
https://doi.org/10.1007/s10723-023-09664-z

RESEARCH

Smart Caching in a Data Lake for High Energy Physics
Analysis

Tommaso Tedeschi · Marco Baioletti ·
Diego Ciangottini · Valentina Poggioni ·
Daniele Spiga · Loriano Storchi ·
Mirco Tracolli

Received: 23 August 2022 / Accepted: 13 April 2023
© The Author(s) 2023

Abstract The continuous growth of data production
in almost all scientific areas raises new problems in
data access and management, especially in a scenario
where the end-users, as well as the resources that they
can access, are worldwide distributed. This work is
focusedon the data cachingmanagement in aDataLake

T. Tedeschi (B)
Department of Physics and Geology, University of Perugia,
Via A. Pascoli, Perugia 06123, Italy
e-mail: tommaso.tedeschi@pg.infn.it

T. Tedeschi · D. Ciangottini · D. Spiga · L. Storchi · M.
Tracolli
Sezione di Perugia, INFN, Via Pascoli, Perugia 06123, Italy
D. Ciangottini
e-mail: diego.ciangottini@pg.infn.it

D. Spiga
e-mail: daniele.spiga@pg.infn.it

L. Storchi
e-mail: loriano@storchi.org
https://www.storchi.org/

M. Tracolli
e-mail: m.tracolli@gmail.com

M. Baioletti · V. Poggioni
Department of Mathematics and IT, University of Perugia,
Via A. Pascoli, Perugia 06123, Italy
M. Baioletti
e-mail: marco.baioletti@unipg.it

V. Poggioni
e-mail: valentina.poggioni@unipg.it

L. Storchi
Department of Pharmacy,University “G.D’Annunzio” ofChieti-
Pescara, Via dei Vestini, Chieti 60111, Italy

infrastructure in the context of theHigh Energy Physics
field. We are proposing an autonomous method, based
on Reinforcement Learning techniques, to improve the
user experience and to contain the maintenance costs
of the infrastructure.

Keywords Reinforcement learning · Caching
strategies · High energy physics · Data lake

1 Introduction

The Large Hadron Collider (LHC) [1] at CERN (the
European Organization for Nuclear Research) is the
world’s largest and most powerful particle accelerator.
The particle beams inside the LHC are made to col-
lide at four locations around the accelerator ring, cor-
responding to the positions of four particle detectors:
ATLAS [2], CMS [3], ALICE [4], and LHCb [5]. A
critical challenge at LHC is the next generation of the
accelerator expected for 2029, when the named High-
Luminosity Large Hadron Collider (HL-LHC) will be
fully operative: the upgraded machine will reach an
instantaneous luminosity of at least 5× 1034 cm−2s−1

and a center of mass energy of 14 TeV (with respect to
2×1034 cm−2s−1 and 13.6 TeV of current data-taking
period). As a result, data will be produced at higher
rates, with a greater event complexity. Consequently,
computing resources and storage requests from LHC
experiments will increase: as an example, for the
disk storage, the future requirements are estimated to

123

Journal of Grid Computing (2023) 21:42 

/ Published online: 12 July 2023 

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-023-09664-z&domain=pdf
http://orcid.org/0000-0002-7125-2905
http://orcid.org/0000-0002-0843-4108
http://orcid.org/0000-0002-2991-6384
http://orcid.org/0000-0001-5021-7759
https://www.storchi.org/


Journal of Grid Computing (2023) 21:42 

ultimately increase by a factor of around 2.5x by the
end of 2029 (Fig. 1). With such expectations, in par-
ticular considering that the system will start to man-
age Exabytes (instead of Petabytes) of data, it becomes
clear that software and computing of the experiments,
as well as the model adopted, must be reviewed and
improved through an intensive R&D activity, which
represents the key to lower future requests (moving
from the solid lines to the dashed ones in Fig. 1, to
make sure they stay inside the gray bands).

Recently, many architectural, organizational, and
technical changes have been investigated to address
the challenge of introducing a new data manage-
ment model: one of the most promising prototypes is
the Worldwide LHC Computing Grid (WLCG) Data
Lake model [7,8], a storage service of geographically
distributed data centers connected by a low-latency

network. In this model, from the infrastructural per-
spective, caching systems are used to mitigate latency
and to serve better popular data.

The goal of the presentwork is to provide an efficient
Reinforcement Learning (RL)-based caching system
which could be used by the WLCG collaboration, and
more specifically for the CMS experiment [3], which is
one of the biggest experiments at CERNand deploys its
data collections, simulation, and analysis activities on
a distributed computing infrastructure involving more
than 60 sites worldwide. Here, with respect to our pre-
vious work [9], we consider a new cache size (1000
GiB) and new algorithms: the new SCDL2 and the
DQNQCache implemented with different eviction fre-
quencies. The work is organized as follows. In Sec-
tion 2 a brief description of the Data Lake architec-
ture is given. Then, an introduction to the background

Fig. 1 2022 projections of
the increase of data storage
at CMS (both for disk and
tape), taken from [6]

123

42 Page 2 of 13



Journal of Grid Computing (2023) 21:42 

concepts needed to understand the project is provided
in Section 3. In Section 4 the proposed approaches are
presented, and comparisons with other solutions are
described. Section5 contains a description of the exper-
imental environment,while the experimental results are
described and commented in Section 6. Finally, Sec-
tion 7 provides some conclusive remarks.

2 Data Lake at WLCG

In the envisioned Data Lake [7,8,10] environment the
data can be relocated from one Data Lake to another,
and the most popular datasets may be hosted in more
than one Data Lake.

The environment components included in the Data
Lake model are:

• Archive Center (AC): responsible for archive cus-
todial data, the source of information. It should use
non-performant storage like tape drivers;

• Data and Compute Center (DCC): focused on disk
storage faster than AC (mechanical hard disks) but
with also computing power, it is used to increase
the quality of service (QoS) for analysis tasks;

• Compute Center with Cache (CCC): it is a center
focused on computation with a fast cache to serve
the analysis jobs;

• Compute Center with Direct Access (CCDA): a
poorer version of a Compute Center having also
a lower volume of the cache. It relies especially on
the network to access data. It has no disk space and
consumes computing jobs taking data from either
a CCC or a DCC.

It is clear that, in this context, the role of the cache
becomes the key to effective and efficient data access,
while saving the storage needs of the experiment. More
specifically, in this work we focus on the CCC compo-
nent reading from a DCC, evaluating and optimizing
the performances of the CCC cache system.

In terms of caching data management our main goal
is to solve a problem that has many affinities with a
Content Delivery Network, and with the web content
caching (especially when video file streaming is con-
sidered [11]). However, this project specifically tar-
gets the High Energy Physics research community, that
needs to optimize the data access in the Data Lake envi-
ronment while making the systemmore autonomous to
avoid the human intervention as much as possible. For

these reasons we chose a RL approach [12], that learns
to interact directly with the environment, self-adapting
to new situations in the context of Data Lakes, regard-
less of the data location or the current topology of the
network.

To summarize, themodelwe are considering ismade
of three basic components: the main storage system
(i.e., where the files reside), a cache that serves the
requests, and a client that requires the data. The main
goal of the caching system is clearly to resolve all the
client’s requests and serve the files from the cache.
This simplified model allows testing different policies
to control the request flow.

3 Background on Reinforcement Learning

As previously stated, the approach used in this work is
based on RL, which is one of the most important meth-
ods in Machine Learning (ML), and aims at training an
agent to interact with a particular environment.

RLdiffers from the other types ofMLbecause it puts
the learner in a situation of trial and error, where the
consequences of its actions have an impact on the envi-
ronment and also on the problem’s goal. Furthermore,
the agent is punished or rewarded on the basis of its
behavior, with the idea that, in the future, it will prefer
optimal actions and forego unwanted behaviors. As a
consequence, RL is focused on goal-directed learning
from interaction. For this reason, it differs from Super-
vised Learning because it does not use a set of labeled
examples provided by a knowledgeable external super-
visor.

One challenging aspect of RL [12–14] algorithm
is the trade-off between exploration (i.e., trying new
actions) and exploitation (i.e., applying what was
learned). The balance between them remains an unre-
solved problem and one of themost delicate parameters
to set.

3.1 Environment Description

The agent trained in RL [15] continuously interacts
with the environment as shown in a schematic way
in Fig. 2. At each time step, the agent observes the
environment, obtaining a state s, and chooses a certain
action a to execute, according to a given policy π . As
a consequence, it receives a reward (which can be neg-

123

Page 3 of 13 42



Journal of Grid Computing (2023) 21:42 

Fig. 2 Reinforcement Learning schema

ative, i.e. a punishment) r from the environment. The
ultimate goal is to maximize its cumulative reward, the
so-called return, hence finding the optimal policy π∗,
which maximizes the expected return when the agent
acts correctly.

The Optimal Action-Value Function Q∗(s, a) is the
function that computes the expected return if, starting
from s, the action a is executed applying the policy π∗.
Hence, the optimal action is selected as:

a∗(s) = argmax
a

Q∗(s, a) (1)

Moreover, theOptimalAction-Value Function Q∗(s,
a) obeys to the self-consistency Bellman equation:

Q∗(s, a) = E
s′∼P(·‖s,a)

[r(s, a)+ γ max
a′ Q∗(s′, a′)] (2)

where s′ identifies the next state (sampled from
the distribution P(·‖s, a) governing all environmen-
tal transitions) and γ ∈ [0, 1] is the so-called discount
factor.

3.2 Q-learning and Deep Q-learning

Q-Learning [16] is one of the best-known RLmethods:
in its simplest form, the agent tries to learn the Q∗(s, a)

function by acting ε-greedily, i.e. by selecting a random
action a with probability ε (that decays over time), oth-
erwise by selecting an action a according to (3).

a(s) = argmax
a′ Q(s, a′) (3)

The first behavior allows the exploration of all possi-
ble actions,whereas the second one allows the exploita-
tion of the knowledge gained by the agent.

Learned Q-values are stored in a tabular form for
each pair (s, a). The particular Q-value is updated at
each step according to (4)

Q′(s, a) ←− Q(s, a)+α(rt +γ max
a′ Q(st+1, a

′)−Q(st , at )).

(4)

The memory and computation required for the Q-value
algorithm would be too high for real-world scale prob-
lems thus, in several applications, Deep Neural Net-
works (DNNs), which approximate the Q-Learning
functions, are used (Deep RL).

In the present work, following the approach pro-
posed byMnih et al. [17], the Q-value function Q(s, a)

is approximated by aDNN,while the objective function
is still based on the Bellman Equation in (2).Moreover,
an experience replay buffer, as well as a target network,
are used to guarantee a stable training. This learning
algorithm is called Deep Q-Network (DQN).

4 Algorithms

4.1 Related works

The most used strategy to manage caches is a “Write
Everything” approach associated to a Least Recently
Used (LRU) or to a Least Frequently Used (LFU) evic-
tion policy [18–20]. It can be effective in most of
the cases, but it cannot deal with content popularity
and complex network topologies. Hence, recent efforts
have gradually shifted toward developing learning and
optimization-based approaches, and several ML tech-
niques have been proposed to improve file caching and,
in general, better content management.

L.Lei et al. [21] propose to train aDNNin advance to
bettermanage the real-time scheduling of cache content
into a heterogeneous network. In [22] aDeepRecurrent
Neural Network is applied to predict the cache accesses
and tomake a better caching decision, but this work has
been applied just to cache and synthetic dataset whose
sizes are far from the Data Lake volumes. Another
example of a prediction approach is presented in [23],
where predictions are used to optimize the eviction of
a cache with a fixed size. While, in [24], an attempt to

123

42 Page 4 of 13



Journal of Grid Computing (2023) 21:42 

automate the caching management of a distributed data
cluster using the Gradient Boosting Tree is presented.
It is evident that the environment is a critical aspect
that has to be taken into account when we talk about
caching management and, due to its variability, a more
flexible and autonomous solution that can adapt itself
is needed. To meet this need, techniques based on RL
approach have been recently proposed. In [25] a Deep
RL approach is used to cache the highly popular con-
tents across distributed caching entities in the context
of CDN. However, even if the system allows an online
adaptation, the experiment uses a few files that have to
be placed optimally in a hierarchical caching system.
There are also Deep RL approaches, like the Wolper-
tinger architecture [26] used by C. Zhong et al. [27],
that try to optimize the cache hit rate. But, in that case,
the authors assume that all the files in the cache have
the same size, and this is not always the case in High
Energy Physics context.

Thus, the problems solved by the cited works are not
fully comparable in size and needs with respect to the
ones that we are targeting in our project, where there
are a much larger number of files to manage and a huge
amount of requests per day to satisfy. Moreover, the
field of application is different and very specific. The
High Energy Physics context has a data access pattern
that cannot be always directly compared to other use
cases as we are dealing with a heterogeneous commu-
nity of users chaotically producing files of different size
and structure. Furthermore, there is a real necessity to
meet the future requirements with the current budget
constraints, otherwise the user experience will be dras-
tically compromised.

For these motivations, we consider three different
RL-based algorithms (SCDL, the new SCDL2 and
DQNQCache) to tackle the cache decisions in terms of
file eviction and addition, similarly to what is done in
[28] and depicted in Fig. 3. In the first two algorithms
a similar mechanism to the one used by the caching
system accordingly the WLCG Model (Section 2) is
used to prevent the cache memory to become too full
or too empty. The mechanism is based on a high (i.e.
Whigh) and a low (i.e. Wlow) watermark. When the
Whigh memory occupation is reached a file deletion
process starts and continues until Wlow memory occu-
pation is reached. The two watermarks are set to 95%
and 75% of the cache size, respectively for Whigh and
Wlow. The last algorithm, i.e. DQN QCache, only uses
the Whigh watermark.

4.2 SCDL, SDCL2 and DQN Qcache caching
algorithms

The Smart Cache for Data Lake (SCDL) algorithm has
been the first approach we proposed [29]. It is based
on the Q-Learning method and implements only the
addition agent. Here we are reporting only the related
pseudocode [30] (see SI for extra details).

Algorithm 1 Smart Cache for Data Lake (SCDL) algo-
rithm pseudocode.
function SCDL(request)

file ← request.filename
update the statistics with request
hit ← cache_search(file)
if not hit then

if random< ε then
action←random_action(state)

else
action←best_action(state)

end if
if action is Store then

cache_add(file)
end if

end if
delayed_reward(state)

end function

The SCDL2 (Smart Cache for Data Lake 2) [30] we
are presenting in the present work is an alternative to
the previous approach that uses two different agents to
solve the caching problem: the Addition Agent decides
whether a requested file has to be stored, while the
Eviction Agent chooses how to free the cache memory
removing all the files belonging to a specific file cat-
egory. While the Addition Agent focuses its decision
on the state of the request, the eviction agent decisions
depend more on the state of the cache memory. As
shown in Fig. 3, the goal is to modify the policies used
by the cache to decide whether to store a file and what
to evict. A pseudocode of this approach is available in
Algorithm 2.

When a file f is requested, the Addition Agent is
called in order to decide whether to store or not the
file f . The Eviction Agent is called only in particu-
lar situations: when it is necessary to free space in the
cache, at the end of each day, after k iterations (corre-
sponding to the number of requests made to the cache).
In those situations, it chooses which files to remove.
The two agents work with different state spaces: the
Addition Agent’s state s is quite similar to the SCDL

123

Page 5 of 13 42



Journal of Grid Computing (2023) 21:42 

Fig. 3 Reinforcement
Learning schema of the
double agent approach,
where the AI chooses both
the addition and eviction of
a file into the cache memory

algorithm. In this version, the state is enriched with the
cache occupancy percentage oc and cache hit rate hr .
As a consequence, states for the Addition Agent are
defined as:

Sa = b
(
s f , n f ,�t f , oc, hr

)
(5)

where b is the binning function.
On the other hand, the Eviction Agent composes its

state based on the cache memory content. Specifically,
the files stored in the cache memory are split into cat-
egories subsequently used to choose the set of files to
remove. Similarly to the Addition Agent, the Eviction
Agent uses s f , n f ,�t f to associate the file to a specific
category c, that contains all the files of a specific size
sc, that have been requested nc times and for which
�tc time has passed since the last request. Moreover,
for each category, also the amount of space occupied
by the category itself, named occ, is considered.

Those features, together with the features charac-
terizing the state of the cache oc and hr , are then dis-
cretized in a finite number of buckets, and they result
in the following state definition:

Se = be(sc, nc,�tc, occ, oc, hr) (6)

where be is the function mapping sc, nc, �tc, occ, oc
and hr to the corresponding classes.

The results of the agents’ decisions are stored into
two different Q-tables, where all the actions are eval-
uated for each possible state: additionTable and evic-
tionTable.

The action space for theAdditionAgent is composed
of two possibilities: Store and NotStore, whereas the
action space for the Eviction Agent contains five possi-
bilities:NotDelete,DeleteAll,DeleteHalf,DeleteQuar-
ter and DeleteOne, that delete respectively no files, all
the files, a random half, a random quarter or a single
random file belonging to the category. These methods
identify how a selected category has to be managed.
The choice of considering a finite number of actions
for each specific category, instead of having a different
delete action for each file stored in the cache, reduces
the agent search space.

Since the decision of storing a file f affects the
cache composition, and its actual contribution can-
not be determined immediately, we decided to use a
delayed reward approach. Therefore, after each file
request, we store the action chosen by the agent. Then,
later in time, the agent will evaluate that decision with
a positive or a negative reward depending on specific
rules. For the Addition Agent, we assign a positive
reward of r = +1 to all Store actions that allowed
a later-requested file to be in memory. The action takes
an extra +1 if the situation passed from a miss to a hit
with that action. Similarly, the agent is penalized with
a reward r = −1 if the file was not in memory, and
it chose the NotStore action. In the latter case, if the

123

42 Page 6 of 13



Journal of Grid Computing (2023) 21:42 

file passed from hit to miss, there is an extra malus of
−1. For the Eviction Agent the rules are very similar,
but with the file category as target. In details, a positive
reward r = +1 is assigned to the action NotDelete if
the file is found in the cache at the request. Moreover,
there is an extra bonus of +1 if the cache occupation
is not increased in the current request iteration. Con-
versely, a negative reward r = −1 is assigned to the
action which deleted the file when a file of a specific
category is not found, and an additive malus of −1 is
given if the file passed from hit to miss.

To summarize, the environment chooses to penal-
ize those actions that cause the cache to perform more
work, such as writing new files and removing files to
free space. Thus, the agent tries to avoid non-useful
operations, and to minimize the cache actions.

Algorithm 2 Smart Cache for Data Lake 2 (SCDL2)
algorithm pseudocode.
function SCDL2(request)

file ← request.filename
update the statistics with request
hit ← cache_search(file)
if not hit then

if random< ε then
action←random_action_from_addition_agent(state)

else
action←best_action_from_addition_agent(state)

end if
if action is Store then

cache_add(file)
end if

end if
if trigger for eviction agent then

call_eviction_agent(request)
end if
delayed_rewards()

end function

Finally there is the DQNQCache approach which is
still based on the two agents depicted in Fig. 3.

5 Experimental Environment

Having introduced the three different caching algo-
rithms we implemented, in the following we present
the results and the metrics used to compare the differ-
ent approaches.

When the cache decides not to store a file, the latter
is served in proxy mode, which means that it will fall

Algorithm 3 DQN QCache algorithm pseudocode.
function DQN QCache(request)

file ← request.filename
update the statistics with request
hit ← cache_search(file)
if not hit then

if random< ε or addition memory size <

addition agent warm up counter then
action←random_action_from_addition_agent(state)

else
action←best_action_from_addition_agent(state)

end if
if action is Store then

cache_add(file)
end if
if addition memory size > addition agent warm up

counter then
batch←sample from cache addition memory
train addition agent on batch

end if
end if
if trigger for eviction agent then

for file in cache do
if random< ε or eviction memory size <

eviction agent warm up counter then
action←random_action_from_eviction_agent(state)

else
action←best_action_from_eviction_agent(state)

end if
if eviction memory size > eviction agent warm up
counter then

batch←sample from cache eviction memory
train eviction agent on batch

end if
end for

end if
if trigger look for elapsed time windows then

find_and_reward_elapsed_actions_and_add_to_memory()
end if

end function

back on the network. The Fig. 4 shows a schema of the
environment and the main statistics collected to evalu-
ate the cache behavior. The data allow us to define three
evaluation metrics, that will be detailed in following.

Accordingly to the previous description of the envi-
ronment, and to the schema represented in Fig. 4, the
data read from the storage is split into two sets:Read on
Miss (i.e., data served in proxy mode because files are
not stored in the cache memory), and Read on Hit (i.e.,
data served directly from the cache memory). An ideal
cache should be able to keep the Read on Hit as high
as possible, while maintaining the Read onMiss as low
as possible, aiming to unload as much as possible the
main storage server.

123

Page 7 of 13 42



Journal of Grid Computing (2023) 21:42 

Fig. 4 Simulation
environment schema
showing the several aspects
taken into account and the
units measured

In addition, since the simulator is used to stress the
cache decisions, in order to simulate the bandwidth
limit a simple threshold for daily requests is used, i.e.,
if the given limit is exceeded the request is processed
as a remote call and, consequently, is counted as a miss
(a similar mechanism is used in the real-world caching
systems where if a cache is overloaded the requests are
redirected to other caches).

To conclude, there are several parameters to keep
under control for the cache content management
improvement. It is not trivial to translate the gain
obtained by a specific algorithmwith respect to the final
user experience that is strictly related to data access.
Of course, the better the cached content is managed,
the greater is expected to be the end-user experience.
However, the main goal of the project is to automate
and facilitate the management of the cache layer for the
system maintainers.

5.1 Dataset

This work uses information on historical user analysis
activities at CMS. In order to get a first feedback on the
effectiveness of these approacheswe tested cacheswith
different sizes using data coming from the real world.
A dataset obtained from historical monitoring data of
the CMS experiment analysis jobs related to year 2018
[32,33], filtered for the Italian region, has been used.

To give the reader an overview of the dataset used,
in Table 1 we are reporting some overall statistics (see
SI for extra plots).

We can clearly notice that the number of tasks, i.e.,
group of jobs, is two orders ofmagnitude lower than the
number of jobs that can request several files as input.

Moreover, given the low standard deviations, we can
also assert that the daily number of users and sites (i.e.,
the place of the request representing a computing cen-
ter) stay relatively constant over the year. More impor-
tantly, the number of requests per file is low on average
(i.e., the average number of requests per file is ≈ 6
per file), and the number of files requested per day is
comparable to the total number of requests per day (the
value is greater than 104).

To summarize, there are a lot of requests per day
but the majority are unique requests, thus not an easy
scenario for a caching system.

5.2 Evaluation metrics

In order to evaluate and compare the different approaches
proposed in Section 4, we decide to monitor two main
aspects of the cache environment (Fig. 4), the Through-
put (TP) and the Cost. The T P is defined as following:

T P = RHD

RHD∞
(7)

where RHD (Read on Hit Data) represents the total
amount of data that are read directly from the cache.
Since RHD is an absolute quantity that depends on the
cache size, we decided to normalize it with respect to
the ideal upper bound computed on an infinite cache
RHD∞. In this case, the amount of data that can be
read directly from the cache corresponds to the total
amount of data that has been written to the cache (i.e.,
if the cache is infinite we can write any data).

123

42 Page 8 of 13



Journal of Grid Computing (2023) 21:42 

Table 1 Overall dataset statistics

Quantity Mean St. Dev

File requests per day 35557 23495

Unique file requested per day 21792 12245

Average number of jobs per task (yearly) 116 493

Unique requesting users per day 46 12

Unique requesting sites per day 6.1 0.7

Average number of requests per file (yearly) 6 46

The Cost metric is defined as:

Cost = WD + DD

2 · WD∞
(8)

whereWD and DD represent the total amounts ofwrit-
ten and the deleted data, respectively. They are used
to measure how much the cache is working in terms
of pure cache operations with respect to WD∞, the
amount of data we can write to an ideal infinite cache.

It is important to note that we cannot evaluate our
approach considering the sole hit rate (i.e. the standard
measure used in cache evaluation) because thismeasure
assumes that all the files have the same size.

An evident desirable outcome is that the Throughput
is higher than the Cost, because the target is to max-
imize the cache memory content given a small oper-
ational cost. Consequently, we decide to use a Score
measurement defined as follows:

Score = T P

Cost
(9)

This metric penalizes the cache if the amount of data
served from the memory is too low with respect to the
cache writing and deleting activity.

6 Experimental Results

All the algorithms have been tested with the data
described in Section 5.1. Different cache sizes have
been simulated: 100 TiB, 200 TiB, 500 TiB, 1000 TiB.
ε decay rate is set to high values for SCDL and SCDL2,
whereas in the DQN QCache is tuned to dedicate the
first part of the year to the action-space exploration,
and the second part to the exploitation of the gained
knowledge.

Moreover, in DQN QCache approach, both DNNs
are 2-hidden-layer (using sigmoid activation) feed-
forward networks with 2 output nodes (using linear
activation), implemented with Adam optimizer (with
the Tensorflow’s default value of 0.001 as learning rate,
[34,35]) and Huber loss function (with Tensorflow’s
implementation default values, [36]). hwindow is set to
100000 for Addition agent, and to 200000 for the Evic-
tion agent.

Similarly towhat has beendone in our previouswork
[9], we compared the results obtained with the afore-
mentioned algorithms SCDL, SDCL2 (implemented
with different eviction approaches: simple LRU, evic-
tion when memory full, eviction at the end of the day,
eviction every K requests) and DQN QCache (imple-
mented with different values of eviction frequency),
with the results achieved with a “write everything”
approach implemented with different eviction algo-
rithms (LRU, LFU, Biggest Files first, Smallest Files
first), since the latter are the most used in caching envi-
ronments. Results are shown in Table 2 and in Fig. 5.

Looking at the results reported in Table 2 we can
observe that all the algorithms tested in [9], for caches
of size greater than 100 GiB, are outperformed in
terms of Score by one of the newly-tested approaches,
namely SCDL2 or DQN QCache with eviction fre-
quency different from 50000. More generally, RL
methods always show overall better performances, in
terms of Score, if compared to the standard cache poli-
cies, even though the LRU method always reached the
best Throughput value. This is related to the fact that
RL approaches generally make the cache less active
by doing the minimum number of operations to main-
tain a good cache composition: this results in a lower
amount of written and deleted files, and therefore in a
lower Cost , although the presence of missed files may
still affect the network. More specifically, the Addition

123

Page 9 of 13 42



Journal of Grid Computing (2023) 21:42 

Table 2 Comparison of results of different algorithms (daily
values averaged across the year): SCDL; SCDL2, implemented
with different eviction policies: simple LRU (noEviction), evic-
tion when memory full (onFree), eviction at the end of the day
(onDayEnd), eviction every K requests (onk) where K = 8192;
DQN QCache, implemented with different eviction frequencies

(indicated as kN, where N is the frequency); Write everything
approaches with different eviction policies: Least Recently Used
(LRU), Least Frequently Used (LFU), delete biggest files first
(Size Big) and delete smallest files first (Size Small). The best
result for each metric is displayed in bold

Algorithm - 100 TiB Score Throughput Cost

DQN (k50000) 0.340.340.34 0.40 1.191.191.19

SCDL 0.26 0.45 1.74

SCDL2 - noEviction 0.25 0.45 1.82

SCDL2 - onFree 0.22 0.41 1.87

SCDL2 - onDayEnd 0.20 0.39 1.93

Write everything + LRU 0.19 0.500.500.50 2.66

SCDL2 - onK 0.17 0.34 2.04

Write everything + LFU 0.15 0.43 2.86

Write everything + Size Big 0.12 0.37 3.05

Write everything + Size Small 0.11 0.36 3.09

Algorithm - 200 TiB Score Throughput Cost

DQN (k100000) 0.410.410.41 0.45 1.121.121.12

DQN (k50000) 0.35 0.41 1.16

SCDL 0.33 0.55 1.65

SCDL2 - noEviction 0.32 0.54 1.65

SCDL2 - onFree 0.28 0.48 1.73

SCDL2 - onDayEnd 0.25 0.45 1.83

Write everything + LRU 0.24 0.590.590.59 2.40

Write everything + LFU 0.20 0.52 2.58

SCDL2 - onK 0.17 0.35 2.04

Write everything + Size Big 0.15 0.42 2.89

Write everything + Size Small 0.13 0.39 2.98

Algorithm - 500 TiB Score Throughput Cost

DQN (k250000) 0.540.540.54 0.53 0.990.990.99

SCDL2 - noEviction 0.53 0.69 1.30

SCDL 0.51 0.72 1.41

SCDL2 - onFree 0.39 0.60 1.55

Write everything + LRU 0.39 0.740.740.74 1.90

Write everything + LFU 0.32 0.67 2.11

DQN (k50000) 0.31 0.47 1.51

SCDL2 - onDayEnd 0.28 0.49 1.75

Write everything + Size Big 0.22 0.54 2.52

Write everything + Size Small 0.18 0.48 2.70

SCDL2 - onk 0.17 0.36 2.04

Algorithm - 1000 TiB Score Throughput Cost

SCDL2 - noEviction 0.780.780.78 0.80 1.01

SCDL 0.71 0.83 1.17

DQN (k500000) 0.69 0.60 0.860.860.86

123

42 Page 10 of 13



Journal of Grid Computing (2023) 21:42 

Table 2 continued

Write everything + LRU 0.59 0.860.860.86 1.45

SCDL2 - onFree 0.55 0.70 1.27

Write everything + LFU 0.48 0.80 1.65

DQN (k50000) 0.34 0.41 1.21

Write everything + Size Big 0.33 0.68 2.07

SCDL2 - onDayEnd 0.30 0.53 1.78

Write everything + Size Small 0.26 0.59 2.32

SCDL2 - onk 0.18 0.36 2.04

Fig. 5 Histograms
reporting all the metrics for
each cache size and each
algorithm, see Table 2

123

Page 11 of 13 42



Journal of Grid Computing (2023) 21:42 

Agent is the main responsible for reducing the amount
of written data and selecting files to store in a more rig-
orous way, contributing to the Throughput. The Evic-
tion Agent affects the presence of the files in the cache,
evicting those which are expected not to be requested
anymore, contibuting to the overall decrease of theCost
of the system. Furthermore,we can attest that the differ-
ent mechanisms used to free the cache memory content
have a deeper impact on the general caching perfor-
mances with respect to the simple file-filtering. In the
case of DQN QCache, these results show that the evic-
tion frequency plays a key role, since DQN QCache
with different values of k perform differently in terms
of Cost , and therefore in terms of Score. Indeed, to
maintain the Cost at lower values, as the cache size
increases, the eviction frequency should be increased
accordingly.

Finally, and most importantly, it is crucial to under-
line a key aspect: in the present simulation each delete
or write operation is considered to be timeless. Reason
why, we are expecting that, in a real-world scenario, a
cache system that is less busy in writing and removing
files will be surely readier to distribute the requested
files to the clients, i.e, it will be more efficient and will
provide a final better use experience. Indeed the RL
approaches are always the top ranked with respect to
the Score, as clear evidence of this fact.

7 Conclusions

Recently the CMS community at CERN has started
to experiment with new models to manage the whole
computing infrastructure due to upcoming updates and
the huge amount of data foreseen for the next years,
exploring the possibility of moving towards a Data
Lake model. This new scenario imposes to find more
effective solutions to the data caching problem. Thus,
the role of the cache becomes a key to effective and
efficient data access.

In this work we extended our previous results [9]
introducing additional RL-based approaches and an
additional simulated cache size: results show that the
newly-introduced algorithms enhance the performance
gain related to the usage of RL with respect to the stan-
dard caching policies.

More generally,we can conclude that theRLcaching
algorithms we implemented showed better overall per-
formances in terms of Score, and especially in terms

of Cost, with respect to the standard policies using, for
example, LRU eviction strategy. Our RL approaches
make the cache less active by doing a lower number of
operations to maintain a good cache composition. This
results in a lower amount of written and deleted data.
While the presence of missed files still affects the net-
work, wewant to underline that we are expecting that in
a real-world scenario (where the time domain is taken
into account), a cache system that is less busy in writ-
ing and removing files will be surely more responsive
and quicker to serve the requested files to the clients.

Acknowledgements The authors thank the CMS collabora-
tion, and in particular theMachineLearning andOffline Software
and Computing groups for the valuable discussions that helped
the development of this work.

Author contributions T.T.M.T.L.S.D.S.wrote themanuscript
text and prepared figures. All authors reviewed the manuscript.

Funding This research received no specific grant fromany fund-
ing agency in the public, commercial, or not-for-profit sectors.
Open access funding provided by Universitá degli Studi di Peru-
gia within the CRUI-CARE Agreement.

Compliance with ethical standards

The authors declare no potential conflicts of interest.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Pettersson, T.S., Lefèvre, P.: The Large Hadron Collider:
conceptual design. Technical report (Oct 1995). https://cds.
cern.ch/record/291782

2. The ATLAS Collaboration: The ATLAS experiment at the
CERN Large Hadron Collider. J. Instrum. 3, 08003 (2008)

3. The CMSCollaboration: The CMS experiment at the CERN
LHC. J. Instrum. 3(08), 08004–08004 (2008)

123

42 Page 12 of 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://cds.cern.ch/record/291782
https://cds.cern.ch/record/291782


Journal of Grid Computing (2023) 21:42 

4. The ALICE Collaboration: The ALICE experiment at the
CERN LHC. J. Instrum. 3(08), 08002 (2008)

5. The LHCb Collaboration: The LHCb detector at the LHC.
J. instrum. 3(08), 08005 (2008)

6. CMS Offline Software and Computing: CMS Phase-2
ComputingModel:UpdateDocument.CERN-CMS-NOTE-
2022-008, available on the CERN Document Server as
https://cds.cern.ch/record/2815292. (2022)

7. Bird, I., Campana, S., Girone,M., Espinal, X.,McCance, G.,
Schovancová, J.: Architecture and prototype of a WLCG
data lake for HL-LHC. In: EPJ Web of Conferences, vol.
214, p. 04024 (2019). EDP Sciences

8. Kadochnikov, I., Bird, I., McCance, G., Schovancova, J.,
Girone, M., Campana, S., Currul, X.E.: WLCG data lake
prototype for HL-LHC. Advisory committee, 127 (2018)

9. Tedeschi, T., Tracolli,M., Ciangottini,D., Spiga,D., Storchi,
L., Baioletti, M., Poggioni, V.: Reinforcement Learning
for Smart Caching at the CMS experiment. In: Proceed-
ings of International Symposium on Grids & Clouds 2021
PoS(ISGC2021), vol. 378, p. 009 (2021)

10. Dixon, J.: Pentaho, Hadoop and Data Lakes.
https://jamesdixon.wordpress.com/2010/10/14/
pentaho-hadoop-and-data-lakes/. Last check April 9,
2020 (2010)

11. Adhikari, V.K., Guo, Y., Hao, F., Varvello, M., Hilt, V.,
Steiner, M., Zhang, Z.-L.: Unreeling netflix: Understanding
and improving multi-CDN movie delivery. In: 2012 Pro-
ceedings IEEE INFOCOM, pp. 1620–1628 (2012). IEEE

12. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An
Introduction. MIT press, Cambridge (2018)

13. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforce-
ment learning: a survey. J. Artif. Intel. Res. 4, 237–285
(1996)

14. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari
with deep reinforcement learning. arXiv:1312.5602 (2013)

15. Wiering, M.A., Van Otterlo, M.: Reinforcement learning.
Adapt. Learn. Optim. 12(3), 729 (2012)

16. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279–
292 (1992)

17. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland,
A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., Hassabis, D.: Human-level control through deep rein-
forcement learning. Nature. 518(7540), 529–533 (2015)

18. Zhang, M., Luo, H., Zhang, H.: A survey of caching mech-
anisms in information-centric networking. IEEE Commun.
Surv. Tutor. 17(3), 1473–1499 (2015)

19. Podlipnig, S., Böszörmenyi, L.: A survey of web cache
replacement strategies. ACM Comput. Surv. (CSUR) 35(4),
374–398 (2003)

20. Chen, C., Wang, C., Qiu, T., Atiquzzaman, M., Wu, D.O.:
Caching in vehicular named data networking: Architecture,
schemes and future directions. IEEE Commun. Surv. Tutor.
22(4), 2378–2407 (2020)

21. Lei, L., You, L., Dai, G., Vu, T.X., Yuan, D., Chatzinotas, S.:
A deep learning approach for optimizing content delivering
in cache-enabled hetnet. In: 2017 International Symposium
on Wireless Communication Systems (ISWCS), IEEE, pp.
449–453 (2017)

22. Narayanan, A., Verma, S., Ramadan, E., Babaie, P., Zhang,
Z.-L.:Deepcache:Adeep learning based framework for con-
tent caching. In: Proceedings of the 2018Workshop on Net-
work Meets AI & ML, pp. 48–53 (2018)

23. Lykouris, T., Vassilvitskii, S.: Competitive caching with
machine learned advice. arXiv:1802.05399 (2018)

24. Herodotou, H.: Autocache: Employing machine learning to
automate caching in distributed file systems. International
Conference on Data Engineering Workshops (ICDEW),
IEEE, pp. 133–139 (2019)

25. Sadeghi, A., Wang, G., Giannakis, G.B.: Deep reinforce-
ment learning for adaptive caching in hierarchical content
delivery networks. IEEETrans. Cogn. Commun. Netw. 5(4),
1024–1033 (2019)

26. Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P.,
Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., Cop-
pin, B.: Deep reinforcement learning in large discrete action
spaces. arXiv:1512.07679 (2015)

27. Zhong, C., Gursoy, M.C., Velipasalar, S.: A deep reinforce-
ment learning-based framework for content caching. In:
2018 52nd Annual Conference on Information Sciences and
Systems (CISS), IEEE, pp. 1–6 (2018)

28. Alabed, S.: RLCache: automated cache management using
reinforcement learning. arXiv:1909.13839. (2019)

29. Tracolli, M., Baioletti, M., Ciangottini, D., Poggioni, V.,
Spiga, D.: An intelligent cache management for data anal-
ysis at cms. In: International conference on computational
science and its applications, Springer, pp. 320–332 (2020)

30. Tracolli, M.: Open Source code. Available at https://github.
com/Cloud-PG/smart-cache/tree/master (2022)

31. Tedeschi, T.: Open Source code. Available at https://github.
com/Cloud-PG/smart-cache/tree/dQl_add_evic_no_gym
(2022)

32. Kuznetsov, V., Li, T., Giommi, L., Bonacorsi, D., Wildish,
T.: Predicting dataset popularity for the CMS experiment.
arXiv:1602.07226arXiv:1602.07226. (2016)

33. Meoni, M., Perego, R., Tonellotto, N.: Dataset popularity
prediction for caching of CMS big data. J. Grid Comput.
16(2), 211–228 (2018)

34. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado,G.S.,Davis,A.,Dean, J., Devin,M.,Ghe-
mawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster,M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,
Tucker, P.,Vanhoucke,V.,Vasudevan,V.,Viégas, F.,Vinyals,
O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: large-Scale machine learning on heteroge-
neous systems. Softw. available from tensorflow.org. (2015).
https://www.tensorflow.org/

35. Kingma, D.P., Ba, J.: Adam: a method for stochastic
optimization. arXiv:1412.6980. (2014). https://doi.org/10.
48550/ARXIV.1412.6980

36. Huber, P.J.: RobustEstimation of aLocationParameter.Ann.
Math. Stat. 35(1), 73–101 (1964). https://doi.org/10.1214/
aoms/1177703732

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

Page 13 of 13 42

https://cds.cern.ch/record/2815292
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1802.05399
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1909.13839
https://github.com/Cloud-PG/smart-cache/tree/master
https://github.com/Cloud-PG/smart-cache/tree/master
https://github.com/Cloud-PG/smart-cache/tree/dQl_add_evic_no_gym
https://github.com/Cloud-PG/smart-cache/tree/dQl_add_evic_no_gym
http://arxiv.org/abs/1602.07226arXiv:1602.07226
https://www.tensorflow.org/
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732

	Smart Caching in a Data Lake for High Energy Physics Analysis
	Abstract
	1 Introduction
	2 Data Lake at WLCG
	3 Background on Reinforcement Learning
	3.1 Environment Description
	3.2 Q-learning and Deep Q-learning

	4 Algorithms
	4.1 Related works
	4.2 SCDL, SDCL2 and DQN Qcache caching algorithms

	5 Experimental Environment
	5.1 Dataset
	5.2 Evaluation metrics

	6 Experimental Results
	7 Conclusions
	Acknowledgements
	References


