
Vol.: (0123456789)
1 3

J Grid Computing (2023) 21:21
https://doi.org/10.1007/s10723-023-09656-z

New Improved Multi‑Objective Gorilla Troops Algorithm
for Dependent Tasks Offloading problem in Multi‑Access
Edge Computing

Khalid M. Hosny · Ahmed I. Awad ·
Marwa M. Khashaba · Ehab R. Mohamed

Received: 18 January 2023 / Accepted: 1 March 2023 / Published online: 1 April 2023
© The Author(s) 2023

Abstract  Computational offloading allows lightweight
battery-operated devices such as IoT gadgets and mobile
equipment to send computation tasks to nearby edge
servers to be completed, which is a challenging problem
in the multi-access edge computing (MEC) environment.
Numerous conflicting objectives exist in this problem;
for example, the execution time, energy consumption,
and computation cost should all be optimized simul-
taneously. Furthermore, offloading an application that
consists of dependent tasks is another important issue
that cannot be neglected while addressing this prob-
lem. Recent methods are single objective, computation-
ally expensive, or ignore task dependency. As a result,
we propose an improved Gorilla Troops Algorithm
(IGTA) to offload dependent tasks in the MEC environ-
ments with three objectives: 1-Minimizing the execu-
tion latency of the application, 2-energy consumption of
the light devices, 3-the used cost of the MEC resources.
Furthermore, it is supposed that each MEC supports
many charge levels to provide more flexibility to the
system. Additionally, we have extended the operation
of the standard Gorilla Troops Algorithm (GTO) by
adopting a customized crossover operation to improve
its search strategy. A Max-To-Min (MTM) load-balanc-
ing strategy was also implemented in IGTA to improve

the offloading operation. Relative to GTO, IGTA has
reduced latency by 33%, energy consumption by 93%,
and cost usage by 34.5%. We compared IGTA with other
Optimizers in this problem, and the results showed the
superiority of IGTA.

Keywords  Multi-access edge computing ·
Computational offloading · Multi-objective gorilla
troops · Dynamic needs · Task dependency

1  Introduction

Mobile Edge Computing or multi-access Edge com-
puting (MEC) is an evolution of the centralized cloud
server that aims at decentralizing the cloud computing
services close to end users at the network edge or Radio
Access Networks (RAN) of mobile systems [1, 2]. The
tremendous advances in Information and Communi-
cation Technologies (ICT), such as Internet of Things
(IoT) technologies and Mobile Devices (MD), have wid-
ened the horizons of programmers towards discovering
new and innovative applications that can automate and
enhance our life. Examples of such applications are vir-
tual and augmented reality, face detection and recogni-
tion applications, surveillance systems, smart agriculture
applications, smart healthcare applications, etc. [3, 4].
These applications call for high processing and storage
requirements that cannot be fully provided by IoT and
MD [5]. The first solution was to utilize cloud services,
which suffered from bandwidth limitations and public

K. M. Hosny (*) · A. I. Awad · M. M. Khashaba ·
E. R. Mohamed
Department of Information Technology, Faculty
of Computers and Informatics, Zagazig University,
Zagazig 44519, Egypt
e-mail: k_hosny@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-023-09656-z&domain=pdf

	 K. M. Hosny et al.

1 3

21  Page 2 of 24

Vol:. (1234567890)

network conditions. A more powerful solution was the
MEC server due to its proximity to the end devices that
get it away from the public network limitations [6, 7].

MEC can be used in the client–server computing para-
digm, where a client requests a service from a nearby
MEC server. This model reduces the burden on the pub-
lic network by getting cloud resources near the users [8].
MEC also can be used in the three layers computing para-
digm to support high computing and storage-intensive
applications where the computing power can be divided
into three locations, including MD, MEC, and the central
cloud [9]. The computation offloading is a big challenge
in the two mentioned computing paradigms. Computa-
tion offloading is the transmission of whole/some tasks
of a target application to a powerful server for processing
[10]. The modularity of the fine-grained programming
principle facilitates the offloading process [11]. However,
deciding which tasks to be offloaded to which server is
a critical part of the MEC and cloud paradigm [12, 13].
Offloading some parts of an application while executing
some parts locally with respecting the dependency rela-
tionship among tasks is still an open research point for
which researchers try to find more efficient solutions.
Since this is an NP-hard problem, many heuristics [14],
metaheuristics [15], game-theoretic [16], mathematical,
machine learning [17], and other algorithms were pro-
posed to solve this problem. However, these methods are
single objective, complex to implement, computationally
expensive, or ignore the dependency among tasks.

Metaheuristic algorithms have recently been devel-
oped to solve many optimization problems and confirm
near-optimal solutions [18, 19]. One of the metaheuris-
tics is The Gorilla Troops Optimization algorithm
(GTO) [20], inspired by the social intelligence of
gorilla troops in the wild. In this paper, we formulate a
multi-objective offloading problem of a set of depend-
ent tasks composing an application to multiple nearby
MECs. Despite the extensive research on this point,
our proposed work is different. We seek to provide a
new innovative solution to the dependent task offload-
ing problem in the MEC environment. Our proposed
work considers minimizing three main objectives,
including energy consumption (E), MEC charge cost
(C), and completion time latency (CT). We added the
charge level factor to MEC server for providing more
flexibility to the model. We depended on an improved
version of the GTO algorithm, which is the first time
to be used in this problem. Also, we extensively tested

our algorithm with generated and standard topologies to
ensure its efficiency. The comparison with other algo-
rithms has shown the superiority of our IGTA method.
The results showed that Relative to GTO, IGTA has
reduced latency by 33%, energy consumption by 93%,
and cost usage by 34.5%. The main contributions can
be summarized as follows:

•	 We proposed an Improved Gorilla Troops Algorithm
(IGTA) for real-time dependent tasks offloading in
the MEC environment by optimizing three conflict-
ing objectives simultaneously. In this regard, the
Standard GTO algorithm is improved using a crosso-
ver operation, and the results have confirmed this
improvement. Additionally, Each MEC is supposed
to support multiple charge levels to add more flex-
ibility to the system. We also adopted two vector val-
ues mapping methods to map the continuous values
of the produced vectors into discrete and bounded
values. A detailed discussion of the IGTA steps is
presented in Section 4.

•	 A Max-To-Min (MTM) load balancing strategy
was implemented in IGTA to improve the offload-
ing operation. This important step is introduced in
Section 4.5.

•	 Using a set of Standard and derived test cases with
various topologies and task data, we have per-
formed simulation experiments to test the perfor-
mance of IGTA. The results demonstrate the supe-
riority of IGTA, as in Section 6.

The following sections are organized as follows.
Section 2 introduces a brief discussion of the related
works. In Section 3, the system model and problem
formulation are discussed. Section 4 discusses the pro-
posed IGTA algorithm steps in detail. Section 5 pro-
vided an illustrative example to demonstrate the IGTA
steps clearly. Experiments and results are discussed in
Section 6. Finally, we conclude our work in Section 7.

2 � Related work

MEC is the introduction of cloud services at the net-
work edge. The introduced storage, computing, and net-
working services are used by small capabilities devices
like smartphones and IoT devices for executing latency-
sensitive tasks, computing hungry, and consuming large

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 3 of 24  21

Vol.: (0123456789)

energy for execution. Unlike cloud servers, the tasks
can be scheduled among multiple nearby MEC servers
[21]. Efficient allocation tasks to the available comput-
ing resources can reduce task processing time and energy
consumption and maintain server load balance [22]. In
this regard, effective task offloading utilizes the available
computing resources and high bandwidth to improve the
quality of service by reducing the system latency and
minimizing the energy consumption and charge cost.
Therefore, several research attempts have been conducted
in this regard.

The work in [23] uses two edge servers alterna-
tively for offloading the Mobile’s tasks to minimize
both latency and power consumption. Storing a copy of
the file after the first time processing is another strat-
egy implemented in this research for better results.
Some attempts have been made using game-theoretic
techniques in this regard. Authors in [24] formulated a
Stackelberg game for multi-user computational offload-
ing problems in the MEC system to take an offloading
decision that can minimize execution time and energy
consumption goals. Another attempt in this regard was
done [25], where the authors formulated a stochas-
tic game for modeling the offloading problem under a
dynamic environment. The latency and energy con-
sumption were the two objectives that the authors of
this research had considered.

Recently, heuristic and metaheuristic algorithms are
gaining a lot of attention in solving optimization prob-
lems, so some attempts have been made in this regard.
Authors in [1] suggested a heuristic algorithm for
obtaining an efficient solution to minimize the applica-
tion execution cost under a pre-allocated tasks’ finish
times’ constraint. Authors in [12] and [26] depended on
the whale optimization algorithm (WOA) to develop a
task scheduling method to reduce completion time and
energy consumption at the same time. In a homogene-
ous MEC case, the work of [27] formulated the depend-
ent task offloading problem with pre-specified service
caching, then introduced a favorite successor-based
heuristic algorithm to reduce application completion
time. Liu et al. [28] proposed a one-dimensional search
algorithm to reduce task execution delay, considering
the application buffer queuing status and the processor
state. Authors of [17] proposed a genetic algorithm (GA)
based scheme to reduce task offloading time and failure
risk. In the work of [29], Security, energy consumption,
and application completion time were all factors con-
sidered by Huang et al. In their research, a GA was used

to reduce the energy consumption of MDs while meet-
ing application deadlines. Authors in [30, 31] developed
a particle swarm optimization (PSO) algorithm-based
method to reduce the makespan and cost of the task
scheduling problem. Another work by [32] suggested
a load-balancing heuristic method to offload tasks and
optimize task execution time.

Some attempts were done using supervised deep learn-
ing and Deep Reinforcement (RL) techniques and intro-
duced innovative solutions to task offloading problems.
First, the problem of dependent task offloading is also
defined in the literature [33], and the goal is to reduce
total execution costs while meeting application comple-
tion time constraints. Moreover, the Authors in [34–36]
proposed a single objective RL-based offloading method
to reduce the application completion time. The Works
in [37–40] proposed two objective RL-based offload-
ing methods to optimize completion time and energy
consumption. Furthermore, the work in [21] proposed
a multi-objective RL method to optimize energy con-
sumption, completion time, and cost of MEC charge.
Authors in [41] suggested a supervised deep learning
approach for the single-user task offloading problem.
This research used a mathematical model to generate the
proposed model’s learning dataset. They tend to provide
an energy-efficient solution to the problem. The authors
in [42] developed a Markov decision procedure to repre-
sent the joint user association and offloading decision of
the MEC-based SAT-IoT networks. They suggested using
deep RL to reduce energy usage and delay goals.

After reviewing the previous works in this area,
we can say that our proposed solution has the flowing
advantages over the developed ones:

•	 Optimize three objectives (CT, C, and E) at the
same time.

•	 Consider the dependency among tasks.
•	 Use a new algorithm to solve this problem.
•	 Consider more than MEC and more than charge

level for cost.

3 � System model and problem formulation

In this section, we provide the system model for the
computational offloading problem in the multi-access
edge computing environment considering the depend-
ency among tasks. Table 1 provides an overview of the
key notations used in this paper.

	 K. M. Hosny et al.

1 3

21  Page 4 of 24

Vol:. (1234567890)

Table 1   Summary of Used Notations

Notation Description

M Set MEC servers
V Set of application Tasks
vi Task number i in the application
DAG Directed acyclic graph to represent the task dependency
pre_set(vi) Set of successors of task vi

post-set(vi) The set of predecessors of task vi

Eij It is an edge in the DAG between task vi and task vj

CCi The number of CPU clocks needed to process the task vi

Qin Input size
Qout Output size
P Set of processing locations, including PoC and the M set
Pk The kth processing location, where p0 is the PoC
L Set of charge levels or cost levels
Lr The rth charge level
R The number of supported charge levels
CTi

local Completion time of executing task vi locally
FT (p0) Finishing time of p0 task queue
ETi

local Execution time of task vi on the local processor
MaxPred(vi) Max predecessor completion time of task vi

WTi
local Waiting time for task vi to be executed locally

Flocal Operating frequency of the local processor of the PoC
CTj

MEC Completion time of task vj on one of the MEC servers
µ Coefficient expressing the operating chip’s capacitance
CTi

k,r Completion time for processing task vi remotely on MEC server Pk under charge level lr
ETi

k,r Execution time of task vi on pk, where pk ! = p0 under level lr
WTi

k Waiting time for task vi to be executed on pk

F
k

l
Operating frequency of pk under the charge level lr

TTi
k The transmission time of Qin of task vi to MEC server pk

RTi
k Receiving time of Qout of task vi from MEC server pk

HK Achievable uplink and downlink transmission rate between the PoC and the MEC server pk

B Channel bandwidth
WP Wireless transmission and receiving the power of the PoC
A
k

Gain of the channel between p0 and pk

�
2 Channel noise

E_ik Energy consumption for offloading task vi to pk, where pk ! = p0

E_iktrans Consumed energy consumed for transmitting Qin of task vi to pk

E_ikrec Consumed energy consumed for receiving Qout of task vi from pk

WTP The wireless transmission power of the PoC
WRP Wireless receiving the power of the PoC
Ci

r Charge cost for processing task vi remotely at level lr
▽ Coefficient expressing the cost per unit of time
a
1
 , a

2
 , and a

3
Weighting parameters are used to identify the relative importance of each objective of the three

CT(vi) Total completion time of task vi

E(vi) Total energy consumption of task vi

C(vi) Total used cost for completing task vi

Z Optimization function

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 5 of 24  21

Vol.: (0123456789)

3.1 � System Model

The architecture of the MEC system is shown in Fig. 1.
The IoT sensors sense the data and transmit it to the
point of Collection (PoC) device, which can be a Per-
sonnel Digital assistant (PDA) or smartphone. This PoC
runs the application that analyzes the sensed data. Such
applications are computationally intensive and contain
complex tasks that require powerful resources. To meet
such resources’ requirements, the PoC device can per-
form partial offloading for some of its tasks to a nearby
MEC server installed in the base station (gNB) at the
network edge, as in the 5G network architecture [43].
We consider a system that consists of M MEC Nodes
and only one PDA/ smartphone that runs an applica-
tion composing a set of V tasks. We denote the set of
dependent tasks composing the application as V = {v1,
v2, v3, …, vN}, where N represents the number of
tasks in the application. The analysis result is then
transferred to the central cloud through the backhaul
network of the 5G network core for further analysis and
storage purposes.

To clarify the dependency relationship among the
tasks, we modeled them as a Directed Acyclic graph
(DAG), as shown in Fig. 2. Each vertex in the graph
vi represents a task in the model, and i represent the
task ID, where each edge Eij represents a depend-
ency relationship between task vi and vj, such that
task vj cannot be executed before task vi finishes its
execution. We denote the pre_set(vi) and post-set(vi),
which are the set of predecessor and successor tasks of
vi, respectively. Predecessors express the set of tasks
that must be executed before vi starts. In contrast,

successor means the set of tasks that cannot start its
execution before completing the execution of vi. Fig-
ure 2 depicts an application composing 11 tasks. Task
v0 is the start task because the number of elements in
its pre_set is zero, and task v10 is the end task as the
number of elements in its post_set is zero.

We maintain three parameters for each task in the
system. The number of CPU clocks needed to pro-
cess the task CCi in a million instructions per second
(MIPS), the input size Qin in megabytes, and the out-
put size Qout in megabytes. Each task can be executed
locally with the local device’s full processing capac-
ity or offloaded to one of the neighboring MECs at a
specific charge level. Each MEC device support set of
charge level with different processing capabilities and
usage cost. Each MEC server can easily support this
strategy by allocating its tasks to its cores under differ-
ent Dynamic Voltage and Frequency Scaling (DVFS)

Fig. 1   MEC system archi-
tecture

Fig. 2   Example of tasks
DAG

	 K. M. Hosny et al.

1 3

21  Page 6 of 24

Vol:. (1234567890)

levels [44]. We denote the set of processing locations
is P = {p0, p1, p2... pM}, such that 0 ≤ pk ≤ M, where
M is the number of MEC servers in the system and
P0 is the PoC. The set of charge levels is denoted as
L = {L1, L2... LR}, such that 0 ≤ Lr ≤ R, where R is the
number of supported charge levels.

3.2 � Problem Formulation

As mentioned earlier, MEC offers Cloud services
at the network edge, a big technology revolution for
the IoT and mobile applications. For this reason, we
try to help maximize the benefit of this new technol-
ogy paradigm. As a result, we seek in this research
to build an optimization framework that can be used
by mobile and IoT application developers to develop
better MEC-based applications in terms of execution
time, energy consumption, and usage cost.

This subsection will formulate the task offloading
optimization problem considering M MECs and a PoC
device. We seek to develop a framework that IoT and
Mobile application developers can use in designing
their applications and programs. As mentioned in the
previous sections, there exist two offloading decisions
in this problem:

•	 Executes the task locally using its resources.
•	 Offloads the task to one of the nearby MEC servers.

The extra intensive-computing tasks can be
offloaded to cloud computing, but this is not included
in our model, as it is a special case.

3.2.1 � Task Local Processing

In the case of local processing, task vi is not transmit-
ted to any MEC server, so the task completion time can
be defined as follows:

FT (P0) is the finishing time of the P0 queue before
the addition of vi. It is also the start time of vi. ETi

local
is the task execution time on the local processor. It is
calculated as CCi/Flocal. The CCi is the required CPU
Clock cycle for executing task vi, and Flocal is the
operating frequency of the PoC device. The WTi is

(1)CTlocal
i

= FT(P
0
) + ETlocal

i
+WTlocal

i
.

the waiting time for task vi to be executed. WTi
local is

defined as follows:

MaxPred(vi) is the max predecessor completion
time of task vi. it can be defined as:

Where CTj
MEC is the completion time of executing

task vj on one of the MEC servers. Each task is exe-
cuted in one location. If the task is executed locally,
then CTj

MEC = 0. Conversely, if the task is offloaded to
one of the MEC servers, then CTj

local = 0. The value of
WTi

local is neglected if it is a negative value or zero.
According to [18], energy consumption is defined

as follows:

Where µ is a coefficient expressing the operating
chip’s capacitance, the cost of processing task vi on
the local processor naturally equals zero.

3.2.2 � Task offloading to Nearby MEC

In case of offloading task vi to a MEC server pk,
where 1 < k ≤ M, the PoC will transmit the input Qin
including program code, to the MEC server, then
receive the output Qout from the server using the
uplink and downlink wireless channels, respectively.
We denote CTi

k,r as the completion time for process-
ing task vi remotely on MEC server Pk under charge
level Lr, where 1 < r ≤ R. it can be calculated as:

Where ETi
k,l is calculated as:

Where Fk
l
 WTik is waiting for task vi to be executed

on PK; it can be calculated in Eqs. (2) and (3), but for
the Pk. Is the operating frequency of MEC server pk
under the charge level Lr. TTi

k and RTi
k express the

transmission time for the input data of task vi to MEC
pk and the receiving time for the output data of task
vi from MEC pk, respectively. They can be defined as
follow:

(2)WTlocal
i

= MaxPred
(
vi
)
− FT(P

0
).

(3)
MaxPred(vi) = Max{Max(CTlocal

j
,CTMEC

j
)∀vj ∈ pre_set(vi)}.

(4)Elocal
i

= μ ∗ CCi ∗ (Flocal)
2
.

(5)CTk,r

i
= ETk,r

i
+ WTk

i
+ TTk

i
+ RTk

i
.

(6)ET
k,r

i
= CC

i
∕Fk

r

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 7 of 24  21

Vol.: (0123456789)

Where HK is the achievable uplink and downlink
transmission rate between the PoC and the MEC
server pk, we assumed the symmetry property for the
two wireless channels. According to Shannon–Hart-
ley theory [45], the HK is defined as:

Where B is the channel bandwidth, WP is the
wireless transmission and receiving the power of the
PoC, Ak is the channel’s gain, and σ2 is the chan-
nel noise. The propagation delay can be discarded as
the distance is very small relative to the light speed,
which generates a tiny number [21].

The energy consumption for offloading task vi to
MEC server pk can be calculated as follows:

E_iktrans and E_ikrec express the energy consumed
for transmitting input data and receiving the output
data of task vi to/from the MEC pk, respectively, and
can be defined as following [46]:

The WTP is the wireless transmission power, and
WRP is the wireless receiving power. Offloading task
vi to a MEC server Pk at charge level Lr imposes a cost
Ci

r on the PoC for using the MEC computing resources
for some time [47]. This usage cost can be obtained by:

The symbol ▽ refers to a coefficient expressing the
cost per unit of time.

3.2.3 � Objective Function

Task offloading problem in the MEC environment is a
multi-objective problem that minimizes the completion
time or makespan, energy consumption, and cost usage
of remote MEC servers.

The total completion time of task vi CT (vi), the
energy consumption E (vi), and the total used cost C

(7)TTk
i
= Qin∕HK .,RT

k
i
= Qout∕HK.

(8)Hk = B ∗ LOG
2
(1 +

WP ∗ Ak

�
2

)

(9)Eik = E_iktrans + E_ikrec.

(10)
E_iktrans = WTP ∗ TTk

i
, E_ikrec = WRP ∗ RTk

i
.

(11)Cr
i
= ∇ ∗ ETk,r

i
.

(vi) for completing this task can be obtained using the
following equations:

The total completion time CT, energy consumption
E, and cost usage C for all tasks, including in the DAG
of tasks, can be defined as follow:

The objective function is defined as follows:

Where a1, a2, and a3 are weighting parameters in the
mathematical period [0, 1], they must sum to 1. They
are used to identify the relative importance of each
objective in the problem.

4 � IGTA Algorithm for Solving the Proposed Model

The proposed algorithm IGTA deal with optimiz-
ing the problem of offloading a single applica-
tion composed of multiple dependent tasks using
multiple neighboring MEC servers under different
charge levels. The IGTA algorithm’s overall flow
is depicted in Fig. 3. For simplicity, we called the
operations the vector values mapping, evaluated
the fitness function, updated the current solution,
updated the silverback position (Xsb) with the
name, and updated the IGTA parameters. In this
section, IGTA will be described in detail using
several subsections. Firstly, the Gorilla vector ini-
tialization process is introduced. Then, the mod-
eling of GTO Operations is discussed. After that,
we introduce the mapping operation of the result-
ant continuous vector to a discrete one. Finally,

(12)CT
(
vi
)
= CTlocal

i
+ CT

k,r

i

(13)E
(
vi
)
= Elocal

i
+ E_ik

(14)C
(
vi
)
= +Cr

i

(15)CT = Max
{
CT

(
v
i

)
∀v

i
in task DAG

}

(16)E =
∑v

i=1
E(vi)

(17)C =
∑v

i=1
C(vi)

(18)Minimize Z = a
1
∗ CT + a

2
∗ E + a

3
∗ C.

	 K. M. Hosny et al.

1 3

21  Page 8 of 24

Vol:. (1234567890)

we end our discussion with two subsections intro-
ducing the two improvement operations added to
the standard GTO steps. These two enhancement
operations are the crossover operation and the
Maximum-to-minimum (MTM) load balancing
method.

4.1 � Gorilla Vector Initialization

As we explained in the system model, each task can
be executed locally with the full processing capac-
ity of the local device or can be offloaded to one of
the neighboring MECs at a specific charge level. We

Fig. 3   Flow chart of IGTA
algorithm

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 9 of 24  21

Vol.: (0123456789)

maintain a single vector to represent the offloading
of tasks to different processing locations under dif-
ferent charge levels that will be optimized using our
algorithm. The vector is divided into three sets as
follows:

•	 The first V items of the vector represent the allo-
cated tasks.

•	 The next V items represent the processing location
of the tasks, respectively.

•	 The last V items represent the charge level used in
processing the task on a MEC server. The charge
level is the node processing cost level for task pro-
cessing.

We use algorithm 1 to generate a randomized
task list vector. In the proposed algorithm, this vec-
tor is represented by the gorilla that needs to be
optimized, where each gorilla vector represents a
possible solution to the problem. So In this vector,
the task at index i will be executed at the processing
location at index V + i under a charge level at index
V + 2i. Algorithm 1 is a recursive function that
starts with the start task; the task with no prede-
cessors then gets its post_set elements and shuffles
them. The algorithm recursively does this operation
for each task. This algorithm guarantees the random

generation of task lists considering task interde-
pendency relationships. We used Algorithm 2 to
initialize the three parts of the gorilla. It initial-
izes the task list by calling algorithm 1. The other
two parts, the MEC list and the charge levels list,
are initialized randomly. Figure 4 depicts an exam-
ple of a gorilla vector (X) consisting of 11 tasks,
4 processing locations, including the PoC, and 7
charge levels. In the figure, task 0 will be offloaded
to MEC 1 under charge level 1. This example is pro-
vided for a better understanding of the structure of
each gorilla vector.

X = (0, 1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 0, 0, 1, 2, 3, 1, 3,
3, 1, 2, 2, 0, 0, 3, 4, 5, 5, 4, 2, 3, 1, 4).

4.2 � Modeling the GTO Operations

After initializing the population of the gorilla posi-
tions, the IGTA algorithm will start its operations
with the GTO algorithm. The GTO algorithm simu-
lated the Gorillas’ troops’ behaviors [20]. The Goril-
las’ group behavior was mathematically modeled
using five different operations. Three operations
included in the exploration phase are migration to
unknown places, to known places, and other gorillas.
Furthermore, the two other operations are included

Algorithm 1.   Task list generation algorithm

	 K. M. Hosny et al.

1 3

21  Page 10 of 24

Vol:. (1234567890)

in the exploitation phase. These two operations are
to obey the silverback and compete with adult males.
The silverback is the leader of the gorilla group. The
GTO algorithm supposes that the best solution is the
silverback position. The mathematical formulation of
the three operators included in the exploration phase
depends on a seed variable S and a randomly gener-
ated value P. thus, when P < S, the migration to an

unknown place is used, and the candidate solution
GX in the next i iteration can be calculated as follow:

Where L and U are the lower and upper bounds
for the variables, respectively, r

1
 is a random variable

in the range [0: 1]. r
1
 is continuously updated in each

iteration. The movement to other gorillas’ operator is

(19)GX(i + 1) = (U − L) ∗ r
1
+ L

Fig. 4   Gorilla vector
example

Algorithm 2.   Initialization algorithm

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 11 of 24  21

Vol.: (0123456789)

selected when P ≥ 0.5, and the next candidate solution
is obtained by:

Xr is a randomly obtained position vector for an
individual from the gorillas’ population. y, a, and h are
variables that can be defined according to the following
equations:

X(i) is the current position vector. In the last case,
if P < 0.5, the migration to known locations operator
is selected, which is formulated as follows:

The selection from the two operations of the
exploitation phase is based on the value of the y vari-
able obtained using Eq. (21). When y is greater than
or equal to a pre-settled variable w, obeying the sil-
verback is mathematically selected and modeled.

Xsb is the silverback or best solution position vec-
tor, and b is calculated using the following equation.

GXt(i) is a candidate position vector in itera-
tion i for each gorilla member t. N represents the
total number of gorillas. On the other side, when y
is less than W, the competition for adults’ behavior
is selected by the GTO algorithm. This operator is
modeled as follows:

(20)GX(i + 1) = (r
2
− y) + Xr(i) + a ∗ h

(21)y = V ∗ (1 −
i

Mi
)

(22)V = cos(2 ∗ r
4
) + 1

(23)a = y ∗ r4|r4 is a random value in [−1 ∶ 1]

(24)h = Z ∗ X(i)|Z = [−y, y].

(25)
GX (i + 1) = X(t) − a ∗

(
a ∗

(
X(i) − GX

r(i)
)
+ r

3
∗
(
X(i) − GX

r(i)
))

(26)GX(i + 1) = a ∗ b ∗ (X(i) − Xsb) + X(i)

(27)b =

[(
1

N

∑N

j=1

(
GXt(i)

))g
] 1

g

|g = 2
a
.

Where f is the impact force, β is a variable that
should be given a value before starting the optimization
operation. £ is used to determine the violent effect. £
value is determined based on a random number r

0
 with

two expected values in the normal distribution and the
dimensions of the problem ifr

0
≥ 0.5 . We have added

two operations to extend the functionality of the stand-
ard GTO algorithm. The customized crossover opera-
tion and MTM load balancing operation are the two
added operations. The results showed that our modifi-
cation had improved the quality of the GTO algorithm
to provide better results.

4.3 � Vector Mapping Operation

The generated Gorilla vector (after performing the
mathematical formulas of each operation of IGTA)
produces a vector of continuous values that need to
be mapped to discrete bounded ones according to the
value position in the gorilla vector. In this regard, we
depended on two mapping methods to discretize the
values of the produced gorilla position vector.

The first mapping method is used to map the val-
ues of the task list part. To respect the dependency
constraint among tasks, firstly, we start with the first
task from the task list and get its successors. For
example, we take task v0 and get its successors v1,
v2, and v3.

Suppose that the values of generated task list of GXi
are as in Table 2. We then put the start task v0 in index
0 of the gorilla vector GXi. We then get the values of the
task successors from GXi.

(28)GXt(i) = Xsb −
(
Xsb ∗ f − X(i) ∗ f

)
∗ A

(29)f = 2 ∗ r
5
− 1|r

5
is a random number in [0 ∶ 1].

(30)A = � ∗ £

(31)£ =

{
r
6
if r

0
≥ 0.5

r
7
if r

0
< 0.5

Table 2   Successors of task v0 in the Generated Task List

0.0 0.94 3.1 2.12 5.36 4.12 6.68 6.34 9.39 8.46 9.84

	 K. M. Hosny et al.

1 3

21  Page 12 of 24

Vol:. (1234567890)

The successors of task 0 should be in indices 1, 2, and
3 with values 0.94, 3.1, and 2.12. We sort these values as
in Table 3.

Then we replace each vector value in the GXi vector
with its corresponding successor’s list value. So the vec-
tor will be as in Table 4 after this step.

If two or more tasks have the same successor task,
this successor task will be added only once to satisfy the
uniqueness constraint for executing each task only once.
This operation will be repeated for each task in the task
list.

The second mapping method is used to map the
values of the MEC list and the charge level list. This
method is simply a direct normalization of the vec-
tor values according to the following equation:

Where maxval and minval are the maximum and min-
imum values of the vector part (MEC list or level list) to
be mapped, respectively, this equation will be multiplied
by the number of MEC set in case of MEC vector value
mapping and by the number of charge level in case of the
level vector value mapping.

4.4 � Crossover Improvement Operation

We suggested a special crossover operation to enhance
the generated solution’s quality and improve the perfor-
mance of the GTO algorithm.

We perform the crossover operation on each gener-
ated position Xi

t and the silverback position Xsb. For
the task list part, we then choose a random number
from the task list and swap its successors between the
two input vectors. Assume the chosen random index is
0 with task number 0. We then find its successors in
the two Children and swap them. To swap them, we

(32)GXi =
GXi − minval

maxval − minval

get the position of the successor list in each child. After
that, we swap the positions of tasks between the two
Children, as shown in Fig. 5. The Crossover operation
algorithm for the task list is provided in algorithm 3.

Furthermore, for the other two parts of the gorilla vec-
tor, we choose a random index for the second and third
parts and swap its value between the two Children.

4.5 � MTM Load Balancing Operation

We proposed the MTM method to redistribute the load
of the task among the processing locations. The MTM
load balancing operation continuously updates tasks’
processing locations from maximum completion time to
minimum one until the completion time of the minimum
location reaches or exceeds the best-obtained completion
time or the maximum completion time. In the MTM load
balancing method, we search for the two processing loca-
tions with maximum and minimum completion times.
The pseudo-code for the MTM load balancing operation
is provided in algorithm 4. The pseudo-code of the IGTA
algorithm is shown in algorithm 5.

5 � Illustrative Example

In this section, we provide a motivating example to
clarify the offloading strategy of this research. Depend-
ing on the DAG of Fig. 2, that shows an application
consisting of eleven dependent tasks V = {v0, v1…
v10}. We randomly generated the values of the three
parameters maintained for each task. Table 5 shows
these generated values. We suppose there are three
MEC servers and a PoC in the system p = {P0, P1, P2,
P3}, P0 expresses the PoC processor. By assuming the
symmetry property for the two wireless channels, the
achievable uplink and downlink rates are provided in
Table 6. We suppose that the transmission and receiv-
ing powers of the PoC equal 0.1 Watts. Each MEC
device supports a set of charge levels with different
processing capabilities. Each MEC server can sup-
port up to six charge levels L = {L1, L2… L6} in addi-
tion to L0, which expresses the task’s local processing.
Each charge level has a different operating frequency

Table 3   Indices of task 0 successors

vector Value 3.1 2.12 0.94
value index 2 3 1
Successors list 1 2 3

Table 4   Task list after mapping the successors of the task

0.0 3 1 2 5.36 4.12 6.68 6.34 9.39 8.46 9.84

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 13 of 24  21

Vol.: (0123456789)

and unit price, as shown in Table 7. The dependency
among tasks is provided in Table 8. Assuming that
the mobile dynamic energy is 0.125. For simplic-
ity, we suppose sequential execution of tasks from
each mobile device on MEC. As in the case of paral-
lel execution, it is a confusing issue to distribute the
operating frequency among tasks. This distribution
will directly impact the task completion time, so we
suppose sequential execution to avoid this. Assume we
have a candidate solution:

X = (0, 1, 3, 2, 4, 5, 6, 7, 8, 9, 10, 0, 0, 1, 2, 3, 1, 3, 3, 1, 2, 2, 0, 0, 3, 4, 5, 5, 4, 2, 3, 1, 4).

Where Xi (i = 0... 10) is the task id, Xi (i = 11... 21)
is the execution location of Vi, and Xi (i = 22... 32) is
the charge level.

Firstly, we calculate the execution time matrix for
executing each task under each charge level, equal to
the CCi/Fop, where Fop is the operating frequency. The
time execution matrix for this example is shown in
Table 9.

For simplicity, we will use the equations presented
in the problem formulation section to calculate the
completion time of this example task. Since v0 and

v1 are executed locally, their completion time can be
obtained as follow.

WT0
local = 0. Since it is the start task.

We need to compute each task’s waiting time, trans-
mission time, and receiving time for remote-processing
tasks. We set the H value by 1 GBps for all channels to

CT
(
v
0

)
= CT

local

0
= FT

(
P
0

)
+ ET

local

0
+WT

local

0

= 0 + 3.33 + 0 = 3.33.

WTlocal
1

= CTlocal
0

− FT
(
P
0

)
− 3.33 − 3.33.

CT
(
v
1

)
= CT

local

1
= FT

(
P
0

)
+ ET

local

1
+WT

local

1

= 3.33 + 5 + 0 = 8.33.

calculate the transmission and receiving times. So the
completion time of v3 can be calculated as follow:

The completion times for the other tasks were com-
puted similarly and provided in Table 10.

Figure 6 shows the complete task offloading chart for
this example. The completion time of the application is

WT1

3
= CTlocal

0
− FT

(
P
1

)
= 3.33 − 0 = 3.33.

TT1

3
= 4.2M∕1G = 0.0042.

RT1

3
= 2.5M∕1G = 0.0025.

CT
(
v
3

)
= CT

1,3

3
= FT(P

1
) + ET

1,3

3
+WT

1

3
+ tTT

1

3
+ RT

1

3

= 0 + 1.333 + 3.33 + 0.0042 + 0.0025 = 4.67.

Fig. 5   Visual illustration of
the crossover operation

	 K. M. Hosny et al.

1 3

21  Page 14 of 24

Vol:. (1234567890)

also called the makespan. It is the maximum completion
time among all completion times of the processing loca-
tions. In this regard, the application completion time is
21.22 s, the energy consumption is 28.15 J, and the charg-
ing cost is 4.79 $. The fitness function value:

Algorithm 5 shows the pseudo-code for the pro-
posed IGTA algorithm. We first initialize a gorilla
vector. After that, the initialized vector is passed as
input to the GTO algorithm, producing a vector of
continuous values. We then discretize this vector’s
continuous values and improve this vector using the
crossover and MTM load balancing operations.

6 � Experiments and Results

Several experiments and empirical tests are performed
in this section to evaluate the effectiveness of the IGTA

Z = 0.34 ∗ 21.22 + 0.33 ∗ 28.15 + 0.33 ∗ 4.79 = 18.1

algorithm. All tests are conducted on a laptop with the
following specifications. The processor specification is
Intel (R) Core (TM) i7-3540 M @ 3.00 GHz, and the
RAM size was 8 GB. Windows 10 Professional 64-bit
was the installed operating system. All the simulated
experiments were done using the java programming
language.

6.1 � Data Description

For the experiment, we will suppose that M = 3
MEC servers will be available for the PoC. We sup-
pose that the transmission and receiving powers are
0.1 watts and the mobile dynamic energy is 0.125
[21, 25, 48]. By assuming the symmetry property
for the two wireless channels, the achievable uplink
and downlink rates are previously shown in Table 6.
Additionally, we use six distinct charge levels previ-
ously noted in Table 7. The operating frequency and
unit price values rise from the first level to level six.

Algorithm 3.   Crossover operation algorithm for the task list

Algorithm 4.   MTM load balancing improvement algorithm

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 15 of 24  21

Vol.: (0123456789)

We adopt level zero to denote the full capacity of the
PoC device.

The datasets used in our experiments will be
described here. The used datasets are open and accessi-
ble at [49]. The task graphs in the datasets are divided
into three sets, each with 100 graphs. The first set of
graphs all has the same topology, N = 9 tasks. Three
must be executed locally, and the other six can be
offloaded. The second set of graphs has the same topol-
ogy, N = 29 tasks, and 20 off-loadable tasks. The third
set of graphs all shares the same topology, N = 23
tasks, and 19 off-loadable tasks. The number of off-
loadable components per task graph is also adjustable
by users. In this experiment, we assume that all tasks in
each graph can be offloaded.

We selected three task graphs from each graph
set from the dataset mentioned above for our experi-
ment. Moreover, for testing purposes, we ran-
domly generated the input data Qin in the range
[5, 50] megabytes and the output data Qout in the
range [0.5, 5] megabytes. Table 11 contains the full
description of the experiment’s task graphs (TG).

6.2 � Experiment Parameters

We compare our suggested IGTA algorithm with the
following algorithms:

•	 Standard Gorilla troops algorithm (GTO) with no
refinement.

•	 Harris hawks optimizer (HHO) [50].
•	 Whale Optimization Algorithm (WOA) [51].
•	 Grey wolf Optimization (GWO) algorithm [52].
•	 Bat Algorithm (BAT) [53].
•	 Particle Swarm Optimization (PSO) algorithm [54].
•	 Genetic algorithm (GA) [55].

Since the number of tasks in the described datasets
is relatively small, we set the number of iterations to
200 to allow for a fair assessment of the algorithms.
Each algorithm’s population size is set to 10. Each
algorithm is evaluated by the results of executing it 20
times. We set the parameters of the GTO as follows:

•	 P parameter to control the selection of the explora-
tion operations = 0.03;

•	 W parameter to control the selection of the exploi-
tation operations = 0.8;

•	 The beta that is used in calculating the coefficient
vector to determine the degree of violence in con-
flicts = 3;

The crossover probability parameter P for IGTA is
set to 0.7. However, the results of some experiments
on a few random datasets show that 0.7 is the most
suitable probability. This procedure maintains popu-
lation diversity while improving the quality of the
new solutions produced by IGTA.

The parameters of the comparison algorithms are
set as the authors recommend. For GA, we have set
the mutation rate to 0.001. Beginning from the start
task, we have implemented a crossover operation
between the successors of each task in the DAG. We
select the random number in the task list, mutate its

Table 5   Tasks data Tasks v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

CC MIPS 10 15 18 20 25 20 30 28 23 30 29
Qin 5 10 15 4.2 20 18 50 27 20 15 26
Qout 0.5 1.5 2 2.5 2 2.3 3 1 1.3 1.5 2

Table 6   Achievable uplink and downlink transmission rates

MEC servers M1 M2 M3
Achievable uplink and downlink rates 1G 1G 1G

Table 7   Operating frequency and unit price for each charge
level

Charge level Operating frequency
MIPS

Cost per second

L0 for mobile 3 0
L1 5 0.01
L2 10 0.02
L3 15 0.03
L4 20 0.04
L5 25 0.05
L6 30 0.06

	 K. M. Hosny et al.

1 3

21  Page 16 of 24

Vol:. (1234567890)

Table 8.   Dependency
matrix

V x V v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v0 0 1 1 1 0 0 0 0 0 0 0
v1 0 0 0 0 1 1 0 0 0 0 0
v2 0 0 0 0 0 1 1 0 0 0 0
v3 0 0 0 0 0 0 1 1 0 0 0
v4 0 0 0 0 0 0 0 0 1 0 0
v5 0 0 0 0 0 0 0 0 0 1 0
v6 0 0 0 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 0 0 0 0 1 0
v8 0 0 0 0 0 0 0 0 0 0 1
v9 0 0 0 0 0 0 0 0 0 0 1
v10 0 0 0 0 0 0 0 0 0 0 0

Table 9   Time Execution
matrix

V x L LOCAL L1 L2 L3 L4 L5 L6

v0 3.33 2 1 0.667 0.5 0.4 0.333
v1 5 3 1.5 1 0.75 0.6 0.5
v2 6 3.6 1.8 1.2 0.9 0.72 0.6
v3 6.667 4 2 1.333 1 0.8 0.667
v4 8.33 5 2.5 1.667 1.25 1 0.833
v5 6.667 4 2 1.333 1 0.8 0.667
v6 10 6 3 2 1.5 1.2 1
v7 9.33 5.6 2.8 1.867 1.4 1.12 0.933
v8 7.667 4.6 2.3 1.533 1.15 0.92 0.767
v9 10 6 3 2 1.5 1.2 1
v10 9.667 5.8 2.9 1.933 1.45 1.16 0.967

Table 10   Tasks completion
times

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

3.33 8.33 4.67 4.25 9.36 9.15 10.91 13.74 12.46 19.74 21.22

Fig. 6   Complete example
tasks offloading chart

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 17 of 24  21

Vol.: (0123456789)

processing location charge level, and shuffle its succes-
sor list.

The PSO’s basic parameters are set as follows as
recommended in [56, 57]:

•	 The social coefficient is 1.57.
•	 The cognitive coefficient is 1.42.
•	 Weight inertia is 0.7298.

The other algorithms’ parameters as set following
recommendations made by their authors.

6.3 � Comparison between GTO and IGTA​

In this case, we focus on analyzing how the proposed
algorithm was affected by the crossover and MTM
improvement operations. Therefore, using six DVFS
levels and three MECs, we will experimentally deter-
mine how different task sizes and parameters defined
in Table 11 affect the performance of GTO and IGTA.
In this experiment, we employ four distinct measures,
including average values for completion time, energy,
cost, and fitness.

Algorithm 5.   The IGTA algorithm

	 K. M. Hosny et al.

1 3

21  Page 18 of 24

Vol:. (1234567890)

Table 12 displays the outcomes of the two algo-
rithms (GTO and IGTA) classified based on the above-
mentioned measures. We can see from the outcomes
that IGTA performs better than GTO across all datasets.
It scored better values on all the performance measures.
The results have clarified the role of the added improve-
ment operations in enhancing the behavior of the stand-
ard GTO algorithm.

The total values of the findings from Table 12 for
each of the ten datasets are shown in Fig. 7 for the
GTO and IGTA algorithms. IGTA receives the mini-
mum completion time with a value of 93.5, while GTO
receives 139.5. Additionally, IGTA achieves improved
energy consumption and cost savings with 71.5 and
55.46, respectively. It also scored the minimum fitness
of 55.46 points, a good performance metric for distrib-
uting task loads across mobile edge computing servers
at various charge levels.

In the second experiment, we used the dataset
TG2-100 to examine how the performance of GTO

and IGTA will change when five different numbers
of MEC servers (2, 3, 5, 7, and 9) are used. The
local processor is also added in each experiment.
First, we determine the completion time values for
executing the dataset TG2-100 twenty times using
each MEC number. The average of the completion
time values is then calculated. The average com-
pletion time for each MEC number is then added
up. This procedure is repeated for the other three
performance metrics (energy consumption, used
cost, and fitness function). As seen in Fig. 8, the
improvements proposed on the GTO algorithm
resulted in better results across all performance
metrics.

We can see in Fig. 8 that IGTA obtained better
results for all performance metrics. It scored the min-
imum completion time with a value of 121.5 s, the
minimum total Energy consumption with 0.56 J, the
minimum total cost usage with 77.47$, and the mini-
mum fitness function with a value of 66.97.

Table 11   Datasets
description

No TG name No. of tasks No. of edges CC in mega Qin in mega Qout in mega

1 TG1-41 9 10 [3, 60] [5, 50] [0.5, 4.5]
2 TG1-83 9 10 [6, 50]
3 TG1-100 9 10 [2, 78]
4 TG2-1 29 36 [3, 37]
5 TG2-49 29 36 [0, 220]
6 TG2-100 29 36 [2, 204]
7 TG3-2 23 22 [0.0, 148.1]
8 TG3-61 23 22 [0.1, 72.2]
9 TG3-100 23 22 [0.0, 102.8]
10 EX_Data 10 15 [10, 30]

Table 12   Results of GTO
and IGTA using Table 11
datasets

NO TG name Avg. Completion
time

Avg. Energy Avg. Cost Avg. Fitness

GTO IGTA​ GTO IGTA​ GTO IGTA​ GTO IGTA​

1 TG1-41 8.17 4.96 1.15 0.03 2.55 1.68 4.00 2.25
2 TG1-83 8.48 6.27 1.04 0.02 2.43 1.83 4.03 2.74
3 TG1-100 7.13 5.07 0.14 0.03 1.76 1.16 3.05 2.12
4 TG2-1 15.28 9.18 3.45 0.08 18.14 12.05 12.32 7.13
5 TG2-49 25.63 18.96 3.33 0.08 27.61 21.44 18.93 13.54
6 TG2-100 32.72 23.59 11.27 0.09 30.92 17.9 25.05 13.96
7 TG3-2 17.78 10.16 0.29 0.07 11.29 6.96 9.87 5.77
8 TG3-61 4.59 3.56 0.38 0.08 2.94 2.17 2.66 1.95
9 TG3-100 9.06 6.96 0.50 0.07 7.14 3.90 5.60 3.68
10 EX_Data 11.04 4.74 0.02 0.02 4.34 2.12 5.19 2.32

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 19 of 24  21

Vol.: (0123456789)

6.4 � Comparison with Other Algorithms

This subsection compares the performance of the pro-
posed algorithm with HHO, WOA, PSO, BAT, GWO,
and GA using the datasets defined in Table 11. Four per-
formance metrics are used (completion time, energy con-
sumption, cost usage, and fitness function) to evaluate the
effectiveness of the algorithms. We run each algorithm
on each dataset twenty times using six charge levels. As
a result, we calculated the average for each used perfor-
mance measure (PerM) using the following equation:

where PerMj is the performance measure value
obtained from running an algorithm on a dataset.

Figure 9 shows the average completion times of
each algorithm on the adopted datasets. The figure
shows that the proposed algorithm outperforms the

(33)avg.PerM =

∑20

j=1
PerMj

20

other algorithms on all used datasets. It is also obvi-
ous that the ranking of other comparison algorithm
change on each dataset. This observation ensures that
our datasets validated the comparison approaches’
performance metrics. Furthermore, Fig. 10 presents
the total average completion times for the used data
sets obtained by summing the average completion
times produced from running each algorithm on all
adopted datasets. The results showed that our algo-
rithm provides the minimum completion time value
of 93.45 s. HHO algorithm scored a completion time
value of 140.31 s as the second minimum completion
time value. On the other side, the maximum com-
pletion time value of 300.58 s is scored by the GA
algorithm.

The second performance metric used in the compari-
son is the energy consumption measure. This metric is
significant since batteries are the primary power source
for mobile and IoT devices. Using the adopted test cases,

Fig. 7   Total performance measures’ values for GTO and
IGTA Using different datasets

Fig. 8   Total performance measures’ values for GTO and IGTA
using a different number of MEC servers

Fig. 9   Completion time results using adopted datasets and
three MEC servers

Fig. 10   Total avg. Completion times were obtained by running
each comparison algorithm on the adopted datasets

	 K. M. Hosny et al.

1 3

21  Page 20 of 24

Vol:. (1234567890)

Fig. 11 shows that our algorithm achieved much more
optimization according to this metric for all test cases. For
more quantified values, Fig. 12 presents the total average
energy consumption results of running each algorithm on
each task graph set twenty times. The figure shows that the
proposed algorithm scored the minimum value of 0.57 J,
while GWO accomplished the second minimum value of
28.55 J. The bat algorithm reached the maximum energy
consumption value of 187.26 J.

The third performance measure is the cost used to
execute the application tasks, which is important for
designing an economic plan. As a result of running each
algorithm on the test datasets of Table 11 using the seven
charge levels prices provided in Table 7, Fig. 13 shows the
total average cost usage results. It is clear from the results
that our algorithm introduces the minimum cost levels
for all test sets. Figure 14 also did its role in providing an
obvious viewpoint in quantifying the cost usage results
scored by the comparison algorithms. The figure shows

that the proposed algorithm hit the most optimized cost
by 71.21$.WOA hit the second optimum value of 82.18$.
The maximum cost usage value of 176.35 is obtained
from the GA algorithm.

The fitness values are an absolutely important fac-
tor in measuring the performance of the algorithms
since they present a general viewpoint that combines
all of the previously mentioned metrics. Figure 15
depicts the average fitness for each algorithm on the
test sets. This figure confirmed the other metrics’
results that witnessed the proposed algorithm outper-
forming the other approaches. Figure 16 also shows
that IGTA accomplishes the minimum fitness value
of 55.46, and the BAT algorithm hits the maximum
value of 225.29. The other algorithms hit the follow-
ing fitness values: WOA with a value of 91.01, HHO
with a value of 107.32, GWO with a value of 123.54,
PSO with a value of 137.76, and GA with a value of
221.22.

Fig. 11   Energy consumption results using adopted datasets
and three MEC servers

Fig. 12   Total avg. Energy consumption values were obtained
by running each comparison algorithm on the adopted datasets

Fig. 13   Cost usage results using adopted datasets and three
MEC servers

Fig. 14   Total avg. Cost usage values were obtained by running
each comparison algorithm on the adopted datasets

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 21 of 24  21

Vol.: (0123456789)

The average CPU time for each algorithm on the
TG2-100 dataset is presented in Fig. 17. It is obvi-
ous in the figure that our algorithm hit the maximum
CPU time with a value of 0.08 s, and GA hit the min-
imum value of 0.022 s. The other algorithms’ CPU
times are as follows: PSO with a value of 0.026 s,
BAT with a value of 0.029 s, WOA with a value of
0.029 s, GWO with a value of 0.03 s, HHO with a
value of 0.03 s, and standard GTO with value 0.05.
But the CPU times have no impact on the perfor-
mance measure of our proposed approach if this
IGTA is used in the design phase of the IoT and
mobile applications. As we previously mentioned in
subsection 3.2, this framework aims to enable IoT
and mobile application developers to build efficient
applications that can benefit the MEC servers the
most. Moreover, we suggest the installation of IGTA
on the MEC server in the MEC environments that
dynamically change the importance of the objective

over time, which can reduce the impact of the rela-
tively long CPU time of IGTA on the performance
measures, especially for computationally extensive
applications.

Figure 18 shows the total average performance
measures’ values of the algorithms using different
MEC servers (2, 3, 5, 7, and 9) on the TG2-100 data-
set. It can be seen from the figure that IGTA scored
the minimum completion time value of 121.5 s,
and the HHO algorithm scored the second mini-
mum value of 146.2. Conversely, the BAT algorithm
scored the maximum value of 349.11 s. But regard-
ing the energy consumption measure, our algo-
rithm also accomplished the most optimized value
of 0.56 J, and the WOA scored the second optimum
value of 20.96. While the maximum value of 174.02
was produced from the BAT algorithm.

Regarding used cost, IGTA also reached the mini-
mum value of 77.47$. The second minimum value
of 80.06$ was obtained by the WOA, while the BAT

Fig. 15   Fitness function results using adopted datasets and
three MEC servers

Fig.16   Total avg. Fitness function values were obtained by
running each comparison algorithm on the adopted datasets

Fig. 17   Avg. Processing time for each algorithm on TG2-100

Fig. 18   Total avg. Performance measures values of the algo-
rithms using a different number of MEC servers

	 K. M. Hosny et al.

1 3

21  Page 22 of 24

Vol:. (1234567890)

algorithm reached the maximum value of 212.88$.
Finally, regarding the fitness function, the results accom-
plished by the algorithms were as follows: IGTA with a
value of 66.97, WOA with a value of 96.34, HHO with a
value of 124.64, GWO with a value of 142.97, GA with
a value of 142.97, PSO with value 146.93, and the BAT
algorithm with value 246.39.

The results also showed that IGTA outperforms
all the algorithms included in the comparison. These
results confirm the stability of the IGTA performance
on the change in the number of installed MEC serv-
ers in the environment.

We can infer from the extensive experiments that
the proposed algorithm has performed significantly
better than other meta-heuristic algorithms at saving
energy, minimizing the cost, and shortening computa-
tion time.

7 � Conclusion

This study examines a multi-server mobile edge com-
puting system with multi-task dependence in which
three goals were optimized simultaneously: the appli-
cation completion time, MD energy consumption, and
MEC server usage fee. Moreover, IGTA can be used in
MEC environments that dynamically change the relative
importance of objectives over time. To overcome these
issues, we offered an improved multi-objective gorilla
troops algorithm for solving the dependent task offload-
ing problem in the MEC environment with three objec-
tives. In the proposed method, each gorilla vector was
broken down into three parts: a task list part, a MECs
list part, and a charge levels list part. A particular initiali-
zation method was also used to create workable gorilla
vectors. Since the gorilla vectors that are produced by
the GTO algorithm are continuous values, two map-
ping techniques were used to convert such vector values
into discrete and bounded ones. Additionally, we have
extended the operation of the standard Gorilla Troops
Algorithm (GTO) by adopting a customized crossover
operation to improve its search strategy. A Max-To-Min
(MTM) load-balancing strategy was also implemented
in IGTA to improve the offloading operation. To validate
IGTA performance, we have run extensive simulation
experiments on ten test instances with various task topol-
ogies and profiles. These experiments compared IGTA
with GTO, HHO, WOA, GWO, BAT, PSO, and the GA

algorithm. Finally, the simulation results confirmed the
superiority of IGTA’s overall performance metrics. For
instance, Relative to GTO, IGTA has reduced latency
by 33%, energy consumption by 93%, and cost usage by
34.5%.

Authors’ contributions  Khalid M. Hosny: Conceptualiza-
tion, Methodology, Writing—Review & Editing, Supervision.

Ahmed Awad: Conceptualization, Methodology, Validation,
Software, Writing- Original draft.

Marwa M. Khashaba: Methodology, Validation, Supervision.
Ehab R. Mohamed: Methodology, Validation, Supervision.

Funding  Open access funding provided by The Science, Tech-
nology & Innovation Funding Authority (STDF) in cooperation
with The Egyptian Knowledge Bank (EKB).

Data Availability  Data is available upon request.

Declarations 

This work is original and not have been published elsewhere in
any form or language.
No participants in this work.

Competing interest  No financial and non-financial competing
interests.

Open Access  This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Mach, P., Becvar, Z.: Mobile edge computing: A survey
on architecture and computation offloading. arXiv 19(3),
1628–1656 (2017)

	 2.	 Kekki, S. et al.: 【ETSI白皮书】MEC in 5G networks.
ETSI White Pap. (28), 1–28 (2018)

	 3.	 Awad, A.I., Fouda, M.M., Khashaba, M.M., Mohamed, E.R.,
Hosny K.M.: Utilization of mobile edge computing on the
Internet of Medical Things: A survey. ICT Express. no. xxxx,
(2022). https://​doi.​org/​10.​1016/j.​icte.​2022.​05.​006.

	 4.	 Goudarzi, M., Wu, H., Palaniswami, M., Buyya, R.: An
Application Placement Technique for Concurrent IoT

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.icte.2022.05.006

New Improved Multi‑Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem…

1 3

Page 23 of 24  21

Vol.: (0123456789)

Applications in Edge and Fog Computing Environments.
IEEE Trans. Mob. Comput. 20(4), 1298–1311 (2021).
https://​doi.​org/​10.​1109/​TMC.​2020.​29670​41

	 5.	 Xia, Z., Abu Qahouq, J.A.: State-of-Charge Balancing of
Lithium-Ion Batteries with State-of-Health Awareness
Capability. IEEE Trans. Ind. Appl. 57(1), 673–684 (2021).
https://​doi.​org/​10.​1109/​TIA.​2020.​30297​55

	 6.	 Portilla, J., Mujica, G., Lee, J.S., Riesgo, T.: The Extreme
Edge at the Bottom of the Internet of Things: A Review.
IEEE Sens. J. 19(9), 3179–3190 (2019). https://​doi.​org/​10.​
1109/​JSEN.​2019.​28919​11

	 7.	 Wang, S., Zhao, Y., Xu, J., Yuan, J., Hsu, C.H.: Edge server
placement in mobile edge computing. J. Parallel Distrib.
Comput. 127, 160–168 (2019). https://​doi.​org/​10.​1016/j.​
jpdc.​2018.​06.​008

	 8.	 Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile Edge
Computing: A Survey. IEEE Internet Things J. 5(1), 450–465
(2018). https://​doi.​org/​10.​1109/​JIOT.​2017.​27501​80

	 9.	 Reznik, A. et al.: Developing Software for Multi-Access
Edge Computing. 20, 1–38 (2017)

	10.	 Islam, A., Debnath, A., Ghose, M., Chakraborty, S.: A Sur-
vey on Task Offloading in Multi-access Edge Computing. J.
Syst. Archit. 118(June), 102225 (2021). https://​doi.​org/​10.​
1016/j.​sysarc.​2021.​102225

	11.	 Sundar, S., Liang, B.: Offloading Dependent Tasks with
Communication Delay and Deadline Constraint. Proc. -
IEEE INFOCOM 2018-April, 37–45 (2018). https://​doi.​
org/​10.​1109/​INFOC​OM.​2018.​84863​05

	12.	 Huang, M., Zhai, Q., Chen, Y., Feng, S., Shu, F.: Multi-
objective whale optimization algorithm for computation
offloading optimization in mobile edge computing. Sensors
21(8), 1–24 (2021). https://​doi.​org/​10.​3390/​s2108​2628

	13.	 Aldmour, R., Yousef, S., Yaghi, M., Tapaswi, S., Pattanaik,
K.K., Cole, M.: New cloud offloading algorithm for better
energy consumption and process time. Int. J. Syst. Assur.
Eng. Manag. 8(s2), 730–733 (2017). https://​doi.​org/​10.​
1007/​s13198-​016-​0515-2

	14.	 Wan, Z., Xu, D., Xu, D., Ahmad, I. Joint computation off-
loading and resource allocation for NOMA-based multi-
access mobile edge computing systems. Comput. Netw.
196 (June), (2021). https://​doi.​org/​10.​1016/j.​comnet.​2021.​
108256

	15.	 Shahidinejad, A., Ghobaei-Arani, M.: A metaheuristic-
based computation offloading in edge-cloud environment.
J. Ambient Intell. Humaniz. Comput. 13(5), 2785–2794
(2022). https://​doi.​org/​10.​1007/​s12652-​021-​03561-7

	16.	 Shakarami, A., Shahidinejad, A., Ghobaei-Arani, M.: A
review on the computation offloading approaches in mobile
edge computing: A game-theoretic perspective. Softw. -
Pract. Exp. 50(9), 1719–1759 (2020). https://​doi.​org/​10.​
1002/​spe.​2839

	17	 Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A
survey on the computation offloading approaches in mobile
edge computing: A machine learning-based perspective.
Comput. Networks 182(August), 107496 (2020). https://​
doi.​org/​10.​1016/j.​comnet.​2020.​107496

	18.	 Al-Habob, A.A., Dobre, O.A., Armada, A.G., Muhaidat, S.:
Task scheduling for mobile edge computing using genetic
algorithm and conflict graphs. IEEE Trans. Veh. Technol.
69(8), 8805–8819 (2020). https://​doi.​org/​10.​1109/​TVT.​
2020.​29951​46

	19.	 Abdel-Basset, M., El-Shahat, D., Deb, K., Abouhawwash,
M.: Energy-aware whale optimization algorithm for real-
time task scheduling in multiprocessor systems. Appl. Soft
Comput. J. 93, 106349 (2020). https://​doi.​org/​10.​1016/j.​
asoc.​2020.​106349

	20	 Abdollahzadeh, B., SoleimanianGharehchopogh, F., Mir-
jalili, S.: Artificial gorilla troops optimizer: A new nature-
inspired metaheuristic algorithm for global optimization
problems. Int. J. Intell. Syst. 36(10), 5887–5958 (2021).
https://​doi.​org/​10.​1002/​int.​22535

	21.	 Song, F., Xing, H., Wang, X., Luo, S., Dai, P., Li, K.: Off-
loading dependent tasks in multi-access edge computing:
A multi-objective reinforcement learning approach. Futur.
Gener. Comput. Syst. 128, 333–348 (2022). https://​doi.​org/​
10.​1016/j.​future.​2021.​10.​013

	22	 Fang, J., Zhang, M., Ye, Z., Shi, J., Wei, J.: Smart collabo-
rative optimizations strategy for mobile edge computing
based on deep reinforcement learning. Comput. Electr. Eng.
96(PA), 107539 (2021). https://​doi.​org/​10.​1016/j.​compe​
leceng.​2021.​107539

	23.	 Aldmour, R., Yousef, S., Baker, T., Benkhelifa, E.: An
approach for offloading in mobile cloud computing to opti-
mize power consumption and processing time. Sustain.
Comput. Informatics Syst. 31, 100562 (2021). https://​doi.​
org/​10.​1016/j.​suscom.​2021.​100562

	24.	 Wang, K., Ding, Z., So, D.K.C., Karagiannidis, G.K.: Stack-
elberg Game of Energy Consumption and Latency in MEC
Systems with NOMA. IEEE Trans. Commun. 69(4), 2191–
2206 (2021). https://​doi.​org/​10.​1109/​TCOMM.​2021.​30493​
56

	25.	 Zheng, J., Cai, Y., Wu, Y., Shen, X.: Dynamic computa-
tion offloading for mobile cloud computing: A stochastic
game-theoretic approach. IEEE Trans. Mob. Comput.
18(4), 771–786 (2019). https://​doi.​org/​10.​1109/​TMC.​
2018.​28473​37

	26.	 Peng, H., Wen, W.S., Tseng, M.L., Li, L.L.: Joint optimi-
zation method for task scheduling time and energy con-
sumption in mobile cloud computing environment. Appl.
Soft Comput. J. 80(2019), 534–545 (2019). https://​doi.​
org/​10.​1016/j.​asoc.​2019.​04.​027

	27.	 Zhao, G., Xu, H., Zhao, Y., Qiao, C., Huang, L.: Off-
loading Tasks with Dependency and Service Caching in
Mobile Edge Computing. IEEE Trans. Parallel Distrib.
Syst. 32(11), 2777–2792 (2021). https://​doi.​org/​10.​1109/​
TPDS.​2021.​30766​87

	28.	 Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal
computation task scheduling for mobile-edge comput-
ing systems. IEEE Int Symp. Inf. Theory - Proc. 2016-
Augus, 1451–1455 (2016). https://​doi.​org/​10.​1109/​ISIT.​
2016.​75415​39

	29.	 Huang, B., et al.: Security modeling and efficient com-
putation offloading for service workflow in mobile edge
computing. Futur. Gener. Comput. Syst. 97, 755–774
(2019). https://​doi.​org/​10.​1016/j.​future.​2019.​03.​011

	30.	 Xie, Y., et al.: A novel directional and non-local-conver-
gent particle swarm optimization based workflow sched-
uling in cloud–edge environment. Futur. Gener. Com-
put. Syst. 97, 361–378 (2019). https://​doi.​org/​10.​1016/j.​
future.​2019.​03.​005

	31.	 Ma, S., Song, S., Yang, L., Zhao, J., Yang, F., Zhai, L.:
Dependent tasks offloading based on particle swarm

https://doi.org/10.1109/TMC.2020.2967041
https://doi.org/10.1109/TIA.2020.3029755
https://doi.org/10.1109/JSEN.2019.2891911
https://doi.org/10.1109/JSEN.2019.2891911
https://doi.org/10.1016/j.jpdc.2018.06.008
https://doi.org/10.1016/j.jpdc.2018.06.008
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1016/j.sysarc.2021.102225
https://doi.org/10.1016/j.sysarc.2021.102225
https://doi.org/10.1109/INFOCOM.2018.8486305
https://doi.org/10.1109/INFOCOM.2018.8486305
https://doi.org/10.3390/s21082628
https://doi.org/10.1007/s13198-016-0515-2
https://doi.org/10.1007/s13198-016-0515-2
https://doi.org/10.1016/j.comnet.2021.108256
https://doi.org/10.1016/j.comnet.2021.108256
https://doi.org/10.1007/s12652-021-03561-7
https://doi.org/10.1002/spe.2839
https://doi.org/10.1002/spe.2839
https://doi.org/10.1016/j.comnet.2020.107496
https://doi.org/10.1016/j.comnet.2020.107496
https://doi.org/10.1109/TVT.2020.2995146
https://doi.org/10.1109/TVT.2020.2995146
https://doi.org/10.1016/j.asoc.2020.106349
https://doi.org/10.1016/j.asoc.2020.106349
https://doi.org/10.1002/int.22535
https://doi.org/10.1016/j.future.2021.10.013
https://doi.org/10.1016/j.future.2021.10.013
https://doi.org/10.1016/j.compeleceng.2021.107539
https://doi.org/10.1016/j.compeleceng.2021.107539
https://doi.org/10.1016/j.suscom.2021.100562
https://doi.org/10.1016/j.suscom.2021.100562
https://doi.org/10.1109/TCOMM.2021.3049356
https://doi.org/10.1109/TCOMM.2021.3049356
https://doi.org/10.1109/TMC.2018.2847337
https://doi.org/10.1109/TMC.2018.2847337
https://doi.org/10.1016/j.asoc.2019.04.027
https://doi.org/10.1016/j.asoc.2019.04.027
https://doi.org/10.1109/TPDS.2021.3076687
https://doi.org/10.1109/TPDS.2021.3076687
https://doi.org/10.1109/ISIT.2016.7541539
https://doi.org/10.1109/ISIT.2016.7541539
https://doi.org/10.1016/j.future.2019.03.011
https://doi.org/10.1016/j.future.2019.03.005
https://doi.org/10.1016/j.future.2019.03.005

	 K. M. Hosny et al.

1 3

21  Page 24 of 24

Vol:. (1234567890)

optimization algorithm in multi-access edge computing.
Appl. Soft Comput. 112, 107790 (2021). https://​doi.​org/​
10.​1016/j.​asoc.​2021.​107790

	32.	 Jia, M., Cao, J., Yang, L.: Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud
computing. Proc. - IEEE INFOCOM. 352–357 (2014).
https://​doi.​org/​10.​1109/​INFCO​MW.​2014.​68492​57

	33.	 Liu, L., Tan, H., Jiang, S.H.C., Han, Z., Li, X.Y., Huang,
H.: Dependent task placement and scheduling with func-
tion configuration in edge computing. Proc. Int. Symp.
Qual. Serv. IWQoS 2019, (2019). https://​doi.​org/​10.​1145/​
33262​85.​33290​55

	34.	 Wang, J., Hu, J., Min, G., Zhan, W., Ni, Q., Georgalas,
N.: Computation Offloading in Multi-Access Edge Com-
puting Using a Deep Sequential Model Based on Rein-
forcement Learning. IEEE Commun. Mag. 57(5), 64–69
(2019). https://​doi.​org/​10.​1109/​MCOM.​2019.​18009​71

	35.	 Wu, Q., Wu, Z., Zhuang, Y., Y.C.B.: Adaptive DAG
Tasks Scheduling, vol. 1. Springer International Publish-
ing (2018)

	36.	 Wang, J., Hu, J., Min, G., Zomaya, A.Y., Georgalas, N.:
Fast Adaptive Task Offloading in Edge Computing Based
on Meta Reinforcement Learning. IEEE Trans. Parallel
Distrib. Syst. 32(1), 242–253 (2021). https://​doi.​org/​10.​
1109/​TPDS.​2020.​30148​96

	37.	 Zhu, A. et al.: Computation offloading for workflow in
mobile edge computing based on deep Q-learning, 2019
28th Wirel. Opt. Commun. Conf. WOCC 2019 - Proc.,
no. Wocc, pp. 1–5 (2019). https://​doi.​org/​10.​1109/​WOCC.​
2019.​87706​89

	38.	 Qu, G., Wu, H., Li, R., Jiao, P.: DMRO: A Deep Meta Rein-
forcement Learning-Based Task Offloading Framework for
Edge-Cloud Computing. IEEE Trans. Netw. Serv. Manag.
18(3), 3448–3459 (2021). https://​doi.​org/​10.​1109/​TNSM.​
2021.​30872​58

	39.	 Lu, H., Gu, C., Luo, F., Ding, W., Liu, X.: Optimization of
lightweight task offloading strategy for mobile edge com-
puting based on deep reinforcement learning. Futur. Gener.
Comput. Syst. 102, 847–861 (2020). https://​doi.​org/​10.​
1016/j.​future.​2019.​07.​019

	40.	 Yan, J., Bi, S., Zhang, Y.J.A.: Offloading and Resource
Allocation with General Task Graph in Mobile Edge Com-
puting: A Deep Reinforcement Learning Approach. IEEE
Trans. Wirel. Commun. 19(8), 5404–5419 (2020). https://​
doi.​org/​10.​1109/​TWC.​2020.​29930​71

	41.	 Ali, Z., Jiao, L., Baker, T., Abbas, G., Abbas, Z.H., Khaf,
S.: A deep learning approach for energy efficient com-
putational offloading in mobile edge computing. IEEE
Access 7, 149623–149633 (2019). https://​doi.​org/​10.​1109/​
ACCESS.​2019.​29470​53

	42.	 Cui, G., Li, X., Xu, L., Wang, W.: Latency and energy
optimization for MEC enhanced SAT-IoT networks. IEEE
Access 8, 55915–55926 (2020). https://​doi.​org/​10.​1109/​
ACCESS.​2020.​29823​56

	43.	 Agiwal, M., Roy, A., Saxena, N.: Next generation 5G wire-
less networks: A comprehensive survey. IEEE Commun.
Surv. Tutorials 18(3), 1617–1655 (2016). https://​doi.​org/​10.​
1109/​COMST.​2016.​25324​58

	44	 Wang, S., Qian, Z., Yuan, J., You, I.: A DVFS Based
Energy-Efficient Tasks Scheduling in a Data Center. IEEE
Access 5(3), 13090–13102 (2017). https://​doi.​org/​10.​1109/​
ACCESS.​2017.​27245​98

	45.	 Song, F., Xing, H., Luo, S., Zhan, D., Dai, P., Qu, R.: A Mul-
tiobjective Computation Offloading Algorithm for Mobile-
Edge Computing. IEEE Internet Things J. 7(9), 8780–8799
(2020). https://​doi.​org/​10.​1109/​JIOT.​2020.​29967​62

	46.	 Mach, P., Becvar, Z.: Mobile Edge Computing: A Survey
on Architecture and Computation Offloading. IEEE Com-
mun. Surv. Tutorials 19(3), 1628–1656 (2017). https://​doi.​
org/​10.​1109/​COMST.​2017.​26823​18

	47.	 Nguyen, P. D., Le, L. B.: Joint computation offloading, SFC
placement, and resource allocation for multi-site MEC sys-
tems. IEEE Wirel. Commun. Netw. Conf. WCNC.2020-
May, (2020). https://​doi.​org/​10.​1109/​WCNC4​5663.​2020.​
91205​97

	48.	 Chaari, M. Z., Al-Maadeed, S.: Wireless power transmission
for the Internet of Things (IoT), 2020 IEEE Int. Conf. Infor-
matics, IoT, Enabling Technol. ICIoT 2020. 549–554 (2020).
https://​doi.​org/​10.​1109/​ICIoT​48696.​2020.​90895​47

	49.	 Szymanski, T. H.: 300 Pseudo-random task graphs for
evaluating mobile cloud Fog and Edge Computing Sys-
tems. https://​doi.​org/​10.​21227/​kak5-​8n96

	50.	 Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja,
M., Chen, H.: Harris hawks optimization: Algorithm and
applications. Futur. Gener. Comput. Syst. 97, 849–872
(2019). https://​doi.​org/​10.​1016/j.​future.​2019.​02.​028

	51.	 Mirjalili, S., Lewis, A.: The Whale Optimization Algo-
rithm. Adv. Eng. Softw. 95, 51–67 (2016). https://​doi.​org/​
10.​1016/j.​adven​gsoft.​2016.​01.​008

	52.	 Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Opti-
mizer. Adv. Eng. Softw. 69, 46–61 (2014). https://​doi.​org/​
10.​1016/j.​adven​gsoft.​2013.​12.​007

	53.	 Mirjalili, S., Mirjalili, S.M., Yang, X.S.: Binary bat algo-
rithm. Neural Comput. Appl. 25(3–4), 663–681 (2014).
https://​doi.​org/​10.​1007/​s00521-​013-​1525-5

	54.	 D. Wang, D. Tan, L. Liu.: Particle swarm optimization
algorithm: an overview. Soft Comput. 22(2), 387–408
(2018). https://​doi.​org/​10.​1007/​s00500-​016-​2474-6

	55.	 Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE
Trans. Evol. Comput. 6(2), 182–197 (2002). https://​doi.​org/​
10.​1109/​4235.​996017

	56.	 Huang, Y., Tang, C., Wang, S.: Quantum-inspired swarm
evolution algorithm, Proc. - CIS Work. 2007, 2007 Int.
Conf. Comput. Intell. Secur. Work., pp. 208–211, (2007).
https://​doi.​org/​10.​1109/​cisw.​2007.​44254​81

	57.	 Semnani, A., Nabi Bidhendi, M., Nadjar Araabi, B.: Detec-
tion of Low-frequency Shadow Zones using Quantum
Swarm Evolutionary Matching Pursuit Decomposition
(QSE-MPD). cp-363–00037, (2013). https://​doi.​org/​10.​
3997/​2214-​4609.​20131​866

Publisher’s Note  Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1016/j.asoc.2021.107790
https://doi.org/10.1016/j.asoc.2021.107790
https://doi.org/10.1109/INFCOMW.2014.6849257
https://doi.org/10.1145/3326285.3329055
https://doi.org/10.1145/3326285.3329055
https://doi.org/10.1109/MCOM.2019.1800971
https://doi.org/10.1109/TPDS.2020.3014896
https://doi.org/10.1109/TPDS.2020.3014896
https://doi.org/10.1109/WOCC.2019.8770689
https://doi.org/10.1109/WOCC.2019.8770689
https://doi.org/10.1109/TNSM.2021.3087258
https://doi.org/10.1109/TNSM.2021.3087258
https://doi.org/10.1016/j.future.2019.07.019
https://doi.org/10.1016/j.future.2019.07.019
https://doi.org/10.1109/TWC.2020.2993071
https://doi.org/10.1109/TWC.2020.2993071
https://doi.org/10.1109/ACCESS.2019.2947053
https://doi.org/10.1109/ACCESS.2019.2947053
https://doi.org/10.1109/ACCESS.2020.2982356
https://doi.org/10.1109/ACCESS.2020.2982356
https://doi.org/10.1109/COMST.2016.2532458
https://doi.org/10.1109/COMST.2016.2532458
https://doi.org/10.1109/ACCESS.2017.2724598
https://doi.org/10.1109/ACCESS.2017.2724598
https://doi.org/10.1109/JIOT.2020.2996762
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/WCNC45663.2020.9120597
https://doi.org/10.1109/WCNC45663.2020.9120597
https://doi.org/10.1109/ICIoT48696.2020.9089547
https://doi.org/10.21227/kak5-8n96
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s00521-013-1525-5
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/cisw.2007.4425481
https://doi.org/10.3997/2214-4609.20131866
https://doi.org/10.3997/2214-4609.20131866

	New Improved Multi-Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem in Multi-Access Edge Computing
	Abstract
	1 Introduction
	2 Related work
	3 System model and problem formulation
	3.1 System Model
	3.2 Problem Formulation
	3.2.1 Task Local Processing
	3.2.2 Task offloading to Nearby MEC
	3.2.3 Objective Function

	4 IGTA Algorithm for Solving the Proposed Model
	4.1 Gorilla Vector Initialization
	4.2 Modeling the GTO Operations
	4.3 Vector Mapping Operation
	4.4 Crossover Improvement Operation
	4.5 MTM Load Balancing Operation

	5 Illustrative Example
	6 Experiments and Results
	6.1 Data Description
	6.2 Experiment Parameters
	6.3 Comparison between GTO and IGTA​
	6.4 Comparison with Other Algorithms

	7 Conclusion
	References

