
J Grid Computing (2023) 21:8

https://doi.org/10.1007/s10723-022-09640-z

Efficient Causal Access in Geo-Replicated
Storage Systems

Stanley Lima · Filipe Araujo ·
Miguel de Oliveira Guerreiro · Jaime Correia ·
Andre Bento ·Raul Barbosa

Received: 10 September 2022 / Accepted: 5 December 2022
© The Author(s) 2023

Abstract We consider a setting where applications,
such as websites or games, need causal access to
objects available in geo-replicated cloud data stores.
Common ways of implementing causal consistency
involve hiding objects while waiting for their depen-
dencies or waiting for server replicas to synchronize.
To minimize delays and retrieve objects faster, appli-
cations may try to reach different server replicas at
once. This entails a cost because providers charge for
each reading request, including reading misses where

S. Lima
Anima Holding S.A. (Ânima Educação), São Paulo, Brazil
e-mail: stanleylima@dei.uc.pt

F. Araujo (�) · M. de Oliveira Guerreiro · J. Correia ·
A. Bento · R. Barbosa
University of Coimbra, Centre for Informatics and Systems
of the University of Coimbra, Department of Informatics
Engineering, 3030-290 Coimbra, Portugal
e-mail: filipius@uc.pt

M. de Oliveira Guerreiro
e-mail: mguerreiro@dei.uc.pt

J. Correia
e-mail: jaimec@dei.uc.pt

A. Bento
e-mail: apbento@dei.uc.pt

R. Barbosa
e-mail: rbarbosa@dei.uc.pt

M. de Oliveira Guerreiro
INESC-ID, Instituto Superior Técnico, University
of Lisbon, Rua Alves Redol, 9, Lisboa, 1000-029, Portugal

the causal copy of the object is unavailable. There-
fore, latency and cost are conflicting goals, which
we control by selecting where to read and when. We
formulate this challenge as a multi-criteria optimiza-
tion problem and propose five non-dominated reading
strategies, four of which are Pareto optimal, in a set-
ting constrained to two server replicas. We validate
these solutions on the following real cloud storage ser-
vices: AWS S3, DynamoDB and MongoDB. Savings
of as much as 50% on reading costs, with no signifi-
cant or even a positive impact on latency, demonstrate
that both clients and cloud providers could benefit
from richer services compatible with these retrieval
strategies.

Keywords Cloud storage systems · Causal
consistency · Geo-replication · Caching

1 Introduction

For the sake of ensuring High Availability (HA) and
low latency, many applications resort to geo-replicated
data stores on the cloud. Under replication, as clients
concurrently read and write to different replicas, they
may observe inconsistent out-of-order message deliv-
ery, including causal order violations, where effects
seem to appear before their causes. The lack of con-
sistency in data stores is undesirable, as it increases
the complexity of applications, which have to deal
explicitly with seeing their data in an incorrect order.

/ Published online: 28 January 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-022-09640-z&domain=pdf
mailto:stanleylima@dei.uc.pt
mailto:filipius@uc.pt
mailto:mguerreiro@dei.uc.pt
mailto:jaimec@dei.uc.pt
mailto:apbento@dei.uc.pt
mailto:rbarbosa@dei.uc.pt

S. Lima et al.

Unfortunately, consistency is difficult to achieve.
Message propagation times, network partitions, server
crashes, or network reconfigurations may prevent
applications from reading their writes if they can-
not reach the same replica, while other timing issues
related to the triangle inequality in message delays or
data storage performance may lead to other causality
violations. Many applications cannot afford such cases
to surface. For example, in an online gaming scenario,
where players connect to geo-replicated servers, if
Alice adds an object to a map and sends the object ref-
erence to Bob, he must be able to see the new object,
regardless of the replica he is using.

Usually, to ensure consistency, applications need to
wait for some of the objects or their dependencies to
arrive or become visible at a replica server. Instead of
imposing this delay, we let the application read any
object as soon as possible. If an object is not avail-
able at the closest replica, the application may retry the
read operation, possibly multiple times, or go straight
to another replica where the object is available, such
as the source replica where it was first written. To
curb waiting times, the application could also try to
simultaneously read from the local and the source
replicas. Cloud providers, however, usually charge for
each read attempt, thus turning latency and cost into
conflicting goals. In this paper, we formulate the prob-
lem of reading specific versions of objects from cloud
data storage, in causal order, while aiming to minimize
both latency and cost.

The idea of ensuring causal ordering is decades-
old and assumes multiple forms. Message passing
libraries, like ISIS [12], can ensure causal deliv-
ery of messages to participants. Unlike this generic
approach, replicated storage systems [43, 46] offer
causal access to data. The precise mechanism in which
they offer causality can vary. Servers may use some
lazy approach to get up-to-date [43] or they may defer
access to items to ensure they never expose objects
with missing dependencies [46]. Other systems, like
GentleRain [22] or CausalSpartan [54] resort to phys-
ical or hybrid clocks to ensure the same guarantee. A
different proposal consists of using a shim layer atop
standard cheap storage to control what the client can
see. In Bolt-on [7], objects with missing causal depen-
dencies are not made available to the client, i.e., they
remain invisible until all the dependencies are also
available. A common pattern we observe here is that
causal system implementations tend to require some

form of background synchronization before objects
become available for applications.

To enable faster reads, we make all objects visible
and accessible at once, by pushing the responsibility
of controlling causal dependencies to the application.
This has one great advantage of enabling clients to
interact with more than a single kind of storage at any
given time. This fine-grained approach can support
strict causal dependencies, instead of the “happened-
before” relation, which creates unnecessary dependen-
cies, but the formulation we propose can apply to one
case or the other. When updating an object, a client
must keep track of whatever dependencies it used and
were relevant for that update. When another client
reads the same object and follows to read one of its
dependencies, it may try the replica that best suits it.
The rationale is to make read operations as fast as
possible by doing a judicious choice of the replica.
Our goal is to read a specific object version from geo-
replicated storage as soon as possible, at the smallest
possible cost.

As we discuss in Section 2, we can express the
latency-cost challenge as a two-criteria optimization
problem based on the idea that two locations are rea-
sonable when a client is looking for a specific object:
the local region closest to the client and the source
region, where the object comes from. We restrict our
optimality analysis to a setting having only these two
replicas. We assume that the client has a reference
to the object, including name, version, source region,
and creation time. These elements may come in the
form of references from another newer object, they
may come from a peer application explicitly provid-
ing a reference, or from a library that keeps track
of all object accesses, for the sake of ensuring the
“happened-before” relationship. To solve the problem,
the client also needs data regarding round-trip times to
replicas and replication timings. Based on these data,
in Section 3, we propose non-dominated and Pareto-
optimal solutions that explore different possibilities,
like reading from the closest replica first, delaying
the access to the closest replica, going straight to
the source, or doing simultaneous accesses to both
replicas.

The experiments we performed in Section 4 with
Simple Storage Service (S3) [2], DynamoDB [4], and
MongoDB [8] show that one can easily observe tri-
angle inequality violations in applications resorting to
geo-replicated data stores. Consequently, immediately

8 Page 2 of 20

Efficient Causal Access in Geo-Replicated Storage Systems

reading from the closest replica may not be the best
option for retrieving data and multiple reading strate-
gies, as we propose, are possible. Our results show
that issuing read requests at the right time and to the
right replica can cut costs as much as 50%, with lit-
tle or no time penalties, sometimes even faster than
immediately reading from the local replica.

When compared to previous work, which we
review in Section 5, our approach requires the cooper-
ation of clients but ensures causal access to data across
different storage systems. To make this approach
practical, storage systems should provide the follow-
ing operations: i) enable replica selection for object
retrieval and ii) blocking object retrievals, i.e., appli-
cations should be able to retrieve an object immedi-
ately or, should it be unavailable at the replica, wait
for the object to arrive. This entails potential gains
for could providers and clients, as long as the price
(for the client) and cost (for the provider) for such
operation lies in between one and two read attempts.

The main contribution of this paper is, therefore,
a set of object access policies that aim at ensur-
ing causality with quality of service and economic
advantages for the user and the cloud provider.

The rest of the paper is organized as follows: in
Section 2 we provide a detailed overview of consis-
tency before formalizing the optimization problem we
propose. In Section 3 we propose different strategies
to solve this problem. In Section 4 we observe that
our formulation applies in real storage systems. In
Section 5 we review related work and in Section 6 we
conclude the paper.

2 Model and Problem Formulation

In this section, we present some consistency models,
the object system model and formulate the problem to
solve.

2.1 Consistency Trade-Offs

To persist their data, programs need to interact with
storage, including distributed storage, according to a
contract: storage offers an Application Programming
Interface (API) and, in exchange, offers some guar-
antees regarding the data, like durability. As part of
such contract, consistency usually refers to ordering
properties that the storage system ensures in response

to multiple, possibly concurrent, program operations,
like reads and writes. For example, the system might
need to ensure that the data is available or that the
application has access to the latest written version,
while the program might have to define transaction
boundaries or use certain features of the API.

Since clients can exchange messages with each
other and with different replicas, they may see seem-
ingly contradictory information, like missing files,
older versions of files they have already updated,
or more subtle violations, as discussed in the liter-
ature [23, 28]. Stronger consistency models provide
better guarantees, but are slower, less available, and
less scalable, whereas weaker consistency models
force programmers to cope with the insufficiencies of
the contract. A large number of consistency models
exist, namely eventual [11], PRAM [14], causal [13],
sequential and linearizable [5] or strict [52], among
others [56].

2.2 Eventual Consistency

If no new updates are made to replicated data,
eventually, all accesses will return the last updated
value [11]. That is, in the absence of further updates,
all replicas converge to identical copies of the write
with the latest timestamp. This model is only con-
cerned with ensuring that, at some point, the updates
are consistent across all replicas, but it says noth-
ing about time or sequence. This consistency model
is thus weak, but scalable. Cloud storage providers
often have an option for eventual consistency in some
of their services. This is the case of Azure Cos-
mosDB [51], Google Cloud Datastore [30], MongoDB
or DynamoDB, which can also offer strong consis-
tency guarantees.

2.3 Session Guarantees

In the context of the Bayou project, Terry et al. [57]
defined four session guarantees for weakly consistent
data. Session guarantees refer to the interaction of a
single client with the storage, as the client issues suc-
cessive read and write operations, possibly involving
different replicas. Terry et al. [57] proposed the fol-
lowing guarantees: read your writes, monotonic writes
(replicas must see the writes from a given client in the
order it issued them), writes follow reads (a replica
receiving a write operation of some value v must

Page 3 of 20 8

S. Lima et al.

have the updates that the client read and used to pro-
duce that specific write of value v), and monotonic
reads (this ensures that the client will not read data
from a replica that is missing writes whose effects
it has already seen before). Brzezinski et al. [15]
showed that causal consistency requires the previous
four session guarantees.

The read your writes guarantee means that a client
must be able to see the effects of his or her previous
writes [39, 57]. Consider two operations a and b on
the same client, such that a → b, being a a write oper-
ation on some object, and b a read operation on the
same object, happening after the write. Regardless of
the replica where the client reads (event b), the replica
must have already received the write operation (issued
in a). AWS S3 used to be eventually consistent in its
early versions, while also ensuring the additional use-
ful property that the latest version of an object would
eventually spread to all replicas (last write wins). It
now evolved to offer read your writes consistency [2]
(known as “read-after-write”).

2.4 Causal Consistency

Informally, causal consistency refers to the guarantee
that causes are observed before their effects regard-
less of the replicas a client accesses. We can resort to
the “happened-before” definition of Lamport [44], to
determine whether two events have a potential causal
relation, →. Event a “happened-before” event b, a →
b, if i) there is one process, where a occurred before
b; ii) a is a send event, while b is the correspond-
ing receive event; or iii) ∃c|a → c ∧ c → b, where
c is another event. Lamport logical clocks [44] cap-
ture the “happened-before” relation, in the sense that
a → b =⇒ Ca < Cb, where Ce is the logical
timestamp of event e.

Unlike logical clocks, which can only ensure that
Ca ≤ Cb =⇒ b �→ a, the more complex mechanism
of vector clocks [9] can actually order any two events
in the system (they may also be concurrent), because
a → b ⇐⇒ Va < Vb, where Ve is the vector times-
tamp of event e. The problem with vector clocks is that
they occupy considerable space.

2.5 Other Consistency Models

Applications may use vector clocks to order mes-
sage delivery in multicast settings. Nonetheless, some

applications may require stronger consistency models,
because causality provides no guarantees concerning
concurrent updates. Different replicas may end up
having and serving different contents without ever
violating causality, as different processes, unaware of
each other, may write their views of the data. To avoid
this problem, systems like COPS [46], add eventual
consistency to causal order, a guarantee known as
Causal+. This, however, does not serve other scenar-
ios, such as distributed state machines, where replicas
need to receive reads and writes in the same order, thus
requiring total order broadcast [21, 44]. Total ordered
message delivery may or may not respect causality.

Other stronger consistency models, such as lin-
earizability [33] entail a considerable performance
penalty.

2.6 System Model

We aim at ensuring causal access across storage
systems, including object stores, relational and non-
relational databases, distributed file systems, and oth-
ers. Some or all of these may have geo-replication.
While some distributed storage systems may have
strong internal consistency—stronger than causal—,
when combined they offer no consistency.

We assume that programs deal with objects, which
are an instantiation of a data structure, like an array
of bytes, a dictionary, or a register in a database
table. When doing a write, programs may add causal
relationships to previous objects, by adding metadata
references to them. They do this explicitly, rather than
adding transaction boundaries or depending on some
layer to keep track of all causal dependencies. This
is a requirement that also exists in other causal stor-
age systems, such as GentleRain [22]. Causally related
objects thus define a Directed Acyclic Graph (DAG).
We show a causal DAG for illustrative purposes in
Fig. 1.

Assume that some client reads object A, rA, before
writing object B, wB , i.e., rA → wB =⇒ wA →
wB . If, in addition to this, the client uses data from
A to create B, B causally depends on A, A 	→
B. Applications must keep track of all causal rela-
tions between objects and discard other irrelevant
“happened-before” ones between events. The condi-
tion we must meet is that, if A 	→ B, once a client
reads B it must be able to read A. This requirement
is straightforward in immutable storage systems [32].

8 Page 4 of 20

Efficient Causal Access in Geo-Replicated Storage Systems

Data

Timestamp: 601

B1, 589

Data

Timestamp: 589

System A, Replica 1

System B, Replica 1

Data

Timestamp: 593

System C, Replica 2
C2, 593

D3, 526

Fig. 1 Causal Directed Acyclic Graph (DAG)

Immutable file systems have been in existence for
a long time, e.g., in the old VAX/VMS [48]; they
still exist in newer systems, such as Azure Blob [49],
Wasabi [59], or S3 versioning [2]. Immutability is
often a building block for more complex systems, as
in the case of Dropbox MagicPocket [17]. It is also
a requirement in some legal, health, and business-
critical applications.

Applications must be careful not to delete objects
that are still referenced, as clients would later be
unable to differentiate between a version yet to arrive
and one already deleted. Also, if clients can modify
objects, applications may have to enforce versioning
on top of the mutable storage system, e.g., by adding
versions to the object metadata. Newer versions of an
object do not violate causality, as they simply signal
the application that the version they were looking for
was deleted.

To help programs select the region from where they
should fetch objects, object references should contain
their source region. We regard a cluster of servers
in the same region as a single replica: in real sys-
tems, clients are usually not aware of and cannot select
among the replicas that exist inside the same region.

2.7 Problem Formulation

Since accessing objects, even if they are absent,
imposes a load on the server, cloud providers usually

charge a fee for each read operation. The challenge is,
therefore, to quickly retrieve DAG objects at a min-
imum cost. More formally, given a reference to an
object at time t = t0 (“now”), program p should
minimize the time at which it receives the object, T ,
and the number of reading requests it issues to the
provider, R (a proxy for cost). We consider two repli-
cas: the closest replica to p plus some other replica
(farther away from p) where another client first wrote
the object, the source replica. The whole process con-
sists of a write operation to the most distant replica,
next p knows about the object before trying to read
it. The challenge is that reading the object immedi-
ately from the closest replica might not be the optimal
strategy.

Before the read operation, the client must know
i) the specific object and the minimum version it
needs to read; ii) the source replica for that object
version; iii) a wall clock timestamp associated with
object creation at the source region; iv) average round-
trip times to the local and source regions; and v) an
empirical Cumulative Distribution Function (CDF) of
replication times from the source region to its local
region.

We assume that replicas are always available. If
they are not, clients may have to block for an indeter-
minate time, waiting for the recovery of a crashed or
partitioned storage provider.

3 Optimal Causal Access

In this section, we propose a few strategies to mini-
mize T and R. Some of these are Pareto optimal.

3.1 Distributed Setting

We consider a setting with two clients C1 and C2, and
two servers S and R. C1 is closer to server S (source),
while C2 is closer to server R (replica). Figures 2
and 3 show the interactions and respective times, when
C2 goes to R. Figure 2 illustrates the order of the
interactions, while Fig. 3 shows their duration. Steps
2 and 2′ take place in parallel. XS and XR are ran-
dom variables that represent, respectively, the latency
of C2’s request to S, and R. C1 writes an object to
server S and, upon getting a confirmation, it immedi-
ately sends a message to C2. This prompts C2 to start
the program p to read the object. While computing

Page 5 of 20 8

S. Lima et al.

Fig. 2 Node interactions
between clients and server
replicas

C1

C2

S

R

1

2

3

4

5

4/6

5/7

the best strategy for C2, we assume that the response
takes the same time as the request. This assumption is
common [18] and seems reasonable for small objects.

Note that according to the triangle inequality
|SR| < |SC1| + |C1R| < |SC1| + |C1C2| + |C2R|,
where |WZ| is the Euclidean distance between W and
Z. If this relationship extended to message process-
ing and propagation times, C2 would always find the
right (or a newer) version of the object in R. This is,
however, not the case. We thus evaluate some strate-
gies that C2 can use to fetch the object, namely the
following:

1. going to S first (cheapest);
2. trying R first and then going to S if the former

fails;
3. or simultaneously going to S and R (most

expensive).

3.2 Source-Only Strategy

We call “Source-Only” (SO) to the simplest approach
of reaching for the data source S. IfC2 sends a request
for the object at time t (t ≥ t0), the expected time,
T (t), for C2 to retrieve data is simply E[T (t)] = t +

Fig. 3 Interaction times as
seen from C2

C1

C2

S

R

xr

xr

xs

xs

t=t0

2E[XS], while the number of requests is 1. This solu-
tion is Pareto optimal because C2 issues the smallest
possible number of reading requests.

3.3 Replica-Then-Source Strategy

We now evaluate a strategy of going to R first and
trying S if the read fails. We call this “Replica-then-
Source” (RTS). Let random variable H(t) represent
the probability that C2 finds the object at R reading
at time t (a hit). Equation 1 gives the expected time,
T (t), at which C2 receives the object:

E[T (t)] = t + 2E [XR] + 2E [XS] (1 − H(t)) (1)

The time to get the object is a round-trip to R or,
if R still does not have a copy, which happens with
probability 1−H(t), the request takes an extra round-
trip to S. How does this time compare to direct access
to S? By setting (1) equal to te + 2E [XS], where te is
the time of equilibrium, we get the result of (2):

H(te) = E [XR]

E [XS]
(2)

If t > te, p should go to R, otherwise to S. For
example, if going to S takes 10 times more than going
to R, C2 should try R first, as soon as R reaches a
10% probability of having the object. For a reading
time t = t0, such that H(t0) > E [XR] /E [XS], the
Replica-then-Source (RTS) Strategy is non-dominated
compared to picking the source first and the replica
again, should the first read fail. The former would
take more time on average, while the latter would take
more messages on average.

In (3) we compute the number of reading requests
of this strategy:

R = 1 + (1 − H(t0)) = 2 − H(t0) (3)

3.4 Delayed Replica-Then-Source Strategy

We can improve the RTS strategy, by postponing the
request to a more favorable moment, t , when the prob-
ability of p finding the data in R is higher. This gen-
eralizes the base RTS. We call this strategy “Delayed
Replica-then-Source” (DRTS).

In (4) we determine the most favorable moment
to read the data, tm, by solving the equation
dE[T (t)]/dt = 0, with E[T (t)] as defined in (1):

H ′(tm) = 1

2E [XS]
(4)

8 Page 6 of 20

Efficient Causal Access in Geo-Replicated Storage Systems

Let Z be a random variable that represents the time
at which the object copy arrives at R, as seen by C2,
such that Z = ta means that a request from C2 at
t = ta arrives at R at the same time as the object copy.
H(t) = P (Z ≤ t) is the CDF of Z and H ′(t) the
corresponding Probability Density Function (PDF). If
we consider the horizontal line y = 1/(2E [XS]), (4)
does not have any solution whenever H ′(t) is below
this line, i.e., when the PDF has no peak or any peak it
has is very low. This will happen whenever the arrival
times of the object copy are very scattered. In this case,
C2 should not wait and should get data from either
S or R immediately, depending on H(t) and (2). We
consider a few real cases in Section 4.

The number of read accesses now depends on t and
is R(t) = 2 − H(t). If (4) has a solution that cor-
responds to a global minimum, the Delayed Replica-
then-Source (DRTS) strategy is faster than going to
S first and faster than going for R at any other time.
Since it uses less than 2 messages on average, this
strategy is Pareto-optimal.

3.5 Parallel and Delayed Parallel Strategy

If C2 simultaneously accesses S and R at time t , (5)
gives the expected time to retrieve the object, while
R = 2:

E[T (t)] = t +2E[XR]H(t)+2E[XS](1−H(t)) (5)

We call this strategy “Parallel” (Par.). Expected
time T is strictly lower than in Source-Only (SO)
or RTS, but the expected number of requests, R, is
always higher. We can also delay the access to R, to
improve the chances of Parallel (Par.) and thus get the
“Delayed Parallel” (DP) strategy. The most straight-
forward approach is to go to S as soon as possible
and delay the access to R to the time tm that mini-
mizes (1). None of our previous solutions dominates
Delayed Parallel (DP), because this latter is faster.

To illustrate the relation between the different algo-
rithms, in Fig. 4, we show a possible outcome of using
the different strategies for some reading start time
t = t0. One should notice that this is a mere exam-
ple and many different results could be possible, such
as having DRTS and DP slower than RTS and Par.,
respectively.

SO

RTS

Number of requests1 2

D
at

a
re

tr
ie

va
l t

im
e

E[XS]

E[XR]

DRTS

Par

DP

Pareto front

Example result

Concrete result

Fig. 4 Possible results for the different reading strategies

3.6 Comparison

Refer to Table 1. We assume that current time is t =
t0 ≥ 0. Columns have the strategies, rows have the dif-
ferent relative locations for t0, tm and te. We only care
for minima in the present or future, i.e., tm ≥ t0. The
“X” tells us which strategies are optimal under which
circumstances. The SO strategy is always in the Pareto
frontier. Regardless of the time, no other strategy can
issue fewer requests. The Parallel option is also opti-
mal for tm = t0, as no other option could be faster.
Still for tm = t0, the RTS strategy is also in the Pareto
frontier after the equilibrium point, i.e., if t0 > te. If
tm > t0, for tm > te, DRTS, starting at tm is better

Table 1 Access strategies

Relative times SO RTS DRTS Par. DP

t0 = tm < te P P

t0 < tm < te P X

t0 < te < tm P P X

te < t0 = tm P P P

te < t0 < tm P P X

te < tm < t0 −
tm < t0 < te −
tm < te < t0 −

Evaluation occurs at time t = t0 (“now”). Time tm is the
minimum of (1), such that tm ∈ [t0, ∞). Time te is the equi-
librium time as in (2). “P” stands for Pareto optimal, “X” for
non-dominated among the strategies in this table

Page 7 of 20 8

S. Lima et al.

than RTS. DP is not dominated by the SO or any of
the RTS strategies whenever tm > t0.

3.7 Practical Concerns

In our experiments of Section 4, we set t = 0 to the
moment when C1 sends the notification to C2, accord-
ing to its clock. This makes the computation of H(t)

at C2 independent of the delay between C1 and C2

but forces a subtraction of timestamps from differ-
ent clocks. The impact of this subtraction is small if
clock drifts between C1 and C2 are small compared
to the time scale that C2 needs to collect information
of H(t). Variations in the interaction times between
C1 and S also impact H(t).

If a single process, say C1, wrote all the objects, it
could set the wall clock time itself; if different objects
come from different processes, having S setting the
timestamp of the creation operation seems better. With
this approach, H(t) and H ′(t) become independent
of the client that created the object. Moreover, R can
help with the computation of H(t) and H ′(t), by
computing the CDF of replication times it gets from
S, Hreplica(t). Given an object arriving at S at time
tsource and reaching R at time treplica , R computes the
difference treplica − tsource, to determine the replica-
tion time. This does not require the clocks of S and
R to be synchronized.H(t) can be approximated atC2

byH(t) � Hreplica(t+E[XR]). UsingHreplica(t) and
H ′

replica(t) (for different file size ranges), plus E[XS]
and E[XR], C2 can estimate te and tm. To determine
E[XS] and E[XR], it can keep track of past inter-
actions with the geographical replicas of the service.
This is simple to do, even for a thin client.

4 Experimental Results and Analysis

The strategies from the previous section are non-
dominated and some are in the Pareto front. Nonethe-
less, the question of knowing which cases (rows) of
Table 1 exist in practice naturally follows. To deter-
mine this, we evaluated some real storage systems.

4.1 Storage Systems Used in the Experiments

In our experiments we considered three different sys-
tems, replicated across two different geographical
regions:

• AWS Simple Storage Service (S3) [2].
• AWS DynamoDB [4].
• MongoDB [8].

S3 is a low-cost cloud-based storage system. It
is a key-value store, providing access to objects in
exchange for a key. S3 separates objects into differ-
ent buckets serving as namespaces. S3 can replicate
the contents of buckets using cross-region replica-
tion. Once a client puts an object in the source region
bucket, S3 will eventually put a copy in the replicated
bucket. The reverse, however, is not true.

DynamoDB is a highly available key-value storage
oriented toward low latency “always-on” service. One
of the goals of DynamoDB is to reply to 99.9% of the
requests within 300 milliseconds [20].

We also considered MongoDB due to its popularity
and ability to make use of geo-replication features that
allow the client to manage and select the globe regions
where the data can be written or read via MongoDB
Atlas, an elastic Software as a Service (SaaS) that pro-
vides easy cloud deployments of MongoDB clusters.
We used a replica set of size 3 in S, with a master
and two secondaries, while in Rwe had a read-only
secondary replica. To perform the MongoDB experi-
ments, we used the asynchronous writing mode of the
Mongo native library for Python, pymongo [25], to
ensure that C1 would not wait in any blocking call for
an acknowledgment to be received from one of the
replicas. This is known as write concern unacknowl-
edged.

A common feature of these three storage systems
is that clients can control the region from where
they read, an option that is absent from most other
technologies but that we defend to be worthwhile.

4.2 Experiments

Refer to Fig. 5. In our experiments with the three tech-
nologies, we took Ireland as the source (S) and São
Paulo as the replicated region (R). We ran our experi-
ments between June and November of 2020. We used
a virtual machine in Ireland to run a Python script
that writes a small number of bytes (10 plus a cou-
ple of identifiers) to the repository, which is a bucket
in S3, a table in DynamoDB and a collection in Mon-
goDB. Next, the script invokes a Python AWS Lambda
function in São Paulo, which reacts to this request,
by trying to read that data (e.g., the same object from

8 Page 8 of 20

Efficient Causal Access in Geo-Replicated Storage Systems

Replica

Source
Python
Script

3. Read

1. Write

2. Notify

Ireland

Fig. 5 Replication time measurement

the S3 replicated bucket). The AWS Lambda function
may try Ireland or São Paulo or both, depending on
the strategy from Section 3.

We ran two different experiments. To compute
empirical CDFs (H(t)) and the respective PDFs, we
repeated the cycle of Fig. 5 200 times in sequence
always going for the replica in São Paulo. We con-
sider the time since C1 in Ireland starts notifying the
Lambda function to the moment this function (C2)
successfully starts reading the object from São Paulo.
For DynamoDB and MongoDB we found it worth-
while to run a second experiment, to test the DRTS
strategy. In this case, the Lambda function sleeps for a
predetermined amount of time before trying São Paulo
first, followed by Ireland, should the first attempt fail.
For each sleep period, we repeated the experiment 30
times.

4.3 Retrieval and Round-Trip Times

We start by showing in Table 2 statistic indicators of
retrieval times per technology. We also need the aver-
age round-trip times from C2 to the replica, E[XR],
and the source, E[XS]. We used reading times from
the Lambda function in São Paulo to derive the values
of Table 3. Differences are considerable, especially
concerning S3. These differences may result from the
fact that our MongoDB setting had a single replica,

Table 2 Retrieval times per technology for the sample with size
200

Technology Mean Standard deviation Max - Min

S3 25.57 1.48 5.32

DynamoDB 0.96 0.37 1.48

MongoDB 0.27 0.03 0.22

Values in seconds

while the other technologies may have more replicas;
S3 certainly does.

4.4 S3 Results

Refer to Fig. 6, where we show the empirical CDF,
H(t), and respective PDF. Since S3 systematically
takes between 21 and 28 seconds to replicate the
object, clock skews and round-trip times have lit-
tle relevance. This very large replication time was
a surprise for us because in earlier versions of this
experiment the copy would be ready almost always
before 5 seconds. We cannot explain this behavior, as
it may happen for multiple reasons internal to AWS.
This delay happens even with “Replication Time Con-
trol” active. Under Replication Time Control 99.99%
of the objects are replicated within 15 minutes. We
had this feature switched off, as it made most of our
replications slower.

Refer to Figs. 7 and 8. With S3, the decision of
picking the source or the replica is straightforward.
Since, in this case, (4) has no solutions, we have no
best and no worst case (local minimum and local max-
imum) for the delay strategy. Up to the equal point,
24.92 seconds, computed according to (2), one should
try SO, while after that point one should try RTS. The

Table 3 Half round-trip times from the Lambda function in São
Paulo to the source and replica services (resp. Ireland and São
Paulo)

Technology E[XR] E[XS]

S3 30.804 106.50

MongoDB 1.36 92.01

DynamoDB 6.48 94.64

Values in milliseconds

Page 9 of 20 8

S. Lima et al.

22 23 24 25 26 27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Request time (s)

C
D

F

0.
1

0.
2

0.
3

0.
4

PD
F

CDF PDF

Fig. 6 AWS S3 CDF and PDF

Parallel strategy is also an option. While according to
Fig. 7, the choice seems of little importance, the sharp
decline in the number of reading requests of Fig. 8
suggests that C2 should only try the replica after the
second 27. We compute the number of requests in this
figure using (3) and the empirical CDF.

4.5 DynamoDB Results

Figure 9 shows that replication is much faster in
DynamoDB than in S3. This is expected because these
technologies have complementary targets. The PDF is
bimodal, but most replications occur around t = 1

22 23 24 25 26 27

22
23

24
25

26
27

D
at

a
re

tri
ev

al
 ti

m
e

(s
)

SF RTS P equal

Request time (s)

Fig. 7 AWS S3 retrieval times per algorithm. The “equal” line refers to the equilibrium time te of (2)

8 Page 10 of 20

Efficient Causal Access in Geo-Replicated Storage Systems

22 23 24 25 26 27

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Request time (s)

N
um

be
r o

f r
eq

ue
st

s

SF RTS P equal

Fig. 8 AWS S3 number of retrieval requests

second. Again, (4) is impossible, which means that
the delaying strategy is not worthwhile; as we show in
Fig. 10, C2 should immediately go for S if t < 0.25
seconds or for R after that, being Parallel a possibility
as well.

In Fig. 11, we compute the foreseen number of
requests. This number drops almost linearly with time,

but saving in requests entails a growing cost in time.
Figure 12 shows actual observations of the RTS (aver-
age of 30 measurements) and their predictable contin-
uation. Points in the bottom-right correspond to sooner
request times, while points in the top-left correspond
to later request times. Once the probability of finding
the object in R approaches 1, delaying the request will

0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Request time (s)

C
D

F

0.
2

0.
4

0.
6

0.
8

1.
0

PD
F

CDF PDF

Fig. 9 DynamoDB CDF and PDF

Page 11 of 20 8

S. Lima et al.

0.5 1.0 1.5

0.
5

1.
0

1.
5

Request time (s)

D
at

a
re

tri
ev

al
 ti

m
e

(s
)

SF RTS P equal

Fig. 10 DynamoDB retrieval times

only delay the retrieval without any compensation in
the number of requests, thus the vertical ending of the
plot.

4.6 MongoDB Results

As we illustrate in Fig. 13, the concentration of the
replication times for MongoDB makes a high peak

(in this case we seem to have two very close ones).
Hence, unlike the cases of S3 and DynamoDB, (4)
has two solutions, corresponding to the best and worst
times of the DRTS strategy. The worst time is nec-
essarily a local maximum because one can make the
retrieval time as bad as one wants, by simply delay-
ing the request time (in Fig. 14). The DP strategy is
also worthwhile, especially once going straight to the

0.5 1.0 1.5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Request time (s)

N
um

be
r o

f r
eq

ue
st

s

SF RTS P equal

Fig. 11 DynamoDB number of retrieval requests

8 Page 12 of 20

Efficient Causal Access in Geo-Replicated Storage Systems

1.0 1.2 1.4 1.6 1.8 2.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of requests

D
at

a
re

tri
ev

al
 ti

m
e

(s
)

observed later request times

Fig. 12 DynamoDB retrieval time versus the number of requests

source ceases to be competitive and before the best
time of DRTS. After that point, one must use Parallel
instead of DP.

As a consequence of the CDF shape, the foreseen
number of requests for DRTS, in Fig. 15, sharply
decreases between the lines of the worst and best

times. Interestingly, in this case, we can make the pro-
cess both cheaper and faster. We can see this effect
in Fig. 16, where cost and time evolve to their low-
est bound almost in synchrony. In the very short range
of the x-axis, data retrieval times decrease in pace
with the number of reading requests to S, thus making

0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Request time (s)

C
D

F

0
20

40
60

80
10

0

PD
F

CDF PDF
1

2 E[XS] best time worst time

Fig. 13 MongoDB CDF and PDF

Page 13 of 20 8

S. Lima et al.

0.10 0.15 0.20 0.25 0.30

0.
30

0.
35

0.
40

0.
45

0.
50

Request time (s)

D
at

a
re

tri
ev

al
 ti

m
e

(s
)

SF RTS DP/P equal best worst

Fig. 14 MongoDB retrieval times

them seem proportional (which they are not). Finally,
in Fig. 17, we show the same data but plotted in terms
of data retrieval time versus the number of requests. In
this case, low start times (not to be confused with the
retrieval times) are in the top right corner, they grow
to the bottom left and continue up from that point.
The decision for system designers is unambiguous: the

best point is the lowest left-most one, saving almost
one retrieval request against DP.

4.7 Discussion

Table 2 shows that, despite the lack of guarantees,
replication times tend to be contained within very tight

0.10 0.15 0.20 0.25 0.30

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Request time (s)

N
um

be
r o

f r
eq

ue
st

s

SF RTS DP/P equal best worst

Fig. 15 MongoDB number of retrieval requests

8 Page 14 of 20

Efficient Causal Access in Geo-Replicated Storage Systems

0.270 0.272 0.274 0.276 0.278 0.280 0.282

0.
30

0.
35

0.
40

0.
45

Request time (s)

D
at

a
re

tri
ev

al
 ti

m
e

(s
)

end time number of requests

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

N
um

be
r o

f r
eq

ue
st

s

Fig. 16 MongoDB number of retrieval requests for DRTS

bounds. Even at the S3 time scale, the systems we
observed tend to naturally ensure causality whenever
human interaction is involved, e.g., in conversations
on social media. An application that reads some data
and shows it to a user, who replies or takes some
action, followed by a write, will most likely take
enough time to let the original content spread to all
replicas. Other applications may involve automated

responses, e.g., to log readings [19] or alarms. In this
case, a violation of causal order is possible, espe-
cially with out-of-band communication mechanisms.
Our approach aims precisely to improve this case.

We also made an experiment to understand if we
could take advantage of past values of replication
times. For MongoDB and DynamoDB, the autocorre-
lation of the list of replication times rarely goes above

1.0 1.2 1.4 1.6 1.8 2.0

0.
30

0.
35

0.
40

0.
45

Number of requests

D
at

a
re

tri
ev

al
 ti

m
e

(s
)

observed later request times

Fig. 17 MongoDB retrieval time versus number of requests for DRTS

Page 15 of 20 8

S. Lima et al.

Table 4 Access strategies

Relative times S3 DynamoDB MongoDB

t0 = tm < te X X X

t0 < tm < te

t0 < te < tm X

te < t0 = tm X X X

te < t0 < tm X

te < tm < t0 −
tm < t0 < te −
tm < te < t0 −

Evaluation occurs at time t = t0 (“now”). Time tm is the
minimum of (1), such that tm ∈ [t0, ∞). Time te is the equilib-
rium time as in (2). “X” stands for a storage system where the
condition may hold

0.2, and stays mostly around 0, thus suggesting that
successive replication times are unrelated.

Finally, in Table 4, we showwhich cases exist in the
storage systems we observed. We use the information
in this table, together with Table 1, to produce Table 5,
which matches algorithms to storage systems. Mon-
goDB is the most interesting case. Assuming that C2

receives the notification at once, it should go straight
to the source using SO, or in parallel using Parallel. At
some point, waiting for the local minimum near the 0.3
seconds will become worthwhile, either with DRTS
or DP. After this minimum, delaying is no longer
advantageous and C2 should use RTS or Parallel.

5 Related Work

Fault tolerance in distributed systems requires repli-
cation [31]. Geo-replicated storage systems aim at
ensuring available, low-latency access to data even

Table 5 Access strategies for each storage system

Storage system SO RTS DRTS Par. DP

AWS S3 P P P

DynamoDB P P P

MongoDB P P P P X

“P” means that the access strategy is in the Pareto front for
the storage system, and “X” means that the solution is non-
dominated in this set

under server crashes and network partitions. Accord-
ing to the CAP theorem [26], however, when there is
a partition (the “P”), a data store might either be Con-
sistent (the “C”) or Available (“A”), but not both. The
PACELC theorem [1, 27] extends the idea, by adding
an else clause (the “E”), which stands for the no par-
tition case. Under normal operation, the system may
either go for Consistency (“C”) or Latency (“L”). Sys-
tems tend to either be consistent all the time to the
detriment of availability (under partition) or latency
(under normal operation) or the other way around,
sacrificing consistency in both cases (partition or no
partition). As predicted in this theorem, our preference
for consistency thus comes at the expense of latency
and partition tolerance, as the server or one of its
internal replicas may be inaccessible.

We can see this tradeoff at play in many systems,
for example, in Azure’s CosmosDB, which offers mul-
tiple storage products with five different consistency
levels, ranging from eventual to strong [51]. Many
cloud storage systems supporting large-scale applica-
tions, like AWS S3 [2], initially opted for scalability,
offering always-on, low-latency, low-consistency ser-
vices, with a promise of eventual consistency. S3 has
now evolved to “read-after-write” consistency within
a single region but still offers no guarantees if one
replicates a bucket across regions. Other more expen-
sive systems, like the DynamoDB [4, 20] or Mon-
goDB [8] NoSQL databases have multiple consistency
options, including consistent writes with short consis-
tency timelines, even across regions. Such guarantees,
however, hinder performance.

Some systems use quorums to ensure that clients
access a consistent version of data. For example, in
Cassandra [34], the client takes the initiative to talk
to multiple replicas. In Kafka [40], the writer may
be forced to wait for synchronization although asyn-
chronous writing options also exist. In other systems,
like SLOG [53], the reads need to go to the source,
an approach somewhat similar to our own. These
serve as examples of why consistency slows down
systems, as foreseen by PACELC. The limitations of
PACELC impact cloud storage systems design, like
AWS S3 [2], Google Cloud [29], Microsoft Azure [50]
or IBM Cloud Storage [37], which tend to drop con-
sistency in favor of latency and availability, while
also gaining scalability with their option. These sys-
tems tend to offer eventual consistency while being
always on.

8 Page 16 of 20

Efficient Causal Access in Geo-Replicated Storage Systems

In academia, some authors have proposed repli-
cated systems that offer Causal+ consistency [46]. In
addition to the standard causal order, Causal+ eventu-
ally produces the same output even if two applications
concurrently write different values to the same item at
different replicas. This “eventual” property also used
to exist in S3, with the last timestamp winning (note,
however, that S3 was eventually consistent, but not
causally consistent). In the case of COPS [46], repli-
cas are clusters of machines that are partitioned by
key (i.e., each replica is its datacenter). Each client
accesses the storage system via its local replica, which
takes care of replicating the writes and dependencies
of the client to other replicas.

Mahajan et al. [47] demonstrate the interesting
result that causal consistency, more precisely real-time
causal consistency is the strongest consistency guar-
antee that is available in the presence of partitions.
Any stronger consistency model can cause clients to
block, should some server replica become unavailable.
This promise, however, entails a drawback, as this
theorem makes no promises regarding the novelty of
the data being read. A system where replicas do not
exchange data is non-blocking and causally consistent,
but not particularly useful. For this reason, the notion
of staleness is also important [10, 58], i.e., how old is
the data that the reader is consuming. Pointers in the
causal DAG rule out the staleness problem from our
approach, at the expense of blocking under network
partitions or source region unavailability.

Non-blocking operation at the cost of staleness
is also the option in Bolt-on [7], which uses local
storage (shim) and the notion of causal cut to keep
causally consistent data always available to the client.
The causal cut [7] essentially keeps file dependencies
ready for delivery. Bolt-on does not deliver a file to
the application before having all the necessary files in
the cut, or otherwise, the application could block while
looking for a previous dependency file. While power-
ful, this system is not very simple, as the shim layer
must keep track of causal dependencies on behalf of
the application, while keeping local replicas of files.
Bolt-on delivers the promise of the Mahajan et al.’s
result [47], but again, the staleness problem persists.

In [6], Bailis et al. identify a critical trade-off
between staleness (“visibility latency”) and write
throughput. As the utilization of throughput across
replicas increases, thus creating longer queues, the
new data will take longer to arrive. Furthermore, the

authors point out the huge potential causal histories
of dependencies that impose additional delays on the
replicas, as these need to wait for other write oper-
ations on different servers to arrive. Fortunately, in
practice, dependencies are usually much shorter. The
actual dependency of a Facebook reply is usually the
single post to where it belongs. This supports the
option of letting programs determine data dependen-
cies, as we do in this work.

Ladin et al. [43] proposed one of the first repli-
cated systems to offer causal order. Their approach is
quite interesting for us, because, as in [6], they allow
applications to specify the ordering they want (among
“causal”, “immediate” and “forced”); and their replica
update scheme is lazy because the authors use gos-
sip to optimize the replication mechanisms. While this
ensures causality, when applications require so, the
lazy approach causes stale reads. This scheme is thus
ideally suited for our approach, as we let clients pick
data from other replicas. Ladin et al. [43] also pro-
vide a quite interesting list of use cases for causal
consistency, like distributed garbage collection [42],
deadlock detection [24], orphan detection [45], mobile
object location in a distributed system [36], and dele-
tion of unused versions in a hybrid concurrency con-
trol scheme [60]. Indeed, ensuring causal ordering in
distributed systems, namely among multicast groups
dates back a few decades already, e.g., the ISIS imple-
mentation [12] or [41]. In these settings, a client will
read data in causal order, as long as it keeps reading
from the same replica in the group. Some authors also
consider partial instead of full replication [35]. Since
clients know the source region of an object, at least
some of the replicas can delete a copy of the object if
they need to.

Our approach also bears significant similarities to
caches, if we see data present at the local replica as a
cache hit. Programs will often use caches, like Ama-
zon ElastiCache [3], Redis [16], and Memcached [38]
as fast access memory for common or recent results.
Nonetheless, since they can also behave as fast
in-memory geo-replicated storage, the line between
cache and storage is somewhat fuzzy. On the web, this
is usually transparent for the browser, through Content
Delivery Networks (CDNs). We propose treating local
storage replicas as caches and reacting to cache misses
when reading absent nodes in a causal DAG.

We also observe that our problem bears some sim-
ilarities to Global Server Load Balancing (GSLB)

Page 17 of 20 8

S. Lima et al.

products, such as Route 53 [55]. In these products,
the service provider has multiple regional replicas and
uses the name service to point clients to the best
replica, using one of many possible policies, including
geographical location, latency, and others. Similarly
to our case, these products need to compute the best
replica to access.

6 Conclusion

In this paper, we considered the problem of causally
accessing objects on multiple geo-replicated storage
systems. Since cloud providers usually charge for each
read access, we aim at minimizing the number of
client requests, while also minimizing latency.

We propose five non-dominated access strategies,
of which four are Pareto optimal. Our access strategies
proved to be worth using in real storage systems. To
make this possible, clients must know metrics like the
age of the object they are looking for and the CDFs
of object arrival times at their local replica, for each
source. To take this burden off clients, local replicas
can take care of the most difficult figure to collect, the
CDFs.

Judicious utilization of access strategy and time
can, in some real cases, minimize latency, while cut-
ting costs by nearly 50%. This is a considerable
improvement for all software interacting with repli-
cated data, like JavaScript on a web page accessing
geo-replicated storage, or to Internet of Things (IoT)
devices interacting with edge servers.

One of the conclusions we take from this work is
that cooperation from service providers could have a
positive impact on latency and costs if they let clients
pick the replica to access while providing blocking
read operations. They would be a good option for
clients if they cost less than the average cost of RTS
or DRTS and take less time than SO. Enriching cloud
storage services with a blocking read primitive would
thus provide value for the client and the provider.

A natural continuation for this work would be to
consider more than a single pair of replicas and extend
this analysis to an arbitrary set of geo-replicated
servers.

Acknowledgements The authors would like to thank the Cen-
tre for Informatics and Systems of the University of Coimbra
(CISUC) for providing the conditions for this work.

Author Contributions Stanley Lima and Filipe Araujo
started the work on the paper and designed the first experi-
ments. Filipe Araujo later reformulated the paper with the help
of Miguel Guerreiro. While both have contributed to the design
and execution of the experiments, Andre Bento and Jaime Cor-
reia participated in discussions regarding the objectives and the
evaluation of results. Stanley Lima, Filipe Araujo, and Miguel
Guerreiro wrote most of the paper. Raul Barbosa was involved
in the review process. All authors approved the final manuscript.

Funding Open access funding provided by FCT—FCCN (b-
on). This work is funded by national funds through the FCT –
Foundation for Science and Technology, I.P., within the scope
of the project CISUC – UID/CEC/00326/2020, by the European
Social Fund, through the Regional Operational Program Centro
2020 and by research grants of the programs: Science With-
out Borders (Ciências sem Fronteiras - CsF), Brazilian Space
Agency (Agência Espacial Brasileira - AEB).

Data Availability The datasets generated during the cur-
rent study are available from the corresponding author upon
reasonable request.

Compliance with Ethical Standards

Consent for Publication All authors gave their consent for
this publication.

Competing interests The authors are not aware of any com-
peting interests regarding this work.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated oth-
erwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

References

1. Abadi, D.: Consistency tradeoffs in modern dis-
tributed database system design: CAP is only part
of the story. IEEE Comput. 45(2), 37–42 (2012).
https://doi.org/10.1109/MC.2012.33

2. Amazon: Cloud Object Storage - Amazon S3 - Ama-
zon Web Services. https://aws.amazon.com/s3/?nc1=h ls.
Accessed 21 May 2022 (2006)

8 Page 18 of 20

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MC.2012.33
https://aws.amazon.com/s3/?nc1=h_ls

Efficient Causal Access in Geo-Replicated Storage Systems

3. Amazon Web Services, Inc. or affiliates. Amazon
ElastiCache- In-memory data store and cache. https://aws.
amazon.com/elasticache/. Accessed 13 July 2022 (2011)

4. Amazon Web Services, Inc. or affiliates, Amazon
DynamoDB. https://docs.aws.amazon.com/amazon-
dynamodb/latest/developerguide/Introduction.html.
Accessed 13 July 2022 (2012)

5. Attiya, H., Welch, J.L.: Sequential consistency versus lin-
earizability. ACM Trans. Comput. Syst. (TOCS) 12(2),
91–122 (1994)

6. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Sto-
ica, I.: The potential dangers of causal consistency and
an explicit solution. In: Proceedings of the 3rd ACM
Symposium on Cloud Computing, SoCC ’12. Associa-
tion for Computing Machinery, New York (2012). ISBN
9781450317610. https://doi.org/10.1145/2391229.2391251

7. Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-
on causal consistency. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’13, pp. 761–772. Association for Comput-
ing Machinery, New York (2013). ISBN 9781450320375.
https://doi.org/10.1145/2463676.2465279

8. Banker, K., Garrett, D., Bakkum, P., Verch, S.: MongoDB
in action: covers MongoDB version 3.0. Manning, Shelter
Island, NY. ISBN 978-1617291609 (2016)

9. Barbara, L., Ladin, R.: Highly-available distributed services
fault-tolerant distributed garbage collection. In: Proceed-
ings of the 5th Symposium on the Principles of Distributed
Computing, pp. 29–39. ACM, Canada (1986)

10. Bermbach, D., Kuhlenkamp, J.: Consistency in distributed
storage systems. In: Gramoli, V., Guerraoui, R. (eds.) Net-
worked Systems, pp. 175–189. Springer, Berlin (2013).
ISBN 978-3-642-40148-0

11. Bermbach, D., Tai, S.: Eventual consistency: How soon
is eventual? An evaluation of amazon S3’s consistency
behavior. In: Proceedings of the 6th Workshop on Mid-
dleware for Service Oriented Computing, MW4SOC 2011,
Lisbon, Portugal, December 12-16, 2011, p. 1 (2011).
https://doi.org/10.1145/2093185.2093186

12. Birman, K.P., Joseph, T.A.: Reliable communication in
the presence of failures. ACM Trans. Comput. Syst. 5(1),
47–76 (1987). ISSN 0734-2071. https://doi.org/10.1145/
7351.7478

13. Bravo, M., Rodrigues, L.E.T., Van Roy, P.: Saturn: a
distributed metadata service for causal consistency. In:
Proceedings of the 12th European Conference on Com-
puter Systems, EuroSys 2017, Belgrade, Serbia, April
23-26, 2017, pp. 111–126 (2017). https://doi.org/10.1145/
3064176.3064210

14. Brzezinski, J., Sobaniec, C., Wawrzyniak, D.: Session guar-
antees to achieve PRAM consistency of replicated shared
objects. In: International Conference on Parallel Processing
and Applied Mathematics, pp. 1–8. Springer (2003)

15. Brzezinski, J., Sobaniec, C., Wawrzyniak, D.: From session
causality to causal consistency. In: 12th Euromicro Work-
shop on Parallel, Distributed and Network-Based Process-
ing (PDP 2004), 11–13 February 2004, A Coruna, Spain,
pp. 152–158 (2004). https://doi.org/10.1109/EMPDP.2004.
1271440

16. Carlson, J.: Redis in action. Manning, Shelter Island, NY.
ISBN 978-1617290855 (2013)

17. Cowling, J.: Inside the MagicPocket - Dropbox. https://
dropbox.tech/infrastructure/inside-the-magic-pocket.
Accessed 14 July 2022 (2016)

18. Cristian, F.: Probabilistic clock synchronization. Dis-
trib. Comput. 3(3), 146–158 (1989). ISSN 0178-2770.
https://doi.org/10.1007/BF01784024

19. Weeks, D.C.: S3mper: Consistency in the cloud.
https://netflixtechblog.com/s3mper-consistency-in-the-
cloud-b6a1076aa4f8, Accessed 13 Aug 2022 (2014)

20. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall,
P., Vogels, W.: Dynamo: Amazon’s highly available key-
value store. ACM SIGOPS Oper. Syst. Rev. 41(6), 205–220
(2007)

21. Défago, X., Schiper, A., Urbán, P.: Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM
Comput. Surv. 36(4), 372–421 (2004). ISSN 0360-0300.
https://doi.org/10.1145/1041680.1041682

22. Du, J., Iorgulescu, C., Roy, A., Zwaenepoel, W.: Gen-
tlerain: Cheap and scalable causal consistency with phys-
ical clocks. In: Proceedings of the ACM Symposium
on Cloud Computing, SOCC ’14, pp. 1–13. Associa-
tion for Computing Machinery, New York (2014). ISBN
9781450332521. https://doi.org/10.1145/2670979.2670983

23. Duan, Y., Koufaty, D., Torrellas, J.: SCsafe: Logging
sequential consistency violations continuously and pre-
cisely. In: 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 249–
260. IEEE (2016)

24. Farrell, A.K.: A deadlock detection scheme for Argus.
Bachelor’s Thesis July 1989 MIT Dept. of Electrical Engi-
neering and Computer Science

25. Python Software Foundation: pymongo · pypi. https://pypi.
org/project/pymongo/. Accessed 14 July 2022 (2009)

26. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services.
SIGACT News 33(2), 51–59 (2002). ISSN 0163-5700.
https://doi.org/10.1145/564585.564601

27. Golab, W.: Proving PACELC. SIGACT News 49(1), 73–81
(2018). ISSN 0163-5700. https://doi.org/10.1145/3197406.
3197420

28. Golab, W., Li, X., Shah, M.A.: Analyzing consistency
properties for fun and profit. In: Proceedings of the 30th
Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, pp. 197–206 (2011)

29. Google: Cloud Computing Services — Google Cloud.
https://cloud.google.com/. Accessed 14 July 2022 (2008)

30. Google: Datastore – Google Cloud. https://cloud.google.
com/datastore/. Accessed 14 July 2022 (2013)

31. Guerraoui, R., Schiper, A.: Fault-tolerance by replica-
tion in distributed systems. In: International Conference
on Reliable Software Technologies, pp. 38–57. Springer
(1996)

32. Hasan, R., Tucek, J., Stanton, P., Yurcik, W., Brumbaugh,
L., Rosendale, J., Boonstra, R.: The techniques and chal-
lenges of immutable storage with applications in multime-
dia. In: Lienhart, R.W., Babaguchi, N., Chang, E.Y. (eds.)
Storage and Retrieval Methods and Applications for Mul-
timedia 2005, vol. 5682, pp. 41–52. International Soci-
ety for Optics and Photonics, SPIE, Bellingham (2005).
https://doi.org/10.1117/12.588103

Page 19 of 20 8

https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://doi.org/10.1145/2391229.2391251
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2093185.2093186
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/3064176.3064210
https://doi.org/10.1145/3064176.3064210
https://doi.org/10.1109/EMPDP.2004.1271440
https://doi.org/10.1109/EMPDP.2004.1271440
https://dropbox.tech/infrastructure/inside-the-magic-pocket
https://dropbox.tech/infrastructure/inside-the-magic-pocket
https://doi.org/10.1007/BF01784024
https://netflixtechblog.com/s3mper-consistency-in-the-cloud-b6a1076aa4f8
https://netflixtechblog.com/s3mper-consistency-in-the-cloud-b6a1076aa4f8
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/2670979.2670983
https://pypi.org/project/pymongo/
https://pypi.org/project/pymongo/
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3197406.3197420
https://doi.org/10.1145/3197406.3197420
https://cloud.google.com/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://doi.org/10.1117/12.588103

S. Lima et al.

33. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12(3), 463–492 (1990). ISSN 0164-0925.
https://doi.org/10.1145/78969.78972

34. Hewitt, E.: Cassandra: The Definitive Guide, (Revised) 3rd
edn.: Distributed Data at Web Scale. O’Reilly Media, Inc.,
Sebastopol (2022). ISBN 978-1492097143

35. Hsu, T.-Y., Kshemkalyani, A.D., Shen, M.: Causal
consistency algorithms for partially replicated and
fully replicated systems. Future Gener. Comput.
Syst. 86, 1118–1133 (2018). ISSN 0167-739X.
https://doi.org/10.1016/j.future.2017.04.044. https://www.
sciencedirect.com/science/article/pii/S0167739X17308166

36. Hwang, D.J.-H.: Constructing a highly-available location
service for a distributed environment. Master’s thesis, MIT
Dept. of Electrical Engineering and Computer Science,
Cambridge, Massachusetts, USA (1987)

37. IBM: IBM Cloud Storage. https://www.ibm.com/cloud/
storage. Accessed 14 July 2022 (2013)

38. Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J.,
Wasi-ur Rahman, M., Islam, N.S., Ouyang, X., Wang, H.,
Sur, S., Panda, D.K.: Memcached design on high perfor-
mance RDMA capable interconnects. In: 2011 International
Conference on Parallel Processing, pp. 743–752 (2011).
https://doi.org/10.1109/ICPP.2011.37

39. Kermarrec, A.-M., Kuz, I., van Steen, M., Tanenbaum,
A.S.: A framework for consistent, replicated Web objects.
In: The 18th International Conference on Distributed Com-
puting Systems, pp. 276–291. IEEE Computer Society,
Amsterdam (1998). https://doi.org/10.1109/ICDCS.1998.
679725

40. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: A distributed
messaging system for log processing. In: Proceedings of the
NetDB, vol. 11, pp. 1–7 (2011)

41. Kshemkalyani, A.D., Singhal, M.: Necessary and suffi-
cient conditions on information for causal message ordering
and their optimal implementation. Distrib. Comput. 11(2),
91–111 (1998). ISSN 0178-2770. https://doi.org/10.1007/
s004460050044

42. Ladin, R.: A method for constructing highly available ser-
vices and a technique for distributed garbage collection.
PhD thesis, MIT Dept. of Electrical Engineering and Com-
puter Science (1989)

43. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing
high availability using lazy replication. ACM Trans. Com-
put. Syst. 10(4), 360–391 (1992). https://doi.org/10.1145/
138873.138877

44. Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21(7), 558–565 (1978)

45. Liskov, B., Scheifler, R., Walker, E., Weihl, W.: Orphan
detection (extended abstract). In: Proceedings of the 17th
International Symposium on Fault-Tolerant Computing,
Pittsburgh (1987)

46. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen,
D.G.: Don’t settle for eventual: scalable causal consistency
for wide-area storage with COPS. In: Proceedings of the
23rd ACM Symposium on Operating Systems Principles
2011, SOSP 2011, Cascais, Portugal October 23–26 2011,

pp. 401–416 (2011). https://doi.org/10.1145/2043556.
2043593

47. Prince, M., Lorenzo, A., Dahlin, M.: Consistency, avail-
ability, and convergenc. Technical Report UTCS TR-11-22,
Department of Computer Science, The University of Texas
at Austin (2011)

48. McCoy, K.: VMS File System Internals (VAX - VMS
Series). Digital Press, Maynard, Massachusetts USA. ISBN
1555580564 (1990)

49. Microsoft: Azure Blob Storage documentation. https://
docs.microsoft.com/en-us/azure/storage/blobs/. Accessed
14 july 2022 (2008)

50. Microsoft: Microsoft Azure. https://azure.microsoft.com/
services/storage. Accessed 14 July 2022 (2008)

51. Microsoft: Consistency levels in Azure Cosmos DB.
https://docs.microsoft.com/en-us/azure/cosmos-db/
consistency-levels. Accessed 14 July 2022 (2022)

52. Evaggelia, P., Bharat, B.: Maintaining consistency of data
in mobile distributed environments. In: Proceedings of
15th International Conference on Distributed Computing
Systems, pp. 404–413. IEEE (1995)

53. Ren, K., Li, D., Abadi, D.J.: Slog: serializable, low-
latency, geo-replicated transactions. Proc. VLDB Endow-
ment 12(11), 1747–1761 (2019)

54. Roohitavaf, M., Demirbas, M., Kulkarni, S.: Causalspar-
tan: Causal consistency for distributed data stores using
hybrid logical clocks. In: 2017 IEEE 36th Symposium on
Reliable Distributed Systems (SRDS), pp. 184–193 (2017).
https://doi.org/10.1109/SRDS.2017.27

55. Soni, M.: Practical AWS Networking: Build and man-
age complex networks using services such as Amazon
VPC, Elastic Load Balancing, Direct Connect, and Amazon
Route 53. ISBN 978-1788398299 (2018)

56. Tanenbaum, A.S., van Steen, M. Distributed systems - prin-
ciples and paradigms, 2nd edn. Pearson Education, Upper
Saddle River (2007). ISBN 978-0-13-239227-3

57. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer,
M., Theimer, M., Welch, B.B.: Session guarantees for
weakly consistent replicated data. In: Proceedings of
the 3rd International Conference on Parallel and Dis-
tributed Information Systems (PDIS 94), Austin, Texas,
USA, September 28–30, 1994, pp. 140–149 (1994).
https://doi.org/10.1109/PDIS.1994.331722

58. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data con-
sistency properties and the trade-offs in commercial cloud
storages: the consumers’ perspective. In: 5th Biennial Con-
ference on Innovative Data Systems Research (CIDR 2011)
(2011)

59. Wasabi Technologies Inc. Cloud Object Storage by Wasabi
— 1/5th the Price —Wasabi. https://wasabi.com. Accessed
14 July 2022 (2017)

60. Weihl, W.E.: Distributed version management for read-only
actions. IEEE Trans. Softw. Eng. E-13(1), 55–64 (1987)

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

8 Page 20 of 20

https://doi.org/10.1145/78969.78972
https://doi.org/10.1016/j.future.2017.04.044
https://www.sciencedirect.com/science/article/pii/S0167739X17308166
https://www.sciencedirect.com/science/article/pii/S0167739X17308166
https://www.ibm.com/cloud/storage
https://www.ibm.com/cloud/storage
https://doi.org/10.1109/ICPP.2011.37
https://doi.org/10.1109/ICDCS.1998.679725
https://doi.org/10.1109/ICDCS.1998.679725
https://doi.org/10.1007/s004460050044
https://doi.org/10.1007/s004460050044
https://doi.org/10.1145/138873.138877
https://doi.org/10.1145/138873.138877
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
https://docs.microsoft.com/en-us/azure/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/blobs/
https://azure.microsoft.com/services/storage
https://azure.microsoft.com/services/storage
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://doi.org/10.1109/SRDS.2017.27
https://doi.org/10.1109/PDIS.1994.331722
https://wasabi.com

	Efficient Causal Access in Geo-Replicated Storage Systems
	Abstract
	Introduction
	Model and Problem Formulation
	Consistency Trade-Offs
	Eventual Consistency
	Session Guarantees
	Causal Consistency
	Other Consistency Models
	System Model
	Problem Formulation

	Optimal Causal Access
	Distributed Setting
	Source-Only Strategy
	Replica-Then-Source Strategy
	Delayed Replica-Then-Source Strategy
	Parallel and Delayed Parallel Strategy
	Comparison
	Practical Concerns

	Experimental Results and Analysis
	Storage Systems Used in the Experiments
	Experiments
	Retrieval and Round-Trip Times
	S3 Results
	DynamoDB Results
	MongoDB Results
	Discussion

	Related Work
	Conclusion
	References

