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Abstract Computational offloading allows lightweight 
battery-operated devices such as IoT gadgets and mobile 
equipment to send computation tasks to nearby edge 
servers to be completed, which is a challenging problem 
in the multi-access edge computing (MEC) environment. 
Numerous conflicting objectives exist in this problem; 
for example, the execution time, energy consumption, 
and computation cost should all be optimized simul-
taneously. Furthermore, offloading an application that 
consists of dependent tasks is another important issue 
that cannot be neglected while addressing this prob-
lem. Recent methods are single objective, computation-
ally expensive, or ignore task dependency. As a result, 
we propose an improved Gorilla Troops Algorithm 
(IGTA) to offload dependent tasks in the MEC environ-
ments with three objectives: 1-Minimizing the execu-
tion latency of the application, 2-energy consumption of 
the light devices, 3-the used cost of the MEC resources.  
Furthermore, it is supposed that each MEC supports 
many charge levels to provide more flexibility to the  
system. Additionally, we have extended the operation 
of the standard Gorilla Troops Algorithm (GTO) by 
adopting a customized crossover operation to improve 
its search strategy. A Max-To-Min (MTM) load-balanc-
ing strategy was also implemented in IGTA to improve 

the offloading operation. Relative to GTO, IGTA has 
reduced latency by 33%, energy consumption by 93%, 
and cost usage by 34.5%. We compared IGTA with other 
Optimizers in this problem, and the results showed the 
superiority of IGTA.

Keywords Multi-access edge computing · 
Computational offloading · Multi-objective gorilla 
troops · Dynamic needs · Task dependency

1 Introduction

Mobile Edge Computing or multi-access Edge com-
puting (MEC) is an evolution of the centralized cloud 
server that aims at decentralizing the cloud computing 
services close to end users at the network edge or Radio 
Access Networks (RAN) of mobile systems [1, 2]. The 
tremendous advances in Information and Communi-
cation Technologies (ICT), such as Internet of Things 
(IoT) technologies and Mobile Devices (MD), have wid-
ened the horizons of programmers towards discovering 
new and innovative applications that can automate and 
enhance our life. Examples of such applications are vir-
tual and augmented reality, face detection and recogni-
tion applications, surveillance systems, smart agriculture 
applications, smart healthcare applications, etc. [3, 4]. 
These applications call for high processing and storage 
requirements that cannot be fully provided by IoT and 
MD [5]. The first solution was to utilize cloud services, 
which suffered from bandwidth limitations and public 
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network conditions. A more powerful solution was the 
MEC server due to its proximity to the end devices that 
get it away from the public network limitations [6, 7].

MEC can be used in the client–server computing para-
digm, where a client requests a service from a nearby 
MEC server. This model reduces the burden on the pub-
lic network by getting cloud resources near the users [8]. 
MEC also can be used in the three layers computing para-
digm to support high computing and storage-intensive 
applications where the computing power can be divided 
into three locations, including MD, MEC, and the central 
cloud [9]. The computation offloading is a big challenge 
in the two mentioned computing paradigms. Computa-
tion offloading is the transmission of whole/some tasks 
of a target application to a powerful server for processing 
[10]. The modularity of the fine-grained programming 
principle facilitates the offloading process [11]. However, 
deciding which tasks to be offloaded to which server is 
a critical part of the MEC and cloud paradigm [12, 13]. 
Offloading some parts of an application while executing 
some parts locally with respecting the dependency rela-
tionship among tasks is still an open research point for 
which researchers try to find more efficient solutions. 
Since this is an NP-hard problem, many heuristics [14], 
metaheuristics [15], game-theoretic [16], mathematical, 
machine learning [17], and other algorithms were pro-
posed to solve this problem. However, these methods are 
single objective, complex to implement, computationally 
expensive, or ignore the dependency among tasks.

Metaheuristic algorithms have recently been devel-
oped to solve many optimization problems and confirm 
near-optimal solutions [18, 19]. One of the metaheuris-
tics is The Gorilla Troops Optimization algorithm 
(GTO) [20], inspired by the social intelligence of 
gorilla troops in the wild. In this paper, we formulate a 
multi-objective offloading problem of a set of depend-
ent tasks composing an application to multiple nearby 
MECs. Despite the extensive research on this point, 
our proposed work is different. We seek to provide a 
new innovative solution to the dependent task offload-
ing problem in the MEC environment. Our proposed 
work considers minimizing three main objectives, 
including energy consumption (E), MEC charge cost 
(C), and completion time latency (CT). We added the 
charge level factor to MEC server for providing more 
flexibility to the model. We depended on an improved 
version of the GTO algorithm, which is the first time 
to be used in this problem. Also, we extensively tested 

our algorithm with generated and standard topologies to 
ensure its efficiency. The comparison with other algo-
rithms has shown the superiority of our IGTA method. 
The results showed that Relative to GTO, IGTA has 
reduced latency by 33%, energy consumption by 93%, 
and cost usage by 34.5%. The main contributions can 
be summarized as follows:

• We proposed an Improved Gorilla Troops Algorithm 
(IGTA) for real-time dependent tasks offloading in 
the MEC environment by optimizing three conflict-
ing objectives simultaneously. In this regard, the 
Standard GTO algorithm is improved using a crosso-
ver operation, and the results have confirmed this 
improvement. Additionally, Each MEC is supposed 
to support multiple charge levels to add more flex-
ibility to the system. We also adopted two vector val-
ues mapping methods to map the continuous values 
of the produced vectors into discrete and bounded 
values. A detailed discussion of the IGTA steps is 
presented in Section 4.

• A Max-To-Min (MTM) load balancing strategy 
was implemented in IGTA to improve the offload-
ing operation. This important step is introduced in 
Section 4.5.

• Using a set of Standard and derived test cases with 
various topologies and task data, we have per-
formed simulation experiments to test the perfor-
mance of IGTA. The results demonstrate the supe-
riority of IGTA, as in Section 6.

The following sections are organized as follows. 
Section  2 introduces a brief discussion of the related 
works. In Section  3, the system model and problem 
formulation are discussed. Section 4 discusses the pro-
posed IGTA algorithm steps in detail. Section  5 pro-
vided an illustrative example to demonstrate the IGTA 
steps clearly. Experiments and results are discussed in 
Section 6. Finally, we conclude our work in Section 7.

2  Related work

MEC is the introduction of cloud services at the net-
work edge. The introduced storage, computing, and net-
working services are used by small capabilities devices 
like smartphones and IoT devices for executing latency-
sensitive tasks, computing hungry, and consuming large 
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energy for execution. Unlike cloud servers, the tasks 
can be scheduled among multiple nearby MEC servers 
[21]. Efficient allocation tasks to the available comput-
ing resources can reduce task processing time and energy 
consumption and maintain server load balance [22]. In 
this regard, effective task offloading utilizes the available 
computing resources and high bandwidth to improve the 
quality of service by reducing the system latency and 
minimizing the energy consumption and charge cost. 
Therefore, several research attempts have been conducted 
in this regard. 

The work in [23] uses two edge servers alterna-
tively for offloading the Mobile’s tasks to minimize 
both latency and power consumption. Storing a copy of 
the file after the first time processing is another strat-
egy implemented in this research for better results. 
Some attempts have been made using game-theoretic 
techniques in this regard. Authors in [24] formulated a 
Stackelberg game for multi-user computational offload-
ing problems in the MEC system to take an offloading 
decision that can minimize execution time and energy 
consumption goals. Another attempt in this regard was 
done [25], where the authors formulated a stochas-
tic game for modeling the offloading problem under a 
dynamic environment. The latency and energy con-
sumption were the two objectives that the authors of 
this research had considered.

Recently, heuristic and metaheuristic algorithms are 
gaining a lot of attention in solving optimization prob-
lems, so some attempts have been made in this regard. 
Authors in [1] suggested  a heuristic algorithm for 
obtaining an efficient solution to minimize the applica-
tion execution cost under a pre-allocated tasks’ finish 
times’ constraint. Authors in [12] and [26] depended on 
the whale optimization algorithm (WOA) to develop a 
task scheduling method to reduce completion time and 
energy consumption at the same time. In a homogene-
ous MEC case, the work of [27] formulated the depend-
ent task offloading  problem with pre-specified  service 
caching, then  introduced a favorite successor-based 
heuristic algorithm to reduce application completion 
time. Liu et al. [28] proposed a one-dimensional search 
algorithm to reduce task execution delay,  considering 
the application buffer queuing status and the processor 
state. Authors of [17] proposed a genetic algorithm (GA) 
based scheme to reduce task offloading time and failure 
risk. In the work of [29], Security, energy consumption, 
and application completion time were all factors con-
sidered by Huang et al. In their research, a GA was used 

to reduce the energy consumption of MDs while meet-
ing application deadlines. Authors in [30, 31] developed 
a particle swarm optimization (PSO) algorithm-based 
method to reduce the makespan and cost of the task 
scheduling problem. Another work by [32] suggested 
a load-balancing heuristic method to offload tasks and 
optimize task execution time.

Some attempts were done using supervised deep learn-
ing and Deep Reinforcement (RL) techniques and intro-
duced innovative solutions to task offloading problems. 
First, the problem of dependent task offloading is also 
defined in the literature [33], and the goal is to reduce 
total execution costs while meeting application comple-
tion time constraints. Moreover, the Authors in [34–36] 
proposed a single objective RL-based offloading method 
to reduce the application completion time. The Works 
in [37–40] proposed two objective RL-based offload-
ing methods to optimize completion time and energy 
consumption. Furthermore, the work in [21] proposed 
a multi-objective RL method to optimize energy con-
sumption, completion time, and cost of MEC charge. 
Authors in [41] suggested a supervised deep learning 
approach for the single-user task offloading problem. 
This research used a mathematical model to generate the 
proposed model’s learning dataset. They tend to provide 
an energy-efficient solution to the problem. The authors 
in [42] developed a Markov decision procedure to repre-
sent the joint user association and offloading decision of 
the MEC-based SAT-IoT networks. They suggested using 
deep RL to reduce energy usage and delay goals.

After reviewing the previous works in this area, 
we can say that our proposed solution has the flowing 
advantages over the developed ones:

• Optimize three objectives (CT, C, and E) at the 
same time.

• Consider the dependency among tasks.
• Use a new algorithm to solve this problem.
• Consider more than MEC and more than charge 

level for cost.

3  System model and problem formulation

In this section, we provide the system model for the 
computational offloading problem in the multi-access 
edge computing environment considering the depend-
ency among tasks. Table 1 provides an overview of the 
key notations used in this paper.
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Table 1  Summary of Used Notations

Notation Description

M Set MEC servers
V Set of application Tasks
vi Task number i in the application
DAG Directed acyclic graph to represent the task dependency
pre_set(vi) Set of successors of task  vi

post-set(vi) The set of predecessors of task  vi

Eij It is an edge in the DAG between task  vi and task  vj

CCi The number of CPU clocks needed to process the task  vi

Qin Input size
Qout Output size
P Set of processing locations, including PoC and the M set
Pk The kth processing location, where  p0 is the PoC
L Set of charge levels or cost levels
Lr The rth charge level
R The number of supported charge levels
CTi

local Completion time of executing task  vi locally
FT  (p0) Finishing time of  p0 task queue
ETi

local Execution time of task  vi on the local processor
MaxPred(vi) Max predecessor completion time of task  vi

WTi
local Waiting time for task  vi to be executed locally

Flocal Operating frequency of the local processor of the PoC
CTj

MEC Completion time of task  vj on one of the MEC servers
µ Coefficient expressing the operating chip’s capacitance
CTi

k,r Completion time for processing task  vi remotely on MEC server  Pk under charge level  lr
ETi

k,r Execution time of task  vi on  pk, where  pk ! =  p0 under level  lr
WTi

k Waiting time for task  vi to be executed on  pk

F
k

l
Operating frequency of  pk under the charge level  lr

TTi
k The transmission time of  Qin of task  vi to MEC server  pk

RTi
k Receiving time of  Qout of task  vi from MEC server  pk

HK Achievable uplink and downlink transmission rate between the PoC and the MEC server  pk

B Channel bandwidth
WP   Wireless transmission and receiving the power of the PoC
A
k

Gain of the channel between  p0 and  pk

�
2 Channel noise

E_ik Energy consumption for offloading task  vi to  pk, where  pk ! =  p0

E_iktrans Consumed energy consumed for transmitting  Qin of task  vi to  pk

E_ikrec Consumed energy consumed for receiving  Qout of task  vi from  pk

WTP The wireless transmission power of the PoC
WRP Wireless receiving the power of the PoC
Ci

r Charge cost for processing task  vi remotely at level  lr
▽ Coefficient expressing the cost per unit of time
a
1
 , a

2
 , and a

3
Weighting parameters are used to identify the relative importance of each objective of the three

CT(vi) Total completion time of task  vi

E(vi) Total energy consumption of task  vi

C(vi) Total used cost for completing task  vi

Z Optimization function
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3.1  System Model

The architecture of the MEC system is shown in Fig. 1. 
The IoT sensors sense the data and transmit it to the 
point of Collection (PoC) device, which can be a Per-
sonnel Digital assistant (PDA) or smartphone. This PoC 
runs the application that analyzes the sensed data. Such 
applications are computationally intensive and contain 
complex tasks that require powerful resources. To meet 
such resources’ requirements, the PoC device can per-
form partial offloading for some of its tasks to a nearby 
MEC server installed in the base station (gNB) at the 
network edge, as in the 5G network architecture [43]. 
We consider a system that consists of M MEC Nodes 
and only one PDA/ smartphone that runs an applica-
tion composing a set of V tasks. We denote the set of 
dependent tasks composing the application as V = {v1, 
v2, v3, …, vN}, where N represents the number of 
tasks in the application. The analysis result is then 
transferred to the central cloud through the backhaul 
network of the 5G network core for further analysis and 
storage purposes. 

To clarify the dependency relationship among the 
tasks, we modeled them as a Directed Acyclic graph 
(DAG), as shown in Fig. 2. Each vertex in the graph 
vi represents a task in the model, and i represent the 
task ID, where each edge  Eij represents a depend-
ency relationship between task  vi and  vj, such that 
task  vj cannot be executed before task  vi finishes its 
execution. We denote the pre_set(vi) and post-set(vi), 
which are the set of predecessor and successor tasks of 
 vi, respectively. Predecessors express the set of tasks 
that must be executed before  vi starts. In contrast, 

successor means the set of tasks that cannot start its 
execution before completing the execution of  vi. Fig-
ure 2 depicts an application composing 11 tasks. Task 
 v0 is the start task because the number of elements in 
its pre_set is zero, and task  v10 is the end task as the 
number of elements in its post_set is zero.

We maintain three parameters for each task in the 
system. The number of CPU clocks needed to pro-
cess the task  CCi in a million instructions per second 
(MIPS), the input size  Qin in megabytes, and the out-
put size  Qout in megabytes. Each task can be executed 
locally with the local device’s full processing capac-
ity or offloaded to one of the neighboring MECs at a 
specific charge level. Each MEC device support set of 
charge level with different processing capabilities and 
usage cost. Each MEC server can easily support this 
strategy by allocating its tasks to its cores under differ-
ent Dynamic Voltage and Frequency Scaling (DVFS) 

Fig. 1  MEC system archi-
tecture

Fig. 2  Example of tasks 
DAG
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levels [44]. We denote the set of processing locations 
is P = {p0,  p1,  p2...  pM}, such that 0 ≤  pk ≤ M, where 
M is the number of MEC servers in the system and 
 P0 is the PoC. The set of charge levels is denoted as 
L = {L1,  L2...  LR}, such that 0 ≤  Lr ≤ R, where R is the 
number of supported charge levels.

3.2  Problem Formulation

As mentioned earlier, MEC offers Cloud services 
at the network edge, a big technology revolution for 
the IoT and mobile applications. For this reason, we 
try to help maximize the benefit of this new technol-
ogy paradigm. As a result, we seek in this research 
to build an optimization framework that can be used 
by mobile and IoT application developers to develop 
better MEC-based applications in terms of execution 
time, energy consumption, and usage cost.

This subsection will formulate the task offloading 
optimization problem considering M MECs and a PoC 
device. We seek to develop a framework that IoT and 
Mobile application developers can use in designing 
their applications and programs. As mentioned in the 
previous sections, there exist two offloading decisions 
in this problem:

• Executes the task locally using its resources.
• Offloads the task to one of the nearby MEC servers.

The extra intensive-computing tasks can be 
offloaded to cloud computing, but this is not included 
in our model, as it is a special case.

3.2.1  Task Local Processing

In the case of local processing, task  vi is not transmit-
ted to any MEC server, so the task completion time can 
be defined as follows:

FT  (P0) is the finishing time of the  P0 queue before 
the addition of  vi. It is also the start time of  vi.  ETi

local 
is the task execution time on the local processor. It is 
calculated as  CCi/Flocal. The  CCi is the required CPU 
Clock cycle for executing task  vi, and  Flocal is the 
operating frequency of the PoC device. The  WTi is 

(1)CTlocal
i

= FT(P
0
) + ETlocal

i
+WTlocal

i
.

the waiting time for task  vi to be executed.  WTi
local is 

defined as follows:

MaxPred(vi) is the max predecessor completion 
time of task  vi. it can be defined as:

Where  CTj
MEC is the completion time of executing 

task  vj on one of the MEC servers. Each task is exe-
cuted in one location. If the task is executed locally, 
then  CTj

MEC = 0. Conversely, if the task is offloaded to 
one of the MEC servers, then  CTj

local = 0. The value of 
 WTi

local is neglected if it is a negative value or zero.
According to [18], energy consumption is defined 

as follows:

Where µ is a coefficient expressing the operating 
chip’s capacitance, the cost of processing task  vi on 
the local processor naturally equals zero.

3.2.2  Task offloading to Nearby MEC

In case of offloading task  vi to a MEC server  pk, 
where 1 < k ≤ M, the PoC will transmit the input  Qin 
including program code, to the MEC server, then 
receive the output  Qout from the server using the 
uplink and downlink wireless channels, respectively. 
We denote  CTi

k,r as the completion time for process-
ing task  vi remotely on MEC server  Pk under charge 
level  Lr, where 1 < r ≤ R. it can be calculated as:

Where  ETi
k,l is calculated as:

Where Fk
l
 WTik is waiting for task vi to be executed 

on PK; it can be calculated in Eqs. (2) and (3), but for 
the Pk. Is the operating frequency of MEC server pk 
under the charge level Lr.  TTi

k and  RTi
k express the 

transmission time for the input data of task  vi to MEC 
 pk and the receiving time for the output data of task 
 vi from MEC  pk, respectively. They can be defined as 
follow:

(2)WTlocal
i

= MaxPred
(
vi
)
− FT(P

0
).

(3)
MaxPred(vi) = Max{Max(CTlocal

j
,CTMEC

j
)∀vj ∈ pre_set(vi)}.

(4)Elocal
i

= μ ∗ CCi ∗ (Flocal)
2
.

(5)CTk,r

i
= ETk,r

i
+ WTk

i
+ TTk

i
+ RTk

i
.

(6)ET
k,r

i
= CC

i
∕Fk

r
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Where  HK is the achievable uplink and downlink 
transmission rate between the PoC and the MEC 
server  pk, we assumed the symmetry property for the 
two wireless channels. According to Shannon–Hart-
ley theory [45], the  HK is defined as:

Where B is the channel bandwidth, WP is the 
wireless transmission and receiving the power of the 
PoC,  Ak is the channel’s gain, and σ2 is the chan-
nel noise. The propagation delay can be discarded as 
the distance is very small relative to the light speed, 
which generates a tiny number [21].

The energy consumption for offloading task  vi to 
MEC server  pk can be calculated as follows:

E_iktrans and  E_ikrec express the energy consumed 
for transmitting input data and receiving the output 
data of task  vi to/from the MEC  pk, respectively, and 
can be defined as following [46]:

The WTP is the wireless transmission power, and 
WRP is the wireless receiving power. Offloading task 
 vi to a MEC server  Pk at charge level  Lr imposes a cost 
 Ci

r on the PoC for using the MEC computing resources 
for some time [47]. This usage cost can be obtained by:

The symbol ▽ refers to a coefficient expressing the 
cost per unit of time.

3.2.3  Objective Function

Task offloading problem in the MEC environment is a 
multi-objective problem that minimizes the completion 
time or makespan, energy consumption, and cost usage 
of remote MEC servers.

The total completion time of task  vi CT  (vi), the 
energy consumption E  (vi), and the total used cost C 

(7)TTk
i
= Qin∕HK .,RT

k
i
= Qout∕HK.

(8)Hk = B ∗ LOG
2
(1 +

WP ∗ Ak

�
2

)

(9)Eik = E_iktrans + E_ikrec.

(10)
E_iktrans = WTP ∗ TTk

i
, E_ikrec = WRP ∗ RTk

i
.

(11)Cr
i
= ∇ ∗ ETk,r

i
.

 (vi) for completing this task can be obtained using the 
following equations:

The total completion time CT, energy consumption 
E, and cost usage C for all tasks, including in the DAG 
of tasks, can be defined as follow:

The objective function is defined as follows:

Where  a1,  a2, and  a3 are weighting parameters in the 
mathematical period [0, 1], they must sum to 1. They 
are used to identify the relative importance of each 
objective in the problem.

4  IGTA Algorithm for Solving the Proposed Model

The proposed algorithm IGTA deal with optimiz-
ing the problem of offloading a single applica-
tion composed of multiple dependent tasks using 
multiple neighboring MEC servers under different 
charge levels. The IGTA algorithm’s overall flow 
is depicted in Fig. 3. For simplicity, we called the 
operations the vector values mapping, evaluated 
the fitness function, updated the current solution, 
updated the silverback position (Xsb) with the 
name, and updated the IGTA parameters. In this 
section, IGTA will be described in detail using 
several subsections. Firstly, the Gorilla vector ini-
tialization process is introduced. Then, the mod-
eling of GTO Operations is discussed. After that, 
we introduce the mapping operation of the result-
ant continuous vector to a discrete one. Finally, 

(12)CT
(
vi
)
= CTlocal

i
+ CT

k,r

i

(13)E
(
vi
)
= Elocal

i
+ E_ik

(14)C
(
vi
)
= +Cr

i

(15)CT = Max
{
CT

(
v
i

)
∀v

i
in task DAG

}

(16)E =
∑v

i=1
E(vi)

(17)C =
∑v

i=1
C(vi)

(18)Minimize Z = a
1
∗ CT + a

2
∗ E + a

3
∗ C.
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we end our discussion with two subsections intro-
ducing the two improvement operations added to 
the standard GTO steps. These two enhancement 
operations are the crossover operation and the 
Maximum-to-minimum (MTM) load balancing 
method.

4.1  Gorilla Vector Initialization

As we explained in the system model, each task can 
be executed locally with the full processing capac-
ity of the local device or can be offloaded to one of 
the neighboring MECs at a specific charge level. We 

Fig. 3  Flow chart of IGTA 
algorithm
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maintain a single vector to represent the offloading 
of tasks to different processing locations under dif-
ferent charge levels that will be optimized using our 
algorithm. The vector is divided into three sets as 
follows:

• The first V items of the vector represent the allo-
cated tasks.

• The next V items represent the processing location 
of the tasks, respectively.

• The last V items represent the charge level used in 
processing the task on a MEC server. The charge 
level is the node processing cost level for task pro-
cessing.

We use algorithm  1 to generate a randomized 
task list vector. In the proposed algorithm, this vec-
tor is represented by the gorilla that needs to be 
optimized, where each gorilla vector represents a 
possible solution to the problem. So In this vector, 
the task at index i will be executed at the processing 
location at index V + i under a charge level at index 
V + 2i. Algorithm  1 is a recursive function that 
starts with the start task; the task with no prede-
cessors then gets its post_set elements and shuffles 
them. The algorithm recursively does this operation 
for each task. This algorithm guarantees the random 

generation of task lists considering task interde-
pendency relationships. We used Algorithm  2 to 
initialize the three parts of the gorilla. It initial-
izes the task list by calling algorithm 1. The other 
two parts, the MEC list and the charge levels list, 
are initialized randomly. Figure 4 depicts an exam-
ple of a gorilla vector (X) consisting of 11 tasks, 
4 processing locations, including the PoC, and 7 
charge levels. In the figure, task 0 will be offloaded 
to MEC 1 under charge level 1. This example is pro-
vided for a better understanding of the structure of 
each gorilla vector.

X = (0, 1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 0, 0, 1, 2, 3, 1, 3, 
3, 1, 2, 2, 0, 0, 3, 4, 5, 5, 4, 2, 3, 1, 4).

4.2  Modeling the GTO Operations

After initializing the population of the gorilla posi-
tions, the IGTA algorithm will start its operations 
with the GTO algorithm. The GTO algorithm simu-
lated the Gorillas’ troops’ behaviors [20]. The Goril-
las’ group behavior was mathematically modeled 
using five different operations. Three operations 
included in the exploration phase are migration to 
unknown places, to known places, and other gorillas. 
Furthermore, the two other operations are included 

Algorithm 1.  Task list generation algorithm
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in the exploitation phase. These two operations are 
to obey the silverback and compete with adult males. 
The silverback is the leader of the gorilla group. The 
GTO algorithm supposes that the best solution is the 
silverback position. The mathematical formulation of 
the three operators included in the exploration phase 
depends on a seed variable S and a randomly gener-
ated value P. thus, when P < S, the migration to an 

unknown place is used, and the candidate solution 
GX in the next i iteration can be calculated as follow:

Where L and U are the lower and upper bounds 
for the variables, respectively, r

1
 is a random variable 

in the range [0: 1]. r
1
 is continuously updated in each 

iteration. The movement to other gorillas’ operator is 

(19)GX(i + 1) = (U − L) ∗ r
1
+ L

Fig. 4  Gorilla vector 
example

Algorithm 2.  Initialization algorithm
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selected when P ≥ 0.5, and the next candidate solution 
is obtained by:

Xr is a randomly obtained position vector for an 
individual from the gorillas’ population. y, a, and h are 
variables that can be defined according to the following 
equations:

X(i) is the current position vector. In the last case, 
if P < 0.5, the migration to known locations operator 
is selected, which is formulated as follows:

The selection from the two operations of the 
exploitation phase is based on the value of the y vari-
able obtained using Eq. (21). When y is greater than 
or equal to a pre-settled variable w, obeying the sil-
verback is mathematically selected and modeled.

Xsb is the silverback or best solution position vec-
tor, and b is calculated using the following equation.

GXt(i) is a candidate position vector in itera-
tion i for each gorilla member t. N represents the 
total number of gorillas. On the other side, when y 
is less than W, the competition for adults’ behavior 
is selected by the GTO algorithm. This operator is 
modeled as follows:

(20)GX(i + 1) = (r
2
− y) + Xr(i) + a ∗ h

(21)y = V ∗ (1 −
i

Mi
)

(22)V = cos(2 ∗ r
4
) + 1

(23)a = y ∗ r4|r4 is a random value in [−1 ∶ 1]

(24)h = Z ∗ X(i)|Z = [−y, y].

(25)
GX (i + 1) = X(t) − a ∗

(
a ∗

(
X(i) − GX

r(i)
)
+ r

3
∗
(
X(i) − GX

r(i)
))

(26)GX(i + 1) = a ∗ b ∗ (X(i) − Xsb) + X(i)

(27)b =

[(
1

N

∑N

j=1

(
GXt(i)

))g
] 1

g

|g = 2
a
.

Where f  is the impact force, β is a variable that 
should be given a value before starting the optimization 
operation. £ is used to determine the violent effect. £   
value is determined based on a random number r

0
 with 

two expected values in the normal distribution and the 
dimensions of the problem ifr

0
≥ 0.5 . We have added 

two operations to extend the functionality of the stand-
ard GTO algorithm. The customized crossover opera-
tion and MTM load balancing operation are the two 
added operations. The results showed that our modifi-
cation had improved the quality of the GTO algorithm 
to provide better results.

4.3  Vector Mapping Operation

The generated Gorilla vector (after performing the 
mathematical formulas of each operation of IGTA) 
produces a vector of continuous values that need to 
be mapped to discrete bounded ones according to the 
value position in the gorilla vector. In this regard, we 
depended on two mapping methods to discretize the 
values of the produced gorilla position vector.

The first mapping method is used to map the val-
ues of the task list part. To respect the dependency 
constraint among tasks, firstly, we start with the first 
task from the task list and get its successors. For 
example, we take task  v0 and get its successors  v1, 
 v2, and  v3.

Suppose that the values of generated task list of  GXi 
are as in Table 2. We then put the start task  v0 in index 
0 of the gorilla vector  GXi. We then get the values of the 
task successors from  GXi.

(28)GXt(i) = Xsb −
(
Xsb ∗ f − X(i) ∗ f

)
∗ A

(29)f = 2 ∗ r
5
− 1|r

5
is a random number in [0 ∶ 1].

(30)A = � ∗ £

(31)£ =

{
r
6
if r

0
≥ 0.5

r
7
if r

0
< 0.5

Table 2  Successors of task  v0 in the Generated Task List

0.0 0.94 3.1 2.12 5.36 4.12 6.68 6.34 9.39 8.46 9.84 
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The successors of task 0 should be in indices 1, 2, and 
3 with values 0.94, 3.1, and 2.12. We sort these values as 
in Table 3.

Then we replace each vector value in the  GXi vector 
with its corresponding successor’s list value. So the vec-
tor will be as in Table 4 after this step.

If two or more tasks have the same successor task, 
this successor task will be added only once to satisfy the 
uniqueness constraint for executing each task only once. 
This operation will be repeated for each task in the task 
list.

The second mapping method is used to map the 
values of the MEC list and the charge level list. This 
method is simply a direct normalization of the vec-
tor values according to the following equation:

Where maxval and minval are the maximum and min-
imum values of the vector part (MEC list or level list) to 
be mapped, respectively, this equation will be multiplied 
by the number of MEC set in case of MEC vector value 
mapping and by the number of charge level in case of the 
level vector value mapping.

4.4  Crossover Improvement Operation

We suggested a special crossover operation to enhance 
the generated solution’s quality and improve the perfor-
mance of the GTO algorithm.

We perform the crossover operation on each gener-
ated position  Xi

t and the silverback position  Xsb. For 
the task list part, we then choose a random number 
from the task list and swap its successors between the 
two input vectors. Assume the chosen random index is 
0 with task number 0. We then find its successors in 
the two Children and swap them. To swap them, we 

(32)GXi =
GXi − minval

maxval − minval

get the position of the successor list in each child. After 
that, we swap the positions of tasks between the two 
Children, as shown in Fig. 5. The Crossover operation 
algorithm for the task list is provided in algorithm 3.

Furthermore, for the other two parts of the gorilla vec-
tor, we choose a random index for the second and third 
parts and swap its value between the two Children.

4.5  MTM Load Balancing Operation

We proposed the MTM method to redistribute the load 
of the task among the processing locations. The MTM 
load balancing operation continuously updates tasks’ 
processing locations from maximum completion time to 
minimum one until the completion time of the minimum 
location reaches or exceeds the best-obtained completion 
time or the maximum completion time. In the MTM load 
balancing method, we search for the two processing loca-
tions with maximum and minimum completion times. 
The pseudo-code for the MTM load balancing operation 
is provided in algorithm 4. The pseudo-code of the IGTA 
algorithm is shown in algorithm 5.

5  Illustrative Example

In this section, we provide a motivating example to 
clarify the offloading strategy of this research. Depend-
ing on the DAG of Fig.  2, that shows an application 
consisting of eleven dependent tasks V = {v0,  v1… 
 v10}. We randomly generated the values of the three 
parameters maintained for each task. Table  5 shows 
these generated values. We suppose there are three 
MEC servers and a PoC in the system p = {P0,  P1,  P2, 
 P3},  P0 expresses the PoC processor. By assuming the 
symmetry property for the two wireless channels, the 
achievable uplink and downlink rates are provided in 
Table 6. We suppose that the transmission and receiv-
ing powers of the PoC equal 0.1 Watts. Each MEC 
device supports a set of charge levels with different 
processing capabilities. Each MEC server can sup-
port up to six charge levels L = {L1,  L2…  L6} in addi-
tion to  L0, which expresses the task’s local processing. 
Each charge level has a different operating frequency 

Table 3  Indices of task 0 successors

vector Value 3.1 2.12 0.94
value index 2 3 1
Successors list 1 2 3

Table 4  Task list after mapping the successors of the task

0.0 3 1 2 5.36 4.12 6.68 6.34 9.39 8.46 9.84 
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and unit price, as shown in Table 7. The dependency 
among tasks is provided in Table  8. Assuming that 
the mobile dynamic energy is 0.125. For simplic-
ity, we suppose sequential execution of tasks from 
each mobile device on MEC. As in the case of paral-
lel execution, it is a confusing issue to distribute the 
operating frequency among tasks. This distribution 
will directly impact the task completion time, so we 
suppose sequential execution to avoid this. Assume we 
have a candidate solution:

X = (0, 1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 0, 0, 1, 2, 3, 1, 3, 3, 1, 2, 2, 0, 0, 3, 4, 5, 5, 4, 2, 3, 1, 4).

Where  Xi (i = 0... 10) is the task id,  Xi (i = 11... 21) 
is the execution location of  Vi, and  Xi (i = 22... 32) is 
the charge level.

Firstly, we calculate the execution time matrix for 
executing each task under each charge level, equal to 
the  CCi/Fop, where  Fop is the operating frequency. The 
time execution matrix for this example is shown in 
Table 9.

For simplicity, we will use the equations presented 
in the problem formulation section to calculate the 
completion time of this example task. Since  v0 and 

 v1 are executed locally, their completion time can be 
obtained as follow.

WT0
local = 0. Since it is the start task.

We need to compute each task’s waiting time, trans-
mission time, and receiving time for remote-processing 
tasks. We set the H value by 1 GBps for all channels to 

CT
(
v
0

)
= CT

local

0
= FT

(
P
0

)
+ ET

local

0
+WT

local

0

= 0 + 3.33 + 0 = 3.33.

WTlocal
1

= CTlocal
0

− FT
(
P
0

)
− 3.33 − 3.33.

CT
(
v
1

)
= CT

local

1
= FT

(
P
0

)
+ ET

local

1
+WT

local

1

= 3.33 + 5 + 0 = 8.33.

calculate the transmission and receiving times. So the 
completion time of  v3 can be calculated as follow:

The completion times for the other tasks were com-
puted similarly and provided in Table 10.

Figure 6 shows the complete task offloading chart for 
this example. The completion time of the application is 

WT1

3
= CTlocal

0
− FT

(
P
1

)
= 3.33 − 0 = 3.33.

TT1

3
= 4.2M∕1G = 0.0042.

RT1

3
= 2.5M∕1G = 0.0025.

CT
(
v
3

)
= CT

1,3

3
= FT(P

1
) + ET

1,3

3
+WT

1

3
+ tTT

1

3
+ RT

1

3

= 0 + 1.333 + 3.33 + 0.0042 + 0.0025 = 4.67.

Fig. 5  Visual illustration of 
the crossover operation
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also called the makespan. It is the maximum completion 
time among all completion times of the processing loca-
tions. In this regard, the application completion time is 
21.22 s, the energy consumption is 28.15 J, and the charg-
ing cost is 4.79 $. The fitness function value:

Algorithm  5 shows the pseudo-code for the pro-
posed IGTA algorithm. We first initialize a gorilla 
vector. After that, the initialized vector is passed as 
input to the GTO algorithm, producing a vector of 
continuous values. We then discretize this vector’s 
continuous values and improve this vector using the 
crossover and MTM load balancing operations.

6  Experiments and Results

Several experiments and empirical tests are performed 
in this section to evaluate the effectiveness of the IGTA 

Z = 0.34 ∗ 21.22 + 0.33 ∗ 28.15 + 0.33 ∗ 4.79 = 18.1

algorithm. All tests are conducted on a laptop with the 
following specifications. The processor specification is 
Intel (R) Core (TM) i7-3540 M @ 3.00 GHz, and the 
RAM size was 8 GB. Windows 10 Professional 64-bit 
was the installed operating system. All the simulated 
experiments were done using the java programming 
language.

6.1  Data Description

For the experiment, we will suppose that M = 3 
MEC servers will be available for the PoC. We sup-
pose that the transmission and receiving powers are 
0.1 watts and the mobile dynamic energy is 0.125 
[21, 25, 48]. By assuming the symmetry property 
for the two wireless channels, the achievable uplink 
and downlink rates are previously shown in Table 6. 
Additionally, we use six distinct charge levels previ-
ously noted in Table 7. The operating frequency and 
unit price values rise from the first level to level six. 

Algorithm 3.  Crossover operation algorithm for the task list

Algorithm 4.  MTM load balancing improvement algorithm
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We adopt level zero to denote the full capacity of the 
PoC device.

The datasets used in our experiments will be 
described here. The used datasets are open and accessi-
ble at [49]. The task graphs in the datasets are divided 
into three sets, each with 100 graphs. The first set of 
graphs all has the same topology, N = 9 tasks. Three 
must be executed locally, and the other six can be 
offloaded. The second set of graphs has the same topol-
ogy, N = 29 tasks, and 20 off-loadable tasks. The third 
set of graphs all shares the same topology, N = 23 
tasks, and 19 off-loadable tasks. The number of off-
loadable components per task graph is also adjustable 
by users. In this experiment, we assume that all tasks in 
each graph can be offloaded.

We selected three task graphs from each graph 
set from the dataset mentioned above for our experi-
ment. Moreover, for testing purposes, we ran-
domly generated the input data Qin in the range 
[5, 50] megabytes and the output data Qout in the 
range [0.5, 5] megabytes. Table 11 contains the full 
description of the experiment’s task graphs (TG).

6.2  Experiment Parameters

We compare our suggested IGTA algorithm with the 
following algorithms:

• Standard Gorilla troops algorithm (GTO) with no 
refinement.

• Harris hawks optimizer (HHO) [50].
• Whale Optimization Algorithm (WOA) [51].
• Grey wolf Optimization (GWO) algorithm [52].
• Bat Algorithm (BAT) [53].
• Particle Swarm Optimization (PSO) algorithm [54].
• Genetic algorithm (GA) [55].

Since the number of tasks in the described datasets 
is relatively small, we set the number of iterations to 
200 to allow for a fair assessment of the algorithms. 
Each algorithm’s population size is set to 10. Each 
algorithm is evaluated by the results of executing it 20 
times. We set the parameters of the GTO as follows:

• P parameter to control the selection of the explora-
tion operations = 0.03;

• W parameter to control the selection of the exploi-
tation operations = 0.8;

• The beta that is used in calculating the coefficient 
vector to determine the degree of violence in con-
flicts = 3;

The crossover probability parameter P for IGTA is 
set to 0.7. However, the results of some experiments 
on a few random datasets show that 0.7 is the most 
suitable probability. This procedure maintains popu-
lation diversity while improving the quality of the 
new solutions produced by IGTA.

The parameters of the comparison algorithms are 
set as the authors recommend. For GA, we have set 
the mutation rate to 0.001. Beginning from the start 
task,  we have implemented a crossover operation 
between the successors of each task in the DAG. We 
select the random number in the task list, mutate its 

Table 5  Tasks data Tasks v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

CC MIPS 10 15 18 20 25 20 30 28 23 30 29
Qin 5 10 15 4.2 20 18 50 27 20 15 26
Qout 0.5 1.5 2 2.5 2 2.3 3 1 1.3 1.5 2

Table 6  Achievable uplink and downlink transmission rates

MEC servers M1 M2 M3
Achievable uplink and downlink rates 1G 1G 1G

Table 7  Operating frequency and unit price for each charge 
level

Charge level Operating frequency 
MIPS

Cost per second

L0 for mobile 3 0
L1 5 0.01
L2 10 0.02
L3 15 0.03
L4 20 0.04
L5 25 0.05
L6 30 0.06
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Table 8.  Dependency 
matrix

V x V v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v0 0 1 1 1 0 0 0 0 0 0 0
v1 0 0 0 0 1 1 0 0 0 0 0
v2 0 0 0 0 0 1 1 0 0 0 0
v3 0 0 0 0 0 0 1 1 0 0 0
v4 0 0 0 0 0 0 0 0 1 0 0
v5 0 0 0 0 0 0 0 0 0 1 0
v6 0 0 0 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 0 0 0 0 1 0
v8 0 0 0 0 0 0 0 0 0 0 1
v9 0 0 0 0 0 0 0 0 0 0 1
v10 0 0 0 0 0 0 0 0 0 0 0

Table 9  Time Execution 
matrix

V x L LOCAL L1 L2 L3 L4 L5 L6

v0 3.33 2 1 0.667 0.5 0.4 0.333
v1 5 3 1.5 1 0.75 0.6 0.5
v2 6 3.6 1.8 1.2 0.9 0.72 0.6
v3 6.667 4 2 1.333 1 0.8 0.667
v4 8.33 5 2.5 1.667 1.25 1 0.833
v5 6.667 4 2 1.333 1 0.8 0.667
v6 10 6 3 2 1.5 1.2 1
v7 9.33 5.6 2.8 1.867 1.4 1.12 0.933
v8 7.667 4.6 2.3 1.533 1.15 0.92 0.767
v9 10 6 3 2 1.5 1.2 1
v10 9.667 5.8 2.9 1.933 1.45 1.16 0.967

Table 10  Tasks completion 
times

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

3.33 8.33 4.67 4.25 9.36 9.15 10.91 13.74 12.46 19.74 21.22

Fig. 6  Complete example 
tasks offloading chart
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processing location charge level, and shuffle its succes-
sor list.

The PSO’s basic parameters are set as follows as 
recommended in [56, 57]:

• The social coefficient is 1.57.
• The cognitive coefficient is 1.42.
• Weight inertia is 0.7298.

The other algorithms’ parameters as set following 
recommendations made by their authors.

6.3  Comparison between GTO and IGTA 

In this case, we focus on analyzing how the proposed 
algorithm was affected by the crossover and MTM 
improvement operations. Therefore, using six DVFS 
levels and three MECs, we will experimentally deter-
mine how different task sizes and parameters defined 
in Table 11 affect the performance of GTO and IGTA. 
In this experiment, we employ four distinct measures, 
including average values for completion time, energy, 
cost, and fitness.

Algorithm 5.  The IGTA algorithm
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Table  12 displays the outcomes of the two algo-
rithms (GTO and IGTA) classified based on the above-
mentioned measures. We can see from the outcomes 
that IGTA performs better than GTO across all datasets. 
It scored better values on all the performance measures. 
The results have clarified the role of the added improve-
ment operations in enhancing the behavior of the stand-
ard GTO algorithm.

The total values of the findings from Table  12 for 
each of the ten datasets are shown in Fig.  7 for the 
GTO and IGTA algorithms. IGTA receives the mini-
mum completion time with a value of 93.5, while GTO 
receives 139.5. Additionally, IGTA achieves improved 
energy consumption and cost savings with 71.5 and 
55.46, respectively. It also scored the minimum fitness 
of 55.46 points, a good performance metric for distrib-
uting task loads across mobile edge computing servers 
at various charge levels.

In the second experiment, we used the dataset 
TG2-100 to examine how the performance of GTO 

and IGTA will change when five different numbers 
of MEC servers (2, 3, 5, 7, and 9) are used. The 
local processor is also added in each experiment. 
First, we determine the completion time values for 
executing the dataset TG2-100 twenty times using 
each MEC number. The average of the completion 
time values is then calculated. The average com-
pletion time for each MEC number is then added 
up. This procedure is repeated for the other three 
performance metrics (energy consumption, used 
cost, and fitness function). As seen in Fig.  8, the 
improvements proposed on the GTO algorithm 
resulted in better results across all performance 
metrics.

We can see in Fig.  8 that IGTA obtained better 
results for all performance metrics. It scored the min-
imum completion time with a value of 121.5  s, the 
minimum total Energy consumption with 0.56 J, the 
minimum total cost usage with 77.47$, and the mini-
mum fitness function with a value of 66.97.

Table 11  Datasets 
description

No TG name No. of tasks No. of edges CC in mega Qin in mega Qout in mega

1 TG1-41 9 10 [3, 60] [5, 50] [0.5, 4.5]
2 TG1-83 9 10 [6, 50]
3 TG1-100 9 10 [2, 78]
4 TG2-1 29 36 [3, 37]
5 TG2-49 29 36 [0, 220]
6 TG2-100 29 36 [2, 204]
7 TG3-2 23 22 [0.0, 148.1]
8 TG3-61 23 22 [0.1, 72.2]
9 TG3-100 23 22 [0.0, 102.8]
10 EX_Data 10 15 [10, 30]

Table 12  Results of GTO 
and IGTA using Table 11 
datasets

NO TG name Avg. Completion 
time

Avg. Energy Avg. Cost Avg. Fitness

GTO IGTA GTO IGTA GTO IGTA GTO IGTA 

1 TG1-41 8.17 4.96 1.15 0.03 2.55 1.68 4.00 2.25
2 TG1-83 8.48 6.27 1.04 0.02 2.43 1.83 4.03 2.74
3 TG1-100 7.13 5.07 0.14 0.03 1.76 1.16 3.05 2.12
4 TG2-1 15.28 9.18 3.45 0.08 18.14 12.05 12.32 7.13
5 TG2-49 25.63 18.96 3.33 0.08 27.61 21.44 18.93 13.54
6 TG2-100 32.72 23.59 11.27 0.09 30.92 17.9 25.05 13.96
7 TG3-2 17.78 10.16 0.29 0.07 11.29 6.96 9.87 5.77
8 TG3-61 4.59 3.56 0.38 0.08 2.94 2.17 2.66 1.95
9 TG3-100 9.06 6.96 0.50 0.07 7.14 3.90 5.60 3.68
10 EX_Data 11.04 4.74 0.02 0.02 4.34 2.12 5.19 2.32
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6.4  Comparison with Other Algorithms

This subsection compares the performance of the pro-
posed algorithm with HHO, WOA, PSO, BAT, GWO, 
and GA using the datasets defined in Table 11. Four per-
formance metrics are used (completion time, energy con-
sumption, cost usage, and fitness function) to evaluate the 
effectiveness of the algorithms. We run each algorithm 
on each dataset twenty times using six charge levels. As 
a result, we calculated the average for each used perfor-
mance measure (PerM) using the following equation:

where PerMj  is the performance measure value 
obtained from running an algorithm on a dataset.

Figure  9 shows the average completion times of 
each algorithm on the adopted datasets. The figure 
shows that the proposed algorithm outperforms the 

(33)avg.PerM =

∑20

j=1
PerMj

20

other algorithms on all used datasets. It is also obvi-
ous that the ranking of other comparison algorithm 
change on each dataset. This observation ensures that 
our datasets validated the comparison approaches’ 
performance metrics. Furthermore, Fig.  10 presents 
the total average completion times for the used data 
sets obtained by summing the average completion 
times produced from running each algorithm on all 
adopted datasets. The results showed that our algo-
rithm provides the minimum completion time value 
of 93.45 s. HHO algorithm scored a completion time 
value of 140.31 s as the second minimum completion 
time value. On the other side, the maximum com-
pletion time value of 300.58  s is scored by the GA 
algorithm.

The second performance metric used in the compari-
son is the energy consumption measure. This metric is 
significant since batteries are the primary power source 
for mobile and IoT devices. Using the adopted test cases, 

Fig. 7  Total performance measures’ values for GTO and 
IGTA Using different datasets

Fig. 8  Total performance measures’ values for GTO and IGTA 
using a different number of MEC servers

Fig. 9  Completion time results using adopted datasets and 
three MEC servers

Fig. 10  Total avg. Completion times were obtained by running 
each comparison algorithm on the adopted datasets
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Fig.  11 shows that our algorithm achieved much more 
optimization according to this metric for all test cases. For 
more quantified values, Fig. 12 presents the total average 
energy consumption results of running each algorithm on 
each task graph set twenty times. The figure shows that the 
proposed algorithm scored the minimum value of 0.57 J, 
while GWO accomplished the second minimum value of 
28.55 J. The bat algorithm reached the maximum energy 
consumption value of 187.26 J.

The third performance measure is the cost used to 
execute the application tasks, which is important for 
designing an economic plan. As a result of running each 
algorithm on the test datasets of Table 11 using the seven 
charge levels prices provided in Table 7, Fig. 13 shows the 
total average cost usage results. It is clear from the results 
that our algorithm introduces the minimum cost levels 
for all test sets. Figure 14 also did its role in providing an 
obvious viewpoint in quantifying the cost usage results 
scored by the comparison algorithms. The figure shows 

that the proposed algorithm hit the most optimized cost 
by 71.21$.WOA hit the second optimum value of 82.18$. 
The maximum cost usage value of 176.35 is obtained 
from the GA algorithm.

The fitness values are an absolutely important fac-
tor in measuring the performance of the algorithms 
since they present a general viewpoint that combines 
all of the previously mentioned metrics. Figure  15 
depicts the average fitness for each algorithm on the 
test sets. This figure confirmed the other metrics’ 
results that witnessed the proposed algorithm outper-
forming the other approaches. Figure  16 also shows 
that IGTA accomplishes the minimum fitness value 
of 55.46, and the BAT algorithm hits the maximum 
value of 225.29. The other algorithms hit the follow-
ing fitness values: WOA with a value of 91.01, HHO 
with a value of 107.32, GWO with a value of 123.54, 
PSO with a value of 137.76, and GA with a value of 
221.22.

Fig. 11  Energy consumption results using adopted datasets 
and three MEC servers

Fig. 12  Total avg. Energy consumption values were obtained 
by running each comparison algorithm on the adopted datasets

Fig. 13  Cost usage results using adopted datasets and three 
MEC servers

Fig. 14  Total avg. Cost usage values were obtained by running 
each comparison algorithm on the adopted datasets
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The average CPU time for each algorithm on the 
TG2-100 dataset is presented in Fig.  17. It is obvi-
ous in the figure that our algorithm hit the maximum 
CPU time with a value of 0.08 s, and GA hit the min-
imum value of 0.022  s. The other algorithms’ CPU 
times are as follows: PSO with a value of 0.026  s, 
BAT with a value of 0.029 s, WOA with a value of 
0.029  s, GWO with a value of 0.03  s, HHO with a 
value of 0.03 s, and standard GTO with value 0.05. 
But the CPU times have no impact on the perfor-
mance measure of our proposed approach if this 
IGTA is used in the design phase of the IoT and 
mobile applications. As we previously mentioned in 
subsection  3.2, this framework aims to enable IoT 
and mobile application developers to build efficient 
applications that can benefit the MEC servers the 
most. Moreover, we suggest the installation of IGTA 
on the MEC server in the MEC environments that 
dynamically change the importance of the objective 

over time, which can reduce the impact of the rela-
tively long CPU time of IGTA on the performance 
measures, especially for computationally extensive 
applications.

Figure  18 shows the total average performance 
measures’ values of the algorithms using different 
MEC servers (2, 3, 5, 7, and 9) on the TG2-100 data-
set. It can be seen from the figure that IGTA scored 
the minimum completion time value of 121.5  s, 
and the HHO algorithm scored the second mini-
mum value of 146.2. Conversely, the BAT algorithm 
scored the maximum value of 349.11 s. But regard-
ing the energy consumption measure, our algo-
rithm also accomplished the most optimized value 
of 0.56 J, and the WOA scored the second optimum 
value of 20.96. While the maximum value of 174.02 
was produced from the BAT algorithm.

Regarding used cost, IGTA also reached the mini-
mum value of 77.47$. The second minimum value 
of 80.06$ was obtained by the WOA, while the BAT 

Fig. 15  Fitness function results using adopted datasets and 
three MEC servers

Fig.16  Total avg. Fitness function values were obtained by 
running each comparison algorithm on the adopted datasets

Fig. 17  Avg. Processing time for each algorithm on TG2-100

Fig. 18  Total avg. Performance measures values of the algo-
rithms using a different number of MEC servers
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algorithm reached the maximum value of 212.88$. 
Finally, regarding the fitness function, the results accom-
plished by the algorithms were as follows: IGTA with a 
value of 66.97, WOA with a value of 96.34, HHO with a 
value of 124.64, GWO with a value of 142.97, GA with 
a value of 142.97, PSO with value 146.93, and the BAT 
algorithm with value 246.39.

The results also showed that IGTA outperforms 
all the algorithms included in the comparison. These 
results confirm the stability of the IGTA performance 
on the change in the number of installed MEC serv-
ers in the environment.

We can infer from the extensive experiments that 
the proposed algorithm has performed significantly 
better than other meta-heuristic algorithms at saving 
energy, minimizing the cost, and shortening computa-
tion time.

7  Conclusion

This study examines a multi-server mobile edge com-
puting system with multi-task dependence in which 
three goals were optimized simultaneously: the appli-
cation completion time, MD energy consumption, and 
MEC server usage fee. Moreover, IGTA can be used in 
MEC environments that dynamically change the relative 
importance of objectives over time. To overcome these 
issues, we offered an improved multi-objective gorilla 
troops algorithm for solving the dependent task offload-
ing problem in the MEC environment with three objec-
tives. In the proposed method, each gorilla vector was 
broken down into three parts: a task list part, a MECs 
list part, and a charge levels list part. A particular initiali-
zation method was also used to create workable gorilla 
vectors. Since the gorilla vectors that are produced by 
the GTO algorithm are continuous values, two map-
ping techniques were used to convert such vector values 
into discrete and bounded ones. Additionally, we have 
extended the operation of the standard Gorilla Troops 
Algorithm (GTO) by adopting a customized crossover 
operation to improve its search strategy. A Max-To-Min 
(MTM) load-balancing strategy was also implemented 
in IGTA to improve the offloading operation. To validate 
IGTA performance, we have run extensive simulation 
experiments on ten test instances with various task topol-
ogies and profiles. These experiments compared IGTA 
with GTO, HHO, WOA, GWO, BAT, PSO, and the GA 

algorithm. Finally, the simulation results confirmed the 
superiority of IGTA’s overall performance metrics. For 
instance, Relative to GTO, IGTA has reduced latency 
by 33%, energy consumption by 93%, and cost usage by 
34.5%.
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