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Abstract Predicting computing resource usage in any
system allows optimized management of resources.
As cloud computing is gaining popularity, the urgency
of accurate prediction is reduced as resources can
be scaled on demand. However, this may result in
excessive costs, and therefore there is a considerable
body of work devoted to cloud resource optimiza-
tion which can significantly reduce the costs of cloud
computing. The most promising methods employ load
prediction and resource scaling based on forecast val-
ues. However, prediction quality depends on predic-
tion method selection, as different load characteristics
require different forecasting mechanisms. This paper
presents a novel approach that incorporates data-
driven adaptation of prediction algorithms to generate
short- and long-term cloud resource usage predic-
tions and enables the proposed solution to readjust to
different load characteristics as well as both tempo-
rary and permanent usage changes. First, preliminary
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tests were performed that yielded promising results
– up to 36% better prediction quality. Subsequently,
a fully autonomous, multi-stage optimization solution
was proposed. The proposed approach was evaluated
using real-life historical data from various produc-
tion servers. Experiment results demonstrate 9.28% to
80.68% better prediction quality when compared to
static algorithm selection.

Keywords Cloud computing ·
Resource usage prediction · Machine learning ·
Adaptation

1 Introduction

Corporate computer systems have frequently shifted
to cloud computing environments, with the COVID-
19 pandemic providing a strong boost to this trend.
According to Flexera 2021 State of the Cloud Report,
three-fourths of companies using cloud environments
spend more than a million dollars annually on their
operation. Public clouds offer storage, network and
computing resources with virtually unlimited scaling
capabilities. Large scaling safety margins are often
adopted to avoid system unavailability during sud-
den load changes, but this may result in unnecessary
cloud resource allocation and therefore, as stated in
the aforementioned report, generate additional costs
and electricity usage. As estimated in [4], in the near
future data centers will use a considerable percentage

/ Published online: 3 January 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-022-09641-y&domain=pdf
mailto:piotr.nawrocki@agh.edu.pl
mailto:patryk.osypanka@agh.edu.pl
mailto:bposluszny@student.agh.edu.pl


P. Nawrocki et al.

of global electricity, and thus reducing cloud resource
usage helps protect the environment.

The authors propose a system which will pre-
cisely predict optimized usage and use this for accu-
rate cloud resource scaling. To ensure the accuracy
of both short- and long-term forecasts, the system
proposed may require dynamic prediction algorithm
selection. Therefore, the authors performed prelimi-
nary tests to investigate whether prediction algorithm
adaptation improves forecast quality. Based on the
results obtained, a Self-Adapting Data-Driven Pre-
diction System (SA-DDPS) was defined to optimize
cloud resource usage with prediction algorithm adap-
tation based on data characteristics. The solution pro-
posed is suitable for optimizing cloud resources for
various kinds of systems with variable load charac-
teristics, as it automatically determines the optimal
prediction algorithm based on load analysis, predicts
usage levels, creates resource provisioning plans, and
performs resource scaling. The major contributions of
this paper can be summarized as follows:

– performing preliminary tests confirming the
validity of the solution proposed;

– designing a solution that provides resource usage
predictions without any prior configuration or
knowledge of load characteristics;

– developing a self-adapting data-driven system that
can operate in production-grade environments
with short- and long-term load changes;

– conducting evaluation using data collected from
a real-life production system and presenting the
results with tests performed for different load
types, and demonstrating the importance of data-
driven adaptation;

– comparing the results obtained using other predic-
tion techniques, illustrating the improved predic-
tion quality achieved.

The rest of this paper is structured as follows:
Section 2 contains a description of various cloud
resource forecasting methods, Section 3 presents
preliminary research, Section 4 is concerned with
defining a data-driven adaptive prediction approach,
Section 5 describes the tests conducted on the pro-
posed solution, and Section 6 contains the summary
and further work.

2 Related Work

The literature describes various cloud resource fore-
casting methods, as such forecasting is vital for proac-
tive cloud resource usage optimization. In this section,
the most common techniques are presented and com-
pared with the proposed solution.

One popular prediction method is incoming request
modelling. A system based on online incremen-
tal learning is presented in [12], Ranjbari et al.
[26] describe learning automata, and time-series with
queuing theory are used by the authors of [8]. One
of the shortcomings of incoming request modelling
becomes manifest when it is used with anomalous data
which include random changes. On the other hand,
the authors of [31] presented a method based on time-
series analysis and tested it using real-life Quality
of Service (QoS) data from [15]; nevertheless, their
load data were artificially generated. This approach is
prone to temporary deviations. On the other hand, the
SA-DDPS proposition, which uses forecasting tech-
niques supported by Machine Learning, is capable of
operating with industry-grade loads.

Other resource prediction methods are based on the
fact that incoming traffic can be treated as time series.
In [20], a comparison of Recurrent Neural Networks
(RNNs) and their successor Long Short-Term Mem-
ory (LSTM) is presented. The dataset was provided by
a private company and included information about the
activity of company employees entering the intranet.
Although LSTM outperforms RNNs, forecasts only
30 minutes ahead were achieved, with the dataset
including values from just two months. In contrast,
the authors use data from an entire year to explore
how models cope with such long periods and if they
can adapt to changes successfully. Likewise, Sriram
N. Rao et al. [27] presented a comparison of the Holt-
Winters, Auto Regressive Integrated Moving Average
(ARIMA), and LSTM models, but only one-step fore-
casting was provided, which is not sufficient in the
context of long-term prediction.

A distinct approach to cloud resource allocation is
described in [14], where the authors use Random For-
est to select the best resource offered by a provider in
order to satisfy the users’ requirements. Furthermore,
the authors of [2] and [13] proposed a novel schedul-
ing of scientific workflows, while in [19] QoS and
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cost optimization of cloud resource allocation is dis-
cussed. Sung et al. [28] describe Optimized Memory
Bandwidth Management Machine Learning to man-
age resources for latency-critical workloads and the
authors of [1] describe an algorithm that evaluates
resource utilization requirements for incoming tasks.
Although this method does not require load predic-
tion, the solution must know the incoming requests’
resource demands, which may create a big disadvan-
tage where load data are not well defined. On the other
hand, SA-DDPS handles different types of incom-
ing traffic properly without the need for structural
assessment.

Another group of widely used cloud resource pre-
diction methods is based on artificial intelligence
techniques. The autoscaling of network resources is
proposed in [25], recurrent neural networks are dis-
cussed in [10], a general framework for a VM reserva-
tion plan supported by Machine Learning and a set of
different methods is presented in [33] and the authors
of [16] used the Random Forest and ARIMA mod-
els. Likewise, Nawrocki et al. in [21] carried out a
comprehensive experiment with the use of Multilayer
Perceptron, the authors of [32] use a deep learning
model to predict resource utilization, and Shuai Wang
et al. in [30] propose a stacking strategy that inte-
grates models such as LSTM, Random Forest, linear
regression and Gaussian process regression. The solu-
tions proposed convert timestamps into a vector of
one-hot encoded information on features such as days
of the week, seasons or holidays. This may be bene-
ficial with specific traffic patterns, but requires data
analysis and is prone to changes in those charac-
teristics. The proposed solution not only is capable
(as it does not rely on any additional features) of
handling diverse data characteristics properly, but it
also adapts to changing environments by monitor-
ing incoming traffic attributes and selecting suitable
prediction algorithms.

As sub-optimal resource prediction may lead to a
deterioration in optimized system responsiveness and
the quality of the service provided, a significant body
of work has been devoted to QoS-driven resource allo-
cation. One of the approaches to this problem is to
allocate incoming requests to the resources available
in the most optimal way. This method allows a timely
response just before the defined timeout. The solu-
tions proposed in [7] and [17] combine incoming task
analysis with appropriate cloud resources. Likewise,

Chen et al. [6] present an iterative QoS prediction
model, and time series prediction is discussed in [29].
Despite its many advantages, this method requires the
optimizing solution to assess the incoming requests’
resource demands or to know these demands before-
hand. The SA-DDPS works autonomously without
any prior requirements; additionally, improved predic-
tion quality prevents QoS violations.

Authors’ earlier works [22–24] indicate that
resource usage optimization may result in signifi-
cant savings. A multi-stage optimization process with
sophisticated data-cleaning, monitoring and scaling
mechanisms yielded remarkable resource optimiza-
tion. Nevertheless, the former solutions used statically
selected prediction algorithms, which might result in
sub-optimal forecasts in systems with highly dynamic
load characteristics. The solution presented in this
paper not only performs load prediction and uses it
for automatic cloud resource scaling, but also con-
tinuously determines historical data characteristics for
optimal prediction algorithm selection.

An analysis of existing solutions (Table 1) shows
that currently none of them can tackle the problem
of short- and long-term prediction for cloud resources
allocated to systems with highly varied load data. The
need to formalise the load, delayed response to rapid
changes and fixed prediction techniques are factors
that make them ineffective in industry-grade, noisy
and highly diverse load level predictions, especially
when QoS constraints are taken into consideration.
The contribution of this study is to provide a novel,
data-driven adaptive short- and long-term prediction
solution that overcomes the aforementioned chal-
lenges. The SA-DDPS works with different load types
without prior knowledge of incoming data parameters,
is resilient to both temporary and permanent usage
changes and self-adapts the prediction algorithms uti-
lized. In addition, the SA-DDPS was evaluated with
industry-grade test data, demonstrating its capability
to function successfully in these conditions.

3 Preliminary Research

As stated above, dynamic prediction algorithm selec-
tion may improve forecasting quality. Therefore, the
authors decided to perform preliminary research to
evaluate this approach. The idea is to pay attention to
the specific characteristics of data patterns. Based on
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Table 1 Comparison of various parameters in the literature review

Approach Reference Methods Test data Remarks

Artificial Real-life

Incoming request [12] Online incremental learning X

modelling [26] Learning automata X

[8] Time-series with queuing theory X

[31] Time-series analysis X X Real-life QoS data with arti-
ficially generated load data

Incoming traffic
as time series

[20] RNNs and LSTM X Dataset from Afry, 30 min-
utes long forecast

[27] Holt-Winters, ARIMA and LSTM X One-step forecasting

Scheduling [14] Random Forest X

incoming task to the [2, 13] Scheduling of scientific workflows X

available resources [19] QoS and cost optimization X

[28] Optimized Memory Bandwidth
Management Machine Learning

X

[1] Evaluation of resource utilization X

Artificial intelligence [25] Autoscaling of network resources X

techniques [10] RNNs X Dataset partially from
PlanetLab

[33] General framework for a VM
reservation plan

X Dataset from Wikipedia

[16] Random Forest and ARIMA X Dataset from EMPRES-I

[21] Multilayer Perceptron X Dataset from IPTV

[32] Deep learning model X Dataset from PlanetLab

[30] LSTM, Random Forest, lin-
ear regression and Gaussian
process regression

X

QoS-driven resource [7] Incoming task analysis X Dataset from WSDream

allocation [17] Incoming task analysis X

[6] Iterative QoS prediction model X

[29] Time series prediction X Dataset from Amazon
and Google

[22–24] Multi-stage optimization process
with sophisticated data-cleaning,
monitoring and scaling mecha-
nisms

X Dataset from ASEC, one
week long prediction

SA-DDPS Multi-stage optimization process
with data-driven adaptive predic-
tion

X Dataset from ASEC, one
week long prediction

it, a suitable Machine Learning prediction model is
matched and trained. Section 3.1 presents how dataset
values passed to the model are converted. Section 3.2
demonstrates how the model selected based on data
analysis was determined. Section 3.3 presents pre-
liminary test results which are then summarized in
Section 3.4.

3.1 Data Preparation

While working on time-series associated questions,
the time component is the factor that makes problems
truly difficult to solve. In particular, time-series data
should be preprocessed adequately as the order of val-
ues is crucial and the data used for evaluation must not
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be lost. One solution to that problem is adding addi-
tional features which hold information about the day
of the week, month, or even hour depending on the
needs – on a case-by-case basis. Such a solution is
complex, since loads may exhibit multi-day or weekly
trends. Apart from that, there are holidays, special
events and promotions that affect periodicity. A lot of
human analysis is required, and such solutions may
prove insufficient for slightly different dependencies
such as those in Fig. 1 which presents the datasets used
in the evaluation. Moreover, a dataset may become
vast since, for some models, one-hot encoding of
these values might be needed. As a result, the time
required for model preparation increases. To avoid that
inconvenience, the authors apply a sliding-window
technique, which transforms a sequential supervised
learning problem into a classical one [9]. With this
approach, any seasonalities deviating from standard,
commonly known patterns are covered.

In the presented case, the input window has a
seven-day length. The output window has a seven-day
length, too. Figure 2 illustrates what the input and out-
put windows look like. Such window lengths appear
optimal, since for larger inputs, more training data
would be required. As concerns larger outputs, errors
could grow in the case of a sudden change in the pat-
tern and the model would not detect it immediately,
causing delayed results.

Apart from that, the authors use multi-output mod-
els, which enable multi-step prediction that returns N
values for the entire future period at once. This is less
computationally expensive than retraining separate
models N times as in the Direct Strategy. Moreover,
the authors wanted to avoid error propagation which
occurs in the Recursive Strategy when the model pre-
dicts a single value N times while being fed with its
own predictions from previous steps [3].

3.2 Model Selection

As the subject of this preliminary research is fore-
casting, prediction is performed on a weekly basis,
covering values for the next seven days. The size of
the data window is a trade-off between the ability to
quickly adjust to persistent changes and the ability
to ignore short anomalous load changes. Therefore,
the authors train the proposed model on five weeks
of data as this ensures a sufficient amount of train-
ing data while allowing proper adaptation to rapid data Fig. 1 History data used for evaluation
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Algorithm 1 Data-driven prediction algorithm.

changes. Each row consists of input values from one
week and labels with values for the next week. Since
usage values are not only features but also labels, the
entire training set spans six weeks.

For each week, before actual prediction, a differ-
ent machine learning model can be utilized. In order
to determine the model which is to be used, a data
transformation pipeline is prepared. Firstly, vector P
is calculated:

X(d1, ..., dn) =
⎡
⎣

p1

...

pm

⎤
⎦ = P (1)

where di is the historical resource level. Transforma-
tion X provides statistical information about past data.
Next, the authors introduce metric M and vector Y.
Metric M imitates the expert system and is figured out
based on pj :

M(P) = w (2)

where w ∈ (1, ..., k) is simply the index in vector Y:

Y =
⎡
⎣

y1

...

yk

⎤
⎦ (3)

M defines the index of the model from vector Y,
whereas vector Y holds the mapping between index w

and machine learning model – yw. As a result of this
preprocessing, solution can adapt to changes in his-
torical data and pick a model automatically without
relying on a single one constantly. Different models
can be selected depending on data patterns and these
patterns should be detected automatically.

3.3 Preliminary Tests of the Proposed Solution

The tests were conducted in the Python3 language,
using common open-source libraries such as NumPy
and pandas. The datasets were provided by Polcom.1

These included daily real-life CPU usage values for
Virtual Machines, measured as the number of vCores.
Periods are individual months of the year. As a result,
it can be compared how models behave under different
conditions and loads throughout the year (see Fig. 1).

Basically, the authors start with a five-week train-
ing test and perform predictions for the next few
weeks. Initially, the authors decided to compare the
Linear model, Random Forest, and Boosted Decision
Trees to forecast future values as they work well for
data with random patterns [5]. As a reference model,
the authors prepared the naive mean approach, which
simply takes the mean of values from the last week
as a prediction for the next week. In other words, the
forecast value for each day is the same average value
from the last week. The aim was to obtain results that
would be at least better than the naive-mean approach.

To compare the models’ effectiveness, the authors
use the Mean Absolute Percentage Error (MAPE) and
Root Mean Squared Error (RMSE). The former is
expressed as a percentage value, which makes com-
parisons easier for data with different ranges of values.

After performing a number of tests, it turned out
that the Linear model and tree-based models alter-
nately yielded better results. After observing these
behaviors, the main focus moved to defining the con-
ditions under which each individual models perform

1Polcom – https://polcom.com.pl/
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Fig. 2 Sliding window
example

the best. Trying to understand these relationships, the
authors came to the conclusion that the Linear model
quickly adjusted to sudden drops in data. These cir-
cumstances could be analyzed automatically, and then
the appropriate model could be selected to predict
more accurate values.

Finally, the implementation was extended to
include automated data analysis and model selec-
tion. In particular, the transformation X returns vector
[p1, p2]: p1 is the amplitude of mean filter values
(Moving Average method [11]). It smoothes the plot
so that it is resistant to outliers and averages oscillating
values. It provides a visualization similar to an anal-
ysis conducted by a human to check the norm level
at which historical values remain. In turn, p2 is the
amplitude of values from the recent training window.

Metric M is introduced as follows:

M(p1, p2) =
{

1, if p1 > p2 ∗ α

2, otherwise
(4)

If the amplitude of the moving average calculated
from training data is greater than the amplitude of
training data, the Linear Model is selected; other-
wise, Random Forest is selected. Multiplication by
an empirically adjusted coefficient is also taken into
account. The value of the coefficient is equal to 0.3.

Y =
[

Linear

RandomForest

]
(5)

For their purposes, the authors selected the Linear
model and Random Forests as those algorithms, dur-
ing initial tests, produced predictions with the least
RMSE variance, promising stable results. The over-
all algorithm is shown as Algorithm 1. Tests were
repeated and a comparison of results for each sep-
arate model and newly proposed approach of adap-
tive machine-learning model selection is presented
in Table 2. Each dataset number shown in the table

corresponds to the numbering in Fig. 1. It can be
observed that the new approach yields better results.
Considerable gain is seen principally for data with
sudden changes in values. Figure 3 shows that Ran-
dom Forest underestimates values while the proposed
solution quickly adjusts its predictions for dataset
6. Although tree-based models perform well in gen-
eral, they cannot be utilized in every case. Where
the model is selected imprudently, the results are
much worse. Although the proposed approach per-
forms equally well as just a single model in the case
of the first dataset and a bit worse in the case of
the second and third datasets, it produces much better
results in other cases. The proposed solution self-
adapts to unexpected instabilities and picks the model
best suited to recent conditions. It is a very good trade-
off, as it always works well and proves highly effective
(up to 36% better prediction quality), especially in
complicated and demanding testing scenarios.

3.4 Conclusions

Preliminary research yields promising results and
demonstrates that data characteristic-based machine
learning model selection might improve overall pre-
diction quality. Therefore, based on the aforemen-
tioned results, the authors propose the Self-Adapting
Data-Driven Prediction System (SA-DDPS). It will
not only use adaptive ML algorithm selection from the
preliminary research mechanism but is also based on
the former work [24], which was tested in industry-
grade environments and can significantly scale down
cloud resource utilization along with reducing cloud
usage costs.

4 Data-driven adaptive prediction

Predicting production system load on the basis of
real-world data that contain anomalies and change
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Table 2 Preliminary result
comparison Dataset Model RMSE MAPE %

1 Naive 0.22 7.75

Linear 0.03 1.15

Forest 0.03 1.01

XGBoost 0.03 1.10

Proposed solution 0.03 1.01

2 Naive 1.99 4.89

Linear 2.11 4.89

Forest 2.09 4.82

XGBoost 1.95 4.46

Proposed solution 2.10 4.83

3 Naive 5.12 11.91

Linear 5.98 13.62

Forest 5.87 11.47

XGBoost 5.50 11.25

Proposed solution 5.86 11.44

4 Naive 3.18 15.00

Linear 2.63 13.56

Forest 3.67 15.91

XGBoost 3.86 16.06

Proposed solution 2.59 13.02

5 Naive 1.35 15.54

Linear 1.92 20.49

Forest 1.28 14.64

XGBoost 1.41 17.20

Proposed solution 1.22 12.97

6 Naive 0.21 7.23

Linear 0.20 6.83

Forest 0.25 9.19

XGBoost 0.26 9.96

Proposed solution 0.20 6.70

rapidly may pose significant difficulties. Therefore,
it is crucial to adjust prediction techniques to poten-
tially changing operating conditions. Furthermore, it is
not feasible to manually configure prediction param-
eters, and thus a fully automated system is required.
Based on these requirements, the authors developed
the SA-DDPS – a data-driven self-adaptive prediction
system which automatically creates the ML models’
performance knowledge base, uses this knowledge
base to select the optimal ML model and predicts sys-
tem usage levels using this model. Subsequently, it
uses the data predicted to generate a resource allo-
cation plan and scales cloud resources according to

this plan. This enables the allocation of required cloud
resources only, which results in substantial resource
usage optimization.

The system operation concept is presented in Fig. 4.
Firstly, Knowledge base creation is performed – just
once before any other operations. Next, ML model
selection, Prediction, Planning and Scaling are per-
formed sequentially in a loop, allowing for continuous
cloud resource optimization. Loop length has to be
related to the prediction horizon as the forecast is per-
formed only once per loop. To calculate SA-DDPS
efficiency, the authors defined the Δ metric that mea-
sures differences in prediction quality between the
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Fig. 3 Comparison of
Random Forest and
preliminary prediction
approach

SA-DDPS system (Nvar ) and a statically selected
prediction algorithm (Nconst ). Δ is defined as:

Δ = 1 − Nvar

Nconst

(6)

and is expressed as a percentage.

The rest of the section is structured as follows:
Section 4.1 describes knowledge base creation, the
detailed ML model selection process is described in
Sections 4.2, and 4.3 focuses on prediction, plan-
ning and scaling. The main focus of this work is
on knowledge base creation and optimal ML model
selection, and therefore details of prediction, planning

Fig. 4 SA-DDPS operation concept
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and scaling described in [24] are omitted for clarity
purposes.

4.1 Knowledge base creation

The ML optimal model selection discussed above
requires ground-truth data. Production environments
tend to differ in terms of load characteristics and
usage patterns. Therefore, the SA-DDPS uses all
available historical usage data and performs predic-
tion using a set of different ML algorithms O =
(o1, . . . , ox), and registers prediction parameters for
each ML model used, i.e., the normalized root-mean-
square error (NRMSE) defined as:

NRMSE = 1

ȳ
·
√∑T

t=1

(
ŷt − yt

)2

T
(7)

the normalized mean absolute error (NMAE) defined
as:

NMAE = 1

ȳ
·
√∑T

t=1

∣∣ŷt − yt

∣∣
T

(8)

and the relative squared error (RSE) defined as:

RSE =
∑T

t=1

(
ŷt − yt

)2

∑T
t=1 (ȳ − yt )

2
(9)

where yt is the actual resource usage level at time t , ŷt

is the predicted usage at time t and ȳ is the arithmetic
mean: ȳ = 1

n
· ∑T

t=1 yt where n is the number of all
samples in the set S = (s1, . . . , sn).

During preliminary work, the authors observed that
a very significant usage data characteristic is period-
icity, usually observed in hourly and daily periods. As
a metric for this data property, the authors used the
autocorrelation function (ACF) defined as:

ACFl(S) = Kl(S)

K0(S)
(10)

where l is defined as the lag between samples and
Kl(S) is defined as:

Kl(S) = 1

n
·

T −l∑
t=1

(yt − ȳ) · (yt+l − ȳ) (11)

where n and ȳ are defined above. It is worth not-
ing that Kl(S) is the autocovariance at lag l, which
denotes the covariance of the data with itself at pairs
of points separated by l-size gaps.

To calculate both hourly and daily periodicity, the
authors defined the H and D metrics accordingly,

which are calculated as the autocorrelation of autocor-
relation maxima and are defined as follows:

H = h ⇔ ∀i ∈ (2, . . . , α)ACFh(Γ (ACFh(SH )))

≥ ACFi(Γ (ACFi(SH ))) (12)

D = d ⇔ ∀i ∈ (2, . . . , β)ACFd(Γ (ACFd(SD)))

≥ ACFi(Γ (ACFi(SD))) (13)

where α and β determine how many lag (l) values are
considered, SH and SD are sets calculated from S with
hourly and daily data resolution, respectively, and Γ

is defined as:

Γ (x) =
{

1, x is a local maximum
0, otherwise

(14)

Equations 12 and 13 make it possible to determine
data periodicity by calculating the autocorrelation of
data (inner ACF ), extracting the local maxima of the
autocorrelation calculated (Γ function), and calculat-
ing the autocorrelation of Γ function results (outer
ACF ). The process is repeated for defined values of
lag (2, . . . , α, 2, . . . , β), and subsequently the lag with
the highest ACF value is chosen as the predominant
data periodicity.

The authors also defined the ACFmax metric – the
maximum autocorrelation observed:

ACFmax(SH ) = ACFH (SH ) (15)

ACFmax(SD) = ACFD(SD) (16)

The knowledge base generated defines the depen-
dencies between the set of ML models O, prediction
quality (NRMSE, NMAE, RSE) and autocorrelation
parameters (ACF(SH ), ACF(SD)). It is used as a
base for the expert system utilized during the model
selection stage.

4.2 ML model selection

The knowledge base defines dependencies between
the data parameters, ML algorithms, and prediction
quality. However, these dependencies are defined only
for those values which were present in the historical
data, and different values may be observed during the
system optimization process. As a result, an expert
system with fuzzy logic [18] was created to han-
dle all possible data parameters. As the universe of
discourse the authors used the maximum autocor-
relation observed (ACFmax) and prediction quality
metrics N ∈ (NRMSE, NMAE, RSE). ML models
Oi for i ∈ (1, . . . , q) were chosen as fuzzy sets
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with membership functions μOi
(N, ACFmax). Mem-

bership function shapes were determined by the N

metrics observed in historical data. NRMSE, NMAE
and RSE values were scaled to 〈0, 1〉 and inverted; as
a result, 0 represents the largest values of N observed
and 1 the lowest values, which are desirable, as lower
N means better prediction quality. The continuity of
μOi

(N, ACFmax) was achieved by a linear interpo-
lation of known values. Sample data were shown in
Section 5 (Fig. 11).

The optimal ML algorithm Ô is calculated as fol-
lows:

Ô = Ω(ACFmax) (17)

where Ω is the defuzzification process using first of
maxima (FoM). The predicted optimal ML algorithm
is subsequently used in the Prediction stage.

4.3 Prediction, Planning and Scaling

As mentioned above, some details of prediction, plan-
ning and scaling (described in [24]) have been omitted
for clarity purposes, since knowledge base creation
and the optimal ML model selection are the main
scope of this paper.

In the next step of the optimization process, the
ML algorithm selected (Ô) is used to predict system
load. The SA-DDPS is suitable for both short- and
long-term predictions (from hours to months) as the
timespan of historical data used to train the prediction
model determines the model’s ability to learn usage
patterns. However, extensive training data timespans
and long prediction horizons tend to degrade pre-
diction quality if rapid load trend changes emerge.
Therefore, both parameters have to be adjusted to the
system being optimized.

The load predicted is used to determine the
resources required, which allows the provisioning plan
to be created. Cloud providers usually offer a set
of machine types, which consists of machines with
enhanced memory size, enhanced computing power
or the golden mean between the two. As a result, the
required resource level can be achieved using differ-
ent configurations and at different costs. Therefore,
for every predicted resource level, the SA-DDPS con-
siders multiple possibilities and selects a cost-optimal
choice.

The provisioning plans created are used to scale
the optimized system resources. The SA-DDPS reads

the current resource configuration from the cloud
environment and compares it to the values from the
provisioning plan. As many resources already pro-
visioned as possible are reused, since provisioning
and decommissioning take time. Additionally, the SA-
DDPS performs warm-up for newly created resources
to ensure their full availability.

5 SA-DDPS Evaluation

Presented in Section 4, the concept of the SA-DDPS
was used to develop a real-life working application.
The authors chose Azure as the environment to run
the implemented system in; Azure is also used by
the real-life application that was optimized during
the evaluation: an Internet of Things hub (TMS) for
devices scattered across the world. The TMS uti-
lizes different cloud resources: virtual machines, app
services and databases, thus creating a valuable test-
ing environment as usage patterns for these resources
differ significantly. The SA-DDPS was implemented
using the C# language and Microsoft Azure Machine
Learning Studio (MAMLS). The rest of the section is
structured as follows: Section 5.1 describes the evalu-
ation of the knowledge base creation process, testing
the dynamic ML model selection process is described
in Sections 5.2, and 5.3 focuses on comparing the
results obtained by the SA-DDPS to those obtained by
the static selection of ML algorithms.

5.1 Knowledge base creation

As mentioned before, the TMS historical load consists
of data with different characteristics. Therefore, to
build the knowledge base, the network incoming data
level and the IOPS level (virtual machines), incoming
requests (app service), and database transaction units
– DTU2 (database) were selected. For the sake of clar-
ity, detailed calculation results are presented only for
app service incoming requests. Historical levels with
hourly resolution are presented in Fig. 5, and autocor-
relation values calculated according to (10) along with
local maxima are presented in Fig. 6.

The autocorrelation of autocorrelation maxima
(ACF(Γ (ACF(SH )))) is presented in Fig. 7; the

2Database transaction units – https://docs.microsoft.com/en-us/
azure/azure-sql/database/service-tiers-dtu?view=azuresql
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Fig. 5 Historical data from app service – hourly resolution

Fig. 6 App service autocorrelation with local maxima – hourly resolution

Fig. 7 App service autocorrelation of autocorrelation maxima – hourly resolution
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maximum value for lag l = 24 indicates a strong
daily (24-hour) usage pattern. Similarly, Figs. 8, 9 and
10 present calculation steps for historical levels with
daily resolution. The maximum value for lag l = 7
implies a weekly (7 days) usage pattern.

The characteristics of all historical data are pre-
sented in Table 3. Hourly and daily periods calculated
exhibit daily and weekly dependencies in many cases,
especially for high ACFmax values which indicate
high data repeatability. Database DTU data with daily
resolution did not exhibit any periodicity, and the peri-
ods calculated for data with ACFmax lower than 0.3
indicate very weak recurrence.

5.2 ML model selection

As mentioned in Section 4.2, in order to select the
optimal ML algorithm, the authors used an expert sys-
tem with fuzzy logic. As the universe of discourse,
the authors selected prediction quality metrics N ∈
(NRMSE, NMAE, RSE), and, based on the results
from Table 3, ACFmax(SH ) ∈ 〈0.15, 0.74〉. For sim-
plification purposes, ACFmax(SD) was not included.
As the ML model set O, the authors picked seven
commonly used algorithms: Decision Forest Regres-
sion (DF), Boosted Decision Tree Regression (BDT),
Fast Forest Quantile Regression (FFQ), Bayesian Lin-
ear Regression (BLR), Linear Regression (LR), Neu-
ral Network Regression (NN) and Poisson Regression
(PR). All of them were used in two modes to cre-
ate fourteen models in total. In the first mode, the
algorithms were trained using historical data enhanced
with additional features – hours and days encoded

as one-hot according to the hourly and daily peri-
ods calculated (Table 3). In the second mode, models
were trained using historical univariate data with a
ten-day long sliding window (Fig. 2). To distinguish
between these two modes, the univariate models were
named DF*, BDT*, FFQ*, BLR*, LR*, NN* and
PR*, respectively. All ML models were trained using
self-tuning Tune Model Hyper-Parameters with initial
values set to MAMLS defaults.

Values of membership functions (μOi
), calculated

in accordance with the description in Section 4.2, are
presented in Fig. 11a for NRMSE, Fig. 11b for NMAE
and Fig. 11c for RSE.

To evaluate SA-DDPS efficiency, the authors
selected four different data types: App Service
(incoming requests), Virtual machine (IOPS), Virtual
machine (incoming data) and Database (DTU) with
dynamically changing data characteristics. For the
periods selected, the authors performed two cycles of
ML model selection, Prediction, Planning and Scal-
ing (Fig. 4). In every cycle, for all four data types,
autocorrelation and period values were calculated, and
optimal ML algorithms were selected using (17). Sam-
ple μOi

calculation results for Virtual machine (IOPS)
in the 2nd cycle are presented in Fig. 12.

The complete results for both cycles and all four
data types are presented in Table 4. In every case, the
ACFmax values calculated for the 1st and 2nd steps
were sufficiently different to trigger prediction algo-
rithm adjustment. It is worth noting that calculated
periodicity was used only for App Service (incoming
requests) in the 1st step, as in the other cases the SA-
DDPS selected univariate modes of ML algorithms.

Fig. 8 Historical data from app service – daily resolution
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Fig. 9 App service autocorrelation with local maxima – daily resolution

Fig. 10 App service autocorrelation of autocorrelation maxima – daily resolution

Table 3 Characteristics of
all data used in the
knowledge base creation

Service type Load type ACFmax Period

Hourly Daily Hourly Daily

App Service Incoming requests 0.74 0.75 24 7

0.48 0.45 24 7

Virtual machine Incoming data 0.42 0.42 24 4

0.15 0.27 131 15

IOPS 0.71 0.64 24 7

0.37 0.02 72 15

Database DTU 0.27 − 24 −
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Fig. 11 μOi
values calculated for NRMSE, NMAE and RSE

Fig. 12 μOi
calculation results for Virtual machine (IOPS) in the 2nd evaluation cycle
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Table 4 ACFmax ,
periodicity and model
selection results for both
cycles

ACFmax Period Selected model

Hourly Daily Hourly Daily

App Service (incoming requests)

1st step 0.75 0.38 24 7 BDT

2nd step 0.43 0.30 72 7 BDT*

Virtual machine (IOPS)

1st step 0.49 − 24 − BDT*

2nd step 0.36 − 49 − LR*

Virtual machine (incoming data)

1st step 0.28 0.22 78 18 LR*

2nd step 0.41 0.28 24 4 BDT*

Database (DTU)

1st step 0.38 0.27 23 15 BDT*

2nd step 0.15 0.27 11 15 LR*

5.3 Comparison of prediction quality

The authors calculated Δ metrics (6) using different
algorithms as statically selected ML models (Table 5).
The proposed solution performed better than any other
algorithm evaluated: a prediction quality improvement
ranging from 9.28% to 80.68% was observed. ML
models in the univariate mode are more resilient to

Table 5 Δ calculated against different ML algorithms

Algorithm Δ metric

NMAE NRMSE RSE

DF 44.08% 46.08% 61.20%

BDT 47.50% 43.74% 57.98%

FFQ 61.84% 56.29% 76.33%

BLR 68.36% 59.05% 80.68%

LR 65.98% 57.38% 77.95%

NN 62.35% 54.50% 71.01%

PR 62.75% 54.49% 75.11%

DF* 27.16% 22.99% 35.49%

BDT* 16.96% 16.18% 21.71%

FFQ* 23.69% 23.62% 32.90%

BLR* 13.78% 9.28% 25.03%

LR* 18.11% 16.47% 29.12%

NN* 52.69% 43.54% 60.91%

PR* 25.61% 15.26% 29.28%

data characteristic changes, and therefore the improve-
ment in quality was smaller in these cases. Neverthe-
less, the proposed solution significantly improved pre-
diction quality, which is crucial for accurate resource
usage prediction.

Additionally, the authors compared the NMAE,
NRMSE and RSE values (separately for every evalu-
ation data type) between the SA-DDPS and the best
suited (for the given data type) ML algorithms stati-
cally selected at the beginning of the first evaluation
cycle. In Fig. 13, evaluation results are presented in the
form of a histogram. Due to the magnitude of the met-
ric values observed, the authors decided to use a log-
arithmic scale; it can be observed that the SA-DDPS
outperforms statically selected algorithms. Prediction
quality improvements observed for every test case
indicate not only that the forecast algorithm ought to
be fitted to data characteristics, but also that the adjust-
ment process ought to be performed continuously to
account for changes in data parameters.

6 Conclusions

In this paper, the authors firstly present preliminary
research evaluating a novel approach, and next, a
data-driven solution for prediction algorithm adapta-
tion. Dynamic algorithm selection combined with data
pre-processing allows the SA-DDPS to formulate pre-
cise short- and long-term predictions. The experiments
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Fig. 13 Δ calculated against best-suited ML models selected at the beginning of the first evaluation cycle

conducted demonstrate that both machine learning
model selection and data types significantly affect the
results obtained and therefore they should be properly
matched. The evaluation performed against industry-
grade test data confirmed that the proposed solution
performs better than any single prediction algorithm
based on machine learning. This is especially evident
in test cases that contain rapid pattern changes; in
these cases, thanks to dynamic algorithm selection.
A 9.28% to 80.68% improvement in predictions was
observed, and there was no single model with better
predictions for every test scenario. Therefore, it would
not be possible to obtain better results in a real-life
situation unless the prediction algorithm is manually
selected whenever data characteristics change. Thus,
the proposed solution not only yields better predic-
tions for dynamic data with variable patterns but,
in general, also performs better for data with less
fluctuations.

As a subject of future studies, the authors would
like to consider transferring the knowledge base cre-
ated between different systems, which will make the
above step unnecessary, or investigate federated learn-
ing (collaborative learning) to incrementally create
such a knowledge base. Alternatively, the authors
would like to investigate merging different knowledge
bases to improve precision. Another way to improve
the SA-DDPS may involve additional algorithms for
investigating data characteristics, as more information
about data should result in better model selection.
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