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Abstract Distributed, large-scale computing is typ-
ically performed using textual general-purpose pro-
gramming languages. This requires significant pro-
gramming skills associated with the parallelisation and
distribution of computations. In this paper, we present
a visual (graphical) programming language called the
Computation Application Language (CAL) to raise
abstraction in distributed computing. CAL programs
define computation workflows by visualising data flow-
ing between computation units. The goal is to reduce
the amount of traditional code needed and thus facilitate
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development even by non-professional programmers.
The language follows the low-code paradigm, i.e. its
implementation (the editor and the runtime system) is
available online. We formalise the language by defin-
ing its syntax using a metamodel and specifying its
semantics using a two-step approach. We define a trans-
lation of CAL into an intermediate language which is
then defined using an operational approach. This for-
malisation was used to develop a programming and
execution environment. The environment orchestrates
computations by interpreting the intermediate language
and managing the instantiation of computation mod-
ules using data tokens. We also present an explanatory
case-study example that shows a practical application
of the language.

Keywords Large scale computing ·
Low-code languages · Distributed computations ·
Formal language semantics

1 Introduction

Over many years, textual general-purpose program-
ming languages have dominated software develop-
ment. Such languages have multiple advantages, allow-
ing programmers to develop solutions for different
domains in the same language. At the same time, pro-
gramming in contemporary programming languages
like Java, Python or C# still necessitates signifi-
cant professional skills. Especially challenging is the
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construction of time-efficient computation software
that uses parallel and distributed processing. Consid-
ering that experienced programmers are scarce on the
market, the need for new programming approaches is
constantly growing. These approaches should reduce
complexity by raising the level of abstraction and
removing unwanted technology-related issues. This
way, they would be accessible to non-professional pro-
grammers or even to domain experts.

This tendency to reduce the complexity of program-
ming and raise the abstraction at which programming
constructs are formulated led to the emergence of the
low-code approach [1]. Low-code solutions are pre-
dominantly based on creating visual, model-based lan-
guages [2] with the aim of making them more under-
standable and accessible. It can be argued that such a
solution should be easier to use by inexperienced pro-
grammers and raises the productivity of programming
[3]. For this reason, the usage of visual programming
languages is recently gaining popularity in engineering,
and education [4,5]. This can be observed especially
in the field of distributed computing, such as IoT [6],
which shares multiple similarities with more powerful
distributed Large-Scale Computing platforms.

Typically, low-code systems are used to develop
web-based business applications. However, recently it
has been observed that the low-code paradigm can be
easily applied to solve complex computation problems
(using, e.g. Artificial Intelligence modules) [7]. This
can be achieved by wrapping certain fragments of com-
putation logic into computation units. These units can
then be (re-)used when constructing computation appli-
cations at a significantly higher level of abstraction.
This would lead to the emergence of a graphical (visual)
programming language that would allow for expressing
orchestrations (or choreographies [8]) of many compu-
tation units.

The main challenge for such a visual language
would be dealing with typical computation parallelisa-
tion issues. Prominently, these issues pertain to High-
Performance Computing (HPC) systems [9]. These
systems focus on using powerful co-located homoge-
neous environments called supercomputers with strong
bindings between computation nodes, thus allowing for
strongly parallelised computations. Such approaches
are mainly used by big research institutions and enter-
prises. This is due to the very high cost of operation
and the requirement of expert knowledge of parallel
computing to use the potential of such machines fully.

Regular users would instead need an approach which
we could call Large-Scale Computing (LSC). This
approach would focus on using multiple distributed
computation nodes, where each node is way less power-
ful than any supercomputer. However, linked together
and parallelised, they can be used to solve advanced
computation problems much faster than with the help
of a single node. In both HPC and LSC, the main prob-
lem in parallelisation is the passing of data. However,
the specific challenges differ. In LSC, nodes are dis-
tributed and connected through the Internet. Data trans-
fer speeds are thus significantly slower than in HPC.
HPC supercomputers are homogeneous, and their com-
putation nodes are connected within a single location.

Considering the above, the main focus of the LSC
approach is the management of data flow between
computation nodes. The key is to minimise the over-
head caused by data transfer and maximise computa-
tion speed through efficient distribution of workload
between many nodes. In other words, computations
should be controlled by the flow of data between the
nodes where computations are performed. In such a
data flow-driven approach to LSC, the entire computa-
tion is separated into steps. Each step produces results
that become input data for the next steps until the final
result is computed. Separating complex computations
into steps allows treating each step as an independent
computation unit placed in a separate container. Con-
tainerisation facilitates the orchestration of computa-
tions, as each step can follow one of the multiple solu-
tions widely used in computation centres worldwide.

Moreover, the data-driven approach would allow for
better utilisation of computer resources as the compu-
tation can start only when the input data is available.
This reduces the amount of reserved but unused compu-
tation resources. Separation of computation steps into
containers allows for easier reuse of already developed
pieces of the application. The end-user would not need
to edit the code of the computation step and treat it as a
black box that can be connected to other computation
steps to create new applications.

In this paper, we approach the creation of a graph-
ical distributed computations language from the point
of view of the low-code paradigm. It should be noted
that several approaches to representing parallel and dis-
tributed computations in a graphical form already exist
(see the next section). However, none of them seems
to draw from the results of research on model-driven
development that is used in constructing low-code
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languages. This includes aspects such as the notation’s
usability and the formalisation of its syntax and seman-
tics. We thus present the Computation Application Lan-
guage (CAL), developed as part of the BalticLSC Plat-
form [10,11].

The paper contributes by introducing the precise
syntax and semantics of CAL and the details of its
implementation. The language’s abstract syntax is
defined through a metamodel with concrete syntax fol-
lowing best practices in this area [12]. We aimed to
make the language accessible to non-professional pro-
grammers and domain experts according to the princi-
ples of low-code software development. Moreover, our
work includes the definition of the language’s seman-
tics using translational and operational approaches.
This allows for the unambiguous construction of exe-
cution environments for the language and illustrates
a method for constructing similar scientific workflow
environments.

In the next section, we provide related work refer-
encing previous approaches to constructing visual com-
putation languages. Section 3 provides a brief informal
introduction to the presented language. This is followed
by presenting CAL’s syntax (abstract and concrete)
in Section 4 and its semantics in Section 5. Section 6
shows how CAL’s semantics was used to implement its
execution environment on the web. This environment
was used to conduct several case studies where one of
them is presented in Section 7. We conclude with a dis-
cussion and proposition for the future development of
CAL and its environment.

2 Related Work

As a recent study shows, the development of com-
putation applications (HPC, parallel processing) is
dominated by textual programming languages [13].
Only 5% of the developers use purely visual lan-
guages. The dominating model is to use a general-
purpose textual programming language and equip it
with features specific to the existing parallel and dis-
tributed programming models like MPI or OpenMP
[14]. In these approaches, programmers need to deal
with relatively low-level issues like message pass-
ing and memory sharing. This means that program-
mers need to have appropriate skills due to the sig-
nificant technical complexity of parallel programming
models.

The role of visual notations is to reduce the “acciden-
tal” complexity [15] and raise the level of abstraction
at which programs are formulated through presenting
computation flows in a graphical form. It is already a
long-time discussion on whether visual notations are
of benefit to professional programming [16]. However,
they are more comprehensible for novice programmers
[17] and increase the capability to create a mental repre-
sentation of computation problems [18]. This generally
stems from the fact that diagrams are most often bet-
ter than text in expressing complex issues, including
complex programs [19].

In the past, various graphical notations were used
to assist parallel program development [20–22]. Thus,
the idea to apply visual languages to high-performance
computations (including parallel and distributed pro-
gramming) has emerged quite early [23]. As a natu-
ral consequence, several visual programming systems
have been proposed [24,25] together with graph gram-
mars [26] and models [27] supporting the definition of
parallelised computation. Syntactically, practically all
such languages support graph structures, where graph
nodes define the computation elements and graph arcs
define data or control flows. This is also the case for the
Computation Application Language (CAL) presented
in the current work. However, CAL has several charac-
teristics that distinguish it from other such languages.

The CODE, CODE 2.0, and Hence languages [28–
30] are based on graph structures, where nodes define
simple operations and the edges represent the order of
their execution. Such a visual approach allows for a
better representation of the concurrency of computa-
tions. These languages were used to define computa-
tions using atomic operations, and the graph was used
to generate code directly executed on machines. Com-
pared to them, CAL focuses on less granular computa-
tion steps encapsulated in separate containers. In CAL,
graphs define sequences of container executions and
the flow of data between these executions. This is dif-
ferent from the low-level code generation approach for
which, over the years, many solutions were created.
These solutions mainly focus on low-level paralleliza-
tion of computations with the help of graphical lan-
guages, usually converted to C or C-like languages [31–
34].

Another solution, extending the CODE language, is
PEDS [35]. This tool allows for the visual mapping of
computation units onto computation resources. It con-
sists of four levels of abstraction: physical level, support
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level, visual language level, and application level. The
PEDS tool allows for constructing applications with
visual language and mapping their execution onto spe-
cific computation resources. In the PEDS visual lan-
guage graphs, the nodes represent parallel processes,
and the edges represent data dependencies between the
processes. The use of PEDS requires its users to work
within multiple layers of abstraction. Another similar
tool was GRADE (Graphical Application Development
Environment) [36], which consisted of a graphical edi-
tor to write parallel applications, a C code generator,
and various distributed debugging tools. GRADE could
perform computations on multiple nodes using only the
graphically defined program.

A different parallel programming tool has been pro-
posed by Delaitre et al. [37]. EDPEPPS is an IDE
for visual parallel programs, providing a set of tools,
including ones to build parallel programs, simulate
their execution in heterogeneous environments and
debug the programs executed in such environments.
The main components of parallel computation are rep-
resented visually with the algorithms written textu-
ally as C-like procedures. Visual languages for paral-
lel computation have also been developed to support
cloud-based computations. The Visual Parallel Pro-
gramming Environment [38] allows for the definition of
low-level computation with a visual language, which is
later translated into Java-MPI programs executed in the
cloud. VPPE and other solutions [34,39] based on the
generation of MPI programs require defining computa-
tion steps at an atomic level, which does not reduce the
complexity required to develop a new solution. Com-
pared to these approaches, CAL allows for defining
computation with more complex steps and running it
on a cloud without the need for the generation of low-
level code.

Another use of a visual language for computation
parallelisation has been proposed by Feng et al. [40]
in the form of an extension of the Snap! language,
designed to make learning parallel programming eas-
ier. This language has been inspired by MIT’s Scratch
project [41] that uses interlocking blocks instead of
other already established visual notations such as Petri
Nets [42] or Colored Petri Nets [43] as a way to
visualise the control flow between computation steps.
The previously sequential Snap! The tool has been
extended, and the blocks can be converted to OpenMP
code and executed on the machine of choice. Students
could use the blocks to define parallelised computations

using parallelisation blocks with operations such as
MapReduce or parallel Map and ForEach functions.
Researchers believe that by providing a visual lan-
guage, they successfully lowered the learning curve
for parallel computing compared to traditional C-based
textual languages. The results emerging from the per-
formed assessment seem to confirm this statement. The
CAL has been created with the same goal. However, it
uses boxes and arrows instead of interlocking blocks
and operates on a less atomic level of computation
steps.

A similar goal was the basis for the emergence
of Scientific Workflow Management Systems [44].
Some of them, like Galaxy, Taverna, Kepler, and WS-
PGRADE use graphical notations to denote the com-
putation workflows. Seemingly, the most similar to our
proposition is the WS-PGRADE system [45,46], which
is the successor of the already mentioned GRADE sys-
tem [36]. This system provides a web portal that allows
for the creation and execution of computations in the
form of workflows. What is important, it offers a visual
workflow language where the execution of computation
units (services) is controlled by the flow of data (files).
Several solutions used in WS-PGRADE are close to
those used in CAL and BalticLSC. Thus we will also
refer to them in this paper’s further text. Especially the
data-flow-driven characteristics distinguish both solu-
tions from the rest. It can be noted that WS-PGRADE
was used to develop several dedicated portals for spe-
cific computation domains. In turn, BalticLSC aims to
provide a common, user-friendly workspace where var-
ious domain-specific applications can easily be built
using standard computation modules. Also, as men-
tioned in the introduction, CAL can be distinguished
through its strict formalisation and usage of low-code
(model-driven) approaches. It can be noted that both
WS-PGRADE and BalticLSC use the orchestration
approach with a central system that controls the flow
of computations and data. It can be contrasted with the
Flowbster system [47], which uses the choreography
approach. In this system, workflows can be created as
“autonomous graphs” of computation nodes that can be
executed in the cloud. Moreover, it uses textual rather
than visual notation.

The variety of approaches to representing scientific
workflows calls for a common framework for easy-
to-use, web-based workflow editors. An interesting
attempt in this direction was that proposed by Gesing
et al. [48]. They have introduced a generic data model
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and a design model for a workflow editor (Generic
Web-based Workflow Editor – GeWWE). Based on
this, they attempted to build a prototype graphical editor
capable of generating workflow applications in differ-
ent textual languages. Unfortunately, this attempt did
not result in a fully developed system. In our approach
with CAL, we propose a fully developed data model
(metamodel) with semantics that allows for building a
fully operational translator and execution engine.

The BalticLSC CAL editor allows for the web-based
development of parallel applications. Similar web-
based approaches to parallel computation can already
be found, allowing for the graph-based definition of
programs [49] or just providing a general gateway to
distributed computation resources [50]. In a survey per-
formed by Calegari et al. [51], researchers examined
multiple existing web-based HPC solutions and defined
general requirements for such platforms. The Balti-
cLSC Platform fulfils these requirements and attempts
to exceed them through, e.g. allowing for the visual
definition of general-purpose computations with CAL.
Many visual parallel computing languages on such
platforms are domain specific as it simplifies the chal-
lenge [52], but simultaneously, it makes the solution
less universal. Kubeflow [53] is a good example of
such a domain-specific visual language, created to help
develop machine learning pipelines running on Kuber-
netes [54]. In addition to allowing for the visual pipeline
definition, Kubeflow allows for the execution of com-
putations on standard Kubernetes clusters, allowing
for easier management of computation resources. The
BalticLSC Platform and CAL have similar foundations,
with CAL being domain-independent and more uni-
form, allowing for its wider use while still utilising
the easier orchestration of computations provided by
containerisation and Kubernetes technology. To help
with parallel application development, CAL has multi-
ple skeletons similar to those described by Zandifar et
al. [55] that help with the automatic parallelisation of
computation similar to the MapReduce operations.

The specifics of the BalticLSC Network have many
similarities with the volunteer computing platforms
such as BOINC [56] or Seti@Home [57]. In both solu-
tions, advanced computations are performed in parallel
on multiple machines connected via the Internet. How-
ever, the BalticLSC Network mostly consists of com-
paratively larger resources (from small clusters to even
HPC solutions) with the more stable (not voluntary)
connection of nodes to the network.

3 CAL Overview

As a low-code language, CAL strives to be mostly
self-explanatory. Thus, we will start introducing the
language with a simple example. This should provide
an intuitive understanding of the language constructs
without studying a formal language specification.

Our example operates in the domain of video editing.
The aim is to process black-and-white films with sub-
titles. Each film should be colourized, and its subtitles
translated into a specific language. The subtitles should
be appropriately mixed within the video file. What is
important, we would like to process many such films
in parallel.

As a typical representative of low-code languages,
CAL is strongly based on graphical syntactic con-
structs. This is illustrated in Figs. 1 and 2 that contain
the full application for our example problem. The first
figure shows an elementary application for processing
a single film (“VS Mixer” – video and subtitle mixer).
It receives a video file (“Video Input”) and a subtitle
file (“Subtitle Input”) and produces a processed film
(“Output Film”). The application uses three computa-
tion modules. The first one (“Video Colorizer”) per-
forms automatic colourization. The second one trans-
lates subtitles (“Subtitle Translator”). As we can see,
both of these modules can be run in parallel. Their
results form the input to the third module (“Subtitle
Mixer”) that embeds the translated subtitles into the

Fig. 1 Simple CAL
application (VS Mixer)
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Fig. 2 Extended CAL
application

final film file. Note that the execution of the applica-
tion is controlled by the data that flow between module
executions.

In the second figure (Fig. 2) we can see an applica-
tion that enables the parallel processing of many films.
We can notice that it uses the VS Mixer app (Fig. 1)
as part of its code. On its input, it receives a folder
of video files (“Video Inputs”) and a folder of subtitle
files (“Subtitle Inputs”). These folders are handled by
the “File Synchroniser” module. This module creates
pairs of files (for example, based on specific file nam-
ing rules) and sends these pairs sequentially to its out-
puts (“files1” and “files2”). Each of such pairs is then
input to an instance of the “VS Mixer” application. The
resulting films are placed by the mixer instances into a
specified output folder (“Output Films”). One notation
element that might be non-intuitive is the “data pin”
symbols. Generally, single files are denoted by a single
triangle symbol, folders are denoted by a triple trian-
gle symbol, and file/folder sequences are denoted by a
black triangle symbol. This will be explained in more
detail in the following section.

Note that the computation modules (“Video Col-
orizer”, “Subtitle Translator” etc.) form the elemen-
tary building blocks of the language. In this sense, the
language is extendable through defining new compu-
tation modules and thus extending their libraries. It
is up to the language users to define their modules
or to use the existing ones found in the library. The
role of the language is to provide means for the par-
allelisation and distribution of computations. The lan-
guage runtime system takes care of running instances of
appropriate computation modules on appropriate com-
putation resources and transmitting data between these
instances. Thus, an important part of the runtime system
is a component that performs computation job broker-
age (assignment of jobs to specific computation nodes).

It is worth noting that some of the CAL constructs
influence the way module execution is parallelised. For
example, let us consider the file pairs produced by the

“File Synchroniser” (see Fig. 2). The creation of such
pairs early in the processing facilitates the optimisation
of job brokerage. In this case, both the colourization and
subtitle translation tasks can be assigned to the same
computation node, thus avoiding potentially costly file
transfers.

In a practical implementation of our language, com-
putation modules are provided as container images.
Each computation node operates an instance of a con-
tainer management system (like Kubernetes or Docker
Swarm). The CAL runtime engine then controls the
distribution of container instances to appropriate con-
tainer management system instances.

4 Language Syntax

To define the CAL syntax, we use typical techniques
of software language engineering for defining graph-
based languages [58]. This consists in defining the lan-
guage’s abstract syntax (internal structure of language
constructs) and concrete syntax (visual representations
of language constructs as seen by the language users).
The abstract syntax is defined using a metamodel which
is a typical approach. The concrete syntax is defined
through some examples and an informal description of
how visual representations can be used.

Basically, CAL consists of just a few constructs -
unit calls, data pins (declared and computed), and data
flows. The respective metamodel can be seen in Fig. 3,
but a detailed description of the main classes and con-
crete syntax follows in Tables 1, 2, 3, and the next para-
graphs.

CAL meta-model is centred around two main meta-
classes - ComputationUnit and ComputationUnitRe-
lease. The first of them is used to distinguish the logical
units of computation that perform a specific function.
The second of them represents particular versions of
those units tied to given implementations. Both of those
meta-classes are further described by their respective
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Fig. 3 CAL abstract syntax

descriptors. Additionally, both of them are also further
divided according to the exact abstraction level on
which they occur.

ComputationModules and ComputationModuleRe-
leases represent the bottom layer of units and releases,
corresponding to atomic parts of computations exe-
cuted on particular computation nodes. Computation-
Applications and ComputationApplicationReleases rep-
resent elements situated higher in a hierarchy and typ-
ically encompass the functionality of many smaller
units. Specific dependency between units is defined at

the level of their releases, using the UnitCall meta-
class. Instances of this meta-class are contained in
ComputationApplicationReleases and point to UnitRe-
leases invoked by them. The exact sequence of unit calls
in the application is defined using representatives of the
DataFlow meta-class specifying the acceptable paths
that data can flow between the called units. These data
flows connect DataPins observing their type. These
data pins represent data input or output from respective
computation units. Data pins associated with unit calls
(computed pins) refer to data pins that are associated
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Table 1 Abstract and concrete syntax of unit calls

Unit Call
Abstract Syntax Concrete Syntax

The Unit Call class represents the invocation of computation
units within application workflows, thus being the main syn-
tactic element of every CAL program. Unit calls have data
pins which denote data sets received as inputs and outputs of
the computation.
Attributes and Associations.
Name: string - the name of the unit call.
Strength: UnitStrength - unit calls might be Weak or Strong.
Strong unit calls require all underlying computations to be
computed within a single computation node.
Weak unit calls do not set any restrictions on assignment to
nodes.
Unit [1] - computation unit release which is invoked by the
unit call.
Pins [*] - computed data pins owned by the unit call. They
refer to the data pins declared by the invoked unit release
and can be configured according to the needs of the current
application.

Unit calls are depicted as rounded rectangles. The upper
part of the unit call contains the unit call’s name, and
the lower part contains the name of the invoked compu-
tation unit release which consists of the unit’s name and
release version. Data pins owned by the unit call are typi-
cally placed on the left and right of the unit call (required
on the left, provided on the right). The strength of the
unit call is denoted by the outline shape of the rectangle -
strong unit calls have solid lines and weak ones are dashed.

with unit releases (declared pins). In other words, each
ComputedDataPin points to a compatible DeclaredDat-
aPin contained in the respective ComputationUnitRe-
lease. These DeclaredDataPins specify details about
data received and produced by unit releases, and in the
case of applications, also serve as starting and finishing
points for data flows.

Computation units and their releases do not have
concrete syntax and are not presented in CAL specifica-
tions. Other language syntactic constructs have appro-
priate graphical representations as presented in Tables
1, 2, 3. Each of the tables briefly explains the abstract

syntax (the metamodel elements in Fig. 3) and the con-
crete syntax through appropriate examples.

Considering the configuration and token multiplicity
of input and output pins, we can distinguish several
reference module types. These types can be combined
into hybrid types (e.g. splitter-joiner).

• Simple processor (one single input, one single out-
put) – a most common computation unit that per-
forms some algorithm on input data, creating output
data.

• Data separator (one single input, many single out-
puts) – a computation unit that splits the input data

Table 2 Abstract and concrete syntax of data flows

Data Flow
Abstract Syntax Concrete Syntax

The Data Flow class represents the transition of data tokens
between data pins. Every data flow connects exactly two data
pins. The flow of data is from a declared required or computed
provided pin to a declared provided or computed required
pin. There can be just one outgoing data flow from any CAL
element, but multiple incoming data flows are possible.
Associations.
Target [1] - the data pin that consumes data tokens.
Source [1] - the data pin that produces data tokens.

Data flows are depicted as arrows. They must connect
two data pins. The figure below is a simple example of
a CAL program with two data flows (arrows) appropri-
ately connecting two declared pins with two computed pins.
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Table 3 Abstract and concrete syntax of data pins

Data Pins
Abstract Syntax Concrete Syntax

The Data Pin class is an abstraction that encompasses declared
and computed data pins. Data pins represent the inputs and out-
puts of computation units (applications and modules).This refers
to specific data sets required and provided by computation unit
releases. Each data pin is characterised by its data and token
multiplicities, its data type (e.g., JSON, XML, Image, etc. ...),
its metadata structure (for structured data types), and its access
type (e.g., MongoDB, FTP).
The Declared Data Pin class represents the inputs and outputs of
applications or modules. In turn, the Computed Data Pin class
represents instantiations of declared data pins that are parts of
unit calls. Computed pins are derived from the declarations of
the respective computation unit releases that are invoked by the
including unit calls. More specifically, they are derived from the
respective declared pins.
Data pins can be connected by data flows being their respective
sources and targets. A required declared pin can only be a source,
while a provided declared data pin can only be a target. Com-
puted data pins act in the opposite way - required computed pins
can be targets while provided computed pins can be sources.
Key attributes and associations.
Name: string - specifies the name of the data pin.
Binding: DataBinding - specifies the data binding for the data pin.
Binding might be RequiredStrong, RequiredWeak, Provided or
ProvidedExternal. Required data pins define data sets that are
consumed, and provided data pins define data sets that are pro-
duced. Strong data pins define mandatory data sets, and weak
data pins define optional data sets.
DataMultiplicity: CMultiplicity - specifies the multiplicity of
data items in the data set defined by a single token. It might
be Single (e.g. a single file) or Multiple (e.g. a folder of files).
TokenMultiplicity: CMultiplicity - specifies the multiplicity of
tokens consumed or produced by the data pin. It might be Single
(one token produced) or Multiple (multiple tokens produced).

Declared Data Pin Declared Pins for applications are defined
within CAL programs using the notation of rectangle. The shape
of the rectangle is determined by the values of the pin’s attributes.
The upper part of the figure below contains the required declared
data pins, while the lower part contains provided declared data
pins of an application. They are distinguished by the placement
of a black bar - a required data pin has it on the left side, and a
provided data pin has it on the right side.

Data multiplicity is depicted by the number of triangles - “single”
is denoted by one triangle, and “multiple” is denoted by three.
Token multiplicity is depicted by the colour of the triangles -
“single” has a white interior, and “multiple” has a dark interior.
The name of the declared data pin is placed near (e.g. above) the
rectangle.
Computed Data Pin Computed pins are depicted as rectangles
pinned to unit call boxes. The figure below shows examples,
where pin names denote: Req - required, Prv - provided; two last
letters provide the token and data multiplicity accordingly, S -
single, M - multiple. Required pins are on the left, provided on
the right side of the unit call. Multiplicities of computed data
pins are denoted as for the declared data pins. The name of the
computed data pin is placed near (e.g. above) the rectangle.

into two or more output data sets that will be further
processed using different means; separation can be
done using some computation algorithm.

• Data splitter (one single input, at least one multiple
outputs) – a computation unit that splits a data set
into smaller parts that will be further processed in
the same way; splitting can be done using some
computation algorithm.

• Data joiner (many single inputs, one single output)
– a computation unit that joins several data sets
(typically resulting from different processing paths)

into a single data set; joining can be done using
some computation algorithm.

• Data merger (at least one multiple input, one single
output) – a computation unit that merges several
data sets of the same type into a combined data
set; merging can be done using some computation
algorithm.

It can be noticed that this classification of nodes is
somewhat similar to that found in the WS-PGRADE
system [45] (cf. Collector and Generator nodes). How-

123

Page 9 of 28 39



Journal of Grid Computing (2023) 21:39 

ever, in our approach, the exact categories and seman-
tics slightly differ.

5 Language Formal Semantics

Being a low-code programming language, CAL needs
a precise definition of its semantics to be used during
runtime. To define it, we use a hybrid approach con-
sisting of two steps. In the first step, we use the trans-
lational semantics approach [58] (see Chapter 10). For
this purpose, we define an intermediate language called
CAL-Executable. Based on this, we specify a set of
translation rules that map CAL constructs onto the con-
structs of CAL-Executable. In the second step, we use
the operational semantics approach [59] (see Chapter
8). For this purpose, we define an abstract machine with
a set of transitions defining its behaviour. This machine
defines the execution of CAL-Executable programs.

The reason for this hybrid approach lies in the char-
acteristics of CAL. The language is graph-based and
thus it is not trivial to define operational semantics
directly. At the same time, it is not possible to use trans-
lational semantics alone. This is due to special require-
ments for the execution of CAL programs (parallelisa-
tion and distribution of computations through container
instances). This prevents us from using a standard exist-
ing language (with known semantics) as the target for
the translation.

5.1 CAL-Executable Definition

Before specifying CAL semantics formally, we first
need to define the CAL-Executable syntax. We do it in
the same way as for the CAL syntax - through meta-
model, as shown in Fig. 4. The metamodel is based on
three main classes CTask, CJobBatch, and CJob. CTask
represents the whole computation task solving a spe-
cific problem. CJob represents the smallest portion of
a computation task, connected to a particular code run
in a container. CJobBach represents a strongly depen-
dent set of CJobs that need to be run on the same clus-
ter. An additional class, CService represents containers
like databases that need to be running constantly and
are required by certain CJobs.

CJobs and CServices are the elementary executable
elements contained in CJobBatches and specialise in a
more general CJobBatchElement metaclass. This meta-
class is used to group common features of CJobs and
CServices, like paths to particular container images.
Even more general is the CExecutable metaclass which
is specialised for all metaclasses that represent exe-
cutable elements, including CTasks and CJobBatches.
It is used to provide the identification of an executable
element within the runtime environment. Moreover,
every CExecutable instance can contain many CData-
Token elements. The CDataToken metaclass represents
the metadata of the data elements (e.g. files) passed
between the executable elements.

Fig. 4 CAL-Executable abstract syntax
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Figures 5, 6 and 7 contain examples of CAL-
Executable syntax. As can be noticed, the syntax is
textual. Moreover, each program can be expressed in a
linear form (tasks containing batches and batches con-
taining jobs).

Figure 5 shows a translation of the VS Mixer pro-
gram (see Fig. 1) into CAL-Executable. As we can
see, the translated program contains one task with one
embedded batch. The batch contains three jobs corre-
sponding to the three unit calls of the source VS Mixer
program. Each job contains data token definitions cor-
responding to its required and provided pins. The batch
contains data tokens corresponding to the declared pins
of the overall application, where such a situation occurs
when just a single batch is created in a CAL-Executable
program.

In the runtime environment, this program is exe-
cuted through the exchange of data token instances.
Every such instance represents a particular piece of
data (e.g., a file) to be processed by computation mod-
ule instances. The initial data tokens are created based
on the user input. Here, for instance, the application
user should provide appropriate metadata that points to
the files containing “Video Input” and “Source Input”.
This will cause the creation of appropriate two data
token instances with respective token numbers (no=1
and no=2). This in turn will cause the initiation of a new
task and its only job batch instance. This is because we
have two “required strong” data tokens in the definition
of the job batch that have matching token numbers.

The initiation of the new batch instance is followed
by the initiation of contained job instances. Specifi-
cally, an instance of the Video Coloriser and an instance

of the Subtitle Translator are created. This is due to
that these jobs have “required strong” tokens where
their numbers correspond to the already received two
data token instances (no=1 for the Video Coloriser and
no=2 for the subtitle Translator). When these two job
instances finish execution, they produce appropriate
data token instances (no=4 and no=5, respectively).
This causes the initiation of an instance of the Subtitle
Mixer module. Finally, this instance produces a token
(no=3) which corresponds to the “provided” data token
of the containing batch. This causes the finalisation of
the batch instance and the whole program.

Figure 6 shows a translation of the extended CAL
application (see Fig. 2. Note that this extended applica-
tion calls the VS Mixer app. The translation was made
in a “strong” mode, which means that all jobs should
be contained in a single job batch. This results in more
optimal data transfer but can negatively impact paral-
lelisation (all job instances are executed in the same
computation node).

The CAL-Executable program in Fig. 6 will be exe-
cuted similarly to the program in Fig. 5 but with an
additional job (File synchroniser). A significant dif-
ference is caused by the “multiple” data tokens in the
job batch and File Synchroniser definitions. The tokens
required by the job batch (and the File Synchroniser)
have a “data multiplicity” set, which means that the
batch expects to receive two tokens (no=1 and no=2)
pointing to appropriate data sets (e.g. file folders). The
tokens provided by the File synchroniser have a “token
multiplicity” set. This means that they produce many
tokens of each type (no=4 and no=5). As a result, the
remaining jobs will have many instances, depending on

Fig. 5 CAL-Executable
program for the simple CAL
application
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Fig. 6 CAL-Executable program for the extended CAL application (strong)

Fig. 7 CAL-Executable program for the extended CAL application (weak)
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the number of appropriate tokens (cf. number of files
in the folders).

Figure 7 also shows a translation of the extended
CAL application in the “weak” mode. This means that
jobs can be distributed between several job batches.
This can result in better parallelisation but can also
impede data transfer times. Note that marking of appli-
cations and module calls as “weak” and “strong” indi-
cates the sensitivity of computations on data transfer
and influences division into computation batches. This
is a unique characteristic of CAL which distinguishes
it from previous such languages.

In our example, the CAL-Executable program is
divided into two batches. Each of the batches contains
its own set of data tokens. Moreover, the whole task
contains a set of data tokens. This is due to that the
initiation of the task is not equivalent to the initiation
of one of its batches. The task will be initiated when
token instances with no=1 and no=2 arrive. This will
also initiate the batch with uid=b003. The other job
batch will be initiated only after an instance of the File
Synchroniser produces token instances with no=4 and
no=5. Note that this time, multiple tokens produced by
the instance of batch uid=b003 will cause the initiation
of many instances of batch uid=b004.

5.2 Translation from CAL to CAL-Executable

Having defined the syntax of CAL-Executable, we can
now start defining the semantics of CAL. Here, we pro-
vide the first part of the formal specification using a
translational approach. We start by defining a utility
function that is used within the translational rules to
shorten them. Note that within the rules we refer to class
and attribute names from the metamodel (see Fig. 3).

Definition 1 The function “child” is defined as fol-
lows:

child(x : UnitCall, y : UnitCall) −→
y.Unit.Calls � x ∨ ∃(z : UnitCall), such that
(y.Unit.Calls � z ∧ child(x, z))

The “child” function is boolean and has two param-
eters - unit calls. It is true if the first unit call is
(recursively) contained within a computation applica-
tion release called by the second unit call.

With this definition, we define 7 translation rules.
Each rule is presented in a uniform notation. The rule

definition starts with a brief, informal textual descrip-
tion. This is followed by three sections. The “source”
section lists and names a set of objects subject to the
respective translation. The “condition” section defines
the specific configurations of the objects listed in the
“source” section. These configurations need to be ful-
filled in order for the rule to be applied to these objects.
Moreover, the rule will be applied to all configurations
that fulfil the condition. The “target” section defines
objects and their configurations that should be created
as a result of applying the given rule.

1. Create a task for the outermost application release.
Source:car :ComputationApplicationRelease,
uc : UnitCall
Condition:uc.Unit = car ∧ �(uc2 : UnitCall),
such that child(uc, uc2)

Target: ct : CTask, where (ct.ReleaseUid =
car.Uid)

2. Create a batch for all application releases that are
started/called in “strong” mode and that aren’t con-
tained (directly or indirectly) in another application
release started/called in “strong” mode.
Source: uc : UnitCall, car : ComputationApp
licationRelease, ct : CTask
Condition: uc.Unit = car ∧ uc.Strength =
Strong ∧ �(uc2 : UnitCall), such that
(uc2.Strength = Strong ∧ child(uc, uc2))

Target: cjb : C JobBatch, where (cjb.Task =
ct)

3. Append the batch from rule (2) with jobs based on
calls to module releases contained in the application
release from rule (2) and in all application releases
called by it (directly or indirectly).
Source: cmr : ComputationModuleRelease,
cjb : C Jobatch
Condition: ∃(uc : UnitCall, car : Computatio
nApplicationRelease, uc2 : UnitCall, ct :
CTask), such that Rule(2)(uc, car, ct → cjb) ∧
uc2.Unit = cmr ∧ child(uc2, uc)
Target: cj : C Job, where (cj.Batch = cjb ∧
cj.Image = cmr.Image)

4. Create separate batches for the rest of the calls to
module releases, and add jobs based on these calls
for each of them.
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Source: cmr : ComputationModuleRelease,
ct : CTask
Condition: ∃(uc : UnitCall, car : Computati
onApplicationRelease, uc2 : UnitCall), such
that (uc2.Unit = cmr ∧ child(uc2, uc)) ∧
�(cjb : C JobBatch), such that Rule(2)(uc, car,
ct → cjb)
Target: cjb : C JobBatch, where (cjb.Task =
ct), cj : C Job, where (cj.Batch = cjb ∧
cj.Image = cmr.Image)

5. To each job, add tokens based on pins of the module
related to it (contained in a call from which the job
was created).
Source: cj : C Job, cmr : ComputationModule
Release, dp : DataPin
Condition: (∃(cjb : C JobBatch), such that
Rule(3)(cmr, cjb → cj) ∨ ∃(ct : CTask, cjb :
C JobBatch), such that (Rule(4)(cmr, ct → cjb,
cj)) ∧ cmr.Declared Pins � dp)
Target:cdt :CDataT oken, where (cdt.PinName
= dp.Name ∧ cdt.Binding = dp.Binding ∧
cdt.DataMultiplici t y = dp.DataMultiplici t y
∧ cdt.TokenMultiplici t y = dp.TokenMultipli
ci t y ∧ cj.Tokens � cdt)

6. To each batch, add tokens based on the pins of the
application or module release that was the basis for
its creation.
Source: cjb : C JobBatch, uc : UnitCall, cdp :
ComputedDataPin
Condition: (∃(car : ComputationApplication
Release, ct :CTask), such that (Rule(2)(uc, car,
ct → cjb)) ∨ ∃(cmr : ComputationModuleRe
lease, ct : CTask), such that (Rule(4)(cmr, ct →
cjb) ∧ uc.Unit = cmr) ∧ uc.Pins � cdp
Target:cdt :CDataT oken, where (cdt.PinName
= cdp.Name ∧ cdt.Binding = cdp.Binding ∧
cdt.DataMultiplici t y=cdp.DataMultiplici t y
∧TokenMultiplici t y = cdp.TokenMultiplici t y
∧ cjb.Tokens � cdt)

7. If the task contains more than one batch, add tokens
based on all declared pins in the outermost appli-
cation to that task.
Source: ct : CTask, car : ComputationAppli
cationRelease, uc :UnitCall, ddp : Declared
DataPin

Condition: ∃(cjb1 : C JobBatch, cjb2 :
C JobBatch), such that (cjb1 �= cjb2) ∧
uc.Unit = car ∧ �(uc2 : UnitCall), such that
(child(uc, uc2)) ∧ car.Declared Pins � ddp
Target:cdt :CDataT oken, where (cdt.PinName
= ddp.Name∧ cdt.Binding = ddp.Binding ∧
cdt.DataMultiplici t y=ddp.DataMultiplici t y
∧TokenMultiplici t y=ddp.TokenMultiplici t y
∧ ct.Tokens � cdt)

Note that the first four above rules are responsible
for creating the structure of the target CAL-Executable
program – the task with contained batches and jobs.
The last three rules are responsible for creating tokens
associated with appropriate tasks, batches, and jobs.

5.3 Operational Semantics of CAL-Executable

Having defined the translation from CAL to CAL-
Executable we should now complement the specifica-
tion of CAL semantics by formally defining the seman-
tics of CAL-Executable. To do this, we use the opera-
tional semantics approach. We will define an abstract
machine with a set of configurations and a set of tran-
sition relations (a transition system [60]).

Definition 2 A CAL-Executable Abstract Machine is
a tuple M = 〈T, B, J, ρB , ρJ 〉 where:

• T is a finite set (of tokens)
• B is a finite set (of batches)
• J is a finite set (of jobs)
• ρB : T −→ B (is the batch execution starting

relation)
• ρJ : T , B −→ J (is the job execution starting

relation)

where X denotes a finite set of elements where each
element belongs to X .

These elements of the abstract machine correspond
to the syntactical structure of CAL-Executable pro-
grams, consisting of job batches, jobs, and tokens.
Batch and job sets correspond directly to the batch
and job definitions in a CAL-Executable program. The
token set is treated differently. For constructing token
sets, we treat CDataTokens with the same TokenNo
and Binding as the same token (even if they have differ-
ent PinNames). Finally, the execution starting relations
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correspond to the containment of tokens in appropri-
ate batches and jobs. For these relations, the tokens are
also treated the same as described above.

Based on this definition, we can specify a transition
system. First, we define the following instance sets:

• IS is a finite set of unique identifiers
• T i = {〈t, i〉 | t ∈ T, i ∈ IS} (is a finite set of

token instances)
• Bi = {〈b, i〉 | b ∈ B, i ∈ IS} (is a finite set of

batch executions)
• J i = {〈 j, bi〉 | j ∈ J, bi ∈ Bi} (is a finite set of

job executions)

According to this, our abstract machine during exe-
cution operates on appropriate sets of token, batch, and
job instances. Token and batch instances are distin-
guished through unique identifiers. Job instances are
identified through their assignment to specific batch
instances.

The resulting transition system is thus defined as
follows. Its set of configurations � is:

• � = T i × Bi × J i

and the set of transition relations � is:

• �B = {〈〈at, b, j〉, 〈at, db, j〉〉 | a, t ∈ T i, d ∈
Bi, b ∈ Bi, j ∈ J i, d /∈ b, d1 = ρB(a1), ∀e ∈
a : d2 = e2}

• �J = {〈〈at, db, j〉, 〈t, db, cj〉〉 | a, t ∈ T i, d ∈
Bi, b ∈ Bi, c ∈ J i, j ∈ J i, c2 = d, c1 =
ρJ (a1, d1), ∀e ∈ a : e2 = d2}

• � = �B ∪ �J

The first transition set �B pertains to creating new
batch executions based on the batch execution start-
ing relation ρB . The source configuration 〈at, b, j〉 is
transformed such that a new batch execution d is added
to the current set of batch executions. For such a trans-
formation to be executed, two conditions need to be
met. The first condition simply requires that the current
set of batch executions b does not yet contain the new
batch execution d. The second condition is applied to
the current set of token instances. This set should con-
tain a subset of token instances a, compliant with the
batch execution starting relation ρB . By this, we mean
that there exists a batch in relation ρB with exactly such
a set of tokens, that all of these tokens are the first ele-
ments of token instance tuples in a and all of them have
the same identifier (second element of token instance
tuples). Moreover, the first element of the new batch

execution tuple d1, will be set to this above-mentioned
batch, and the second element of the tuple d2, will be
set to the above-mentioned identifier.

The second transition set �J pertains to creating
new job executions based on the job execution start-
ing relation ρJ . The source configuration 〈at, db, j〉 is
transformed such that a new job execution c is added
to the current set of job executions. Moreover, a subset
of token instances is removed from the current set of
token instances. For such a transformation to be exe-
cuted, two conditions need to be met. The first condition
simply requires that the current set of batch executions
contains a batch execution d that is the second element
of the new job execution tuple c2. The second condition
is applied to the current set of token instances and is
analogous to the second condition of the transition set
�B , but pertaining to job execution. This also involves
the batch d1 (the first element of the batch execution
tuple d) that needs to participate additionally in the job
execution starting relation ρJ .

6 Language Implementation

The presented syntax and semantics of CAL and CAL-
Executable were used and implemented as a basis for
constructing a full Large Scale Computing system -
the BalticLSC system.1 The system offers a web-based
user interface and is currently freely available for appli-
cation developers. The overall architecture of the sys-
tem is presented in Figs. 8 and 14. Figure 8 shows the
main components of the Master Node that are respon-
sible for the management and execution of CAL pro-
grams. This includes mechanisms for distributing com-
putations to be performed on the various Cluster Nodes
registered in the system.

CAL programs can be developed using the CAL Edi-
tor available through the BalticLSC FrontEnd compo-
nent, as illustrated in Fig. 9. The editor is web-based and
implements the full syntax of CAL. Individual Com-
putation Modules can be added to the editor’s toolbox,
placed on the canvas and their pins connected through
data flows. The editor assures dynamic validation of
syntax, not allowing for incorrect connections. CAL
diagrams are dynamically stored in the DiagramReg-
istry component through an appropriate API. Note that
a detailed discussion of the FrontEnd component and

1 www.balticlsc.eu.
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Fig. 8 Master node structure

the design details of the CAL Editor is out of the scope
of this paper.

Applications expressed in CAL can be run from the
BalticLSC Computation Cockpit illustrated in Fig. 10.
The user can select an application and initiate a new
task. All the current and finished tasks can be accessed
and examined. For example, Fig. 11 shows one of the
task executions (X8) from Fig. 10. As we can see, one of

the job instances in this task has failed and the user can
diagnose the problem by examining the final message
and the appropriate logs (not shown in the figure).

Whenever a new task instance is created, appro-
priate CAL diagrams are accessed through the IDia-
gram interface of the DiagramRegistry component (see
again Fig. 8). The CAL program associated with the
given application is first processed by the TaskManager
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Fig. 9 CAL editor - example application

component. This component uses the translational
semantics rules to translate from CAL to CAL-Exec
and stores the result in the TaskRegistry component. It
also uses the UnitRegistry component to access defini-
tions of Computation Units.

Following this, the TaskManager initiates the
TaskProcessor component. This is done by passing
DataToken instances received from the Frontend (spec-
ified by the user). The TaskProcessor accesses the

CAL-Exec code stored in the TaskRegistry. Based on
the received DataTokens, it interprets the CAL-Exec
code to start JobBatch and Job instances. This is done
with the help of the MultiQueue component. All the
token instances are pushed to specific queues, which
form groups that trigger respective job instances. This
triggering is done according to the operational seman-
tics of CAL-Exec. The queue component helps in man-
aging multiple tokens that need to be directed to appro-

Fig. 10 Computation Cockpit - example tasks for an application
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Fig. 11 Computation Cockpit - example task execution

priate job instances. For instance, some tokens with the
same token number need to be transported to the same
job instance, and others need to be distributed between
several job instances. This mechanism is to some extent
similar to that found in WS-PGRADE [45] but uses
multi-level sequence identifiers contained in the tokens
(metadata).

Token instance distribution done by the TaskProces-
sor in cooperation with the MultiQueue is illustrated in
Figs. 12 and 13. The figures show example task execu-
tions for the CAL-Exec programs from Figs. 6 and 7.
Token instances are denoted by circles with numbers
corresponding to the token numbers as specified in the
respective CAL-Exec programs. Figure 12a shows an
initial step in task execution. An instance of token no.
1 has already been provided by the user and is waiting
in the MultiQueue (denoted by “MQ”). At this moment,
an instance of token no. 2 is sent from the front end and
inserted into the queue (denoted by a solid arrow). This
causes the initiation (denoted by a dashed arrow) of a
new job batch execution “be101”. This is consistent
with the definition of the respective job batch (“b002”
in Fig. 6) that requires the arrival of tokens no. 1 and 2.

In the next instance, the arrival of tokens 1 and 2
causes the initiation of job execution “je104” according
to the definition of job “j004” (see Fig. 12b). Following
this, “je004” can start its execution and consecutively
produces token instances according to its job definition.
Since the provided (output) DataTokens of “j004” are
of “multiple token” type, the job execution can produce
several tokens numbered “4” and “5”. In our example,
“je104” produces two sequences of two tokens which

are shown in Fig. 12c. Tokens in a sequence are addi-
tionally numbered by the execution engine to keep track
of token ordering (sequence numbering is denoted by
numbers in squares; the final token in a sequence is
denoted by an “f”).

Figure 12d shows the status of task execution dur-
ing the processing of token sequences produced by
“je004”. Based on the initiation rules for jobs “j005”
and “j006”, the execution engine starts several instances
of these jobs (“je105”, “je205”, “je106” and “je206”)
and passes appropriate token instances to them. These
new job executions start processing and finally pro-
vide tokens according to the definitions of jobs “j005”
and “j006”. As shown in Fig. 12e, the sequence num-
bers created by “je004” are maintained by the execu-
tion engine. After providing tokens on their output, job
instances are terminated.

Figure 12f illustrates one of the further steps in token
processing. It shows the initiation of an instance of the
job “j007”. It can be noted that the MultiQueue compo-
nent takes care of grouping token instances according
to sequence numbering. Thus, job execution “je107” is
created only after the arrival of tokens numbered “6”
and “7” with the same sequence numbers (here: “2f”).
Consecutive groups of matching tokens initiate consec-
utive job executions, which is illustrated in Fig. 12g.

Figure 12h and i show the final steps in the exam-
ple task execution. Job executions “je107” and “je207”
produce tokens numbered “3”, still maintaining the
additional sequence numbering started by “je104”. At
this point, we should note that the output DataToken
of the job “j007” is typed “single token” and “single
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Fig. 12 Example flow of tokens in task execution (“strong” mode)

data” (token no. 3, see Fig. 6 again). At the same time,
the output DataToken of batch “b002” (also no. 3) is
typed “single token” and “multiple data”. This means
we need an additional job that will gather individual
data items sent by the job executions of job “j007” and
place them in a data folder. The additional job execu-
tion (“je208”) is shown in Fig. 12i. It is equivalent to a
job with an input DataToken typed as “multiple token”
and “single data” and produces a single output token
typed as “multiple data” (a folder).

Figure 12 is silent on the actual flow of data (files)
which obviously follows the flow of tokens. The Balti-
cLSC execution environment handles data transfer
between external storage and the computation nodes
on which job batches are executed. In our example, an
appropriate copying job is executed when tokens no.
1 and 2 are delivered. It copies files specified by these
tokens to the internal storage of the appropriate con-
tainer holding the appropriate batch execution (here:
“be102”). Since all the jobs in our first example are
computed within one batch execution (within a single
computation node), there is no need to copy any data.

The tokens simply pass pointers to appropriate data ele-
ments kept in the internal storage. Finally, when a token
is produced by the job execution “je208”, an appropri-
ate copying job sends the resulting folder (holding files
specified by the tokens with no. 3) to an appropriate out-
put storage. This way, the user can access the results of
computations.

The issue of data transfer and job execution becomes
more complex when a given task is executed in “weak”
mode. This is illustrated in Fig. 13, which shows some
key steps in the execution of a task based on the pro-
gram from Fig. 7. Figure 13a shows the situation where
“je108” has produced tokens no. 4 and 5, and appro-
priate jobs are being created. In this mode, it causes
the creation of another batch execution which can be
assigned to a different (possibly geographically dis-
tant) computation node. In Fig. 13b, we can notice the
next step, in which another pair of tokens with a differ-
ent sequence number (“2”) is produced. This, in turn,
causes yet another batch execution (“be204”) to be cre-
ated. Note that the execution environment makes sure to
start the various executions of jobs “j009” and “j010”
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Fig. 13 Example flow of tokens in a task execution (“weak” mode)

together in the same batches, keeping track of their
sequence numbering. This is consistent with the CAL-
Executable program in Fig. 7, which assures that jobs
“j009”, “j010” and “j011” are kept together.

Figures 13c shows the situation where an execution
of job “j011” is created in the same batch execution
as the previously executed (and now terminated) exe-
cutions of jobs “j009” and “j010”. Finally, Fig. 13d
shows the final step, where an additional copying job
is created in a separate batch execution. Similarly to
the previous example, all the tokens numbered “3” are
directed to this new job. The distribution of batch exe-
cutions potentially between several computation nodes
necessitates additional data transfer. Thus, the execu-
tion environment introduces additional copying jobs.
It keeps track of the various batch executions and
assures that appropriate data elements (files, folders),
are copied between the containers holding these dis-
tributed batch executions.

Individual batch executions and contained job exe-
cutions are assigned to specific computation nodes (or
“cluster nodes”). This is done through the JobBroker
component shown in Fig. 8. This component has access
to the NetworkRegistry that holds information about
available cluster nodes. When a new batch execution is

to be started, the JobBroker checks the resources avail-
able in each node and compares them with the resources
required by the batch execution (determined from the
contained jobs). Following this, it sends a batch-starting
message to a selected cluster node. Note that the algo-
rithm for assigning batches to cluster nodes is out of
the scope of this paper.

Each cluster node is equipped with an installation
of a container execution environment (currently, the
system supports Kubernetes and Docker Swarm) and
mechanisms for managing job batches assigned for exe-
cution on the given cluster - see Fig. 14. Communica-
tion between the master node and the cluster nodes is
based on DataToken instances. These tokens are passed
through appropriate interfaces - the BalticNodeAPI and
the BalticServerAPI. In addition, the BalticNodeAPI
allows for passing appropriate messages for starting
and terminating Job Batch and Job instances. This is
managed on each cluster by the BatchManager com-
ponents. All the batch/job instance initiation and ter-
mination actions are scheduled by the ClusterManager
components that interact directly with appropriate con-
tainer execution environments (Kubernetes or Docker
Swarm). Ultimately, these mechanisms allow for the
parallel execution of containerised job instances. Each
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Fig. 14 Cluster node
structure

JobInstance container implements a JobAPI that allows
for the handling of DataToken instances by the individ-
ual job instance. The tokens produced by job instances
are sent through the TokensAPI, implemented by the
BatchManager.

JobInstance containers implement computation
module releases (see Fig. 3). Each such module should
be built as containerised software that receives the input
data, performs the task, and sends the output data. How-
ever, there are no restrictions on what technologies
(operating systems, programming languages, frame-
works, etc.) are used. Communication with the Balti-
cLSC Environment has to be done using the above-
mentioned APIs. As was described, the communication
between modules and the system is done using data
tokens. Thus, a module should implement and use sev-
eral predefined methods as REST API endpoints and
read the appropriate configuration data from environ-
ment variables.

There are just two methods to be implemented by a
module:
• ProcessTokenMessage - accepts a message con-

taining an input data token and responds with a
simple integer denoting the initial status of token
validation;

• GetStatus - responds with an appropriate job sta-
tus object denoting the current status of data pro-
cessing.

Moreover, there are just two methods to be used by
a module:

• PutTokenMessage - sends a message containing
an output data token and receives a simple integer
response;

• AckTokenMessages - sends a special message
acknowledging the completion of a complete com-
putation execution..

In short, the code of the computation module should
comply with the following life cycle.

1. Read appropriate configuration data and set up con-
nections with the infrastructure (data stores, API
endpoints, etc.)

2. Receive one or more input data tokens on the Pro-
cessTokenMessage endpoint.

3. Perform the designated task - process input data
and build output data tokens.

4. Send an output data token using the PutTokenMes-
sage endpoint whenever one is ready.
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5. When the computation execution ends, send an
acknowledgement message using the AckToken-
Messages endpoint.

To make the development of the modules easier, we
provide templates for C# and Python, which hide all
the technical details related to communication through
the REST API and storing data in remote storage.
More information about the development of computa-
tion modules can be found in the technical documenta-
tion in the “Download” section of the BalticLSC web-
site.

7 Case Study Example - Waste Collection Logistics
Optimisation

To show the applicability of CAL to solving various
computation problems, we will present a real-life case
study. The aim of the case study is to show how the
BalticLSC Environment and CAL could be used to
handle non-trivial large-scale computing tasks. The
emphasis was on the CAL’s ability to combine stand-
alone computation modules into a single app and reuse
the built apps and modules for other tasks.

The case study involves a company that develops
a software component that optimises routes of waste
collection vehicles. For the given set of customers, the
vehicle fleet, and the waste fields, we need to com-
pute an optimal (as short as possible) route. The vehi-
cle capacity and the customer demand are considered
while doing the optimisation. This results in solving the
Capacitated Vehicle Routing Problem (CVRP) [61].
Since such computation problems are NP-hard, they
take significant time and computation resources.

The task can be split into three main steps:

1) The coordinates (latitude and longitude) have to be
found for the set of geographical objects (clients,
vehicle depots, waste fields) given as addresses.
This is called geocoding.

2) The distance matrix containing the road distances
between all geographical objects in the task has to
be computed.

3) Optimisation of the route has to be performed con-
sidering the capacity of vehicles, client demand and
road distances between clients, waste fields, and
depots.

The data model of modules’ inputs and outputs is
depicted in Fig. 15. There are two main classes (besides

road maps) of objects that the modules are operating
on. The first is the XGeoWasteLogisticsObject class.
Instances of this class contain domain-specific (e.g.,
capacities of vehicles and amount of clients’ demand)
and geographical information (addresses). They are
used as the input to the application we have built for
the use case. The second is the XLocation class which
describes the geographical location - longitude and
latitude. The XDistance class instances refer to these
objects but contain the actual road distance between
these objects. Information on actual distances and coor-
dinates is used internally by the computation applica-
tion.

For each step, an independent computation module
has been built according to the description in the pre-
vious section.

1) Geo Coder. The module requires a list of objects
with addresses (XAddressable instances) and
provides a list of coordinates (XLocationObject
instances) for these objects. The module uses an
external service – the OpenCage GeoCoding API
(https://opencagedata.com/api).

2) Geo Router. The module finds the shortest distance
between all given locations using the road network
given by the map of the region where the loca-
tions are situated. Thus, the Geo Router module
requires the list of locations (e.g., XLocationOb-
ject instances provided by the Geo Coder) and an
OpenStreetMap file describing the region. The Geo
Router provides a list of distances between objects
(XDistance instances). This, in fact, forms the dis-
tance matrix for these objects. The Geo Router
uses the open-source routing engine GraphHopper
(https://www.graphhopper.com/).

3) Geo Waste Logistics Optimizer. The module opti-
mises the route for the given set of vehicles, cus-
tomers, and waste fields. Thus, the module requires
a list of the mentioned objects (XGeoWasteLogis-
ticsObject instances) and the distance matrix (dis-
tances between all the objects described by XDis-
tance instances) for these objects. It provides a list
of optimised routes - sequences of the customers
that the vehicles should visit in the given order. The
module uses the open-source optimisation engine
OptaPlanner (https://www.optaplanner.org/).

Firstly, we build a computation application - the Dis-
tance Matrix Calculator (see Fig. 16) that computes the
distance matrix for the given set of addressable objects
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Fig. 15 Waste Collection Logistics Optimisation - data model

and the road map of the region in which these objects
are located. This app can be used independently of this
use case whenever a distance matrix is needed. There
are two required (input) data pins. The “Objects with
addresses” data pin is of “multiple data” type, while the
“Map” data pin is “single data”. Thus, the app receives
a single map file and multiple data files containing the
objects’ information. The usage of the “multiple data”
pin allows the BalticLSC System to split data and par-
allelize the execution of the Geo Coder module to mul-
tiple job instances. Unlike in the previous examples,
where the splitting and merging of computation mod-
ules provided the possibility of concurrent execution
of job instances, the splitting is hidden behind the mis-
match of data multiplicity of data pins on the opposite
sides of the data flow. Since the Geo Coder module
processes just one data item (token) at a time, the exe-
cution of the module (regardless of whether concurrent
instances are present or not) produces a sequence of
new data items (tokens) on the provided (output) data
pin of the module. Thus, the next module, Geo Router,
has a required “multiple token, single data” pin called
“point_ list”. It collects all the produced coordinates

and, in fact, acts as a merger. The Geo Router also
requires a map passed straight from the declared data
pin. The module produces a list of distances – the dis-
tance matrix passed to the app’s provided declared data
pin called “Matrix”.

Secondly, we reuse the distance matrix calculation
app and build the Waste Collection Logistics Opti-
misation Application (see Fig. 17). The app has three
required data pins (inputs). Two are needed to pass
the data to the Distance Matrix Calculator (“Objects
with addresses” and “Map”). The third pin is used to
pass domain objects to the Geo Waste Logistics Opti-
mizer module. In fact, it would be enough to have
just one data pin instead of the “Objects with capac-
ities” and “Objects with addresses” (they are copies
of the same objects). However, due to the limitations
of the data transformation capabilities of CAL, two
pins are required. Note that the data multiplicities of
both pins differ. The Geo Waste Optimizer module has
two required data pins. The “AllGeoObjects” data pin
receives a single file containing all the domain objects,
while the “DistanceMatrix” data pin receives a single
file containing the distance list between these objects

Fig. 16 Distance Matrix
Calculator Application
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Fig. 17 Waste Collection
Logistics Optimisation
Application

produced by the Distance Matrix Calculator app. The
result is a single file containing sequences of domain
objects as routes for each vehicle in the task. It is passed
through the provided declared data pin “Routes,”.

The application and its individual modules have
been implemented and tested and are currently avail-
able for reuse in the BalticLSC system. Through this
case study, we have shown how computation modules
can be reused for multiple computation applications
and how a computation application can be reused in
another computation application. The usage of the built
modules is much broader than just the waste collection
optimisation domain. Distance matrices, and generally
– distances between geographical locations, are needed
in a wide range of domains related to transportation
and logistics. Even each of the modules separately is
reusable. Geo-coding, as well as geo-routing, can be
useful for different purposes, e.g., for GIS analysis and
cartography. Thus, thoughtfully chosen “bricks” (in the
case of BalticLSC the developed computation mod-
ules) can serve as building blocks for a wide range of
possible computation applications in various domains.
CAL and its execution environment is a usable “glue”
to make them work together in parallel without the need
for a steep learning curve or deep knowledge of under-
lying technical details.

8 Conclusion and Future Work

The presented general-purpose language allows the
definition of distributed and parallel computations in
a visual, low-code way. It has simple graphical syntax
and precise runtime semantics. The language imple-
mentation comprises an online graphical editor and
a comprehensive execution environment (BalticLSC).
An important characteristic of CAL is that its pro-

grams operate at a high level of abstraction, where the
fundamental entities are reusable computation units.
Synchronisation of computations is based on flowing
data that arrive at the inputs of specific unit instances.
The flow of computations in a CAL application is con-
trolled by data produced by the computation units. This
characteristic of CAL allows for the automatic distribu-
tion of computations and optimisation of data transfer
between computation nodes.

Developing a CAL-based Large Scale Computing
application requires programming at two distinct lev-
els. The first level uses a visual language that people can
use without advanced knowledge of distributed pro-
gramming and parallelization. At this level, the pro-
grammer concentrates on the actual computation algo-
rithm in terms of high-level computation steps and data
flowing between these steps. The second level is the
development of computation modules. This requires
typical programming and technical skills but does not
require advanced parallel and distributed program-
ming. The developed modules can be reused easily
within CAL programs, thus avoiding code duplication.

From the perspective of the CAL user, the program-
ming task consists in selecting and reusing “compu-
tation blocks”, and then defining data flows between
these blocks. CAL programmers can reflect the flow
of data between different computation steps in a natu-
ral way. At the same time, the execution environment
allows for easy management and structuring of user’s
data sets which reflect specific data types. Addition-
ally, the “computation block” structure facilitates the
reusability of code. The CAL programmer can reuse
computation modules, use entire computation appli-
cations as computation modules in new applications,
and even reuse data sets between different computa-
tion tasks. On the other hand, module developers can
easily reuse existing software, e.g. in the form of an
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existing library, by incorporating them directly into a
computation module. This makes the solution available
to every CAL programmer in the future.

Thanks to its data-flow orientation and the online
execution environment, CAL abstracts away all techni-
calities associated with parallelization and distribution
of computing (even across many computation clusters
– cf. batches). Additionally, the data-flow orientation
of the language allows for easy “serial” parallelization
of computations by automatically processing multiple
tokens simultaneously without the prerequisite of par-
allelization knowledge from the end-user. Therefore,
the end-user can focus on the complexity of data, its
dependencies and processing without manually man-
aging computation parallelization and orchestration.

It can be noted that the individual computation mod-
ules (processing steps) can be designed with varying
levels of granularity. However, one must remember that
a computation module is implemented as a container.
Thus, this granularity should be a manageable size. This
also influences the granularity of parallel processing.
It is controlled mainly by the data flowing between
computation module instances (jobs). Thus, the proper
design of data pins (varying token and data multiplici-
ties) is crucial for allowing the BalticLSC Environment
to decide the number of parallel workers to be launched
for the same job depending on the availability of com-
putation resources.

The granularity of processing is also related to the
performance of computations. We have not done spe-
cific performance tests for the CAL implementation.
This is because the overall performance is determined
by the performance of computation nodes, the effi-
ciency of the computation modules code, containerisa-
tion environments, and data transfer to/from the nodes.
Execution logs collected in case studies show that the
times used for diagram translation and job brokerage
are minimal compared to the processing times and have
little or no impact on the total execution time. Thus, the
graphical nature of CAL does not significantly influ-
ence the performance of computations.

Another important related issue is the performance
of application development. The built-in reusability of
code in the form of computation modules and automatic
computation orchestration has a significant potential to
reduce the work required to develop computation soft-
ware, similar to other low-code solutions. The speed-up

should be much higher when many required computa-
tion modules are already available on the BalticLSC
platform. To foster this goal, CAL can be enhanced by
adding automatic transformation of data between mod-
ules, allowing for greater flexibility and reusability of
existing computation modules.

The future research agenda will be mainly based on
the development of further computation modules and
improving the usability of CAL. This would allow vali-
dating reduction of effort when using the CAL environ-
ment with a significant portfolio of reusable computa-
tion modules. To conduct such validation, the research
agenda would include experimental work comprising
controlled experiments comparing developers’ perfor-
mance using CAL and traditional programming mod-
els. Current results show promising results but are
based on anecdotal evidence. CAL has already been
used in several industrial applications and several stu-
dent projects (including Master’s degree projects). All
these examples show the usability of the language and
the relative ease of developing computation modules
based on existing computation libraries. However, this
needs to be systematically analysed, which will be the
subject of future research and publications.

Another interesting issue related to CAL that is
worth researching is the enhancement of CAL’s flexi-
bility regarding the execution environment. This would
consist in shifting from language interpretation (as in
BalticLSC) to its compilation. This would allow the
generation of “autonomous workflows” according to
the choreography approach, similar to that proposed by
the Flowbster system [47]. Compilation of CAL pro-
grams into other workflow specification formats would
also allow for integration with other distributed com-
putation ecosystems (like Galaxy, WS-PGRADE or
Flowbster), similar to that proposed by GeWWE [48].

In summary, in the future, we would like to enhance
and validate CAL’s potential to significantly foster the
use of Large Scale Computations. This is especially
important in the current world where programming and
especially advanced specialised programming skills are
scarce on the market. Based on our current results, we
can claim that CAL limits the required knowledge and
experience needed to develop di stributed applications.
Instead, it allows the language end-users to focus on the
complexity of the data they are working with, easing the
parallelization and orchestration process. In effect, we
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demonstrate how the low-code approach can be used to
define end execute workflows in distributed computing.
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