
https://doi.org/10.1007/s10723-023-09675-w

RESEARCH

Enhancement of Cloud-native applications with Autonomic
Features

Joanna Kosińska · Krzysztof Zieliński

Received: 22 February 2023 / Accepted: 31 May 2023
© The Author(s) 2023

Abstract TheAutonomicComputingparadigm reduces
complexity in installing, configuring, optimizing, and
maintaining heterogeneous systems. Despite first dis-
cussing it a long ago, it is still a top research chal-
lenge, especially in the context of other technolo-
gies. It is necessary to provide autonomic features
to the Cloud-native execution environment to meet
the rapidly changing demands without human support
and continuous improvement of their capabilities. The
present work attempts to answer how to explore auto-
nomic features in Cloud-native environments. As a
solution, we propose using the AMoCNA framework.
It is rooted in Autonomic Computing. The success fac-
tors for the AMoCNA implementation are its execu-
tion controllers. They drive the management actions
proceeding in a Cloud-native execution environment.
A similar concept already exists in Kubernetes, so we
compare both execution mechanisms. This research
presents guidelines for including autonomic features in
Cloud-native environments. The integration of Cloud-
nativeApplicationswithAMoCNA leads to facilitating
autonomic management. To show the potential of our
concept, we evaluated it. The developed executor per-
forms cluster autoscaling and ensures autonomic man-
agement in the infrastructure layer. The experiment also

J. Kosińska (B)
e-mail: kosinska@agh.edu.pl
AGH University of Science and Technology, Faculty of Com-
puter Science, Electronics and Telecommunications, Institute
of Computer Science, al. A. Mickiewicza 30, 30-059 Krakow,
Poland

proved the importance of observations. The knowledge
gained in this process is a good authority of information
about past and current state of Cloud-native Applica-
tions. Combining this knowledge with defined execu-
tors provides an effective means of achieving the auto-
nomic nature of Cloud-native applications.

1 Introduction

Autonomic Computing (AC) paradigm [21,30,48]
introduced by IBM in 2001, is a response to the need
to reduce complexity in the installation, configuration,
optimization, and maintenance of heterogeneous sys-
tems. Similarly, as the human brain is relieved of vital
functions, the computing system unconsciously deals
with management tasks. AC vision focuses on self-
managed systems.

Autonomic computing is not a new paradigm, but
it is not fully exploited in complex computing sys-
tems [2] yet. The reason is the broad spectrum of pos-
sible solutions that are difficult to evaluate and highly
dependent on specific use cases. These problems con-
cern several theoretical and technical aspects. Theoret-
ical aspects include the choice of analysis algorithms
and their implementation. The technical difficulties are
mainly related to the structure of the closed-loop feed-
back control [20] that is the core of every AC system. It
is often challenging to integrate the loop into the base
system. However, a large body of research address-
ing these issues [6,28,33,45] exists. The most relevant

123

Journal of Grid Computing (2023) 21:44

/ Published online: 15 July 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-023-09675-w&domain=pdf

Journal of Grid Computing (2023) 21:44

in the context of Cloud-native applications (CNApps)
and their execution infrastructure relates to the Kuber-
netes (k8s) ecosystem [11,24]. Its concept is based on
a declarative infrastructure driven by a reconciliation
loop [27]. The concept of a reconciliation loop ensures
that the current system’s state matches the desired. The
idea is similar to a MAPE-K loop [6] present in AC.
The described problems motivated our work.

The main contribution of this paper is the set of
guidelines for including autonomic features in Cloud-
native environments. We present the concept of the
AC paradigm in the context of Cloud-native. To fulfill
the contribution, we introduce the notion of an Execu-
tion Controller that triggers the management actions.
We verified the proposed process using the AMoCNA
prototype. The name AMoCNA comes from the first
letters of Autonomic Management of Cloud-native
Applications. It is rooted in AC. We developed this
system to prove the correctness of the proposed con-
cepts.

At first glance, AMoCNA reduces the complex-
ity of managing Cloud-native applications. AMoCNA
addresses the notion of autonomic management. Auto-
nomic management is defined as performing admin-
istrative tasks such as installation, configuration, opti-
mization, and maintenance in heterogeneous comput-
ing systems with or without human intervention.

This paper also compares our proposition with solu-
tions already used in Kubernetes, such as controllers
and operators. They constitute the indispensable ele-
ments of a reconciliation loop. We contrast them with
the AMoCNA controllers elaborated on in our work.
AMoCNA controllers combined with k8s supply AC
capabilities. It is noticeable that both solutions have
complementary functionalities and that Cloud-native
environments can benefit from their co-existence.

In summary, this research basis on our previous
work [34,35]. In paper [34], we specify an abstract
view of a Cloud-native application execution environ-
ment. Then we refer to AC and characterize the real-
ization of a Cloud-native autonomic element. In that
paper, we introduce the novel concept of aMRE-K loop
(It comes from the first letters of the loop, which are
Monitor, Rule engine, Execute, and Knowledge). The
MRE-K loop extends theMAPE-K loop [6]with appro-
priate adjustments to the Cloud-native context.We also
introduce the AMoCNA model with its microservices
architecture. On the other hand, in the paper [35], we
evaluate the concepts developed. The main additional

contributions, compared to our previous papers, are as
follows:

1. Comparisonof the controller characteristics offered
by the proposed AMoCNA framework and the
current orchestrators’ implementations (using the
example of Kubernetes [39]).

2. The set of guidelines for including autonomic fea-
tures in Cloud-native environments.

3. The concept of an execution controller. This con-
cept results from the above guidelines.

The structure of this paper is as follows. First, we
present the aim and contribution of the research. Sec-
tion 2 outlines standards and technologies related to
Cloud-native application management. In the next sec-
tion, we describe the Kubernetes reconciliation loop
and compare its controllers with the AMoCNA con-
trollers. In this section, we present our first contribu-
tion. Based on the insights of Sections 2 and 3, the fol-
lowing section proposes the AC part of the framework
for the autonomic management of CNApps. Section 4
presents data and invocation flows between the distin-
guished components. Then, in Section 5, we identify
the steps necessary to include autonomic features in
Cloud-native environments. The steps form the guide-
lines that are our main contribution. Based on the
AMoCNA architecture, Section 6 describes the con-
trollers of the autonomic element microservice with a
deep analysis of an execution controller. This controller
is our third contribution toCloud-native Computing. Its
usefulness is evaluated in Section 7. Finally, we sum-
marize the paper. We also suggest directions for further
development and research.

2 Related work

For decades, system and software components have
evolved to address the increasing complexity of sys-
tem control, resource sharing, and operational man-
agement [20]. Development of elements responsible
for self-management adds the following autonomous
properties to the system [48]: self-configuration, self-
healing, self-optimization, and self-protection. Such
system architectures solve the overall complexity of
resource management. [22] presents a comprehensive
study with a taxonomy of this domain. The Interna-
tional Workshop on Intelligent Techniques and Archi-
tectures for Autonomic Clouds discusses topics fun-

123

44 Page 2 of 19

Journal of Grid Computing (2023) 21:44

damental to concepts, architectures, and applications.
ITAAC 2011 [5] selected four articles for the Special
Issue, one of which [31] seems particularly interesting
in the context of resource management. The authors
propose an architecture for integrated intelligence in
urban management and indirectly suggest that inte-
grated environmental monitoring is a must [18,53,55].
To this end, researchers have developed an IEM service
that allows data collection, storage, processing, visual-
ization, and dissemination. Only systems that ensure
these features can be autonomic.

Adaptive and autonomic management of computing
resources is sometimes incorrectly used as synonyms.
Adaptive systems involve processes that change their
behavior based on the execution context. Autonomic
systems cover systems with a broad knowledge of
their execution environment and operate beyond their
boundaries. The knowledge collected enables such sys-
tems to make involuntary decisions and proceed with-
out human intervention. These systems are often called
3A (Automatic, Adaptive, andAware) systems [47,51].

[36] address adaptability by focusing onmulti-cloud
provisioning. The presented research has developed the
CAMEL language, extending it to support the adaptive
provisioning of multi-cloud business processes (BPs).
The proposed environment includes, among others,
cross-level monitoring and adaptation of BPs. As a
digression, something worth noting is that AMoCNA
has no additional layer associated with the represen-
tation of knowledge, as in the cited work. The knowl-
edge representationwould, among others,makeCloud-
native applications understandable for third-party sys-
tems and improve interoperability between microser-
vices. However, most of the research in Semantic Com-
puting [25] focuses only on Cloud Computing (CC).
The Cloud-native has risen on the top of the CC.
It is working at the microservices level and among
Cloud-native apps. Most of the concepts introduced
are not yet present in well-known modeling languages
(CloudML [23] or CAMEL [3], etc.). Let us return
to the main topic after that brief digression. [44], in
turn, presents the adaptation at the cloud environment
level, strictly managing the rational use of computing
resources. Management tasks are often the responsibil-
ity of a Resource Management System (RMS). RMS
acts as amiddleware between resources and application
requirements. Requirements are negotiated in a con-
tract (SLA) and are encapsulated in QoS metrics. The

autonomic behavior of the system requires the specifi-
cation of the goal resulting from the adaptation or real-
ization of autonomic processes. The validity of objec-
tives implies meeting the goals in adapting or evolv-
ing systems [44]. In the research [44], authors indicate
that achieving cloud architecture continuity requires
systems to change their architecture and maintain the
validity of the goals that determine the architecture.
The authors propose several models for adaptation and
evolution in research and industry consulting projects.

[10] adopted the definition of awareness (the third
capability of a 3A system) as a property of the sys-
tem that demonstrates cognition and learning. It pro-
poses to find inspiration in the Cognitive Immune Net-
work [15]. The mentioned RMS seeks to maximize
resource metrics and, at the same time, achieve the
negotiated SLA. The RMS uses monitoring capabili-
ties to ensure this feature. In modern systems, monitor-
ing is mandatory [55]. The knowledge gained provides
insight into the environment and allows them to predict
their future behavior.

Context-aware systems store and process a lot of
data. Knowledge helps systems become aware of
situations, recognize states, and react to changes.
[54] present a high-level model of structured knowl-
edge and a formal model of awareness in autonomic
service-component ensembles (Autonomic Service-
Component ENSembles (ASCENS)). In such systems,
initial knowledge that addresses self-awareness and
context-awareness is crucial. The authors propose an
algorithm that initializes the knowledge of the system.
The algorithm uses the ASCENS ontology. Similar
research in the Cloud-native area would significantly
improve awareness.

All these systems have the characteristics of an
autonomic system. They all acknowledge that AC can
be applied in any domain. However, this research
recommends using AMoCNA in Cloud-native envi-
ronments to achieve autonomic characteristics. The
AMoCNA’s policy approach uses DSL and brings a
significant benefit over the mentioned research. Its
potential lies in the possibility of declaring many
management policies at once. They can be related
to different aspects and can be composed at run-
time. With AMoCNA, it becomes possible to design
any management action, even actions that enable self-
configuration, self-healing, self-optimization, and self-
protection of the CNApps.

123

Page 3 of 19 44

Journal of Grid Computing (2023) 21:44

In addition toAC, this research topic operates within
the boundaries of Cloud-native. The concept of loosely
coupledmicroservices [42] is oneof the buildingblocks
of Cloud-native. These microservices are thousands.
Therefore, manual management of such tasks is not
possible. An orchestrator is a tool that addresses the
requirement for automatic management of services. It
is a process of automating, coordinating, andmanaging
specific IT tasks. The three most popular open-source
tools for container orchestration are: Docker Swarm
[16], Kubernetes [39], and Apache Mesos [41]. Out of
the box, theymanageDocker [16] containers.However,
there are also some successful adoptions to orches-
trate other container implementations. For example,
in HPC, Singularity [49] has become the basic con-
tainer runtime. [56] introduces a Torque-Operator that
serves as a bridge between the HPCworkload manager
(TORQUE) and a container orchestrator (Kubernetes).

For the record [34], the architecture of AMoCNA is
based on five layers (Fig. 1) that cooperate in a loop.We
propose to achieve autonomy features through the sup-
port of the rule engine. The layers with flow depicted
as blue arrows control the CNApp. The lowest layer
is the Instrumentation Layer. This layer exposes the
data of a Cloud-native application to the Observation
Layer,which collects information related to observabil-
ity. After processing the data, the Observation Layer
passes them on to the Inference Layer. TheInference

Layer, among others, correlates data from different
sources, transforms the observation data into a for-
mat accepted by the rule engine, and interprets, ana-
lyzes, and infers from the data. This layer helps to
reconfigure CNApp following the externally declared
policies (depicted as a red arrow). High-level direc-
tives, called policies, usually include the parameters of
an SLA contract [35]. AMoCNA uses a policy man-
agement approach in Cloud-native execution environ-
ments to significantly reduce the burden of defining
enforced actions. The Inference Layer produces man-
agement actions and passes them to the Management
Layer, and through the Instrumentation Layer, invokes
proper actions in the Cloud-native Execution Environ-
ment. The procedure is closed, and another loop execu-
tion collects feedback fromaCNApp.The Instrumenta-
tionLayer gathers feedback expressed as observability-
related information. We give an example to illustrate
the AMoCNA control loop. In the example presented,
the end user declares a management policy (red flow
in Fig. 1) that influences CNApp (Policy 1). The pol-
icy begins its flow in the Control Layer, which checks
whether it obeys the SLA contract. The next layer is the
Inference Layer. It is based on the observation param-
eters and changes the policy into executable manage-
ment actions. These actions are directed to the proper
components by theManagementLayer. The Instrumen-
tation Layer, through effectors, invokes the CNApp’s

Fig. 1 Simplified
microservice architecture of
AMoCNA

123

44 Page 4 of 19

Journal of Grid Computing (2023) 21:44

Policy 1 Check whether it is necessary to increase
CNApp’s CPU request
Require: RT – [milliseconds] (response time) the duration of
execution of a CNApp.
SL A_RT – [milliseconds] (acceptable response time) duration
of execution of a CNApp agreed on SLA.
Ensure: Increase of CNApp’s CPU request.
if RT > SL A_RT then

increase CPU Request
end if

methods that reflect the management actions. Succeed-
ing flow in the loop collects updated observations orig-
inating from the execution of the declared policy. Our
paper [34] details the AMoCNA architecture and its
features.

The AMoCNA framework is based on an archi-
tectural model of self-management and clearly dis-
tinguishes the constructs of autonomic elements.In
paper [35], we evaluate the usefulness of AMoCNA
and the improvement of Cloud-native environments.
Their results assess this framework positively.

3 Reconciliation loop basics

Cloud-native leverages open-source software stack and
deploys new applications as containers. Then these
containers are dynamically orchestrated to optimize
resource utilization [13]. CNCF provided a trail map
that is an overview of moving toward Cloud-native
architecture [14]. The main identified and obligatory
steps in the Cloud-native context are containeriza-
tion [8], CI/CD philosophy [32] and orchestration [46].
Although orchestration is the last identified step, it
is not the least one. An orchestrator is a workflow
management solution that automates resource creation,
monitoring, and deployment in the execution environ-
ment. Most cloud platforms use Kubernetes to orches-
trate resources [52]. TheKubeControllerManager [39]
manages the embodied core control loops [9]. Kuber-
netes control loops observe the shared state of the
cluster. On the basis of the observations, they adjust
it according to the desired state. Examples of Kuber-
netes controllers are the replication, endpoints, names-
pace, serviceaccounts controller, etc. AMoCNA frame-
work also distinguishes controllers. Section 6 describes
them. Their underlying objective is similar. The con-
trollers in both solutions try to keep the current state

in sync with the desired state. However, there are some
subtle differences. Some are listed in Table 1 and are
further described in more detail.

The distinguished AMoCNA controllers do not fol-
low the Kubernetes directives. They serve AMoCNA’s
goals but use the same premises to enforce a closed
feedback control loop [29]. The fundamental difference
between AMoCNA and Kubernetes controllers is their
objective. AMoCNA operates according to declared
high-level policies. Policies reflect the SLA contract
and enforce actions that help to obey established rules.
Kubernetes controllers proceed considering the state
of the system. They aim to synchronize the current and
desired state.

A detailed description of the AMoCNA framework
and MRE-K loop concepts is given in our previous
work [34]. However, for the necessary background, we
present some basic information in this section. At the
heart of the AMoCNA framework is a Cloud-native
MRE-K loop. The framework is based on the Auto-
nomic Elements’ [26] constructs adopted from AC and
its MAPE-K loop (see Fig. 2). Using Autonomic Ele-
ments in the context of Cloud-native requires that the
elements follow theCloud-native philosophy presented
in the CNCF trail map. Cloud-native autonomic ele-
ments expose the features and capabilities of managed
components. These realize sensors and effectors. Fig. 2
depicts the mapping between an autonomic element
and aCloud-native autonomic element, particularly our
concept of using a rule engine as a decision module.
The figure conceptualizes the internal structure of the
element. The Analyze and Plan parts of the loop are
combined in a rule engine, causing the substitution of
the letters AP from MAPE-K into R. The loop name
changes fromMAPE-K toMRE-K. The letter K stands
for Knowledge.

Similar features of an autonomic system have
Kubernetes based on the concept of a reconciliation
loop. The loop encompasses diverse components that
are loosely coupled and work in a separation, driving
the cluster to the desired state.

Following [4], we define the policy as a set of restric-
tions imposed on all possible forms of system behav-
ior so that the result is a subset of acceptable sys-
tem behaviors. In AMoCNA, policies are rules (if-then
constructs) processed by the MRE-K loop via a rule
engine. The rule engine enables the declaration ofmany
policies at once, and they can regard various aspects.
Policies can be composed on the fly at runtime. With

123

Page 5 of 19 44

Journal of Grid Computing (2023) 21:44

Table 1 Comparison of the characteristics of the controllers offered by the proposed AMoCNA framework and the Kubernetes [39]
controllers

Feature AMoCNA Controllers Kubernetes Controllers

Objective Agreement between
the current state and
declared policy

Synchronize current state
with the desired state

Control style Cloud-native MRE-K
loop concept

Plenty components work
together to implement rec-
onciliation behavior

Declarative versus Impera-
tive Programming

Declarative Declarative

Area of activities All layers of CNApp
stack

Containerization Layer

Driven by Declarative management
policies

API call commands

Architecture Not specified Well-known

Extending the default archi-
tecture

Not applicable Through operator pattern

Linkage Yes No

AMoCNA, it is possible to declare any management
action.

To achieve their functionality, all controllers use
declarative programming. In AMoCNA, Cloud-native
Autonomic Elements (depicted in Fig. 2) accomplish
the declarative features, strictly speaking, the Cloud-
native MRE-K loop structures and declaration capabil-
ities of the contained rule engine. The core of Kuber-
netes makes up the API server. Communication with

Kubernetes components and the invocation of nearly
all operations accomplish the exposed HTTP API, also
called a declarative API. All methods are accessible
through REST calls or CLI tools for administrators.

We should stress that because of characteristics
of Cloud-native, AMoCNA operates in the context
of the orchestrated environment. The coexistence of
AMoCNA and an orchestrator benefits the CNApps
execution environment. In addition to orchestrator

Fig. 2 Mapping the Autonomic Element from AC into the Cloud-native Autonomic Element

123

44 Page 6 of 19

Journal of Grid Computing (2023) 21:44

capabilities, AMoCNA also significantly enhances the
execution environment. Figure 3 shows its simplified
view. AMoCNA controllers operate in three different
layers of the execution environment (depicted inFig. 3).
Kubernetes controllers knowonly the data related to the
Containerization Layer, and the executed actions also
concern that layer. The view of the entire CNApp stack
enables AMoCNA to enforce any management action
against the CNApp execution environment.

The examples in the distinguished layers include,
among others:

– Infrastructure Layer – create_snapshot,
upgrade_OS, allocate_IPs

– Containerization Layer – join_cluster,
list_images, create_network

– Application Layer – update_microservice,
show_logs

CNApps adhere to policies regarding all layers of the
execution stack. In the AMoCNA framework, a declar-
ative management policy process governs the man-
agement of the environment. Declarative management
policies emphasize the end-user vision of the system
expressed in a non-sophisticated way. These policies
usually constitute high-level demands that seamlessly
translate into low-level executable actions that, in turn,
are mapped to the corresponding effectors. In addi-
tion, Cloud-native applications can be reconfigured at

runtime according to the declared management poli-
cies. The published reconfigurations execute while the
CNApp is instrumented, closing the control loop. On
the other hand, Kubernetes controllers that reside in
the control plane function in an event-driven way. But
these events often occur as a response to the administra-
tor’s directives. These directives pertain only to com-
ponents of the containerization layer. Kubernetes doc-
umentation specifies only policies for resources (limit
ranges, resource quotas, process ID limits, reservations,
etc.) and networks. In addition, only sufficiently skilled
humans can produce them.

The architecture of AMoCNA controllers is very
general, allowing thebuildingof each controller accord-
ing to its rules (Section 6). Stress is placed on its func-
tionality, not on its internal structure. Kubernetes con-
trollers are contrary to AMoCNA controllers. They
follow a proper blueprint. Therefore, it is possible to
develop a custom controller combined with a custom
resource. A new resource must follow the Kubernetes
Operator pattern [39] to extend the default architec-
ture of the Kubernetes cluster with the additional one.
Kubernetes operators introduce automation into clus-
ter environments. They supervise repeatable tasks and
replace human operators.

AMoCNA is based on the concept of cooperating
autonomic elements that form a hierarchical structure
and are linked. This paradigm is based on AC auto-

Fig. 3 The distinguished
layers of a Cloud-native
Execution Environment

1..*

123

Page 7 of 19 44

Journal of Grid Computing (2023) 21:44

nomic elements adjusted to the Cloud-native context.
Our proposition presents Section 4. Cloud-native auto-
nomic elements realize the MAPE-K loop (the MRE-
K loop in this research). Because of the connection
with each other, autonomic elements have access to
their and other autonomic elements’ knowledge. It is a
significant advantage compared to Kubernetes, where
the controllers do not share their knowledge. Access
to comprehensive knowledge allows for broad control
over the entireCloud-native application execution envi-
ronment. The benefits of such holistic knowledge are
presented in the paper [35] where, in carried experi-
ments,we show themanagement of the entire execution
environment.

AMoCNAcontrolwith feedback and theKubernetes
reconciliation loop have more similar features. For
example, both solutions provide a similar control style
based on the characteristics of the control loop. They
also share differences. For example, theAMoCNA loop
depends on feedback and observability, whereas only
human directives trigger Kubernetes loops. AMoCNA
control activity is far more general than only enforce-
ment of the desired state. Table 1 pointed out only some
characteristics of the controllers available in both solu-
tions. However, it is possible to point out their pros and
cons. This knowledge makes new areas for AMoCNA

further improvements (e.g., research toward standard-
izing AMoCNA controllers to develop K8s AC oper-
ators, which would enable the treatment of AMoCNA
as a pattern). This table and the comparison [35] of the
AMoCNA framework with Kubernetes allows to state
that the proposed approach to include autonomic fea-
tures in aCloud-native application improves the quality
ofCloud-native application execution environment that
existing orchestrators offer.

4 Autonomic Computing Paradigm in the context
of Cloud-native

An autonomic element [51], a concept from AC,
is a fundamental building block of any autonomic sys-
tem. It aims at hiding the complexity of overallmanage-
ment of the system, particularly a Cloud-native system.

In the paper [35], we present our vision of a high-
level view of the design of the AMoCNA management
process. We divide the system into three logical parts,
as shown in Fig. 4. These are (from the bottom up)
Execution Environment, Autonomic Computing and
the Management Policies part. This research focuses
on the AC part. It is a middle part of the management
process, and it is further explained. This part consists

Fig. 4 Autonomic
Computing (AC) part of the
AMoCNA management
process.

123

44 Page 8 of 19

Journal of Grid Computing (2023) 21:44

of a network of connected autonomic elements. AC
states that an Autonomic Manager manages an Auto-
nomic Element. The AC components are organized in
a hierarchical fashion [30], which is shown in Fig. 4
as a hierarchy of Cloud-native Autonomic Elements.
Consequently, the Cloud-native Autonomic Managers
are connected and interoperate with other Cloud-native
AutonomicManagers. Hence Fig. 4 also depicts a hier-
archy of Cloud-native Autonomic Managers. The top
of the tree structure constitutes a Cloud-native Auto-
nomic Supervisor that is in fact AMoCNA’s framework
supervisor (see Fig. 5).

The number of Cloud-native autonomic elements
depends on required accuracy and performance, and it
may differ among particular components of the Cloud-
native execution environment. Usually, AMoCNA’s
autonomic elements havemapped to the components of
a Cloud-native execution environment in a ratio of 1:1.
In particular, each layer contains exactly one Cloud-
native autonomic element. Even the whole Cloud-
native execution environment can map directly to one
Cloud-native autonomic element.

Figure 5 shows the data flows of the AMoCNA auto-
nomic elements. For clarity, the Knowledge part is not
included in the figure. Such a simplification was pos-
sible because this paper does not elaborate on knowl-
edge management. The hierarchical structure of ele-
ments of particular layers of Cloud-native execution
environment is the foundation of the flows. In general,
the communication is based on a notion of communica-
tion between Cloud-native Autonomic Managers. Fig-
ure 5 highlights two blue autonomic elements (located
in different layers) and presents the data flow between
them in detail. As can be seen, the information flow
is between particular components of a conceptualized
MRE-K loop. That is, the flow between the monitor-
ing components and the rules engine components is
directed from elements of lower-layer to upper-layer
and in the opposite direction between the Execute com-
ponents1.

An example of a use case helps explain this proce-
duremore precisely (Fig. 6). Let the autonomic element
in the Containerization Layer represent an Orchestra-
tor. In the Infrastructure Layer, the autonomic element

1 communication between Cloud-native autonomic elements
residing in the same layer is realized similarly between the iden-
tical internal components. The difference is that the data flows
are bidirectional

Fig. 5 AMoCNA autonomic elements’ data flows

represents a corresponding (that composes the cluster)
server (strictly a Computing Resource component from
a Cloud-native execution environment), for example, a
VM. The VMs sensors send monitoring information
(health, number_of_cores, memory_used, etc.) to its
Monitor part and the container’s component Monitor
part. The container starts on that particular VM, hence
the need for its observation. In Fig. 6, the monitoring
data flowmentioned above is marked as ➀. The flow ➁

symbolizes the VM’s Rule Engine output. It is an input
to Orchestrator’s Rule Engine2.

2 Rule Engines of diverse components’ types, have different
declared rules.

123

Page 9 of 19 44

Journal of Grid Computing (2023) 21:44

Fig. 6 Detailed description of AMoCNA flows

Policy 2 represents a rule that checks the health of
a VM. It shows the appropriate steps to take if the
VM detects a failure. First, the actions taken on lines
2 and 3 directly move to VM’s Execute part. Line 4
propagates the action to the orchestrator of the present
autonomic element, and the failed node is designated
not to schedule any workload. The last ➂ flow sym-
bolizes the management actions flow between Exe-
cute parts of Cloud-native autonomic elements. The
flow is top-down, meaning that the components of

Policy 2 A rule checking the VM’s health. The rule is
fired in VM’s Rule Engine
1. if ¬ vm.isHealth() then
2. vm.migrate()
3. vm.recover()
4. orchestrator.setDrain(node)
5. end if

the upper layers transfer the management actions to
the lower layers. As depicted in Fig. 6, management
actions from the orchestrator’s autonomic element are
refined in its Execute part and, if necessary, propa-
gated to the VM’s Execute part. For example, during
the runtime of a microservice, one of its containers
consumes more RAM than is available. Hence, Exe-
cute part from an Orchestrator invokes the VM’s resize
action. It should be stressed that in AC, autonomic ele-
ments interact with other autonomic elements through
autonomic managers [30]. For clarity reasons, these
components are omitted from Fig. 6, but should exist
in the flow path ➀ ➁ and ➂.

5 Inclusion of AMOCNA

This section enumerates all the steps towards integrat-
ing AMoCNA with the Cloud-native application envi-
ronment. The internal integration between both sys-
tems leads to the facilitation of autonomic manage-
ment.

AMoCNA enhances management of the concrete
CNApp. However, to be used successfully, it imposes
requirements on the CNApp. First, the CNApp must be
running. Its execution environment should be exactly
the one in which AMoCNA runs. And secondly, the
CNApp should expose a HTTP metrics endpoint com-
pliant with Prometheus [19] directives. This require-
ment is not obligatory for AMoCNA operation. Usu-
ally, the built-in metrics provided with different tools
(such as the Prometheus Operator [38] project) are suf-
ficient. The number ofmetrics is thousands. They cover
many aspects, such as CPU or memory constraints. If
CNApp does not expose aHTTPmetrics endpoint, only
observed are the default metrics.

Step-by-step guidance to include AMoCNA in a
Cloud-native environment is as follows:

1. Recognition of autonomic management objectives
- this process requires a deep analysis of AMoCNA
capabilities. The high-level demands, correspond-

123

44 Page 10 of 19

Journal of Grid Computing (2023) 21:44

ing to the agreed SLA, should be assigned to low-
level executors. This step determines the targets for
autonomic management.

2. Identification of managed elements - in this step,
the execution environment of a CNApp has to be
divided into parts concerning the autonomic man-
agement targets determined in the previous step.

3. Initial setup - this step locates the MRE-K loop
components inside the distinguished layers of the
Cloud-native execution environment. The initial
setup installs components that enable observabil-
ity and monitoring of the appropriate Quality of
Service (QoS) parameters and execution of spec-
ified management actions. A centralized, declara-
tive management policies supervisor embraces the
entire system. The supervisor is a mandatory pre-
requisite for CNApp autonomic management.

Following the above rules ensuresAMoCNA fully inte-
gration with a CNApp execution environment. Hence,
it enhances the autonomic management capabilities of
the execution environment.

6 Autonomic element microservice

Figure 1 depicts two types of microservices that make
up the AMoCNA framework. Namely the autonomic
element microservices (bottom) and a single manage-
ment policies microservice (top). The capabilities of
each microservice align with distinguished layers. The
prior microservice includes instrumentation, obser-
vation, low-level management aspects, processing of
measurement data, and reasoning over them. The lat-
ter microservice focuses on declaring and governing
management policies.

This section focuses on themicroservice of the auto-
nomic element. The structure of this microservice and
its capabilities influence the autonomic features of the
Cloud-native execution environment. Among others,
its components divide according to the loop letters:

– Monitoring Controller – this controller gathers
the measurements from the Cloud-native execution
environment, including CNApp metrics, and then
exposes the collected data for further processing.

– Reasoning Controller – its task is to facilitate rea-
soning over metrics exposed by prior controller.
The metrics build facts inserted into a rule engine.

– Execution Controller – it strongly depends on the
management actions possible to be enforced in the
Cloud-native execution environment. The Execu-
tion Controller closes the MRE-K loop and is the
last link in the runtime reinforcement of declarative
management policies.

The further description focuses on the mentioned
controllers (that relate to the distinguished layers of
AMoCNA architecture depicted in Fig. 1), with partic-
ular emphasis on the execution controller.

The orchestrator comprises the execution environ-
ment of CNApps. We chose Kubernetes [39] as a basis
of the AMoCNA framework. It has a proper level
of abstraction, and the most important, CNCF recom-
mends its usage.Also, it is industry accepted. It isworth
mentioning that AMoCNAwas also successfully tested
with Docker Swarm [16].

6.1 Monitoring Controller

In case of the present Platform Specific Model (PSM)
(a concept borrowed from the (MDA) [7] technology),
it is recommended to strictly adhere to the monitoring
metrics of the Prometheus directives. For provision-
ing the monitoring stack, we highly recommend using
kube-prometheus [37]. The gained virtue is automa-
tion. Additional enhancements are the already defined
Grafana dashboards that attractively illustrate the cur-
rent state of all components of the execution environ-
ment.

6.2 Reasoning Controller

A rule engine forms the central core of the reason-
ing controller. As mentioned in our paper [34], Drools
KIE Server [17] is a rule engine. It is deployed in
a standalone Docker container3. It is a web applica-
tion hosted in a JBoss Application Server (Wildfly).
It exposes REST, JMS, and Java interfaces to client
applications. The current prototype uses the Java API
to insert Fact objects to working memory of the KIE
Execution Server and to instantiate and execute rules.
Covering with existing Java API, communication with
KIE Server omits the need to parse JSON response as
during communication with Prometheus Server.

3 https://hub.docker.com/r/jboss/kie-server/

123

Page 11 of 19 44

Journal of Grid Computing (2023) 21:44

After reasoning against collectedmeasurements and
declared policies, the next step is to execute the result-
ing actions.

6.3 Execution Controller

Figure 7 shows the characteristics of an execution con-
troller whose primary objective is to enforce and exe-
cute the declared management policies. Crucial steps
include observations of all components of the Cloud-
native Execution Environment.

In a nutshell, the execution controller is a server
that listens on a socket. The incoming clients’ requests
result from matching defined rules against the met-
ric facts. The request is then passed to the proper
Handler responsible for executing the givenmanage-
ment actions. When the execution controller container
starts, it goes through two stages. First, it launches
a TCP server that listens only for policy execution
requests. Second, it generates a hashmap that trans-
forms all declared policy actions into Executor
objects.

The execution controller structure conforms to the
Executor notion depicted in Fig. 8. The definitions of
the entities presented are as follows:

Definition 1 Execution Controller (ExeCtrl) is a set
of Executors (e ∈ ExeCtrl). It bears the burden of
enforcement and execution of all declarative manage-
ment policies in the Cloud-native execution environ-
ment.

ExeCtrl = {
e1, e2, . . . ei

}
(1)

Definition 2 The Executor (ei) is an element respon-
sible for executing a single declared management pol-
icy.

Fig. 7 Characteristics of the Execution Controller

Fig. 8 Foundations of the Execution Controller model

An Executor is dependent on the enforced man-
agement action (ai). Examples of management actions
include scale_nodes, increase_memory
_limits, etc.

Definition 3 A handler (h j
i) is composed of a method

(m j
i) that invokes operations on the effectors of compo-

nents of the Cloud-native execution environment. Also,
composed of the arguments (arg jl

i) that this method
takes. The following equation expresses these relation-
ships:

h j
i := (

m j
i , arg

j1
i , . . . , arg jl

i

)
(2)

To sum up, Fig. 8 shows that a single declared man-
agement policy (ð) can be enforced by a single Execu-
tor:

p(ð) → ExeCtrl = {
e1, e2, . . . ei

}
(3)

where p is a procedure that maps declared policies to
a set of Executors. The Executor, in turn, reflects the
management action. The action can be assigned tomul-
tiple handlers. All defined variables of the Execution
Controller model are described in Table 2.

123

44 Page 12 of 19

Journal of Grid Computing (2023) 21:44

Table 2 Variables defined by the Execution Controller model

Symbol Name Description

ExeCtrl Execution Controller Its objective is to enforce and execute the declared management policies.

e Executor It is responsible for executing a single declared management policy.

a Action It is a component of a declared management policy.

h Handler It handles the execution of a part or whole action.

m Method It invokes operations on the proper effectors.

arg Argument It is one of the arguments taken by the above method.

As already stated, the execution controller’s func-
tionality comes from declared management policies,
and in this PSM are configured externally through
a json file, mounted as a volume to the execution
controller pod. The ConfigMap abstraction decouples
coarse-grained information from the execution con-
troller and injects the Pod with configuration data.
A fragment of the executor-config ConfigMap
object is attached as the Listing 1.

==
kind : ConfigMap
apiVersion : v1
metadata :
creationTimestamp: 2019−04−18T19:14:38Z
name: executor−config
namespace: monitoring

data :
executionController . json : |−
{

"executors ": [
{
"action":" resize_cluster " ,
"handler":"ResizeClusterHandler" ,
"method":"addNode" ,
"arg":"nodeIP"

},
{
"action":"change_pod_cpu_request" ,
"handler":"PodCPURequestHandler" ,
"method":"changeRequest" ,
"arg":"newValue"

},
==

Listing 1 Fragment of executor-ConfigMap.yamlman-
ifest file

The Executor objects, created from the declared
ConfigMap, have four properties that sufficiently
describe their operation. The properties are: (i) “action“
– is a mapping from management policies into actions,
which are enforced in a Cloud-native execution envi-
ronment, (ii) “handler“ – defines the class providing
for handling the action, (iii) “method“ – specifies the
particular implementation of the action, and (iv) “arg“
– stores the argument of method itemized in the previ-
ous point.

The rule engine evaluates the particular rule at run-
time and executes its actions. The actions create a new
object that acts as a client of the execution server. The
accomplishment of the declared management policies
in the Cloud-native context is highly dependent on the
configuration of the orchestration environment. Kuber-
netes Objects API, available via REST, has official
clients in the programming languages [12] that publish
most of the functions exposed by Kubernetes objects.
The Execution Controller closes the MRE-K loop and
is the final link in the runtime reinforcement of declar-
ative management policies.

7 Evaluation of AMoCNA

The AMoCNA framework is thoroughly evaluated
in [34] and [35]. The results obtained positively assess
this framework. The framework monitors not only
the Cloud-native application but based on observa-
tions of the entire Cloud-native application execu-
tion environment, AMoCNA triggers actions across
the Infrastructure, Containerization, and Application
layers, enabling a holistic control of the Cloud-native
application’s execution performance. In the carried
experiment, we will show this ability. The evalua-

123

Page 13 of 19 44

Journal of Grid Computing (2023) 21:44

tion of AMoCNA regards runtime adjustments of the
Cloud-native execution environment. The experiment
will show the autonomic management accomplished
by AMoCNA in the Containerization and Infrastruc-
ture Layers of the execution environment.

To provide a baseline for the experiments, we set up
a Kubernetes cluster consisting of one master node and
six worker nodes. Table 3 presents the installed soft-
ware. In this testbed, we deployed a Sock Shop Cloud-
native application under AMoCNA supervision. We
assess the Sock Shop microservices from the latency
perspective. Among the microservices, the highest
latency has the front-endmicroservice.We chose it as a
representative one. To simulate user behavior, we used
the Locust load generator tool. In every rerun of the
experiment, we used the same values of the load, i.e.,
3000 users that totally generated 15000 requests. We
repeated the experiment ten times, each providing the
same results. We established the example of SLA cri-
teria. They state:

1. Each microservice latency is less than 2.5 s.
2. Cluster CPU utilization is less than 60%.

Th above configuration caused a violation of SLA.
The situation is depicted in both Fig. 9 (left graph) and
Fig. 10 (left peak in the graph). It indicates that the
CNApp was flooded with user requests. The situation
is also observed in the metrics gained that exceed the
SLA threshold. It was necessary to trigger the appropri-
ate actions. The actions proceeded with microservice
(strictly container) redeployment and cluster autoscal-
ing. Container redeployment with different settings is
an obvious functionality of orchestration systems. This
functionality is an example of management in the Con-
tainerization Layer. AMoCNA goes one step further.
It proceeds with the redeployment autonomously and
based on the observations. For the management in the
Infrastructure Layer and cluster autoscaling, Kuber-
netes provides a Cluster Autoscaler4 controller that
automatically adjusts the cluster size. AMoCNA aug-
ments the possibilities of this controller, and instead of
taking into account only the resource requests and lim-
its specified before starting the CNApp, the decision
is made based on the observations of resources actual
utilization. The cluster can also scale at runtime.

For the proof of concepts, we composed three rules.
Two rules trigger (Listing 2) and enforce (Listing 3)

4 as an additional component.

the modification in the microservice CPU request. The
third rule (Listing 4) manages cluster autoscaling. In
this PSM, we used Jboss Drools [17] as a rule engine.
The listings are in the .drl language.

==
import translator .metrics .ContainerMetric ;
import translator .metrics .Metric ;
import java . lang .Double;
import translator .SLA;
import pl .edu.agh. informatyka .amocna.CPU;
import translator .metrics .SockShopMetric;

rule "trigger_pod_CPU_request"
dialect "mvel"
when

ssMetric : SockShopMetric(service
== "front−end" && namespace == "sock−shop"
&& name == "request_duration_seconds_sum"
&& eval (Double.parseDouble
(ssMetric .getValue ()) > SLA.FRONTEND_LATENCY))
m : ContainerMetric(container_name
== "front−end" , namespace == "sock−shop" ,
name == "container_cpu_usage_seconds_total" ,
eval (Double.parseDouble(m.getValue()) >
CPU. request ("front−end")))

then
ContainerMetric insertedFact = new
ContainerMetric () ;
insertedFact . setContainer_name("front−end") ;
insertedFact .setNamespace("sock−shop") ;
insertedFact .setName(
"avg_container_cpu_usage_seconds_total") ;
insertedFact . setValue(m.query("front−end" ,
"sock−shop")) ;
insertLogical (insertedFact) ;

end
==

Listing 2 A rule adjusting Pod’s requests for CPU. First rule.

==
import translator .metrics .ContainerMetric ;
import java . lang .Double;
import pl .edu.agh. informatyka .amocna.CPU;
import pl .edu.agh. informatyka .amocna. executor .

ExecutorServerCli ;

rule "enforce_pod_CPU_request"
dialect "mvel"
when

c : ContainerMetric(name ==
"avg_container_cpu_usage_seconds_total" ,
eval (Double.parseDouble(c .getValue()) >
CPU. request ("front−end" ,"sock−shop")))
client : ExecutorServerCli()

then
client . execute("change_pod_cpu_request") ;

end
==

Listing 3 A rule adjusting Pod’s requests for CPU. Second rule.

123

44 Page 14 of 19

Journal of Grid Computing (2023) 21:44

Table 3 The software used in the evaluation

Name Short description

OpenStack an open-source cloud platform [43].

Kubernetes also known as K8s is an open-source system for orchestrating containerized applications [39].

Prometheus Operator provides Kubernetes deployment and management of monitoring components based on the
Prometheus [38].

JBoss Drools is a Business Rules Management System (BRMS) solution written in Java [17].

Sock Shop Microservices a Microservices Demo Application that simulates an e-commerce website that sells socks [50].

Stress A Docker container that generates CPU, memory, I/O, and disk loads. It simulates increases in
resource consumption and, therefore, failures to meet SLA commitments [1].

Locust An open-source load-testing tool that simulates user behavior and swarms the system with mil-
lions of simultaneous users. Therefore enables to present flooding microservice with requests
and hence simulates failures to meet SLA commitments with regard to response latency [40].

The result of execution of rules (Listings 2 and 3)
operating in the Containerization Layer is shown in
Fig. 9. The graph on the left side that presents the state
of the CNApp before the AMoCNA adjustment indi-
cates that the SLA threshold is significantly overcome.
Its front-end microservice latency reached 5 s (2.5 s is
allowed). The observability capabilities of AMoCNA
(rule in Listing 2) detect this situation. As a conse-
quence, AMoCNA triggers and then invokes Execu-
torController that modifies the CPU request (this Con-
troller is defined in Listing 1 as a second element of
the executors table). As a result, the microservice
front-end latency decreases to 2.5 s (depicted in the
right-hand graph of Fig. 9).

==
import translator .metrics .ClusterMetric ;
import translator .metrics .Metric ;
import java . lang .Double;
import translator .SLA;
import pl .edu.agh. informatyka .amocna.
executor

.ExecutorServerCli ;

rule "SLA_cluster_cpu_utilization"
dialect "mvel"
when

m : ClusterMetric(name ==
"cluster_cpu_utilisation :1m" ,
eval (Double.parseDouble
(m.getValue ()) > SLA.CLUSTER_CPU))

client : ExecutorServerCli()
then

client . execute("cluster_resize") ;
end
==

Listing 4 A rule guarding cluster CPU utilization

On the other hand, the result of execution of rule pre-
sented in the Listing 4 operating in the Infrastructure
Layer is shown in Fig. 10. The first peak, which shows
the state of CNApp before AMoCNA adjustment, indi-
cates that the SLA threshold has been overcome. The
CPU utilization of the cluster exceeds the SLA thresh-
old (60% is allowed). The AMoCNA capabilities (rule
in Listing 4 detect this situation. Consequently, it trig-
gers and then invokes ExecutorController that proceeds
cluster autoscaling (this Controller is defined in List-
ing 1 as the first element of the executors table).
As a result, a new node was added to the cluster. After
joining another node (worker-7 in this case), the uti-
lization of the entire cluster automatically decreases
below the SLA level. Its value is less than 60%, which
denotes the second peak.

7.1 Evaluation summary

The experiment shows the autonomic management
accomplished by AMoCNA in the Containerization
and Infrastructure Layers of the execution environ-
ment. We present the reduction of the latency and CPU
utilization. The functionality is possible through prop-
erly defined executors. Hence it is significant to put
more emphasis on its development.

The experiments carried out proved the importance
of comprehensive observations. The knowledge gained
in this process is a good authority on information on the
past and current state of the Cloud-native Applications.
Based on this information, insights are provided, and
appropriate autonomic management actions are trig-
gered.

123

Page 15 of 19 44

Journal of Grid Computing (2023) 21:44

Fig. 9 Front-end
microservice latencies
before (left graph) and after
(right graph) AMoCNA
adjustments

8 Conclusions

In this paper, we discuss some details of the AMoCNA
operation model. The development of the AMoCNA
system is a significant achievement in proving the cor-
rectness of the proposed concepts. This systemsupports
dynamic, flexible, and scalable Cloud-native environ-
ments. We show how easily AMoCNA can be com-

bined with Kubernetes and used as a conceptual frame-
work for Kubernetes extensions.

In conclusion, the AMoCNA structure corresponds
to the core concepts of Kubernetes platform design.
However, AMoCNA offers more general and robust
management functionalities than the elemental Kuber-
netes reconciliation loop, which we present in Sec-
tion3.Wepropose to extendKuberneteswithAMoCNA

Fig. 10 CPU Utilization of the cluster.Before the AMoCNA
trigger point, node worker-7 does not exist. The CPU Utiliza-
tion of the node is 0% and is not part of the CPU Utilization of
the entire cluster. It is highlighted with the topmost (red) line in
the figure. Note that the CPU Utilization of a node is not an area
between its top boundary and X-axis but the top boundary of the
node before it. The AMoCNA trigger point starts the worker-7

node. At first, the new node is underutilized. The current work-
load running in the cluster does not immediately migrate to it.
The CPU Utilization of the worker-7 node is still near 0%.
Its line on the graph does not change significantly. However, we
can notice its existence in the new CPUUtilization of the cluster,
which is less than 60%.

123

44 Page 16 of 19

Journal of Grid Computing (2023) 21:44

and its autonomic elements that operate according to
feedback control and perform declared policies. We
give the guidelines for including autonomic features
in Cloud-native environments. They are described in
Section 5 and are themain contribution of our research.

In contrast to Kubernetesmanagement, resources do
not simply maintain the desired state. Their state con-
tinuously adapts according to the declaredmanagement
policies. The policies trigger the appropriate manage-
ment actions that proceed according to the execution
controller (described in Section 6). The concept of an
execution controller is also our contribution to Cloud-
native. The positive results of the evaluation show that it
is beneficial to enhance the Cloud-native applications
with autonomic features and develop suitable execu-
tors.

AMoCNA operation is not only limited to container
resources. Kubernetes operates solely in the container-
ization layer. On the other hand, AMoCNA actions
perform across the infrastructure, containerization, and
application layers, allowing holistic control of Cloud-
native applications execution. The proposed hierarchi-
cal composition of autonomic elements makes it pos-
sible to implement multilayer management policies.
This capability influences three system layers (appli-
cation, containerization, and infrastructure). However,
the experiment described shows only the influence of
the containerization layer. Future research can propose
a specification of a strongly reconfigurable controller
that can be valuable in many different contexts. Worth
exploring is its usage among all layers of the execution
environment and showing how the others, not only the
containerization layer, are influenced.

Acknowledgements The research presented in this paper was
supported by the funds assigned to AGH University of Science
and Technology by the Polish Ministry of Science and Higher
Education.

Author contributions This research work is part of Joanna
Kosińska Ph.D. work, which was conducted under the super-
vision of Krzysztof Zieliński. This paper is a guide to includ-
ing autonomic features in Cloud-native environments. For this
purpose, we recommend using our AMoCNA framework. We
specify all the steps needed to integrate the proposed AMoCNA
framework into the Cloud-native application environment. We
have carried out the work presented in this paper over the past 4
years. All authors read and approved the final manuscript.

Funding Information Funding information is not applicable /
No funding was received.

Data Availibility Statement Data sharing is not applicable to
this article, as no data sets were generated or analyzed during the
current study.

Declarations

Conflicts of interest The authors declare that they have no con-
flict of interest.

Ethical Approval Not applicable.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. A Docker container for stress, a tool for generating work-
load (Last seen on March 2021) https://hub.docker.com/r/
progrium/stress

2. Abeywickrama, D.B., Ovaska, E.: A survey of autonomic
computing methods in digital service ecosystems. Service
Oriented Computing and Applications 11(1), 1–31 (2017)

3. Achilleos, A.P., Kritikos, K., Rossini, A., Kapitsaki, G.M.,
Domaschka, J., Orzechowski, M., Seybold, D., Griesinger,
F., Nikolov, N., Romero, D., Papadopoulos, G.A.: The cloud
applicationmodelling and execution language (camel). Jour-
nal of Cloud Computing 8(1), 20 (2019)

4. Agrawal, D., Calo, S., Lee, K.w., Lobo, J., Verma, D.: Pol-
icy Technologies for Self-Managing Systems, 1st edn. IBM
Press, USA (2008)

5. Antonopoulos, N., Anjum, A., Gillam, L.: Intelligent tech-
niques and architectures for autonomic clouds: introduction
to the itaac special issue. J Cloud Comput. p 1:18, (2012)
https://doi.org/10.1186/2192-113X-1-18

6. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and
analyzing mape-k feedback loops for self-adaptation. In:
2015 IEEE/ACM 10th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems,
pp 13–23, (2015) https://doi.org/10.1109/SEAMS.2015.10

7. Arlow, J., Neustadt, I.: Enterprise Patterns andMDA: Build-
ing Better Software with Archetype Patterns and UML.
AddisonWesley Longman Publishing Co., Inc, USA (2003)

8. Aydemir, F., Başçiftçi, F.: Building a performance efficient
core banking system based on the microservices architec-
ture. J Grid Comput. 20(4), 37 (2022)

123

Page 17 of 19 44

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hub.docker.com/r/progrium/stress
https://hub.docker.com/r/progrium/stress
https://doi.org/10.1186/2192-113X-1-18
https://doi.org/10.1109/SEAMS.2015.10

Journal of Grid Computing (2023) 21:44

9. Bennett, S.: A History of Control Engineering 1930–1955,
1st edn. Peter Peregrinus, GBR (1993)

10. Capodieci, N., Hart, E., Cabri, G.: Designing selfaware
adaptive systems: from autonomic computing to cognitive
immune networks. In: Proceedings of the 7th International
Conference on SelfAdaptation and Self-Organizing Systems
Workshops, SASOW , IEEE Computer Society, Conference
Publishing Service, Los Alamitos, California USA, pp 59–
64, (2013)

11. Carrión, C.: Kubernetes as a standard container orchestrator
- A bibliometric analysis. Journal of Grid Computing 20(4),
42 (2022). https://doi.org/10.1007/s10723-022-09629-8

12. Client Libraries for Kubernetes API (Last seen on
May, 2023) https://kubernetes.io/docs/reference/using-api/
client-libraries/

13. Cloud Native Computing Foundation (Last seen on March
2022) https://www.cncf.io

14. CloudNative LandScape (Last seen onMarch, 2021) https://
github.com/cncf/landscape

15. Cohen, I.R.: Discrimination and dialogue in the immune
system. Seminars in Immunology 12(3), 215–219 (2000).
https://doi.org/10.1006/smim.2000.0234

16. Docker Site (Last seen on November, 2021) https://www.
docker.com

17. Drools Site - A Business Rules Management System
(BRMS) solution (Last seen on May, 2022) https://www.
drools.org

18. Ehrlinger, L., Rusz, E., Wöß, W.: A survey of data quality
measurement and monitoring tools. CoRR abs/1907.08138,
(2019) arxiv preprint arxiv:1907.08138

19. Frommetrics to insight (Last seen on January, 2022) https://
prometheus.io

20. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic
computing era. IBM Systems Journal 42(1), 5–18 (2003).
https://doi.org/10.1147/sj.421.0005

21. Gill, S.S., Buyya, R.: Resource provisioning based schedul-
ing framework for execution of heterogeneous and clus-
tered workloads in clouds: from fundamental to auto-
nomic offering. Journal of Grid Computing 17(3), 385–417
(2019)

22. Gonzalez, N.M., Carvalho, T.C.M.D.B., Miers, C.C.: Cloud
resource management: Towards efficient execution of large-
scale scientific applications and workflows on complex
infrastructures. J CloudComput 6(1), (2017) https://doi.org/
10.1186/s13677-017-0081-4

23. Gonçalves, G., Endo, P.T., Santos, M., Sadok, D., Kel-
ner, J., Melander, B., Mångs, J.E.: Cloudml: An inte-
grated language for resource, service and request descrip-
tion for d-clouds. IEEE Third International Conference on
Cloud Computing Technology and Science pp 399–406
(2011)

24. Hightower, K., Burns, B., Beda, J.: Kubernetes: Up andRun-
ning Dive into the Future of Infrastructure, 1st edn. O’Reilly
Media, Inc., USA, (2017)

25. Hitzler, P., Krtzsch,M., Rudolph, S.: Foundations of Seman-
ticWebTechnologies, 1st edn.Chapman&Hall/CRC (2009)

26. Huebscher, M.C., McCann, JA.: A Survey of Autonomic
Computing – Degrees, Models, and Applications. ACM
Comput Surv 40(3),7:1–7:28, (2008) https://doi.org/10.
1145/1380584.1380585

27. Ibryam, B., Huß, R.: Kubernetes Patterns: Reusable Ele-
ments for Designing Cloud-Native Applications. O’Reilly
Media, USA, (2019) https://books.google.pl/books?
id=8WmRDwAAQBAJ

28. Jahan, S., Riley, I., Walter, C., Gamble, R.F., Pasco, M.,
McKinley, P.K., Cheng, B.H.: Mape-k/mape-sac: An inter-
action framework for adaptive systems with security assur-
ance cases. Future Generation Computer Systems 109, 197–
209 (2020). https://doi.org/10.1016/j.future.2020.03.031

29. Kalman, R.: On theGeneral Theory of Control Systems. IRE
Trans Autom Control 4, 110–110 (1960)

30. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Com-
puting. Computer 36(1), 41–50 (2003). https://doi.org/10.
1109/MC.2003.1160055

31. Khan, Z., Ludlow, D., McClatchey, R., Anjum, A.: An
architecture for integrated intelligence in urban manage-
ment using cloud computing. In: Fourth IEEE International
Conference on Utility and Cloud Computing, pp 415–420,
(2011) https://doi.org/10.1109/UCC.2011.69

32. Kim, G., Debois, P., Willis, J., Humble, J.: The DevOps
Handbook: How to Create World-Class Agility, Reliability,
and Security in Technology Organizations. IT Revolution
Press, USA (2016)

33. Koehler, M.: An adaptive framework for utility-based opti-
mization of scientific applications in the cloud. Journal of
Cloud Computing 3(1), 4 (2014)

34. Kosińska, J., Zieliński, K.: Autonomic management frame-
work for cloud-native applications. Journal of Grid Comput-
ing 18(4), 779–796 (2020)

35. Kosińska, J., Zieliński, K.: Experimental evaluation of
rule-based autonomic computing management framework
for cloud-native applications. IEEE Trans Serv Com-
put 16(2), 1172–1183 (2023). https://doi.org/10.1109/TSC.
2022.3159001

36. Kritikos, K., Zeginis, C., Iranzo, J., Gonzalez, R.S., Seybold,
D., Griesinger, F., Domaschka, J.: Multicloud provisioning
of business processes. J Cloud Comput. 8, 18 (2019). https://
doi.org/10.1186/s13677-019-0143-x

37. Kubernetes cluster monitoring with Prometheus using
the Prometheus Operator. (Last seen on February)
(2022) urlhttps://github.com/prometheus-operator/kube-
prometheus

38. Kubernetes native deployment and management of
Prometheus and related monitoring components.
(Last seen on February) (2022) https://github.com/
prometheus-operator/prometheus-operator

39. Kubernetes Site (Last seen on July) (2022) https://
kubernetes.io

40. Locust Homepage (Last seen on June) (2022) https://locust.
io/

41. Mesos Site (Last seen on April) (2021) http://mesos.apache.
org

42. Newman, S.: Building Microservices: Designing Fine-
Grained Systems, 1st edn. O’Reilly Media, USA (2015)

43. OpenStack Site (Last seen on April) (2022) https://www.
openstack.org/

44. Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture conti-
nuity: Changemodels and change rules for sustainable cloud
software architectures. Journal of Software: Evolution and
Process 29(2), e1849 (2017). https://doi.org/10.1002/smr.
1849

123

44 Page 18 of 19

https://doi.org/10.1007/s10723-022-09629-8
https://kubernetes.io/docs/reference/using-api/client-libraries/
https://kubernetes.io/docs/reference/using-api/client-libraries/
https://www.cncf.io
https://github.com/cncf/landscape
https://github.com/cncf/landscape
https://doi.org/10.1006/smim.2000.0234
https://www.docker.com
https://www.docker.com
https://www.drools.org
https://www.drools.org
http://arxiv.org/abs/1907.08138
https://prometheus.io
https://prometheus.io
https://doi.org/10.1147/sj.421.0005
https://doi.org/10.1186/s13677-017-0081-4
https://doi.org/10.1186/s13677-017-0081-4
https://doi.org/10.1145/1380584.1380585
https://doi.org/10.1145/1380584.1380585
https://books.google.pl/books?id=8WmRDwAAQBAJ
https://books.google.pl/books?id=8WmRDwAAQBAJ
https://doi.org/10.1016/j.future.2020.03.031
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/UCC.2011.69
https://doi.org/10.1109/TSC.2022.3159001
https://doi.org/10.1109/TSC.2022.3159001
https://doi.org/10.1186/s13677-019-0143-x
https://doi.org/10.1186/s13677-019-0143-x
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator
https://kubernetes.io
https://kubernetes.io
https://locust.io/
https://locust.io/
http://mesos.apache.org
http://mesos.apache.org
https://www.openstack.org/
https://www.openstack.org/
https://doi.org/10.1002/smr.1849
https://doi.org/10.1002/smr.1849

Journal of Grid Computing (2023) 21:44

45. Park, S., Park, S., Park, Y.B.: An architecture framework for
orchestrating context-aware it ecosystems: A case study for
quantitative evaluation. Sensors (Basel, Switzerland) 18(2),
562 (2018)

46. Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster man-
agement for the cloud - survey results and own solution.
J Grid Comput 14(2),265–282, (2016) https://doi.org/10.
1007/s10723-016-9366-y

47. Ramanathan, R., Raja, K.: Handbook of Research on Archi-
tectural Trends in Service-Driven Computing, 1st edn. IGI
Global, Hershey, PA, USA (2014)

48. Redbooks, IBM and International Business Machines
Corporation International Technical Support Organiza-
tion. A Practical Guide to the IBM Autonomic Comput-
ing Toolkit. IBM Redbooks, IBM, International Support
Organization, USA, (2004) https://books.google.pl/books?
id=XHeoSgAACAAJ

49. Singularity Site (Last seen on April) (2021) https://sylabs.
io/singularity/

50. Sock Shop - A Microservices Demo Application (Last seen
on April) (2022) https://microservicesdemo.github.io

51. Sterritt, R., Parashar, M., Tianfield, H., Unland, R.: A Con-
cise Introduction toAutonomicComputing.AdvEng Inform
19(3), 181–187 (2005). https://doi.org/10.1016/j.aei.2005.
05.012

52. Tomarchio, O., Calcaterra, D., Modica, G.D.: Cloud
resource orchestration in the multi-cloud landscape:A sys-

tematic review of existing frameworks. J Cloud Comput
9(1), 49 (2020)

53. Turnbull, J.: The Art of Monitoring. James Turn-
bull, USA, (2014) https://books.google.pl/books?
id=w5QfDAAAQBAJ

54. Vassev, E., Hinchey, M.: Knowledge representation and
awareness in autonomic service-component ensembles -
state of the art. In: 14th International Symposium on
Object/Component/ServiceOriented Real-Time Distributed
Computing Workshops, ISORC Workshops 2011, Newport
Beach, CA, USA, March 28-31, IEEE Computer Soci-
ety, USA, pp 110–119, (2011) https://doi.org/10.1109/
ISORCW.2011.21

55. Wardm, J.S., Barker, A.: Observing the clouds: A survey
and taxonomy of cloud monitoring. J Cloud Comput 3(1),
24 (2014)

56. Zhou,N.,Georgiou,Y., Pospieszny,M., Zhong, L., Zhou,H.,
Niethammer, C., Pejak, B.,Marko, O., Hoppe, D.: Container
orchestration on hpc systems through kubernetes. Journal of
Cloud Computing 10(1), 16 (2021)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

Page 19 of 19 44

https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1007/s10723-016-9366-y
https://books.google.pl/books?id=XHeoSgAACAAJ
https://books.google.pl/books?id=XHeoSgAACAAJ
https://sylabs.io/singularity/
https://sylabs.io/singularity/
https://microservicesdemo.github.io
https://doi.org/10.1016/j.aei.2005.05.012
https://doi.org/10.1016/j.aei.2005.05.012
https://books.google.pl/books?id=w5QfDAAAQBAJ
https://books.google.pl/books?id=w5QfDAAAQBAJ
https://doi.org/10.1109/ISORCW.2011.21
https://doi.org/10.1109/ISORCW.2011.21

	Enhancement of Cloud-native applications with Autonomic Features
	Abstract
	1 Introduction
	2 Related work
	3 Reconciliation loop basics
	4 Autonomic Computing Paradigm in the context of Cloud-native
	5 Inclusion of AMOCNA
	6 Autonomic element microservice
	6.1 Monitoring Controller
	6.2 Reasoning Controller
	6.3 Execution Controller

	7 Evaluation of AMoCNA
	7.1 Evaluation summary

	8 Conclusions
	Acknowledgements
	References

