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method to address these issues first and then investi-
gate the predictive conformance monitoring approach 
by automatically constructing an online multi-per-
spective conformance prediction model based on 
deep learning techniques. In addition, to capture 
more decisive features in the model from both local 
information and long-distance dependency within an 
executed process instance, we propose an approach, 
called CNN-BiGRU, by combining Convolutional 
Neural Network (CNN) with a variant and enhance-
ment of Recurrent Neural Network (RNN). Extensive 
experiments on two data sets demonstrate the effec-
tiveness and efficiency of the proposed CNN-BiGRU.

Keywords Cloud security · Multi-perspective 
conformance · Convolution neural networks · Gated 
recurrent unit · Conformance-oriented predictive 
process monitoring

1 Introduction

Cloud computing proved to change the supply of 
computing, storage, and software services. It pro-
vides users with computing resources on demand 
through a pay-per-use approach to offer flexible IT 
solutions [1]. Since the formulation of cloud security 
policies always lags behind the use of cloud services, 
cloud services have many security risks. Generally, 
cloud service vendors provide three main types of 
services, software as a service (SaaS), platform as a 

Abstract As a new cloud service for delivering 
complex business applications, Business Process as a 
Service (BPaaS) is another challenge faced by cloud 
service platforms recently. To effectively reduce the 
security risk caused by business process execution 
load in BPaaS, it is necessary to detect the non-com-
pliant process executions (instances) from tenants in 
advance by checking and monitoring the conform-
ance of the executing process instances in real-time. 
However, the vast majority of existing conformance 
checking techniques can only be applied to the pro-
cess instances that have been executed completely 
offline and only focus on the conformance from the 
single control-flow perspective. We develop an exten-
sible multi-perspective conformance measurement 
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service (PaaS), and infrastructure as a service (IaaS). 
In terms of SaaS, the service provider deploys appli-
cation software on remote servers and users use 
these application services via the Internet by pay-
ing for them [2]. As we know, the daily operations 
of organizations and enterprises mainly rely on auto-
mated business processes executing on IT infrastruc-
ture. On the one hand, the introduction of business 
process management (BPM) into an enterprise can 
cause integration problems because not all software 
involved in a business process (BP) has clear inter-
faces. On the other hand, enterprises do not need 
to buy and maintain expensive servers and Process-
aware Information Systems (PAIS) to manage and 
perform their business processes. Accordingly, a new 
type of SaaS paradigm, business process as a ser-
vice (BPaaS), has emerged [3, 4]. It is delivered via 
the Internet through a cloud-based business process 
(model) execution [5, 6]. In BPaaS, the business pro-
cess models are usually developed by service provid-
ers for tenants to pay for. Since the business process 
execution is susceptible to resource availability and 
the configuration of information systems, the process 
instance executed in the real world may deviate from 
the defined business process. These non-compliant 
process executions can bring serious consequences, 
and most of them prove to be invalid and meaning-
less at the end of them. The malicious attack pos-
ing as a legitimate tenant can especially initiate a 
large number of non-compliant process executions 
to attack BPaaS by increasing the process execution 
load. Accordingly, these invalid and non-compliant 
process executions waste the resources of cloud 
services and may result in the security risk of busi-
ness process execution load in BPaaS. Therefore, it 
is particularly necessary to predictively monitor the 
conformance of process executions when they are 
ongoing [7] to enhance the security of process execu-
tion load in BPaaS. Inspired by the definition of Pre-
dictive (business) Process Monitoring (PPM), which 
purpose is to predict the future state of an executing 
process instance [8], we propose the concept of pre-
dictive conformance monitoring for business process 
executions (i.e. conformance-oriented predictive pro-
cess monitoring, conformance-oriented PPM) in this 
paper.

Until now, the existing conformance-oriented 
monitoring technologies mainly focus on the meas-
urement value of conformance by Conformance 

Checking. Conformance checking technologies are 
designed to find and measure behavioral deviations 
from actual process executions (that denotes the real 
behavior) against a predefined process model (that 
denotes the expected behavior). So the conform-
ance of a process instance only can be determined 
when it is completed. Accordingly, traditional con-
formance checking techniques are mostly offline, 
and they cannot determine in real-time whether the 
process instance is consistent with the predefined 
process model. Driven by intelligent business pro-
cesses management and deep learning techniques, 
people would like to know whether the process devi-
ates at runtime, rather than a few days later or even 
longer [9]. Subsequently, some online conform-
ance checking techniques are proposed based on the 
executed business activities and some behavioral 
patterns [10, 11]. However, they can only perceive 
the current conformance of an executing process 
instance. Different from them, our proposed predic-
tive conformance monitoring for an ongoing process 
execution (instance) can perceive its future (final) 
conformance-oriented situation in real-time and take 
actions to terminate the process instances that are 
unlikely to be compliant in advance for enhancing 
the security of the process execution load in BPaaS. 
In addition, when monitoring the compliance of 
process execution in BPaaS, the conformance of a 
process instance should be considered from multi-
ple perspectives rather than a control-flow perspec-
tive (the order in which certain activities are per-
formed) because the deviations can not only occur 
in the control-flow. The deviations from other per-
spectives such as data, resources, and time can also 
result in invalid and meaningless process execution. 
Nevertheless, most existing techniques only study 
the conformance of control-flow, such as [12–15]. 
As indicated in [16], it is necessary to propose addi-
tional conformance checking techniques from multi-
ple perspectives. Thus, we innovatively propose the 
Multi-perspective (i.e., control-flow, data, resource, 
and time) Conformance-oriented Predictive (Busi-
ness) Process Monitoring (MCPPM) for tenant-
oriented business process executions to reduce the 
security risk of business process execution load and 
the tenants’ cost in BPaaS.

To achieve the MCPPM task in terms of enhanc-
ing the security of process execution load in BPaaS, 
inspired by the research of PPM on the other tasks 
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[17–20], we investigate how to predict the multi-
perspective conformance of an executing case on 
the basis of the historical process executions and a 
predefined process model in BPaaS. Meanwhile, we 
view this MCPPM problem as a binary classification 
task ground on a certain multi-perspective conform-
ance threshold. In order to solve this problem, the 
general approach usually includes two parts by refer-
ring to the solution of the outcome prediction for a 
process instance in [18]. The first one is offline part, 
during which we study the relationship between 
the historical executed process instances and their 
multi-perspective (control-flow, data, and resource, 
etc.) conformance and then build a predictive classi-
fication model. The second one is online part, during 
which we forecast the future multi-perspective con-
formance for an executing case based on this model. 
Consequently, the effectiveness and efficiency of 
online real-time predictions are crucial for this task. 
Driven by the relevant work [17, 20–22], we develop 
an approach based on deep learning techniques. One 
reason is that the prediction approaches based on 
conventional machine learning are less intelligent 
and have deficiencies in terms of prediction perfor-
mance, especially the efficiency of online predic-
tion, as demonstrated in [17, 22]. Moreover, con-
sidering that an executed process instance consists 
of a series of events, the MCPPM can be viewed 
as a sequential data prediction problem. As for this 
similar problem, some approaches based on Recur-
rent Neural Networks (RNNs) and Convolutional 
Neural Networks (CNNs) prove to be more efficient 
[23–25] because RNN-based approaches pay more 
attention to the features between the context of ele-
ments in sequential data, while CNN can extract 
local features [21]. However, the RNNs have obvi-
ous disadvantages in terms of gradient vanishing 
and long-distance dependency feature extraction. 
To address this issue, two variants of Gated RNN, 
RNN with a Long Short-term Memory unit (LSTM) 
[26] and RNN with a Gated Recurrent Unit (GRU) 
[27] are proposed subsequently while the GRU has 
some advantages in computational complexity [28]. 
Besides, some other enhancements of neural net-
works prove to be more efficient regarding the pre-
diction performance, such as the bidirectional neural 
networks. Meanwhile, the MCPPM task is relatively 
complex because the multi-perspective conformance 

of a case is related to some of the events and the 
contextual dependencies between these events and 
the attributes of these events the local dependencies 
between these attributes. Accordingly, in this paper, 
we integrate the bidirectional enhancement of GRU 
with CNN to automatically build a prediction model 
for MCPPM to enhance the security of process exe-
cution load in BPaaS. Here, the purpose of using 
CNN is first to extract representative attribute fea-
tures by aggregating attributes of events, while the 
purpose of BiGRU is to extract more temporal rela-
tion features such as the long context dependencies 
from these events.

In summary, this article makes the following 
contributions:

– We innovatively propose a conformance-ori-
ented predictive process monitoring solution 
based on deep learning techniques, which aims 
to enhance the cloud security of the process 
execution load in BPaaS by detecting the future 
non-compliant process execution in advance and 
taking action.

– We take into consideration the conformance of an 
executed process instance from multiple perspec-
tives (such as the control-flow, data, resource, and 
time) rather than just considering the control-flow, 
and then propose an extensible multi-perspective 
conformance measurement method.

– We focus on the relationship between historical 
process executions and their multi-perspective 
conformances and then put forward the CNN-
BiGRU approach that can aggregate attribute fea-
tures of events and progressively extract temporal 
features among events to forecast the future multi-
perspective conformance of an executing process 
instance.

The remainder of this article is organized as fol-
lows. We first introduce the related work and make 
a brief discussion in Section  2. Then, in Section  3, 
we outlined some of the basic concepts and the prob-
lem we are trying to solve, as well as the architec-
ture of our proposed approach. Afterward, Section 4 
introduces our proposed CNN-BiGRU approach and 
Section 5 discusses the experiments and their results. 
Finally, we make a conclusion and outlook on some 
of the research questions in Section 6.
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2  Related Work

2.1  Conformance Checking

As an important part of Process Mining, the purpose 
of Conformance Checking is to detect and measure 
the difference between the business process execu-
tions in the real world and the corresponding pro-
cess models that set expected behaviors. Generally 
speaking, conformance checking for a certain pro-
cess requires the input of the corresponding process 
execution log and the predefined process description. 
Most current research concentrates on the process 
models represented in graphical language and views 
them as technical descriptions of a business process 
[16]. Accordingly, given a predefined process model 
of a certain process and the corresponding process 
executions, the conformance of this process can be 
calculated by adopting or designing an algorithm to 
compare both of them. The related research mainly 
focuses on the two algorithm types, one is log replay 
and the other is trace alignment.

The algorithm based on log replay aims to replay 
the trace of each process instance against a prede-
fined process model and then utilize different meas-
urement methods to define and calculate a conform-
ance metric. One of the most commonly used is the 
log replay based on tokens [29]. Unlike it, Leemans 
et al. [15] designed another log replay algorithm. The 
input process model can be transformed into deter-
ministic finite automata (DFAs) firstly and then the 
event log is replayed on the allowed execution traces 
of the automata. In addition, Adriansyah et  al. [30] 
presented a cost-based replay approach, which com-
putes the conformance according to the total costs of 
the arc in Petri net and the insertion or skipping of 
activities. Similarly, Munoz-Gama et  al. [31] inves-
tigated another log replay approach for large event 
logs by dividing a process model into single-entry 
single-exit sub-models firstly and then replaying 
each part of the log on its corresponding sub-model. 
These approaches are only employed for conform-
ance checking from the control-flow (i.e., the order in 
which activities are performed) perspective because 
they are all developed according to the structure 
of the process model. Besides, as for the multi-per-
spective conformance checking, Burattin et  al. [32] 
designed another log replay method for conform-
ance checking in terms of declarative process models, 

in which an interpreter is designed to extract Linear 
Temporal Logic (LTL) constraints from these declar-
ative process models firstly, and then these constraints 
are employed to check the conformance of executed 
cases.

The algorithm based on trace alignment aims to 
convert the input used for conformance checking 
into event sequences and then align them as much as 
possible. Up to now, a lot of conformance checking 
techniques based on trace alignment have been pro-
posed. The original trace alignment was developed 
by a series of heuristic steps such as calculating the 
score matrix, constructing the guide tree, evaluat-
ing and pruning the alignment [33]. Based on this, 
Adriansyah et al. [30] firstly developed an approach 
based on the A* algorithm. Meanwhile, they defined 
a cost function to evaluate each alignment for retriev-
ing the optimal one. In addition, some other meas-
urements of the cost function are available such as 
distance and legal moves. Besides, Song et  al. [12] 
presented an alignment method based on a heuristic 
algorithm and divide-and-conquer strategy. As for 
the multi-perspective conformance checking, Man-
nhardt et  al. [34] put forward a balanced multiple-
perspective alignment approach to align contextual 
data and resources, Alizadeh et al. [35] developed an 
approach on the basis of a data CRUD matrix that 
is constructed from a process execution log and the 
corresponding process model. Similarly, De Leoni 
et  al. [36] employed causal nets with data from 
BPMN process models to create multi-perspective 
alignments. Besides, the multi-perspective conform-
ance checking can be taken as an Integer Linear Pro-
gramming problem and a cost function of alignment 
can be defined from the perspectives of resource, 
data, and time [37].

In comparison, the “trace alignment”-based 
approaches are more extensible in terms of the other 
perspectives of resource, data, and time rather than 
the single control flow. After comparing the process 
execution log with the corresponding process model, 
a metric is required to define and evaluate their con-
formance. Usually, four quality metrics are available, 
including fitness, precision, simplicity, and generali-
zation [38]. Among them, the closest concept to con-
formance is the fitness, which denotes the proportion 
of executed process instances that can successfully 
replay on the corresponding process model. Accord-
ingly, some different definitions of fitness including 
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the token-based and the cost-based are proposed in 
[29, 30].

Of all related approaches, the closest to our work is 
online conformance checking. As for online conform-
ance checking, Burattin [39] developed an approach 
ground on the behavioral difference between a busi-
ness process model and a process execution log. 
Moreover, they proposed an online conformance 
checking framework based on the Transition Systems 
(TS) that are extracted from the process models mod-
eled by Petri nets [9]. After that, they employed the 
behavior patterns to denote the business process and 
then implemented a framework to detect the compli-
ance between these patterns and the process execu-
tions [10]. Additionally, Zelst et  al. proposed an 
online conformance checking approach based on the 
event stream of an executing process instance and the 
prefix-alignment [11]. Unlike the online conformance 
checking, we propose a more forward-looking and 
meaningful framework to online forecast the future 
conformance for an executing process instance. This 
framework can provide a predictive measurement of 
conformance before a process execution completes. 
In this way, the process executions that will not con-
form to the predefined process model in BPaaS can 
be terminated in advance.

2.2  Predictive (Business) Process Monitoring

Process executions always change due to the dynamic 
execution settings and external conditions (i.e., law, 
regulation, and policies), especially in the BPaaS 
application. As described above, these traditional 
monitoring methods are mostly passive because devi-
ations are only identified after they have occurred 
rather than prevent these deviations in the first place. 
In order to address this issue, PPM techniques are 
proposed to predict the future status of an executing 
process instance (case). Generally, the PPM tech-
niques consist of two parts, the first one is offline 
training where one or more predictive models can be 
constructed ground on a completed process execution 
log, and the second one is online prediction, where 
the established prediction model(s) is(are) employed 
to make relevant predictions about the process 
instances being executed.

The existing vast majority of PPM techniques can 
be grouped into three categories according to predic-
tion content, including time prediction [17, 40, 41], 

outcome prediction [18, 42–45], and the next activity 
(sequences) prediction [19, 21, 41, 46–48]. Moreover, 
all approaches mentioned above can be grouped into 
three categories depending on the used techniques, 
including those based on an extended process model, 
traditional machine learning, and deep learning. For 
example, Rogge-Solti et  al. [40] employed a spe-
cific Petri-net to capture any duration distributions 
and then utilized it to forecast the remaining execu-
tion time for an ongoing process instance. Further-
more, Lakshmanan et al. [44] provided an algorithm 
to relate the process instances to an expanded space-
based Markov chain and then leveraged existing tech-
niques to predict the possibility of performing an 
activity in the future. Ferilli et  al. [46] extended the 
process model by using the WoMan framework for 
activity prediction of process. Whereas Appice et al. 
[41] investigated a data-centric process execution 
prediction approach based on the shallow machine 
learning technique. Leontjeva et  al. [45] focused on 
the trace encoding techniques and then proposed an 
approach ground on Random Forest classification to 
predict the outcome of cases. As for deep learning-
based approaches, Tax et  al. [17] investigated the 
performance of the LSTM network on the predictive 
tasks such as the next event to be executed and the 
complete continuation time of a running case. Pas-
quadibisceglie et  al. [21] transformed the event log 
into 2D image-like data structures and then employed 
a CNN network to train a prediction model for the 
next activity prediction. In addition, Park et  al. [49] 
applied deep neural networks to predict the future 
performance of a business process based on an event 
log.

2.3  Discussion

According to the above analysis, traditional conform-
ance checking techniques are offline and delayed so 
that they can not support the real-time checking of 
conformance. Although online conformance check-
ing techniques are real-time, they cannot forecast 
the future conformance for an executing case at the 
present moment because they only compare the cur-
rently executed part trace of an ongoing case with a 
fixed pattern to obtain the conformance result cur-
rently instead of predicting the future conformance 
by learning the certain feature representative. Addi-
tionally, the existing majority of studies only focus on 
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the conformance as for the single control-flow rather 
than the comprehensive multi-perspective such as the 
resource, data, and time.

To achieve the business process conformance 
monitoring in terms of reducing the security risk of 
process execution load, inspired by the forward-look-
ing nature of PPM, we first focus on and clarify the 
problem of MCPPM in this paper. After the inves-
tigation of existing PPM studies, we find that some 
of them are based on deep learning and prove to be 
more automatic and efficient than the most advanced 
approaches [17, 20, 21]. These deep learning-based 
approaches treat the completed case as a series of 
events (i.e., traces), where each event is recorded as 
multiple attributes, then adopt encoding methods to 
transform traces into numerical vectors, and finally 
build a prediction model for capturing the decisive 
features by utilizing some neural networks such as 
the RNN and CNN. Likewise, the future conform-
ance of an executing case can be predicted by a pre-
diction model constructed based on these neural net-
works because its input is sequential data (i.e., trace), 
which is just suitable for RNN and LSTM. Thus, 
we explore the efficient deep learning application in 
the MCPPM task and then propose an approach by 
combining CNN with a variant and enhancement of 
RNN to construct an effective and efficient predic-
tion model.

3  Problem Statement and Overall Architecture

3.1  Measurement of Multi-perspective Conformance

As for a defined business process model in the BPaaS 
application, the future multi-perspective conformance 
of an executing process instance can be forecasted 
based on the historical executed cases for a tenant to 
enhance process execution load security. Generally, 
these executed cases for each tenant are recorded in 
an event log, and each case consists of some event 
records with several attributes. These attributes indi-
cate the detailed execution (behavior) information of 
a real-world case, such as the resource, data, and time 
perspective. By comparing them with the predefined 
process models with multi-perspective constraints, 
the consistency between executed cases and a spe-
cific process model can be measured from multiple 
perspectives.

Here, we use a specific Petri net with constraints 
(C_PN), in which the transitions of this Petri net 
should satisfy certain constraints, to model a specific 
process from a multi-perspective. In reality, such a 
process model is determined by the original process 
model with a control-flow perspective (modeled by 
Petri net) and the constraints with some other per-
spectives (e.g., resource, data, and time).

Definition 3.1  (C_PN Process Model) A prede-
fined process model that sets the desired behavior can 
be expressed as a Petri net with constraints (C_PN) M 
= (P,T,F,V,Gd,Gr,Gt), which includes:

– a list of places P;
– a list of transitions T that is labeled with activity 

name;
– a list of directed arcs   F ⊆ (P × T) ∪ (T × P) that 

are recorded as flow relation;
– a list of variables V;
– a constraint function  Gd ∶ T → �V that relates a 

set of logical expressions (i.e., guard) in terms of 
data perspective to each transition.

– a constraint function   Gr ∶ T → �V that relates a 
set of logical expressions (i.e. guard) in terms of 
resource perspective to each transition.

– a constraint function   Gt ∶ T → ΓV that relates a 
set of logical expressions (i.e., guard) in terms of 
time perspective to each transition.

As shown in Fig. 1, the process modeled by C_PN 
can be represented as T = {a1,a2,a3,a4,a5,a7,a8,a6},P 
= {start,c1,c2,c3,c4,c5,end},F = {(start,a1),(a1,c1),(a1,
c2),(c1,a3),(c1,a2),(a2,c3),(c2,a4),(a4,c4),(a3,c3),(c3,a5),
(c4,a5),(a5,c5),(c5,a6),(a6,c1),(a6,c2),(c5,a7),(a7,end),(c
5,a8),(a8,end)}. The control-flow (i.e. structure) of a 
process defines the order where business activities are 
performed. Table  1 gives the corresponding guards 
for each transition of this process from multiple per-
spectives (i.e., data, resource and time), in which the 
constraint function is composed of multiple logical 
expressions with “∨”, “∧”, and “ ⌝ ”. If a transition t 
has no constraints in terms of a certain dimension, 
we set Gi(t) = true (t ∈ T,i ∈{d,r,t}). For example, 
the guard of data for transition examine thoroughly is 
Gd(a1) = (amount > 2000) means that the data con-
straint of this transition is amount > 2000. In other 
words, the transition examine thoroughly can be ena-
bled only if the control structure is satisfied first and 
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then the amount of request for flight claim is bigger 
than 2,000. Likewise, the guard of resource  Gr(t) 
specifies the related resource of each transition. In 
particular, as for transitions of a2 and a3, there is 
another constraint is that the resource for executing 
each of them in the last time is different from that 
in the next time when re-initiating a request within 
an execution of this process. Besides, the guard of 
time Gt(t) defines the time constraints for each transi-
tion in addition to the order of transitions described in 
process model. For transition a6, the time constraint 
Ta6 ≤ Ta5 + 5days requires that it must happen within 
5 days after the transition a5 occurs.

Definition 3.2  (Reachable Trace) The reachable 
traces expressed by process model M in terms of con-
trol-flow can be represented as T(M) ⊆ A∗

M
(AM ⊆ T) 

based on the firing rules of a C_PN. In such a pro-
cess model, a transition can only be enabled when 
there are specific tokens at all input places, which is 
denoted as ∙ t = {p ∈ P|(p,t) ∈ F}. Meanwhile, an 
enabled transition fires (i.e, the activity labeled with 

a transition can be executed) by consuming tokens at 
each input place and creating tokens for each output 
place, which is denoted as t∙ = {p ∈ P|(t,p) ∈ F}.

Taking the process model described in Fig.  1 for 
example, a sequence of transitions can be formed 
based on the above firing rules. At first, the start 
place has a token and it can be fired first and then the 
transition a1 can be enabled and it has a token. After-
wards, once a1 is enabled, each of the two output 
places c1 and c2 has a token. Whereas the place c1 has 
only one token so that only one transition a2 or a3 can 
be enabled. In this case, a transition sequence can be 
generated until the end place is fired. As for the pro-
cess modeled in Fig. 1, we can obtain reachable traces 
T(M) = {⟨a1, a4, a2, a5, a7⟩, ⟨a1, a4, a2, a5, a8⟩, ⟨a1, a4, a3, a5, a6, a3, a4, a5, a8⟩,…}

.

Definition 3.3  (Event, Event Log) An instantia-
tion of a transition is an event, which can be defined 
as a tuple e = (a,c,tstart,tend,d1,…,dm) where c is the 
case id representing the specific process execution, 

Fig. 1  A flight claim appli-
cation process modeled 
by C_PN

Table 1  The guards of multi-perspective, i.e. data, resource, and time

transition guard of data Gd(t) guard of resource Gr(t) guard of time Gt(t) 

register request/a1 true R
a1
∈ {“Pete”, “Mike”, “Ellen”}   true

examine thoroughly/a2 amount > 2000 R
a2
∈ {“Sue”, “Mike”, “Sean”} ∧ R

(i−1)
a2

≠ R
(i)
a2

 true
examine casually/a3 amount ≤ 2000 R

a3
∈ {“Pete”, “Mike”, “Sue”, “Ellen”} ∧ R

(i−1)
a3

≠ R
(i)
a3

 true
check ticket/a4 true R

a4
∈ {“Pete”, “Mike”, “Ellen”} true

decide/a5 true R
a5
∈ {“Sara”} true

reinitiate request/a6 true R
a6
∈ {“Sara”} Ta6 ≤ Ta5 + 5days

pay compensation/a7 true R
a7
∈ {“Pete”, “Mike”, “Ellen”} true

reject request/a8 true R
a8
∈ {“Pete”, “Mike”, “Ellen”} true

Conformance-oriented Predictive Process Monitoring in BPaaS Based on Combination of Neural… Page 7 of 27    25
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tstart and tend denote the start and complete timestamp 
respectively, and d1,… , dm(∀i�[1,m], di�Di) denotes 
a series of additional attributes. All the executed 
events that are recorded by a process-centered PAIS 
in BPaaS make up an event log. As for the event log 
L, all occurred events can be represented as a collec-
tion of AL.

Table  2 gives the event log associated with the 
process model described by Fig.  1. As shown in 
this table, some events with the same caseID indi-
cate that they occur in the same process execution. 
Meanwhile, the activity attribute of each event asso-
ciates with a transition in a process model. Gener-
ally, the attributes of each event can be divided into 
two types, case attribute and event attribute, accord-
ing to whether their values is distinguished by cases 
or events. For example, the attributes of caseID and 
amount belong to case attribute while the attributes 
of startTimestamp, completeTimestamp, activity, and 
resource belong to event attribute. Generally, the 
value of each event attribute and case attribute may 
be numeric data, categorical data, as well as text data. 
For instance, the value of activity and resource in 
Table 2 is categorical data while the value of amount 
is numeric data.

Definition 3.4 (Trace, Prefix Trace) Each process 
execution (i.e., process instance or case) can generate 
a non-empty finite time ordered sequence of events, 
which can be defined as a trace σ = 〈e1,e2,...,e|σ|〉 with 
satisfying ∀i,j ∈ [1,|σ|],ei ∈ A,ej ∈ A,ei.c = ej.c. For a 

given trace σ, the preceding part of its event sequence 
from the beginning represents the executed events 
at different moments, which can be defined as prefix 
trace σl = 〈e1,e2,...,el〉 with certain length l(l ≤|σ|).

Definition 3.5  (Control-flow Alignment, Optimal 
Alignment). A control-flow alignment between 
process model M and its executed trace σ can be 
defined as a sequence of pairs {(x, y)|x ∈ A⊥

M
, y ∈ A⊥

L
} 

where A
⊥
M
= A

M
∪ {“⊥”} and A

⊥
L
= A

L
∪ {“⊥”} . 

Here, A⊥
M

 denotes all the activities (i.e., transition 
collection T) in this process model and the place-
holder “⊥” while A⊥

L
 represents all the activities 

occurred in the event log and the placeholder “⊥”. 
The possible shifts when they align can be formal-
ized as follows.

• (x,y) denotes a legal shift on process model M if x 
∈ AM & y = “⊥”;

• (x,y) denotes a legal shift on a trace of event log L 
if x = “⊥” & y ∈ AL;

• (x,y) denotes a legal shift on both process model M 
and a trace of event log L if x ∈ AM & y ∈ AL;

• (x,y) denotes an illegal shift if x = “⊥” & y = 
“⊥”.

Given a reachable trace �M(�M ∈ T(M)) 
from M and a trace σL of L, the alignment 
between them can be defined as a series of shifts, 
𝜅 ∈ {⟨(x, y), (x, y),… , (x, y)⟩�x ∈ A

⊥
M
, y ∈ A

⊥
L
} . In terms of 

each pair of σM and σL, many different alignments can 
be obtained, such as two of them shown below.

Table 2  Event log of a flight claim application process

caseID startTimestamp completeTimestamp activity resource amount …

1 2010/08/02 10:26:00 2010/08/02 11:06:00 register request/a1 Pete/r1 2,000 …

1 2010/08/02 12:12:00 2010/08/03 14:38:00 examine thoroughly/a2 Sue/r2 2,000 …  
1 2010/08/03 09:24:00 2010/08/09 15:21:00 check ticket/a4 Mike/r3 2,000 …

1 2010/08/04 10:49:00 2010/08/04 11:21:00 decide/a5 Sara/r4 2,000 …  
1 2010/08/08 12:27:00 2010/08/08 12:33:00 reject request/a8 Pete/r1 2,000 …

2 2010/08/14 11:11:00 2010/08/14 11:39:00 register request/a1 Mike/r3 500 …  
2 2010/08/14 12:20:00 2010/08/14 12:31:00 check ticket/a4 Mike/r3 500 …

2 2010/08/14 14:20:00 2010/08/14 17:30:00 examine casually/a3 Pete/r1 500 …  
2 2010/08/16 15:25:00 2010/08/16 16:10:00 decide/a5 Sara/r4 500 …

2 2010/08/17 11:25:00 2010/08/17 12:10:00 pay compensation/a7 Ellen/r5 500 …  
… … … …   … … … …   … … … …  
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To measure these alignments, a cost func-
tion about the legal shifts can be expressed as 
�(�) =

∑
(x,y)∈��(x, y) , in which

To obtain the best complete alignment between 
process model M and trace σL, we define an opti-
mal alignment  κ as ∀�� ∈ KT(M),�L

, �(��) ≥ �(�) , 
in which KT(M),�L

= {�|∃�M ∈ T(M), � is an align-
ment between σM andσL} because a process model 
typically has multiple reachable traces. Accord-
ingly, an alignment between a trace σL and the opti-
mal aligned reachable trace σM can be defined as 
ΨM(�L) = {� ∈ KT(M),�L

|∀�� ∈ KT(M),�L
} . Based on 

(2), the cost of this alignment can be represented as 
cost(σL,M) = δ(ΨM(σL)).

Definition 3.6  (Control-flow Fitness) As for pro-
cess model M, the control-flow fitness of trace σL is 
introduced to measure its conformance from the con-
trol-flow (i.e. structure) perspective. Here, we nor-
malize the control-flow fitness in a range of [0,1] by:

where |σL| denotes the length of σL, 
min𝜎M∈T(M)

∑
x∈𝜎M

𝛿(x,⊥) denotes the minimum total 
cost of shifts in process model M only, and cost(σL,M) 
is divided by the maximum of the possible cost.

Definition 3.7 (Data Fitness) As for process model 
M, the data fitness of trace σL is introduced to meas-
ure its conformance from the data perspective in 
terms of the data constraints described in M. To nor-
malize its value in a range of [0,1], we define it as:

where {t ∈ σL|Gd(t) = true} is the collection of 
transitions that are also belong to trace σL and satis-
fied the guard function of data Gd(t), |{t ∈ σL|Gd(t) = 
true}| indicates the number of transitions while |σL| 

(1)𝜅1 =
a3 ⊥ a5 a7 a9 a11
a3 a4 ⊥ a7 a9 a11

𝜅2 =
a3 a5 a7 a9 a11
a3 a4 a7 a9 a11

(2)�(x, y) =

⎧
⎪
⎨
⎪
⎩

0, if x = y

1, if x =⟂ or y =⟂

∞, if x ≠ y

(3)fitnessctrl(𝜎L,M) = 1 −
cost(𝜎L,M)

�𝜎L�+min𝜎M∈T(M)

∑
x∈𝜎M

𝛿(x,⊥)

(4)fitnessdata(�L,M) =
|{t∈�L|Gd(t)=true}|

|�L|

indicates the length of σL, that is, the number of tran-
sitions involved in trace σL.

Definition 3.8  (Resource Fitness) As for process 
model M, the resource fitness of trace σL is introduced 
to measure its conformance from the resource per-
spective in terms of the resource constraints described 
in M. To normalize its value in a range of [0,1], we 
define it as:

where {t ∈ σL|Gr(t) = true} is the collection of 
transitions that are also belong to trace σL and satis-
fied the guard function of resource Gr(t), |{t ∈ σL|Gr(t) 
= true}| indicates the number of transitions while |σL| 
indicates the length of σL.

Definition 3.9 (Time Fitness) As for process model 
M, the time fitness of trace σL is introduced to measure 
its conformance from the time perspective in terms of 
the time constraints described in M. To normalize its 
value in a range of [0,1], we define it as:

where {t ∈ σL|Gt(t) = true} is the collection of 
transitions that are also belong to trace σL and satis-
fied the guard function of time Gt(t), |{t ∈ σL|Gt(t) = 
true}| indicates the number of transitions while |σL| 
indicates the length of σL.

Take the process instance with caseID of 1 in 
Table 2, its data fitness can be calculated as 4/5(0.8) 
because the length of this trace is 5 and the Gd(a2) is 
false (the amount of a2 is 2000 which doesn’t satisfy 
amount > 2000). Similarly, the resource fitness and 
the time fitness can be calculated like this.

Definition 3.10  (Multi-perspective Conform-
ance) As for process model M, the multi-perspec-
tive conformance of trace σL can be defined as:

Here, the weights of ω1, ω2, ω3, and ω4 satisfy the 
constraint of ω1 + ω2 + ω3 + ω4 = 1. To balance the 
multiple perspectives, each weight can be set equally 
to 0.25. Besides, (7) can be extended for much more 

(5)fitnessres(�L,M) =
|{t∈�L|Gr(t)=true}|

|�L|

(6)fitnesstime(�L,M) =
|{t∈�L|Gt(t)=true}|

|�L|

(7)

Fitness(�L,M) = �1 ∗ fitnessctrl + �2 ∗ fitnessdata+

�3 ∗ fitnessres + �4 ∗ fitnesstime
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perspectives rather than the above-mentioned ones, 
such as the role perspective.

3.2  The Prediction of Multi-perspective 
Conformance

Definition 3.11  (Multi-perspective Conformance 
Labeling) As for trace σL, its multi-perspective 
conformance class y(σL) can be defined as a mapping 
function y ∶ (M, �L, �) → {True,False} based on the 
predefined fitness threshold 𝜃. Here, True indicates 
the process execution is consistent with the process 
model from multi-perspective while False indicates 
the process execution is completely inconsistent with 
the process model from multi-perspective. The detailed 
description is as follows.

For instance, as shown in Table 2, we can obtain the 
multi-perspective conformance class y(σ1) for trace σ1 
based on the measurement of multi-perspective con-
formance and (8).

Definition 3.12  (Attribute Encoding, Event Encod-
ing, Trace Encoding) An attribute encoding is 
defined as a mapping fattr ∶ attri → R

pi (i ∈ [1, |e|]) 
(|e| denotes the number of attributes within event e 
(e = {(attr1, val1), (attr2, val2),… , (attr|e|, val|e|)})  ) 
that encodes the value of each attribute attri as a vec-
tor with specific dimensions pi. In this case, for each 
event e, its event encoding can be also defined as 
fevent ∶ e → R

p(Rp = [Rp1 ⊕R
p2 ⊕⋯⊕R

p|e| ], p = p

1 + p2 +⋯ + p|e|, [⊕] denotes the concatenation of vec-
tors) based on the encoding of each attribute within event 
e. Similarly, we can define trace encoding as a mapping 
ftrace ∶ �L → R

p⋅|�L| where �L = ⟨e1, e2,… , e��L�⟩ and 
|σL| is the number of events in trace σL.

Definition 3.13  (Prediction Model) A prediction 
model (i.e., a classification model or a classifier) maps 
a (prefix) trace and its multi-perspective conformance 
prediction (class) based on trace encoding. It can be 
defined as Rp⋅|�L|

→ y(�L) where p is the dimension 
of encoded vector of each event e(e ∈ σL).

Problem Statement For a certain process in 
BPaaS, given its process model M described in C_PN 

(8)y(�L) =

{
True, if Fitness(�L,M) ≥ �

False, otherwise

for a tenant, its event log L = {�1, �2,… , �s} with 
s historical executed cases, and an ongoing case 
�� = ⟨e1, e2,… , e����⟩ to be predicted, the problem 
considered in this paper is to forecast the future con-
formance Fitness(��,M) of each running trace �′ from 
multiple perspectives, that is, the control-flow, data, 
resource, and time. This is the so-called Multi-per-
spective Conformance-oriented Predictive (Business) 
Process Monitoring (MCPPM).

3.3  Overall Architecture

In this paper, we concentrate on the security of pro-
cess execution load in the BPaaS application and 
propose a predictive monitoring solution of the multi-
perspective conformance. In order to effectively fore-
cast the future final multi-perspective conformance 
of an executing process instance, we put forward an 
approach of CNN-BiGRU to establish a prediction 
model according to a certain process model (com-
bined with a general process structure and some other 
constraints) and the corresponding historical process 
executions. The CNN-BiGRU approach, combined 
with CNN and the variant and enhancement of RNN, 
aims to determine a specific neural network with the 
CNN-BiGRU framework and the optimal parameters. 
Based on it, a prediction model can reveal the impact 
of the behavior of process executions on its multi-
perspective conformance, in which these behaviors 
are involved in the order where the activities are per-
formed, the resource and time for performing these 
activities and the process executions are recorded as 
attribute-value pairs of events. Our proposed solu-
tion for the conformance prediction problem mainly 
includes two parts, offline and online. The former part 
aims to construct a prediction model (i.e., classifica-
tion model or classifier) that indicates the relationship 
between process executions and their multi-perspec-
tive conformance. In contrast, the latter part aims to 
predict the future real-time conformance of an exe-
cuting process instance. Figure 2 gives the overview 
of our proposed solution that includes the following 
two parts.

Offline Training In this stage, the required inputs 
are the process model described by C_PN and its his-
torical event log (for a tenant), which contains a series 
of executed process instances. On the basis of them, 
we can calculate the fitness of each executed case in 
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terms of multiple perspectives. Then, the multi-per-
spective conformance for each case can be measured 
based on these fitness values, and each case can also 
be labeled conformance class based on the predefined 
threshold. Meanwhile, we preprocess the event log by 
expanding many more additional attributes for events 
and then encode each trace according to some coding 
strategies. Thus, we can obtain the pair of encoded 
traces and the corresponding multi-perspective con-
formance class for each case of this event log. A pre-
diction model can be finally obtained through sample 
training by taking them as the input of a specific neu-
ral network.

Online Predicting Based on the built predic-
tion model, the final multi-perspective of an ongo-
ing case can be forecasted. The running case (i.e., a 
prefix trace) includes some executed events and each 
of them has a series of pairs of attribute-value. By 
taking this prefix trace as the input of the prediction 
model, it needs to be encoded and padded with zero 
according to the length of the encoded vector for his-
torically completed traces. Afterward, the encoded 

vector of the prefix trace can be input into the pre-
diction model to determine the multi-perspective con-
formance class of this case.

4  Multi-perspective Conformance-oriented 
Predictive (Business) Process Monitoring 
(MCPPM) Approach

The purpose of MCPPM is to forecast the final con-
formance class of an executing process instance in 
real-time effectively and efficiently. To solve the 
multi-perspective prediction problem, we need to first 
measure the multi-perspective conformance of his-
torical executed cases by comparing it with a certain 
process model, and then determine their conformance 
classes (i.e., True vs. False). We can then construct a 
predictive classification model with a specific neural 
network to extract the relationship between the exe-
cuted cases and their determined multi-perspective 
conformance classes. Thus, according to this predic-
tion model, the future conformance class of an exe-
cuting process instance can be forecasted. To better 

Fig. 2  The overall architecture of our proposal
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introduce our proposed approach, we first describe its 
whole framework and then describe how to construct 
a specific neural network based on CNN-BiGRU in 
detail.

4.1  Measuring the Multi-perspective Conformance 
of Process Instances

To compute the multi-perspective conformance of 
an executed case, we propose an algorithm grounded 
on the process model described by C_PN to measure 
the conformance from the perspective of the control 
structure, data, resource, and time. As introduced in 
Definition 3.1, the process modeled by C_PN can set 

the expected behavior with some constraints from 
multiple perspectives, in which the desired behavior 
of a process in the control-flow aspect is expressed 
by the transitions T, places P, and flow relations F 
of C_PN. Similarly, the desired behavior in data, 
resource, and time perspectives are demonstrated by 
the guard functions Gd, Gr, and Gt, respectively. Thus, 
we compute its fitness from these multiple perspec-
tives for each executed process case according to the 
C_PN process model, respectively. Subsequently, the 
multi-perspective conformance of an executed pro-
cess instance can be measured according to these fit-
ness values.

As analyzed above, we design a multi-perspective 
conformance measurement algorithm in Algorithm 1. 
Firstly, we initialize the event log L′ that adds the 
measurement of multi-perspective conformance (line 
1). Then, based on the structure of process model M 
(i.e., M.T, M.p, and M.F) described in C_PN, we get 
all the reachable traces T(M) that are allowed to per-
form in a process model (line 2). After that, for each 

trace of process case in L, we compute its fitness in 
terms of multiple perspectives, respectively and then 
obtain its multi-perspective conformance (lines 3-16). 
As for the control-flow perspective, we find all of the 
possible alignments between a trace �L

i
 and each trace 

�M
j

 of T(M) and then compute the cost of these align-
ments based on (2) (lines 4-7). Based on them, we 
can find an optimal reachable trace �M

(1)
 that can align 
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to the trace �L
i
 with the minimum cost from T(M) (line 

8). Meanwhile, we can obtain the cost of trace �L
i
 that 

is aligned with the process model M based on the 
minimum cost (line 9). According to (3), in the con-
trol-flow aspect, the fitness of trace �L

i
 relative to the 

process model M can be calculated (line 10). In addi-
tion, based on the constraint functions Gd, Gr, and Gt 
described in the process model M, the fitness of each 
trace �L

i
 from the data, resource, and time perspec-

tives can be calculated respectively according to (4)-
(6) (lines 11-13). After that, the multi-perspective 
conformance Fitness(�L

i
,M) of trace �L

i
 can be com-

puted on the basis of these fitness and the given 
weight parameters (line 14). Finally, we add the con-
formance value for each trace in L′ (line 15) and then 
return the final result L′ (line 17).

4.2  Predicting the Multi-perspective Conformance

After the multi-perspective conformance measurement, 
the key to forecasting the future conformance class for 
an executing process instance is to establish a predic-
tion model that reveals the relationship between a case 
and its conformance. The reason is that the multi-per-
spective conformance of a case is always determined 
by its execution information. Generally, the actual 
executed cases are recorded in the event log, where 
each case consists of a series of events that are logged 
as many attribute-value pairs. Considering the relation 
between them, the multi-perspective conformance of a 
case is not only related to some of the events as well as 
the contextual dependencies between these events, but 
also to the attributes in these events as well as the local 
dependencies between these attributes. Therefore, the 
prediction model to be built requires the ability to learn 
both the long context dependencies of events and the 
local dependencies of attributes. However, using tra-
ditional machine learning techniques to construct the 
prediction model is less intelligent. Here, we propose 
the CNN-BiGRU approach based on neural networks 
to build a prediction model that performs well.

4.2.1  The Framework of Multi-perspective 
Conformance Prediction Based on Neural 
Networks

To forecast the multi-perspective conformance class of 
an executing process instance in terms of the security 

of process execution load in BPaaS, here, we describe 
a framework about how to preprocess the event log 
for training, how to obtain a prediction model, and 
how to make predictions about the multi-perspective 
conformance for a running case. The executed cases 
recorded as a series of events with attribute-value pairs 
in the event log can be employed to train a prediction 
model after their conformance class is determined. In 
order to obtain a more effective prediction model, the 
original event log can extend some additional attrib-
utes computed from these basic attributes. However, 
the extended event log cannot be used directly to 
train a prediction model because each attribute in the 
event log has different value types, such as numerical 
data and categorical data. Thus, we adopt some cod-
ing strategies to encode them as vectors with a certain 
dimension before training a prediction model. Taking 
them as inputs, a prediction model based on neural 
networks can be trained, and then the future conform-
ance class of an executing process instance can be 
forecasted through this model.

As shown in Algorithm 2, we design an algorithm 
to describe a framework that contains the preprocess 
of the event log, the determination of conformance 
class, the construction of a prediction model, and the 
prediction of a running case. Algorithm  2 can be 
divided into two parts, one is the offline part when the 
historical cases are preprocessed for training, and a 
prediction model is trained (lines 1-29), and the other 
is online part when the multi-perspective conform-
ance of an executing case is forecasted through the 
built model (lines 30-31). At the offline part, for the 
executed cases of event log L′ , we first compute the 
values of new added case attributes (newAttr,val) 
according to the given additional case attribute col-
lection CA (lines 2-6). Then, for each event of these 
cases, we compute the values of new added event 
attributes (newAttr,val) based on the given additional 
event attribute collection EA (lines 8-12). Meanwhile, 
the new additional attributes are extended in each 
event L′.eij of event log L′ (line 13). Afterwards, we 
encode each case for numerical vector ����⃗v𝜎L

i
 with spe-

cific dimensions l according to the characteristic of 
attributes (lines 17-20). For instance, if the value of 
the attribute is numerical, we standardize it according 
to the value range of this attribute. For the categorical 
attribute, we utilize the one-hot coding method to 
transform its value into a vector that consists of 0, 1. 
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Meanwhile, each case is labeled with a conformance 
class based on its multi-perspective conformance and 
the given conformance threshold 𝜃. And the encoded 
trace and its conformance class can be stored in L 
(line 19). By taking these encoded cases as well as 
their conformance classes as input of a designed neu-
ral network, a predictive classification model can be 
trained. Accordingly, the architecture of neural net-
works should be determined first, and then the related 
weight parameters need to be trained by the encoded 
and labeled event log. Here, we suppose a neural net-
work has been determined. Firstly, we initialize all 

weight parameters W and b of this neural network 
randomly (line 21). Next, each pair of the encoded 
case and conformance class is fed to this neural net-
work for training (lines 22-29). As for each encoded 
case ����⃗v𝜎L

i
 we compute its result ̂y(𝜎L

i
) based on the neu-

ral network NN with the initialized W0 and b0, and 
then employ a loss function to denote the deviation 
between the computed result ̂y(𝜎L

i
) and its real result 

y(�L
i
) (lines 23-24). Based on the loss, the W and b 

can be iteratively updated through a loss-based Back-
Propagation (BP) algorithm as well as some related 
parameters HP, such as the batch size, learning rate 
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and dropout (line 25). The above operations are 
repeated until the loss function converges (lines 
26-27). Finally, a prediction model can be obtained 
according to the final value of weights W and biases 
b. At online part, for an ongoing case �′ , we use the 
obtained prediction model to predict its conformance 
class according to the executed events with data-pay-
load (lines 30-31). In particular, we encode this case 
�′ and then fill out its rest part with zero according to 
the determined dimension l.

4.2.2  The Construction of a Specific Neural Network 
Based on CNN-BiGRU 

To construct a prediction model based on neural net-
works, we need to determine a specific neural net-
work that can first reveal the relationship between a 
case and its multi-perspective conformance class. 
Based on the above analysis, such a neural network 
requires the ability to learn long context dependen-
cies of events and the local dependencies of attrib-
utes. Therefore, the multi-perspective conformance of 
a case not only relates to some of the events and the 
contextual dependencies between these events, but 
also relates to the attributes of these events and the 
local dependencies between these attributes. There-
fore, this paper presents the CNN-BiGRU approach 
to construct a specific neural network by combining 
CNN with a variant and improvement of RNN. Fig-
ure 3 gives the architecture of this specific neural net-
work. In this figure, we combine a 3-layer CNN (i.e., 
three convolutional-pooling layers) with a multi-layer 
BiGRU (i.e., multiple bidirectional GRU layers). The 
features extracted with CNN and BiGRU can be con-
catenated to obtain a hybrid feature. Finally, we com-
pute the probabilities of the conformance class for a 
case. Here, we will give an example to show how the 
proposed CNN-BiGRU neural network can perform 
effective feature extraction. Considering an event log 
L = {σ1,σ2,...,σs} with s cases, one of them can be 
denoted as �t = ⟨et1, et2,… , etn⟩(t ∈ [1, s], n = ��t�) , 
in which eti(i ∈ [1,n]) denotes the i-th occurred event 
in this case.

Input Layer Taking the above case σt as a input of 
the CNN-BiGRU, the i-th event is represented as a 
vector of x⃗ti = [xti,1, xti,2,… , xti,l] with l-dimension by 
adopting the event encoding strategy as described in 
Definition 3.12. Here, l denotes the total length of the 

event encoded vector based on the attribute encoding 
strategy. Accordingly, this case can be represented as 
x⃗t1, x⃗t2,⋯ , x⃗tn , and then feature extraction can be car-
ried out by a 3-layer CNN and multi-layer BiGRU, 
respectively. In particular, as the input of the 3-layer 
CNN, a padding operation is required to extend the 
dimension of the input matrix so that the convolution 
output has the same size as the input. In the subse-
quent experiments of this paper, we pad with zeros 
for each trace based on the length of the longest trace 
when encoding them. In the following description, 
we assume that n is the length of the longest trace 
in L.

Attribute Feature Aggregation based on CNN A 
Convolutional Neural Network extends three addi-
tional operations of local filters (i.e., convolution), 
pooling, and weight sharing based on a simple and 
fully-connected feed-forward neural network. The 
CNN shown in Fig. 3 has three pairs of convolution-
pooling layers: the Conv1-Pool1, Conv2-Pool2, and 
Conv3-Pool3, in which each convolution layer uti-
lizes a series of filters to compute the small local 
context information for each part of the input. Each 
pooling layer utilizes an optional pooling function, 
such as the max-pooling, to get the refined local 
information from the convolutional layer output. In 
particular, the pooling function can keep transla-
tion invariance for some minor differences of the 
position where some features occur, making sense 
when we focus on whether a feature appears rather 
than where it appears. Thus, we use CNN to aggre-
gate the important representative features among the 
encoded items of attributes in the event log. As for 
a CNN with multiple layers, after the computations 
of convolution and pooling many times, a fully con-
nected layer (i.e., the FC Layer is shown in Fig.  3) 
is finally employed to integrate the feature extracted 
from all positions. To further demonstrate the appli-
cation of CNN, Fig. 4 gives a detailed example of the 
first convolution-pooling Layer in Fig.  3. In Fig.  4, 
an input case with nine events with 6-dimension item 
of encoded attributes is considered.

Convolution Layer In a convolutional layer, some 
filters, i.e. convolution kernels, with different size are 
applied to extract features. Here, we use K filters with 
h × 1 size (i.e. a window of h-gram encoded attribute 
items) to extract the local h-gram features. For this 
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h-gram encoded attribute items, the k-th filter f(k)(1 ≤ 
k ≤ K) can generate j-th feature map c(k)

j
 by:

where c(k)
j

 is the j-th feature map extracted from input 
matrix X by filter f(k), F3 denotes ReLU activation 
function, W(k) and b(k) respectively denote the corre-
sponding trainable weight matrix and bias. Accord-
ingly, we obtain all feature maps 
c(k) = (c

(k)

1
, c

(k)

2
,… , c

(k)

l−h+1
) after feature extraction 

through k-th filters.

(9)
c
(k)

j
= F3(W

(k)
⋅ xti,j∶j+h−1 + b(k)) (1 ≤ j ≤ l − h + 1)

Pooling Layer Here, we utilize a max-pooling 
function for each filter output (i.e. feature map) to 
choose the most important feature by:

Accordingly, after all K filters (i.e. convolution ker-
nels) with size h conducted, the extracted features are 
represented as c = (c(1)

max
, c(2)

max
,… , c(K)

max
).

Full-collected Layer After max-pooling operation, 
all features outputted can be concatenated to represent 

(10)c(k)
max

= max{c
(k)

1
, c

(k)

2
,… , c

(k)

l−h+1
}

Fig. 3  The architecture of a specific neural network based on CNN-BiGRU 
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the local context h-gram attribute items, which is rep-
resented as oCNN

t
= [c(1)

max
⊕ c

(2)
max

⊕⋯⊕ c
(K)
max

] ([⊕] is the con-
catenate operation).

Temporal Relation Extraction based on 
BiGRU  A RNN network [50] originates from a 
basic feed-forward neural network, which has recur-
rent hidden states. The hidden state can be activated 
at each moment, depending on the hidden state of 
the previous moment. Accordingly, it can handle the 
variable-length sequential data. However, RNN is 
difficult to extract long-distance dependencies due 
to the possible gradient diminishing or explosion. 
To address this issue, two variants of Gated Recur-
rent Neural Network, RNN with a Long Short-term 
Memory (LSTM) unit [26] and RNN with a Gated 
Recurrent Unit (GRU) [27], are proposed. Both of 
them have been demonstrated to work well in tasks 
with sequential input, but the GRU performs bet-
ter than LSTM when considering a controlled model 
complexity. Compared with the general RNN, GRU-
based RNN adds two gate units in the recurrent hid-
den state (i.e., cell) so as to extract the dependencies 
of different time periods adaptively. Here, we adopt a 
bidirectional improvement and then propose a BiGRU 
with multiple layers as shown in Fig. 3, in which each 
BiGRU layer, such as the 1st-BiGRU Layer and the 
2nd-BiGRU Layer, consists of a forward propagation 
layer (i.e., the recurrent direction is consistent with 
that of events in a case) and a backward propagation 
layer. Such a BiGRU layer can extract the context 
information between the preceding events and the 
current event with the forward propagation layer and 
the context information between the current event and 
the subsequence events with the backward propaga-
tion layer.

BiGRU Layer Each unit of a BiGRU layer is inte-
grated by the basic GRU unit bidirectionally, i.e. for-
ward and backward, as shown in Fig. 3. Each BiGRU 
layer extracts the hidden context features from the 
previous BiGRU layer. For instance, the output of the 
1st-BiGRU Layer can be viewed as the input of the 
2nd-BiGRU Layer. Taking the first BiGRU layer for 
example, there are two propagation layers integrated 
forward and backward. As for the forward propaga-
tion layer, a set of hidden states ����⃗ht1, ����⃗ht2,… , ���⃗htn of 
GRU units are obtained by updating ���⃗hti ground on 
the input vector of the current event eti and the hidden 

state �������⃗ht,i−1 of the previous event et,i− 1. Simultaneously, 
as for the backward propagation layer, a set of hidden 
states �⃖���ht1,

�⃖���ht2,… , �⃖��htn of GRU units are obtained by 
updating �⃖��hti based on the input vector of the current 
event eti and the hidden state �⃖������ht,i+1 of the next event 
et,i+ 1. Here, ���⃗hti and �⃖��hti denote the value of hti in two 
directions of respectively. This can be formalized by:

where GRUfwd and GRUbwd denote the computations 
with different inputs of two directions. Similarly, the 
m-layers BiGRU can be represented as:

Afterwards, the hidden state h(m)
ti

= [���⃗hti
(m) ⊕ �⃖��hti

(m)] 
in the m-th BiGRU Layer can be obtained, and the 
extracted features from a m-layer BiGRU can be 
denoted as oBiGRU

t
= [h

(m)

t1
, h

(m)

t2
,⋯ , h

(m)
tn ].

Output Layer In this layer, as for a case σt, the 
extracted features oCNN

t
 from the 3-layer CNN and 

oBiGRU
t

 from the multi-layer BiGRU can be concat-
enated to obtain a vector ot = [oCNN

t
, oBiGRU

t
] firstly. 

Then, the probability that the multi-perspective con-
formance class of case σt is positive can be calculated 
by using ot as the input of the sigmoid activation 
function:

where Wc, bc are the corresponding weight parame-
ters, and the value of ŷt is in the range of 0 − 1.

To train the neural network, finally, we determine 
a binary cross-entropy function that measures the 
error between the computation result in ŷt from the 

(11)���⃗hti = GRUfwd(x⃗ti,
�������⃗ht,i−1), i ∈ [1, n]

(12)�⃖��hti = GRUbwd(x⃗ti,
�⃖������ht,i+1), i ∈ [1, n]

(13)hti = [���⃗hti ⊕
�⃖��hti]

(14)

���⃗h
ti

(1) = GRU
fwd

(x⃗
ti
, �������⃗h

t,i−1
(1)), �⃖��h

ti

(1)

= GRU
bwd

(x⃗
ti
, �⃖������h

t,i+1
(1)), i ∈ [1, n]

���⃗h
ti

(2) = GRU
fwd

(���⃗h
ti

(1), �������⃗h
t,i−1

(2)), �⃖��h
ti

(2)

= GRU
bwd

( �⃖��h
ti

(1), �⃖������h
t,i+1

(2)), i ∈ [1, n]

……… ………

���⃗h
ti

(m) = GRU
fwd

(���⃗h
ti

(m−1), �������⃗h
t,i−1

(m)), �⃖��h
ti

(m)

= GRU
bwd

( �⃖��h
ti

(m−1), �⃖������h
t,i+1

(m)), i ∈ [1, n]

(15)ŷt = sigmoid(Wc ⋅ ot + bc)
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CNN-BiGRU neural network and the actual result yt 
for the case σt. The detailed loss function is as follows.

Based on the determined CNN-BiGRU neural net-
work and loss function, we can use Algorithm  2 to 
train a prediction model.

5  Experimental Evaluation

5.1  Experiment Settings

Here, we make a comprehensive comparison with 
some other deep learning approaches and two typi-
cal traditional machine learning approaches to dem-
onstrate the performance of the hybrid CNN-BiGRU 
approach because no one has proposed other solu-
tions to this problem. The comparative deep learn-
ing approaches include the basic RNN, LSTM, and 
GRU approaches, the corresponding bi-directional 
improvements Bi-RNN, Bi-LSTM, and Bi-GRU 
approaches, and the hybrid CNN-RNN, CNN-LSTM, 
CNN-GRU, CNN-BiRNN, CNN-BiLSTM, and 
CNN-BiGRU approaches. Moreover, two other tradi-
tional machine learning-based approaches, the Gradi-
ent Boosted Trees (XGBoost) and the Random For-
est (RF), are chosen for comparison because a recent 
empirical study on 165 datasets show that they are 
usually better than other traditional machine learning 
algorithms for classification tasks [51].

NN (Neural Network)-based approaches For 
further comparison, we develop the RNN approach, 
LSTM approach and GRU approach by utilizing the 
original RNN neural network (i.e., RNN approach) 
and its variants LSTM and GRU neural networks to 
construct prediction models, respectively. Similarly, 
we also develop the Bi-RNN approach, Bi-LSTM 
approach, and Bi-GRU approach by bidirectionally 
integrating the RNN network, the LSTM network, 
and the GRU network, respectively. Based on these 
six approaches, we also develop the other six hybrid 
approaches by combining with the CNN network, i.e., 
CNN-RNN, CNN-LSTM, CNN-GRU, CNN-BiRNN, 
CNN-BiLSTM, and CNN-BiGRU approaches.

(16)Loss(ŷt, yt) = −((1 − yt)log(1 − ŷt) + ytlogŷt)

RF-based approaches To compare with the tra-
ditional machine learning approaches, we choose 
the RF algorithm to construct a prediction model. 
As shown in [52], there are some optional opera-
tions needed to be determined first, e.g., the bucket-
ing (clustering) and coding for these (prefix) traces 
extracted from the executed cases. Here, we choose 
a single bucket method for clustering and two typical 
methods laststate and aggregation for encoding. The 
laststate method encodes a (prefix) trace according to 
the last state (event) information of this trace. In con-
trast, the aggregation method encodes a (prefix) trace 
by employing an optional aggregation function on 
this trace. The former only considers the last event of 
a (prefix) trace, while the latter considers all events of 
a (prefix) trace but ignores the order of events in this 
(prefix) trace. Accordingly, two approaches of RF_
single_laststate and RF_single_agg are developed for 
comparison based on the RF classification algorithm.

XGBoost-based approaches To compare with 
the traditional machine learning approaches, we also 
choose the XGBoost algorithm to construct a pre-
diction model inspired by [53]. Similar to RF-based 
approaches, we develop two approaches XGBoost_sin-
gle_laststate and XGBoost_single_agg for comparison.

These 16 approaches mentioned above are employed 
on two publicly available data sets and then compared 
from the accuracy and time performance of predic-
tions. For these approaches, we develop them in Python 
and conduct comparative experiments on a server with 
three NVIDIA Tesla V100 GPUs and 2 x 12 Intel Xeon 
5118 CPU @2.30GHz 256GB memory. Here, we 
employ these two public event logs to denote the real 
process execution from tenants in terms of two differ-
ent processes in BPaaS. To obtain the process modeled 
by C_PN in BPaaS, in this paper, we use the plug-in 
from public ProM1 to mine a process model described 
by general Petri net and some constraints for each tran-
sition from some other perspectives, inspired by [14].

Datasets Two event logs Traffic Fines and 
BPIC2012 from the public 4TU Centre for Research 
Data2 are employed in this experiment. The detailed 
statistic about these two processed logs is shown in 

1 http:// www. promt ools. org
2 https:// resea rchda ta. 4tu. nl/ home/
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Table  3. The BPIC2012 log records the historical 
executions for a loan application process and the Traf-
fic Fines log mainly includes a set of activities about 
paying traffic fines and some information related 
to individual cases, such as the reason and the total 
amount paid for each traffic fine. At first, we preproc-
ess these logs by removing some noise records. We 
use ProM to obtain their process model expressed 
by Petri net with some constraints for each transition 
from the perspective of data, resource, and time for 
these preprocessed logs. Based on them, we calcu-
late the multi-perspective conformance of each case 
through Algorithm 1 and then decide their conform-
ance classes by a defined threshold of 𝜃 = 0.8. After 
that, we extend some additional attributes for each 
event of these two logs. In addition, we truncate the 
long cases where the length is greater than a certain 
one because the long traces can decrease the perfor-
mance of the prediction model during training. To 
determine the truncated length, we first select the cer-
tain conformance class with fewer cases, then group 
them in ascending order according to the length of 
cases and find the length at the point of 90%. From 
Table 3, it is not difficult to discover that the propor-
tion of positive and negative samples in these two 
event logs is unbalanced. Especially, the proportion of 
positive samples of the Traffic Fines log is up to 97%. 
In addition, we also give the corresponding number 
of case attribute and the event attribute, respectively. 
Finally, we encode the executed cases of these event 
logs according to the value types of attributes.

Evaluation Metrics Generally, the predictive pro-
cess monitoring techniques expect to obtain an accu-
rate prediction result efficiently in process execution 
because real-time process monitoring makes sense 
in terms of the security of process execution load in 
BPaaS. Therefore, we compare these approaches from 
the perspectives of accuracy and execution time when 
making predictions about the multi-perspective con-
formance classes. At first, the AUC (the area under 

the ROC curve), which expresses the probability 
that a given classifier will rank a positive case higher 
than a negative one, is determined to measure the 
prediction accuracy [54] because other metrics need 
to predefine a threshold and the value of threshold 
has a great influence on the accuracy. Furthermore, 
the ROC curve in AUC can keep unchanged even 
if the sample ratio is imbalanced. As for execution 
time, two metrics of offline time and online time are 
determined for comparison, in which the offline time 
denotes the time it takes to obtain a prediction model 
while the online time denotes the meantime it takes to 
forecast the multi-perspective conformance (class) for 
an executing process instance each time.

Implementation Details To simulate the real sce-
nario of multi-perspective conformance-oriented 
PPM (i.e., the multi-perspective conformance class 
prediction of an executing case will be made after 
each event is performed), the processed event logs, 
including some pairs of an encoded case and its con-
formance class, are divided into the first 80% train-
ing set and the last 20% test set depending on the time 
the cases occurred. Furthermore, the training set is 
classified into 80% training data and 20% validation 
data randomly to compare the advantages and disad-
vantages of these approaches after optimization. In 
other words, we divide these samples of training set 
into two parts, training data and validation data. The 
samples of training data are employed to train a pre-
diction model, while the samples of validation data 
are viewed as test data to find a set of optimal hyper-
parameter combinations for the above-constructed 
models with the best performance. Since there are 
many parameters in the NN-based approaches, we 
choose the random search method [55] to make the 
hyper-parameters optimization. For the above 16 
approaches, we set a distribution and value domain 
for each involved parameter respectively and then 
initialize these parameters to get a combination of 
them for optimization in this experiment. In addition, 

Table 3  The statistic for the processed event logs Traffic Fines and BPIC2012 

Datasets #Traces Positive 
class(%)

Length range Truncated 
length

#Event classes #Events #Event attr(s) #Case attr(s)

Traffic Fines 129,615 97 [2,20] 10 11 460,554 14 4
BPIC2012 11,303 32 [15,159] 40 36 229,868 10 1
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for the NN-based approaches, the number of epochs 
is fixed at 50. Besides, for these approaches CNN-
BiRNN, CNN-BiLSTM, and CNN-BiGRU on Traffic 
Fines log, the parameters involved in the CNN part 
are determined empirically, such as the number of fil-
ters in 3 convolution layers is 16, 32, and 64 respec-
tively, the size of the kernel is 3, the stride is 2, and 
the activation function is ReLU.

5.2  Experimental Results

To make online conformance predictions for an exe-
cuting case in terms of the security in BPaaS, we 
extract all prefix traces with different lengths for the 
tenant-oriented historical executed cases from test 
set firstly. Then, we utilize the constructed prediction 
model based on each approach to forecast the multi-
perspective conformance class of each prefix trace. 
Based on these predictive results, we calculate the 
AUC values and online prediction time (i.e., online 
time) for each prefix length and each approach on dif-
ferent datasets. Meanwhile, we also calculate the time 
of training a prediction model (i.e., offline time) for 
each approach on different datasets.

Accuracy Comparison Table  4 gives the overall 
AUC for each approach on two datasets and the mean 

overall AUC on two datasets, respectively. In particu-
lar, this table also shows the overall AUC for each 
approach that utilizes a class weight to address the 
issue of sample imbalance. The overall AUC for an 
approach on a dataset refers to the weighted average 
of the AUC values calculated based on the predic-
tion results of all predicted prefix traces with differ-
ent lengths. Here, the weights are obtained depending 
on the number of prefix traces with a certain length. 
As shown in Table  4, it’s easy to find our proposed 
CNN-BiGRU approach outperforms other compared 
approaches on Traffic Fines and BPIC2012 logs, 
respectively. Among these 16 approaches, the tradi-
tional machine learning-based approaches, i.e., RF-
based approaches and XGBoost-based approaches, 
have the worst performance according to the mean 
of overall AUC values. Furthermore, RF_single_last-
state and XGBoost_single_laststate have the lower 
AUC values than other approaches. Thus, we can 
infer that the reason for this phenomenon is the used 
encoding method of last state. Among these NN-
based approaches, in terms of the mean of overall 
AUC values, the GRU performs best among these 
basic approaches, followed by LSTM and then RNN. 
Likewise, among the three bidirectional improve-
ments of them (i.e., BiRNN, BiLSTM, and BiGRU), 
the BiGRU is also better than the BiLSTM and 

Table 4  Comparison of 
prediction accuracy in 
terms of overall AUC 

Approaches Traffic Fines BPIC2012 Mean

original class weighted original class weighted

RF_single_agg 0.848 0.841 0.767 0.767 0.806
XGBoost_single_agg 0.842 0.851 0.785 0.785 0.816
RF_single_laststate 0.846 0.846 0.695 0.698 0.771
XGBoost_single_laststate 0.835 0.842 0.712 0.698 0.772
RNN 0.854 0.856 0.783 0.789 0.820
LSTM 0.853 0.856 0.793 0.793 0.824
GRU 0.854 0.856 0.803 0.803 0.829
BiRNN 0.854 0.854 0.793 0.793 0.823
BiLSTM 0.842 0.857 0.799 0.799 0.824
BiGRU 0.855 0.857 0.804 0.804 0.830
CNN-RNN 0.856 0.856 0.801 0.800 0.828
CNN-LSTM 0.858 0.857 0.797 0.797 0.827
CNN-GRU 0.856 0.858 0.805 0.807 0.831
CNN-BiRNN 0.854 0.855 0.787 0.799 0.824
CNN-BiLSTM 0.858 0.858 0.803 0.800 0.830
CNN-BiGRU 0.858 0.860 0.808 0.808 0.833
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BiRNN approaches. Comparing the BiRNN, BiL-
STM and BiGRU with the RNN, LSTM and GRU, 
respectively, we can find the improved bidirectional 
approaches perform better indeed. However, among 
the hybrid approaches, the CNN-RNN approach 
outperforms the CNN-LSTM, which may be due 
to the interference of CNN. Similarly, we also find 
that the CNN-BiRNN is worse than the CNN-RNN. 
However, the CNN-BiGRU and CNN-BiLSTM still 
perform better than the CNN-GRU and the CNN-
LSTM, respectively. In addition, from the perspec-
tive of sample imbalance, these approaches with class 
weighted have a better performance than the origi-
nal ones, especially for Traffic Fines dataset, which 

may be because the sample of this dataset is more 
unbalanced.

For further comparison, Figs.  5 and  6 show the 
AUC value of making predictions for the prefix traces 
with different (prefix) lengths. In these subgraphs, the 
prefix length shown on the x-axis denotes a set of pre-
fix traces that are with a certain length and waiting for 
prediction. And the corresponding AUC value shown 
on the y-axis denotes the mean AUC for predicting 
these prefix traces by using an approach. As for Traf-
fic Fines dataset, Fig. 5a and b give the trend of AUC 
changes with the prefix length increases for the above 
16 original approaches, as well as these approaches 
with class weighted, which is similar to Fig. 6a and 
b. In Fig. 5, it is easy to find that the changing trend 
of AUC in subfigures (a) and (b) is similar, but both 
of them have obvious fluctuations with the prefix 
length increases, especially at the beginning and end 
of a case. From a normal point of view, the AUC 
value should gradually increase as the prefix length 
increases by considering the larger the prefix length, 
the more reference information available for predic-
tion. The reason for this phenomenon may be related 
to the sample imbalance of the dataset. As shown in 
Figs.  6a and b, at the beginning of cases, the AUC 
values for different approaches fluctuate significantly 
in the short term, and they soon tend to increase 
steadily with the increasing prefix length. Subse-
quently, it is obvious to identify that the AUC values 
of these NN-based approaches always keep increas-
ing gradually until most cases are complete. However, 
the AUC values of RF_single_laststate and XGBoost_
single_laststate begin to fluctuate and decrease once 
the length of prefix trace is greater than 20. On the 
one hand, the phenomenon may be caused by the 
used encoding method in these two approaches. On 
the other hand, these two approaches may be suscep-
tible to activities that may have a decisive impact on 
the multi-perspective conformance class when mak-
ing predictions about an executing case.

In addition, a hypothesis test was further used to 
evaluate these approaches to demonstrate that the 
experimental results in this paper are not acciden-
tal. Since the predictive performance of these differ-
ent approaches (classifiers) is for each an ongoing 
process instance to be predicted, a hypothesis test is 
required for the predicted results of the test samples 

Fig. 5  Comparison of prediction accuracy in terms of AUC 
on Traffic Fines dataset for (a) the 16 approaches mentioned 
above and (b) the 16 approaches mentioned above with class 
weighted
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of each dataset rather than the dataset. In other words, 
we can only use a hypothesis test method based on 
algorithm rank because we compare the perfor-
mance of multiple approaches on different test sam-
ples. Meanwhile, we find that the prediction results 
with AUC for all test samples under all different 
approaches (classifiers) do not meet the normal distri-
bution through analysis. Therefore, we choose a non-
parametric multivariate hypothesis test, the Friedman 
test, to refine our evaluation. The p-value after the 
Friedman test was less than 0.05, indicating that there 
are significant differences between these approaches. 
However, we could not know which two approaches 

have the performance differences, and a post-hoc test 
was further required [56]. The Nemenyi post-hoc test, 
always used in conjunction with the Friedman test, 
can demonstrate whether there are significant differ-
ences between every two approaches. Therefore, we 
apply the combined Friedman-Nemenyi test for all 
test samples and their predicted results of AUC under 
different approaches (classifiers) in each event log. 
Then we can calculate the p-value (between 0 and 
1) between every two approaches among the above 
16 approaches. If the value is less than the signifi-
cance level of 0.05, we can conclude that there is a 
significant difference between them. Afterward, we 
find that the p-value between most approach pairs is 
0.001 (less than 0.05). For example, as for these two 
event logs, there are significant differences between 
CNN-BiGRU and BiGRU (p-value= 0.001), CNN-
BiGRU and CNN-GRU (p-value= 0.001) respec-
tively, which is similar to CNN-BiRNN and BiRNN 
(p-value= 0.001), CNN-BiRNN and CNN-RNN 
(p-value= 0.001), CNN-BiLSTM and BiLSTM 
p-value= 0.001), and CNN-BiLSTM and CNN-
LSTM (p-value= 0.001).

Execution Time Comparison Table  5 gives the 
offline time (in seconds) that is required to train a clas-
sification model by using different approaches and the 
online time (in milliseconds) that is required to make 
predictions about the conformance of a running case 
(i.e., a prefix trace). First of all, compared with the 
traditional approaches, we find that the RF-based and 
the XGBoost-based approaches require less time to 
build a prediction model (almost within 120 seconds), 
while the neural network-based approaches require 
a longer time. In particular, the LSTM approach 
requires nearly 5,000 seconds on Traffic Fines data-
set. From the perspective of the datasets, we find that 
these approaches on BPIC2012 dataset need less time 
to construct prediction models. However, in terms 
of online prediction, the traditional RF-based and 
XGBoost-based approaches require more time to 
make predictions based on the built prediction model. 
As shown in this table, the online time required by the 
neural network-based approaches is less than ten mil-
liseconds, most of which are two milliseconds, which 
also reflects the lack of efficiency and intelligence in 
the process prediction and monitoring applications 
based on the traditional machine learning techniques. 
Generally, the online prediction time is considered 

Fig. 6  Comparison of prediction accuracy in terms of AUC on 
BPIC2012 dataset for: (a) the above-mentioned 16 approaches 
and (b) the above-mentioned 16 approaches with class 
weighted
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to be more crucial than offline training time in real-
time prediction or process execution monitoring sce-
narios. Accordingly, the NN-based approaches have 
advantages in online prediction tasks compared with 
these traditional machine learning approaches. In par-
ticular, as shown in Table 5, the online time of these 
GRU-based approaches, i.e., the GRU, BiGRU, CNN-
GRU, and CNN-BiGRU, can keep the steady real-
time prediction.

5.3  Interpretability of Prediction Results

In practical application, we can use our proposed 
approach to make predictions about the final multi-
perspective conformance checking for an ongoing pro-
cess instance. As we know, the ongoing case indicates 
a prefix trace that consists of a series of performed 
activities (i.e., events). These performed activities 
have many attribute values, such as the activity name, 
resource, timestamp, and amount. In addition, there 
are some attributes can generated from these original 
attributes, such as the open_case, event_nr, and time_
since_midnight. As shown in Figs.  7 and  8, we take 
two decision points of an ongoing case in BPIC2012 
for example. Here, ‘A_SUBMITTED-COMPLETE’ 
is the loan application submission stage and the first 

decision point ‘A_PARTLYSUBMITTED-COM-
PLETE’ is the supplementary submission stage. The 
current state of this process case is called prefix trace. 
Before prediction, the above-mentioned approaches 
(classifiers) have the ability to learn the relationship 
between the encoded features of a case and the class 
of its multi-perspective conformance based on the 
similar prefix traces generated from the training set. 
Take a prediction for a case in this decision point, the 
input of this ongoing case for each approach (classi-
fier) includes all attributes of the completed activities 
and these attributes are encoded as a numerical value 
according to the previous description. As shown in 
Figs.  7 and  8, based on our approach CNN-BiGRU, 
the prediction probability of prediction target True 
(conformance) is 0.38 at the first decision point and 
then the prediction probability rises to 0.39 when this 
case further completes activity ‘W_Afhandelen leads-
SCHEDULE’. As the process instance moves forward, 
the prediction probability of the prediction target True 
(conformance) doesn’t always increase. Take the case, 
and for example, the prediction probability will drop 
to 0.33 after completing 5 activities and then increase 
to 0.36 after completing 8 activities. Moreover, this 
change will happen again. As for this case, the predic-
tion probability gradually increases from 0.54 to 0.89 

Table 5  Comparison of 
prediction efficiency in 
terms of execution time

Approaches Traffic Fines BPIC2012

offline time (s) online time 
(ms)

offline time (s) online 
time 
(ms)

RF_single_agg 117 21 24 9
XGBoost_single_agg 116 16 57 5
RF_single_laststate 117 17 27 3
XGBoost_single_laststate 116 20 27 4
RNN 1,685 5 1,073 2
LSTM 4,937 2 347 2
GRU 1,537 2 789 2
BiRNN 1,553 2 249 11
BiLSTM 1,558 2 948 4
BiGRU 2,417 2 222 2
CNN-RNN 2,687 5 1,077 2
CNN-LSTM 3,662 2 795 2
CNN-GRU 1,634 2 256 2
CNN-BiRNN 2,711 2 982 2
CNN-BiLSTM 2,851 9 665 2
CNN-BiGRU 3,387 2 555 2
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(after completing 39 activities) when 25 activities are 
completed.

6  Conclusion and Future Work

It is very important to predictively monitor the final 
conformance for an executing process instance regard-
ing the security of process execution load in the cloud-
based BPaaS application. In this article, we concen-
trated on the multi-perspective conformance-oriented 
predictive process monitoring task for enhancing the 
security of BPaaS. We then proposed an extensible 
multi-perspective (i.e., the structure, data, resource, 
and time) conformance measurement first. Based on it, 
given a predefined process model in BPaaS with some 
multi-perspective constraints (determined by tenants), 
the multi-perspective conformance of an executed case 

in historical event log can be determined and viewed 
as supervised knowledge. To predict the multi-perspec-
tive conformance of an executing process instance for 
a tenant, we proposed the CNN-BiGRU approach to 
build a prediction model from the historical executed 
cases that correspond to this tenant by combining the 
CNN neural network with the variant and enhance-
ment of the RNN neural network. The proposed CNN-
BiGRU simultaneously uses a 3-layer CNN network to 
aggregate the features of attributes and a multi-layer 
bidirectional GRU network to extract the temporal 
relation of events. In addition, we developed a frame-
work in which we can make a multi-perspective con-
formance prediction for an executing process instance 
based on neural networks to enhance the BPaaS secu-
rity. Extensive experimental results on two event logs 
demonstrated the superiority of our CNN-BiGRU 

Fig. 7  The explana-
tion for True (conform-
ance) prediction target at 
‘A_PARTLYSUBMITTED-
COMPLETE’ decision 
point

Fig. 8  The explanation for True (conformance) prediction target at ‘W_Afhandelen leads-SCHEDULE’ decision point
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approach by comparing it with a bundle of state-of-the-
art technologies on process prediction tasks.

However, in terms of the applicability, there are 
some limits of the proposed method in this paper. For 
example, our proposed solution for conformance-ori-
ented predictive process monitoring needs to have an 
original regulatory process model as a baseline when 
measuring the multi-perspective conformance of an 
executed process instance. Moreover, due to page 
limitations, this paper does not explore what to do 
after the compliance prediction for an ongoing case. 
Therefore, we are going to develop a strategy of how 
to take action on an ongoing case initiated by tenants 
based on the result of conformance predictions in the 
future. Besides, as some more efficient feature repre-
sentation learning techniques are proposed, our future 
work will consider more contextual information to 
improve the performance of a multi-perspective con-
formance prediction model. Last but not least, with 
the continued execution of a process in BPaaS for a 
tenant, we also plan to investigate the incremental 
conformance prediction based on neural networks to 
avoid duplicate offline training.
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