 22

2 200 10 423

where T 0 is the initial network traffic cost at the
beginning of the experiment.

The initial total cost of network traffic usage by
all containers was 3.41% (Table 5). However, due to
the cumulative utilization of the network by depen-
dent containers, the cost of network usage continued
to increase. By the end of the experiment, the total cost
of using the network reached 34.10%. Fig. 4 presents a
gradual increase in the network traffic by the dependent
containers during the experiment. Migrating containers
to group them in the same zone reduced the intra-traffic
cost. However, during the migration process, the net-
work traffic was increased.

The total number of dependencies between the con-
tainers was initially 22 Table 5. DAScheduler migrates
dependent containers into small groups in each iter-
ation. Each group consists of dependent containers,
which accounts for 20% of the total number of con-
tainers that need to be migrated.

DAScheduler gradually reduced the dependencies
by migrating 4, followed by 4,4, and 2 containers to
the zones of dependent containers in each iteration. As
a result, DAScheduler reduced the total proportion of
the cost of using the network from 34.10% to 12.01%
(Fig. 5a, b). Additionally, DAScheduler reduced the
risk of increasing the cost of using the network by
migrating containers in small groups through the net-
work.

To balance the load of all zones, DAScheduler
migrated independent containers from overloaded
zones into underloaded zones (Figs. 5c). The first
migration of containers increased the proportion of
load balancing to 93.87% while in the second migra-
tion, the algorithm migrated three containers from the
overloaded zones to the underloaded zones, which
improved the load balancing for all zones to 100%.

The results of our experiment, aimed at reducing
dependencies between dependent containers, are pre-
sented in Fig. 6. Figure 6 shows the total number
of migrated containers at each time instance, as well
as the network traffic and load balancing percentages
for all zones. The results indicate a significant reduc-
tion in network traffic after the migration of the last
two containers. Specifically, DAScheduler was able to
reduce network traffic by more than half, effectively
lowering network contention. As a result of migrat-
ing dependent containers, the load balancing percent-
age was reduced to 94%, but DAScheduler was able to
recover and balance the load completely.

123

Page 11 of 18 46

Journal of Grid Computing (2023) 21:46

Table 4 The initial distribution of jobs across the zones for the first test case

Zone Name The job Scheduled into Zone

zone0 A2 A3 A7 A8 A10 A11 A12 A13 A14 A16

zone1 A0 A1 A5 A17 A19 A20 A21 A25 A26 A27

zone2 A4 A23 A28 A29 A30 A31 A32 A33 A34 A35

zone3 A6 A9 A15 A18 A22 A24 A36 A37 A38 A39

Overall, our experimental results show that DASched-
uler reduces the total number of dependencies signif-
icantly, which contributes to a reduction in the intra-
traffic cost, and improvement in load balancing.

6.2.2 Second Test Case

In this test case, a large number of dependencies
between containers were introduced. 200 containers
were distributed across ten zones. In the first step,
DAScheduler schedules the containers into 10 zones
evenly by using the RR algorithm. This resulted in 33
dependencies between containers within the same zone
and 281 dependencies between containers in different
zones. Due to the dependencies between containers
located in different zones, the proportion of the cost
of using the network reached 37% as shown in Fig. 7.

DAScheduler migrates dependent containers into
small groups in each iteration. Each group consists of
dependent containers, which accounts for 20% of the
total number of containers that need to be migrated.
The total amount of network traffic generated by inter-
dependence between containers decreased by 69.5%. A
total of 278 dependent containers were grouped in the
same zones. DAScheduler reduced the network traffic
on the cost of load balancing which ended up at 86%.

The experimental results show a drop in the uti-
lization of the network from 37.8 to 5 % as shown in
Fig. 7. Some dependent containers were not grouped
in the same zones and the network utilization increased
over time slightly, therefore the network utilization

increased to 26% of the total cost of using the network.
Fig. 7 shows the experimental results for load balanc-
ing and network traffic costs using DAScheduler. We
observed that load balancing decreased after grouping
dependent containers, but DAScheduler addressed this
by migrating independent containers from overloaded
zones to underloaded zones. As a result, load balanc-
ing steadily improved, with a 7.24.% increase observed
when 24 containers were migrated (from 86.01% to
93.25%). The load was further balanced by migrating
13 containers to underutilized zones.

Overall, DAScheduler monitors load balancing and
network traffic data in real-time and reports it to the
decision-making component. The collection of this
data enables DAScheduler to improve decision-making
during job scheduling. The experimental results in
Fig. 8 show that DAScheduler reduces the network traf-
fic significantly and maintains load balancing.

6.3 The Real-Time Scheduling Experiment

In our research, we also tested our algorithm in a real-
time scenario to examine its ability to deploy containers
as they arrive. During the test cases, containers that
arrive with dependencies among distributed services
or among themselves were considered. The number of
containers for both test cases was set to 20. In the first
test case, each container had at most one dependency,
whereas in the second test case, each container had at
least one dependency.

Fig. 3 Job Dependency
Matrix shows the
interaction between jobs
where Di, j = 1 means there
is interaction between job i
and job j

123

46 Page 12 of 18

Journal of Grid Computing (2023) 21:46

Table 5 The preliminary scheduling results, which show the
network traffic cost and job dependencies after they have been
scheduled across zones

Description Value

Number of Dependencies Between
job in Different zones

15

Number of Dependencies Between
job in the Same zones

7

Number of edges Between jobs in
The Same Zone

82 edges

Number of edges Between jobs in
different Zones

30 edges

Total proportion Traffic Used 3.410

Total Proportion traffic Used 10X 34.10

Coefficient Variation 0

Load balancing 100%

The first test case had 16 dependencies between con-
tainers that were scheduled in different zones, whereas
the second test case had 302 dependencies between
containers that were scheduled in different zones. Due
to the high density of dependencies between containers,
the traffic cost increased to 24.4% and to 27.44% for
the first and second test cases, respectively (Figs. 9 and
10). The effects of DAScheduler on results are shown in
both figures after the vertical black line. It is observed
that in the first test case, the network traffic doubled
due to a smaller number of new jobs being scheduled
in a single PM, leading to higher network traffic. On
the other hand, in the second test case, a high number
of new jobs were scheduled across different PMs in

Fig. 4 The results of initial scheduling regarding the load balanc-
ing and the network traffic during the experiment. Additionally,
the figure illustrates the cumulative growth of network traffic
over time

various zones. As a result, some new jobs were sched-
uled close to their neighbors, which produced a slight
increase in network traffic.

The experimental results in Figs. 9 and 10 illustrate
that DAScheduler reduces the dependencies between
containers in different zones from 16 to 4 and from 302
to 244 for the first and second test cases, respectively.
Thus, our algorithm lowers the traffic cost by 42% and
28% for the first and second test cases, respectively. The
experimental results further show that during migrat-
ing dependent containers, load balancing decreased to
88% and 90% in the first and second test cases, respec-
tively. The last step of DAScheduler improves the load
balancing to 89% and 91% for the first and second test
cases, respectively.

6.4 Cloud Container Performance Results

In this section, we analyze the effectiveness of DA-
Scheduler considering two factors: 1) the balance, and
2) network traffic. Figure 11 presents the experimental
results which show that the performance is increased
at time instances T2, T4, T5 and T6 and the algo-
rithm reduces network traffic even though the load
was balanced. In addition, whenever the network traf-
fic increases then the performance decreases and vice
versa.

6.4.1 Comparison with The State of The Art
Algorithms

Zhao et al.’s [9] strategy is considered as the state-of-
the-art study in this area of research which is used for
comparison with our proposed algorithm.

In our study, we used the same evaluation metrics
for measuring load balancing and network traffic and
kept the experiment configuration the same to make a
true comparison.

Zhao et al.’s [9] algorithm employs an objective
function to manage the weight of load balance and net-
work traffic while scheduling containers onto PMs. The
scheduling strategy intends to configure α and β as traf-
fic and load balancing, respectively.

During their experiments, Zhao et al. set up a vari-
ety of values for α and β, and demonstrated that α is
not very sensitive when it becomes extremely large.
This is expected as a limited number of zones and
containers are considered. The algorithm proposes that

123

Page 13 of 18 46

Journal of Grid Computing (2023) 21:46

Fig. 5 Figures (a) and (b)
show the process of
grouping dependent
containers, along with their
percentage of grouping.
Figure (c) depicts the final
result after the algorithm
achieved balanced load

when a zone reaches its full capacity, the algorithm will
schedule the containers into the next zone. However, if
there are considerably large resources in each zone;
then most of the containers will be allocated to a small
number of zones.

Despite the impressive reduction in network traffic
of 89%, the load balancing technique used by Zhao et
al. showed only a 50% improvement, suggesting that it
may have been a bottleneck in the network and poten-
tially limiting the overall performance. Furthermore,
they reported that the best performance of their algo-
rithm is achieved when β = 0, implying that load bal-
ance was not taken into account. In contrast, DASched-
uler reduced network traffic by more than half and bal-
anced the load to 90%.

The migration of containers between hosts is a fun-
damental operation in cloud computing that affects
network traffic and resource allocation. The work by
Zhao et al. has not adequately considered the potential
side effects of container migration on network traf-
fic. This omission leads to an incomplete assessment
of the performance of their algorithm. In contrast,
DAScheduler accounts for both container migration
and the resulting network traffic overhead. Specifically,
we introduce a strategy for migrating containers in

Fig. 6 The figure shows the results of grouping dependent con-
tainers for the first test case by illustrating the amount of network
traffic, load balance, and the number of migrated containers

small groups, which minimizes the impact of migra-
tion on network utilization and ultimately reduces the
cost of intra-traffic. DAScheduler offers a more com-
prehensive solution for optimizing container migration
and network traffic in cloud environments.

Lastly, Zhao et al. assumed in their experiments that
all containers have the same capacity, which is not real-
istic. In DAScheduler, we considered that the jobs and
containers are heterogeneous, which makes the simu-
lation more accurate and realistic in terms of load bal-
ancing and network traffic. Moreover, Zhao et al. also
did not consider the fact that new jobs can arrive at any
time.

To sum up our comparison, we conclude that
DAScheduler optimizes the performance of the con-
tainers by considering both load balancing and network
traffic. Therefore, we believe that DAScheduler outper-
forms Zhao et al.’s [9] scheduling algorithm (Fig. 12).

7 Conclusion

In cloud computing, container technology has become
a critical component for managing resources. It runs
instances on top of the host operating system. However,

Fig. 7 The results of grouping dependent containers for the sec-
ond test case. It illustrates the amount of network traffic, the load
balance for all zones, and the number of migrated containers

123

46 Page 14 of 18

Journal of Grid Computing (2023) 21:46

Fig. 8 The results of resource utilization reduction and load
balancing during the experiment for both test cases

resource contention can occur due to the sharing of
resources, particularly with respect to network traffic.
This can negatively impact latency when dependent
jobs are deployed across different physical machines,
leading to the need for frequent communication and
further exacerbating network congestion.

Existing research primarily focuses on load balanc-
ing. In this research, we proposed a scheduling algo-
rithm that considers both load balancing and job depen-
dencies when deploying them into containers. The pro-
posed algorithm reduces network contention by group-
ing dependent containers in the same zones. For this
grouping, containers are migrated in steps to avoid a
surge in network traffic. For each set of experiments,
two test cases are considered. The first test case has
fewer dependencies as compared to the second test
case.

In the first test case of the first experiment, our pro-
posed algorithm reduces container dependencies by

Fig. 9 First real-time test case: the results of resource utilization
and load balancing during real-time scheduling. The results begin
after the vertical bar

Fig. 10 Second real-time test case: the results of resource utiliza-
tion and load balancing during real-time scheduling. The results
begin after the vertical bar

93%, while in the second test case, it reduces dependen-
cies by 69.5%. These reductions in dependencies posi-
tively impact the performance of containers by decreas-
ing network traffic by 64% and 50% for the two test
cases, respectively. As compared to one of the state-of-
the-art techniques, our algorithm achieved these reduc-
tions while maintaining load balance (Fig. 12).

During the simulation of real-time scheduling, we
tested the ability of our algorithm to efficiently deploy
containers as they arrived in the cloud. The results show
that our algorithm reduced traffic contention by 42%
and 28% in the first and second test cases, respectively.

Our study compared the performance of our pro-
posed algorithm with state-of-the-art techniques, and
the results demonstrate the superior ability and adapt-
ability of our approach to deploying jobs into containers
with optimal load balancing. Moreover, our algorithm
effectively accommodates incoming jobs by dynami-
cally placing them into containers upon arrival. The

Fig. 11 The figure displays the system’s performance, network
traffic, and load balancing for both test cases

123

Page 15 of 18 46

Journal of Grid Computing (2023) 21:46

Fig. 12 Comparison between our and Zhao et al.’s [9] research.
Figure (a) shows that our algorithm maintains the load balancing
better than Zhao et al’s. algorithm which achieves just 50% of

the load balancing. However, Figure (b) shows the amount of the
reduction in network traffic (RNTC) by the Zhao et al’s. strategy
is greater than our algorithm

most noteworthy feature of our algorithm is its ability
to significantly reduce network contention while main-
taining load balance, thereby resulting in improved per-
formance for cloud computing environments. These
findings highlight the potential impact of our approach
on enhancing the efficiency and reliability of container-
based systems.

8 Future Works

Two recommendations for future research can be made
based on our findings. First, when designing scheduling
algorithms for containers, it is crucial to consider all
associated costs, such as execution, storage, and service
costs. It is imperative to consider the impact of those
costs on the overall system performance.

Secondly, we suggest utilizing a variety of perfor-
mance metrics, such as the CiS2 proposed by [36] and
[37], to evaluate their cloud-based algorithms. This will
help to obtain a more comprehensive understanding of
their proposed approach.

Acknowledgements The authors gratefully acknowledge the
anonymous reviewers for their valuable suggestions

Author contributions AA conceptualized the study, conducted
the literature review, formulated the research question, wrote the
original draft, developed the methodology, and validated and
analyzed the data. AD provided the initial idea, contributed to
the theory, directed the methodology, supervised the project,
and provided motivation. GMH contributed to the methodology,

provide motivation, revised the first draft, and proofread the
manuscript. All authors contributed to the writing of the
manuscript, as well as the revision and proofreading of the final
version

Funding Open Access funding enabled and organized by CAUL
and its Member Institutions

Availability of data and materials The data is synthetic and
will be available upon request

Declarations

Conflicts of interest The authors declare no conflict of interest

Ethical approval Ethics approval was not required

Consent to participate The authors provided consent to partic-
ipate

Consent for publication The authors provided consent for pub-
lication

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

123

46 Page 16 of 18

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Grid Computing (2023) 21:46

References

1. Duan, Q.: In 2011 IEEE World Congress on Services (IEEE),
pp. 548–555, (2011)

2. Xiang, J. Chen, L.: In Proceedings of the 2nd International
Conference on Cryptography, Security and Privacy, pp. 159–
164, (2018)

3. Singh, S. Singh, N.: In 2016 2nd international conference
on applied and theoretical computing and communication
technology (iCATccT) (IEEE), pp. 804–807, (2016)

4. Kayal, P.: In 2020 IEEE 6th World Forum on Internet of
Things (WF-IoT) (IEEE), pp. 1–6 (2020)

5. Wan, X., Guan, X., Wang, T., Bai, G., Choi, B.Y.: Applica-
tion deployment using microservice and docker containers:
Framework and optimization. J Netw Comput Appl 119,
97–109 (2018)

6. Budigiri, G. Baumann, C. Mühlberg, J.T. Truyen, E. Joosen,
W.:In 2021 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit)
(IEEE), pp. 407–412, (2021)

7. Cai, L., Qi, Y., Wei, W., Li, J.: Improving resource usages
of containers through autotuning container resource param-
eters. IEEE Access 7, 10853–108541 (2019)

8. McDaniel, S., Herbein, S., Taufer, M.: In 2015 IEEE Interna-
tional Conference on Cluster Computing (IEEE), pp. 490–
491 (2015)

9. Zhao, D., Mohamed, M., Ludwig, H.: Locality aware
scheduling for containers in cloud computing. IEEE Trans
Cloud Comput 8(2), 635–646 (2020)

10. da Silva Pinheiro, T.F., Pereira, P., Silva, B., Maciel, B.: A
performance modeling framework for microservices-based
cloud infrastructures. The Journal of Supercomputing pp.
1–42 (2022)

11. Kim, W.Y., Lee, J.S., Huh, E.N.:In Proceedings of the
11th International Conference on Ubiquitous Information
Management and Communication (Association for Comput-
ing Machinery, New York, NY, USA), IMCOM-17 (2017).
https://doi.org/10.1145/3022227.3022243

12. Liu, B., Li, P., Lin, W., Shu, N., Li, Y., Chang, V.: A new con-
tainer scheduling algorithm based on multi-objective opti-
mization. Soft Comput 22(23), 7741–7752 (2018)

13. Menouer, T., Darmon, P.:In 2019 27th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-
Based Processing (PDP) (IEEE), pp. 101–107 (2019)

14. Li, X., Zhou, J., Wei, X., Li, D., Qian, Z., Wu, J., Qin, X. Lu,
S.:Topology-aware scheduling framework for microservice
applications in cloud. IEEE Transactions on Parallel and
Distributed Systems (2023)

15. Bao, B., Yang, H., Yao, Q., Guan, L., Zhang, J., Cheriet,
M.:Resource allocation with edge cloud collaborative traffic
prediction in integrated radio and optical networks. IEEE
Access (2023)

16. Marchese, A., Tomarchio, O.: In: CLOSER, pp. 190–198,
(2022)

17. Lu, W., Li, B., Wu, B.: In: IEEE 23rd International Confer-
ence on Computer Supported Cooperative Work in Design

(CSCWD), pp. 380–385 (2019). https://doi.org/10.1109/
CSCWD.2019.8791871

18. Nugroho, Y.N., Andika, F., Sari, R.F.: In: IEEE Conference
on Application, Information and Network Security (AINS)
(2019), pp. 89–93 (2019)

19. Duan, J., Guo, Z., Yang, Y.: In: IEEE conference on computer
communications (INFO COM) (IEEE, 2015), pp. 136–144
(2015)

20. Zhang, J., Zhou, X., Ge, T., Wang, X., Hwang, T.: Joint task
scheduling and containerizing for efficient edge computing.
IEEE Trans Parallel Distrib Syst 32(8), 2086–2100 (2021)

21. Shah, J., Dubaria, D.: In: IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC) (IEEE,
2019), pp. 0184–0189

22. Zafar, S., Bashir, A., Chaudhry, S.A.: On implementation of
dctcp on three-tier and fat-tree data center network topolo-
gies. SpringerPlus 5(1), 1–18 (2016)

23. Petitet, A.C.A., Whaley, R.C., Dongarr, J.: A portable imple-
mentation of the high-performance linpack benchmark for
distributed-memory computers (2018). https://netlib.org/
benchmark/hpl/

24. Yee, A.J.:A multi-threaded pi-program (2022). http://www.
numberworld.org/y-cruncher/

25. Performance testing and benchmarking for .net: Nbench
(1990). https://nbench.io/

26. McCalpin, J.D.: Memory bandwidth: Stream benchmark
performance results (n.d.). https://www.cs.virginia.edu/
stream/

27. Netperf homepage (n.d.). https://hewlettpackard.github.io/
netperf/

28. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: In 2015
IEEE international symposium on performance analysis
of systems and software (ISPASS) (IEEE), pp. 171–172
(2015)

29. Morabito, R., Kjällman, J., Komu, M.: In 2015 IEEE Inter-
national Conference on cloud engineering (IEEE), pp. 386–
393, (2015)

30. Xie, X.L., Wang, P., Wang, Q.: In 2017 13th International
Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD) (IEEE), pp. 2137–
2141 (2017)

31. Kozhirbayev, Z., Sinnott, R.O.: A performance comparison
of container-based technologies for the cloud. Futur Gener
Comput Syst 68, 175–182 (2017)

32. Hellemans, T., Van Houdt, B.: Improved load balancing
in large scale systems using attained service time report-
ing. IEEE/ACM Trans Networking 30(1), 341–353 (2022).
https://doi.org/10.1109/TNET.2021.3110186

33. Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang, R., Maltz, D.,
Liu, Z., Wang, V., Pang, B., Chen, H., et al.: In Proceedings
of the 2015 ACM Conference on Special Interest Group on
Data Communication, pp. 139–152, (2015)

34. Zhou, R., Li, Z., Wu, C.: Scheduling frameworks for
cloud container services. IEEE/ACM Trans Network-
ing 26(1), 436–450 (2018). https://doi.org/10.1109/TNET.
2017.2781200

123

Page 17 of 18 46

https://doi.org/10.1145/3022227.3022243
https://doi.org/10.1109/CSCWD.2019.8791871
https://doi.org/10.1109/CSCWD.2019.8791871
https://netlib.org/benchmark/hpl/
https://netlib.org/benchmark/hpl/
http://www.numberworld.org/y-cruncher/
http://www.numberworld.org/y-cruncher/
https://nbench.io/
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://hewlettpackard.github.io/netperf/
https://hewlettpackard.github.io/netperf/
https://doi.org/10.1109/TNET.2021.3110186
https://doi.org/10.1109/TNET.2017.2781200
https://doi.org/10.1109/TNET.2017.2781200

Journal of Grid Computing (2023) 21:46

35. Guo, Y., Yao, W.: In NOMS 2018 - 2018 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–6 (2018).
https://doi.org/10.1109/NOMS.2018.8406285

36. Juiz, C., Bermejo, B.: Thecis 2: a new metric for performance
and energy trade-off in consolidated servers. Clust Comput
23(4), 2769–2788 (2020)

37. Bermejo, B., Juiz, C.: A general method for evaluat-
ing the overhead when consolidating servers: performance

degradation in virtual machines and containers. The Journal
of Supercomputing 78(9), 11345–11372 (2022)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

46 Page 18 of 18

https://doi.org/10.1109/NOMS.2018.8406285

	DAScheduler: Dependency-Aware Scheduling Algorithm for Containerized Dependent Jobs
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The Algorithm Design and Policy
	4.1 Proposed algorithm
	4.2 Scheduling Policy

	5 Performance Evaluation
	5.1 Load Balancing Metric
	5.2 Network Traffic Cost Metric
	5.3 The Container Performance Metric
	5.4 The proposed objective function

	6 Experimental Results
	6.1 Experimental Setup
	6.2 The Dataset and Experimental Results
	6.2.1 First Test Case
	6.2.2 Second Test Case

	6.3 The Real-Time Scheduling Experiment
	6.4 Cloud Container Performance Results
	6.4.1 Comparison with The State of The Art Algorithms

	7 Conclusion
	8 Future Works
	Acknowledgements
	References

