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Abstract Dynamic resource allocation and auto-
scaling represent effective solutions for many cloud
challenges, such as over-provisioning (i.e., energy-
wasting, and Service level Agreement “SLA” violation)
and under-provisioning (i.e., Quality of Service “QoS”
dropping) of resources. Early workload prediction tech-
niques play an important role in the success of these
solutions. Unfortunately, no prediction technique is per-
fect and suitable enough for most workloads, particular-
ly in cloud environments. Statistical and machine learn-
ing techniques may not be appropriate for predicting
workloads, due to instability and dependency of cloud
resources’ workloads. Although Recurrent Neural Net-
work (RNN) deep learning technique considers these
shortcomings, it provides poor results for long-term
prediction. On the other hand, Sequence-to-Sequence
neural machine translation technique (Seq2Seq) is ef-
fectively used for translating long texts. In this paper,
workload sequence prediction is treated as a translation
problem. Therefore, an Attention Seq2Seq-based tech-
nique is proposed for predicting cloud resources’ work-
loads. To validate the proposed technique, real-world
dataset collected from a Google cluster of 11 k machines
is used. For improving the performance of the proposed
technique, a novel procedure called cumulative-
validation is proposed as an alternative procedure to
cross-validation. Results show the effectiveness of the

proposed technique for predicting workloads of cloud
resources in terms of accuracy by 98.1% compared to
91% and 85% for other sequence-based techniques, i.e.
Continuous Time Markov Chain based models and
Long short-term memory based models, respectively.
Also, the proposed cumulative-validation procedure
achieves a computational time superiority of 57% less
compared to the cross-validation with a slight variation
of 0.006 in prediction accuracy.

Keywords Cloud computing . RNN . Sequence-to-
sequence .Workload prediction . NeuralMachin
translation . Attention

1 Introduction

Many organizations and individuals are being motivated
to the cloud computing technology due to its great
properties [1–3]. For attracting the largest number of
customers, the competition is heating up among cloud
providers in terms of the quality of the provisioned
services (QoS) and the adherence of Service Level
Agreement (SLA) [4, 5]. Therefore, each provider tries
to improve the nonfunctional features, such as scalabil-
ity, elasticity, availability, reliability, performance, and
low cost, of cloud services provisioned to customers
with maintaining a low level of power consumption
[6–8]. However, improving these features has some
challenges, such as dynamic resource allocation, and
auto-scaling [4, 6, 8]. Early prediction of cloud re-
sources’ workloads can provide a magnificent solution
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to these challenges [9]. This, in turn, will maximize
profits of cloud providers [10]. Unfortunately, no pre-
diction technique is perfect and suitable enough for most
workloads particularly in cloud environments [11]. Sev-
eral cloud related workload prediction techniques have
been studied in this paper to construct a more efficient
technique for these environments.

Neural machine translation (NMT) techniques, such
as Sequence-to-Sequence (Seq2Seq), caused an essen-
tial and unexpected shift departure of mainstream re-
search strategies in the last few years [12]. For
exploiting gains of these techniques, cloud workload
prediction should be treated as a translation problem.
In this paper, an Attention Seq2Seq-based technique is
proposed for predicting cloud workloads. Motivations
and contributions of this work are clearly discussed in
the following subsections.

To evaluate the proposed workload prediction tech-
nique, the real-world dataset collected from a Google
cluster of 11 k machines is used. According to the
experimental results, the proposed technique has proven
its effectiveness in dealing with time-series-based prob-
lems in cloud environments. Also, it outperforms other
sequence-based techniques, such as Continuous Time
Markov Chain (CTMC) based prediction solution pro-
posed in [13] and the STM-based prediction techniques.

1.1 Problem Motivation

Although the widespread of cloud technology among a
wide sector of IT users, many of its related challenges
have not been adequately addressed in research studies
yet. Some of these challenges are: 1) Dynamic Resource
Allocation; allocating/deallocating cloud resources effi-
ciently maintains the adherence of the SLAs, and
avoiding QoS dropping, while maintaining the mini-
mum operational cost [14]. 2) Efficiently Consumption
of Power; the proper managing of over-provisioning/
under-provisioning problems represents the main en-
gine for addressing this challenge [9]. 3) ElasticityMan-
agement; ability of clouds to adapt to workload changes
by maintaining the difference between available and
requested resources represents the aim of this challenge
[15]. 4) Avoiding Traffic Congestions [16]. 5) Work-
load Prediction; heterogeneity of resource workloads in
cloud environments renders the prediction of these
workloads a complex challenge [17].

Understanding behaviors of those workloads can
promote management operations, such as VM

scheduling, resource allocation, and power consumption
management. These operations have a direct influence
on many cloud features, such as power efficiency, avail-
ability, elasticity, scalability, and reliability of cloud
resources (i.e., CPU, Memory, and Network bandwidth)
[17]. Cloud providers always promise to meet these
features. Quick planning and allocation of resources
are so needed to realize these promises. Workload pre-
diction can contribute directly or indirectly to enhancing
most of those features, as well as, providing promising
results in terms of efficiency, operational cost, and QoS
[4, 18–20]. Workload prediction prohibits extreme and
inadequate allocation of cloud resources, SLA viola-
tions, QoS dropping, as well as, reduce energy con-
sumption by making right decisions on the new VM
placement and VM migration [4, 6, 19, 21]. Therefore,
the early workload prediction is extremely important for
addressing the previous challenges by preventing un-
wanted events before happening [4, 22, 23].

For example, over-provisioning of resources (i.e.,
requested > available) and under-provisioning (i.e., re-
quested < a predefined threshold of available) are two
problems that represent the most common factors of the
power consumption issue. The over-provisioning ren-
ders the energy wasting high dramatically, while the
under-provisioning causes Quality of Service (QoS)
dropping and SLA violation [6, 19]. Both problems
can be avoided by the early prediction of workloads,
which allows scaling up resources or migrating VMs
from servers with predictably over-provisioning to
servers with predictably low-provisioning [24–26].

In addition, the early prediction can save the migra-
tion time and the power consumed due to the idle servers
by providing a balanced allocation of cloud resources
[9]. Workload prediction is the main phase in the re-
source allocation process [6]. It helps to maintain a high
availability rate by forecasting whether the available
resources are sufficient or need to be up-scaled. This
may allow cloud providers to redistribute their limited
resources among customers in a way that render these
resources feel to be unlimited and can be scaled at any
time [27]. This, in turn, contributes to achieving the
main goal of the elasticity property, which is allowing
customers to scale their allocated resources anytime
[28]. Also, the workload is a key input to the elasticity
controllers, which have just two inputs (i.e., workloads
and estimated capacity of demands). However, Scaling
decisions are useless when the workload has already
raised. Thus, using predicted workloads instead of the
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present ones as the input seems to be useful for early
successful scaling decisions [11]. Therefore, workload
prediction can contribute directly or indirectly to en-
hancing most of the cloud computing properties.

Considering no prediction technique is perfect and
suitable enough for most workloads particularly in cloud
environments [11], several workload prediction tech-
niques have been studied and analyzed in this paper to
construct a more efficient technique for predictingwork-
loads of cloud resources. On the other hand, the im-
provement rate of Machine Translation (MT) is very
fast, about 3–7% every year. Nowadays, many MT
techniques are readily available for translating long
sentences in a quick turnaround time [29, 30]. Neural
machine translation (NMT) is one of the most recent and
effective MT techniques [31]. NMT techniques are
adopted at faster rates than all the other existing MT
techniques due to the exponential growth of the data
amount that represents the main motivation of using
neural networks [29, 30, 32]. As shown in Fig. 1,
NMT represents a revolution in the field of MT. It
caused an essential and unexpected shift departure of
mainstream research strategies in the last few years [12].
NMT techniques have undergone several transforma-
tions that have pushed these techniques to entered the
mature phase [12, 33]. They have already been widely
adopted in the IT industry [12].

1.2 Problem Statement

In cloud computing environments, workload prediction
is not a trivial process due to the instability and the
complex nature of these environments [4, 20]. For ex-
ample, according to [34], usage of cloud CPU resources
varies from 5% to 80% during a day. Although the
effectivity of workload prediction methods in the cloud
environment, these methods suffer from the high vari-
ance or so-called instability over the time series [4, 5, 8].
Therefore, selecting the prediction method, which
achieves accurate forecasts, represents a cloud challenge
[20].

Workload prediction can be considered a time series
(i.e. sequence) prediction problem, where each work-
load at a specific time interval related to workloads at
the previous intervals [35]. Although statistic-based pre-
diction methods (e.g., Auto-Regression [36] [36], Mov-
ing Average [37], and Auto-Regressive IntegratedMov-
ing Average [38]) achieve acceptable accuracy for
predicting sequence-based problems, these methods

suppose the stationary of the collected data that may
contradict the dynamic nature of cloud environments [4,
35]. Recently, machine-learning prediction methods
(e.g., Bayesian [39] and k-Nearest Neighbor [40]) have
been used for workload prediction, where their accuracy
outperformed the statistic-based methods. Unfortunate-
ly, those learning-basedmethods have considered work-
loads as independent collection of values [35].

Although the recurrent neural network (RNN) deep
learning provides a solution to the time series perdition
problems by considering the correlations among the
collected sequence data, few attempts have provided
RNN-based techniques for predicting workloads of
cloud resources [35]. Additionally, these methods pro-
vide poor results for long-term predictions [5]. In this
paper, a new cloud resources’workload prediction tech-
nique is proposed to overcome the drawbacks of the
previously mentioned categories of workload prediction
techniques (i.e., statistic-based, machine learning-based,
and RNN-based techniques).

For the validation procedures, they are the processes
of evaluating a trained model using a testing dataset.
These procedures aim to test the generalization ability of
the trained model and find the optimal training model.
Therefore, they are indispensable for achieving the best
prediction performance [41]. It is observed that cross-
validation is the most common procedure for evaluating
various machine learning and deep learning techniques.
However, theoretical problems, such as instability, de-
pendencies, evolutionary, and missing values, attached
to the time-series datasets might contradict the main
assumptions of the cross-validation procedure. There-
fore, the resampling procedure is not suitable [42, 43].
In this paper, a new validation procedure, which con-
siders these theoretical problems, is proposed.

1.3 Problem Solution and Contributions

A string can be considered as a series of ordered, con-
tiguous, and dependent characters or words, while a
sequence requires the order as the only condition. For
example, “seq” and “sqnc” are both subsequences of the
string “sequence”, while “seq” is only a substring of the
same string [44]. In other words, the string meets most
properties of the workload datasets, such as dependence
and time-ordered measurements. Therefore, considering
workload prediction as a string prediction problem, e.g.
translation and Question answering, might be better.
Thus, the workload prediction problem can be
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considered as a translation problem, where each string
of measurements (i.e., word) or string of words (i.e.,
sentence) can be translated into its adjacently posterior
word or sentence, respectively.

Long Short-TermMemory (LSTM)-based prediction
models are RNNmodels that have not only the ability to
process single data points, but also entire sequences of
data [45]. LSTM model has the ability to translate long
sentences correctly (i.e., effective results for long-term
predictions) [46]. In 2014, Google has introduced an
encoder-decoder LSTM-based RNN prediction tech-
nique called Sequence-to-Sequence (Seq2Seq). This
technique provides promising results for solving the
translation problem. It also allows input and output
sentences to have the same or variable length [46].
Therefore, in this paper, Seq2Seq is adopted for address-
ing the cloud workload prediction problem.

On the other hand, Seq2Seq might fail to capture the
essence of the entire sequence. This may render the
prediction process of workloads goes worse as the se-
quence length increases [47]. For addressing this short-
coming, the attention mechanism is combined with the
proposed technique.

For the validation procedure of the sequence predic-
tion models, traditional practices are to reserve a part
from end of the given sequence dataset for testing the
accuracy of the constructed model, while using the rest
of dataset for training [42]. Although this procedure
eliminates the theoretical problems mentioned previous-
ly (i.e., dependencies, temporal evolutionary effects,
and missing values) [42], it might not suitable for the
nonstationary nature of workloads in cloud environ-
ments. It also takes a long computational time for the
learning process, where the validation process is repeat-
ed for each fold of the dataset entirely. In this paper, a
new validation procedure called Cumulative-validation
Procedure (CumP) is proposed to address the

nonstationary problem and improve the consumed time
for learning. The new procedure provides a set of pre-
diction models, one for each time interval (e.g., a month,
half a month, week, half a week, or day). Each model
considers measurements of its previous time intervals.

In sum, the key contributions and academic values of
this work can be summarized in the following four
points:

– The novelty of this study is embodied in treating the
workload prediction of cloud resources problem as
a machine translation problem. This might open the
door to many translation techniques to be used for
solving time-series prediction problems. These
techniques consider long sentences and dependabil-
ity among words or characters. From my point of
view, this renders the process of predicting too long
sequences possible. Therefore, a neural machine
translation-based workload prediction technique
(i.e., Attention-based Seq2Seq) is proposed.

– Workloads in cloud environments do not have a
stable pattern, where customer demands are
changed from time to time [9]. So, adopting a single
model for predicting workloads over the whole time
might not be suitable in these dynamic environ-
ments. In this paper, the whole prediction time is
suggested to be divided into subintervals and con-
structing a specific model for each subinterval par-
ticularly. For example, constructing seven models
for predicting the daily events (i.e., assigning a
model for each day) might be better than a single
model for the whole week. Specifying the suitable
length of the learning period related to each subin-
terval can be considered as an additional problem
that needs to be addressed in this paper.

– The majority of workload prediction studies adopt
the cross-validation procedure for building and

Fig. 1 Number of NMT studies
in a chronological sequence
according Google Scholar [12]
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evaluating their models. However, theoretical prob-
lems, such as instability, dependencies, evolution-
ary, and missing values, attached to the time-series
datasets (e.g., workload datasets) might contradict
the main assumptions of this procedure. In addition,
the resampling process of datasets followed by that
procedure renders the consumed time for building
models is very long. For saving about 57% of
computational time consumed due to the resam-
pling process, as well as, considering problems
attached to workload datasets, a novel cumulative-
validation procedure is proposed in this paper. Sup-
pose time-series dataset divided into k folds (f1,
f2…fk), in case of cross-validation; (f3 to fk & f1)
and (f1 to f4 & f6 to fk) can be used for predicting f2
and f5, respectively. This contradicts the basic con-
cept of time-series problems, where f2 depends only
on f1 and f5 depends on f1 to f4. This is what has
been taken into account in this paper. According to
the proposed cumulative-validation procedure,
time-period-based prediction models have been de-
veloped (i.e., model for each time period) for ad-
dressing instability and evolutionary problems.

– The smoothing process and discretizing techniques
have a great impact on the accuracy of the con-
structed prediction models. In this paper, the impact
of using clustering techniques (e.g., K-means clus-
tering) as discretizing technique combined with the
most common filtering techniques (i.e., Savitzky-
Golay [48]) has been studied for smoothing cloud
resources workloads dataset.

This paper is organized as follows; the existing work-
load prediction solutions for cloud resources are dis-
cussed in Section 2. An overview of the deepest learning
techniques related to the proposed technique is present-
ed in Section 3. In Section 4, the proposed workload
prediction technique, as well as, the proposed validation
procedure are described. The performance of the pro-
posed technique and the proposed validation procedure
is evaluated in Section 5. Finally, the conclusions and
future work are presented in Section 6.

2 Related Work

Many studies, such as [4, 7, 49–54], have proposed
using prediction mechanisms for managing cloud re-
sources. These studies can be classified into three

classes; deep learning-based, statistical-based, and ma-
chine learning-based studies presented in this section in
two groups. The most recent and related neural network
(NN) based studies are presented in the first group,
while the second one includes the last two classes as
there are many studies that rely on both together for
proposing workload prediction solutions.

2.1 Deep Learning Based Studies

In this subsection, the most related studies to neural
network based workload prediction of cloud resources
are discussed in the following paragraphs.

For identifying future trends of cloud resources, acting
as per workload demands, and addressing many of cloud
issues, such as availability maintenance and energy con-
sumption minimization), authors in [55] have proposed a
LSTM-based deep learning model for time series predic-
tion of cloud servers’workloads. The main drawbacks of
this model can be summarized in two points: 1) its
measured accuracy has not been evaluated compared to
any other related time series prediction techniques. 2) The
dataset used to construct that model has not been collect-
ed a real cloud computing environment.

For maintaining a more interactive cloud gaming
services that satisfy users demands (e.g., quick response
and streaming videos with high quality), authors in [56]
have proposed a LSTM-based technique for predicting
irregular player workloads. According to the predicted
workloads, necessary cloud resources are scheduled to
be ready for allocation using Fractional Rider-based
Harmony Search Algorithm (Rider-based HSA). This
algorithm is a compilation of Fractional calculus (FC),
Rider optimization algorithm (ROA) and Harmony
search algorithm (HSA). The main drawback of this
technique can be summed up in one point, which is that
source and format of the used dataset have not been
mentioned clearly.

For an intelligent allocation of cloud resources, au-
thors in [57] have proposed a deep learning based tech-
nique for the early workload prediction on these re-
sources. This technique integrates both bi-directional
and Grid LSTM neural network. To get rid of noise
and reduce the standard deviation, authors have applied
a set of operations at the data preparation phase, such as
smoothing, filtering, and Min–Max scaling operations.

Authors, in [58], have presented a comparative prac-
tical study for analyzing the performance of using the
normal neural network to predict consumption of virtual

Page 5 of 29     16J Grid Computing (2022) 20: 16



machine resources (e.g., CPU, and memory) against the
Auto-Regressive Integrated Moving Average (ARIMA)
[59]. According to their experimental results, the neural-
based prediction model achieves the superiority. The
used dataset composed of consumptions of VM re-
sources in two months at 15-min intervals (i.e., about
5700 readings). One of the main drawbacks of this study
is the adoptance of the Bagging principle, where the
used dataset is randomly splitted many times to con-
struct different prediction models. Although the same
authors ensured that the Bagging are not always achieve
the optimal prediction, they have adopted this principle
in their experiments. Additionally, the random splitting
may not be suitable in case of time series-based datasets,
where the item values have an impact on its next se-
quenced values. The other drawback is represented in
the size of each split, which was two weeks to predict up
to one week. One-week prediction could be considered a
long-term prediction, where the far future is uncertain
(suffers from accumulation of errors) in case of the same
size of the training dataset [60, 61].

Authors, in [50], have proposed a method that con-
junct the normal neural network and linear regression
with the sliding window mechanism, where a window
of a specific set of samples moves over the data (sample
by sample) to compute the output for each input sample
statistically [62], to predict CPUworkloads. The authors
have considered the analysis process of these workloads
as a time series problem. One of the main drawbacks of
this study is the usage of artificial datasets1 instead of
real ones for training and verifying the predictionmodel.
Also, the size of these datasets is relatively small. There-
fore, the obtained prediction model may not be suitable
for real cloud data centers. Although the experimental
results have shown that the sliding window mechanism
has had the most impact on the accuracy of the proposed
method, the authors have not clearly specified how the
prediction model has been constructed with the use of
this mechanism.

To address real-time and accuracy issues related to
the usage of prediction methods for the management
process of workload balancing, authors, in [20], have
proposed a 2D parallel improved LSTM neural network
method combined with an error backpropagation meth-
od for forecasting workloads. The authors have consid-
ered the analysis process of these workloads as a two-
dimensional time series problem (i.e., day and time).

Additionally, a parallelization mechanism has been con-
sidered as an attempt to achieve a real-time resource
workload management process. Although the experi-
mental results have shown higher accuracy and real-
time performance, the authors have not clearly specified
whether the proposed method is appropriate to predict
all types of workloads or to a specific type, such as CPU,
Memory, and Network.

In an attempt to reduce the energy consumption of
cloud data centers through managing the workload
balancing process effectively, authors, in [63], have
proposed a method that depends on the linear regression
and wavelet neural network mechanisms to provide
short-termworkload prediction considering data season-
ality. One of the drawbacks of this method is using a
simulated experimental environment (i.e., CloudSim)
instead of a real one for the performance evaluation
process. Although this method provides good perfor-
mance, according to the authors’ evaluation results, it is
appropriate only to low workload data centers.

In order to address cloud technology challenges, such
as dynamic scaling of resources and power consump-
tion, authors in [8] have proposed a long short-term
memory (LSTM) neural network-based cloud
datacenters’ workload prediction model. According to
this study, the authors have used three benchmark
datasets of web server logs. Using a non-recent enough
and non-cloud related dataset (i.e., data values in the
dataset were collected by monitoring non-cloud re-
sources) represents, from our point of view, the main
drawback of this study. The used dataset may not be
suitable for the evaluation process due the dynamic and
heterogeneity of the cloud environment.

In the context of cloud technology, authors in [19]
have presented an experimental comparative study to
identify the pros and cons of three workload prediction
mechanisms; Autoregressive integrated moving average
(ARIMA), Multi-Layer Perceptron (MLP), and Gated
Recurrent Unit (GRU). The experimental results have
shown, for short-time intervals’ prediction, the three
mechanisms achieved good results. Neural network
mechanisms (i.e., MLP and GRU) have provided accu-
rate prediction using fewer samples than ARIMA.
Time-consuming due to the periodical update of the
prediction model for each prediction time represents
the main drawback of the ARIMA mechanism. Also,
the evaluation procedure may suffer from some blur-
ring, where the source or technique of obtaining the used
dataset has not been mentioned clearly.1 Artificial workloads obtained by TPC-W workload generator
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For improving accuracy prediction of cloud re-
sources’ workloads, authors in [35] have proposed a
method that integrates the long short-term memory
(LSTM) encoder-decoder neural network with the atten-
tion mechanism. The performance and effectivity of this
method have been evaluated using two workload
datasets collected from real clouds. The main drawback
of this study is the small size of the used datasets (i.e.,
workloads for almost a period of eight days only).
Additionally, the accuracy of long-term predictions has
not been verified in this study.

For addressing challenges related to workload pre-
diction in cloud environments, authors in [5] have pro-
posed a prediction algorithm for workloads (L-PAW).
The proposed algorithm can be considered as the inte-
gration of the top-sparse auto-encoder (TSA)2 and Gat-
ed Recurrent Unit (GRU) recurrent neural network
(RNN) mechanism. In order to evaluate this algorithm,
real-world cloud workload datasets (i.e., from Google
and Alibaba) have been used. The GRU limitation of
using the same length for both input and output se-
quences may represent one drawbacks of the proposed
algorithm. This drawback can be solved in my study by
using a sequence-to-sequence algorithm that can pro-
vide more dynamism by permitting using various
lengths for input and output sequences. Also, splitting
the used datasets randomly into training and testing
datasets may contradict the concept of considering the
dependency of the workloads datasets.

Despite the great benefits of cloud technology, it
suffers from some issues. One of these issues is the
dynamic resource scaling and power wasting. Workload
prediction models contribute greatly to addressing these
issues effectively. This formed the main motivation for
the authors in [18] to propose a workload prediction
model using neural network and adaptive differential
evolution algorithm. The performance of the proposed
model has been evaluated using benchmark datasets
(i.e., NASA HTTP traces and Saskatchewan HTTP
traces), which may not accurately represent the work-
load nature in the cloud environments.

2.2 Statistical and Machine Learning Studies

In this subsection, the most related studies to
statistical or machine learning based workload

prediction of cloud resources are presented in the
following paragraphs.

Authors, in [4], have proposed an adaptive forecast-
ing model for workload and other cloud data center
management processes. According to this study, six
forecasting methods have been considered (i.e., Simple
Exponential Smoothing (SES), Holt’s Linear Trend
(HOLT), Holt’s Damped Trend (DHOLT), Auto-
Regressive Integrated Moving Average (ARIMA), Lin-
ear Regression with Trend (LR), and TBATS) to predict
the current state of resources in a cloud data center.
Also, the authors have considered 77 data windows of
different sizes (from 8 to 66 measurements) to specify
the best combination of these methods and data win-
dows. The dataset used to construct and evaluate the
proposedmodels was a real-world dataset collected over
one month, where the measurement interval is 5 min.
From my point of view, restricting the predicted values
to only one value (i.e., one-term prediction) and the
probability of obtaining values outside the range [0% -
100%] represents the main drawbacks of this study.

Authors, in [49], have proposed a linear regression-
based method for providing a short-term prediction of
the CPU resources’ consumption. This method
depended on the last 12 reading values, which repre-
sents consumption over one hour ago (the reading inter-
val of the used dataset was five minutes), to decide
whether CPU usage of a specific VM is over-loaded or
not according to the current value (short-term predic-
tion). Using a fixed number of readings (twelve) to build
a prediction model may represent one of drawbacks of
this method. In real environments, this may not be
suitable for all scenarios of the CPU consumptions.
Additionally, better accuracy can be obtained using
other prediction methods, such as Artificial Neural Net-
work (ANN) [64]. In real data, assuming that there is a
linear relationship between variables is incorrect many
times. So, linear regression is not recommended bymost
applications [65].

Authors, in [7], have proposed an energy-aware re-
source allocation framework in a cloud environment.
This framework expects the number of VM requests
and the amount of their associated CPU and memory
usage, as well as, it expects number of the needed
physical machines in order to reduce energy consump-
tion. The prediction mechanism starts with categorizing
workloads of a specific VM into classes and predicting
the number of requests for a specific class using the
Wiener filter. To evaluate the proposed framework, the

2 Sparse autoencoder is an auto-encoder with linear activation func-
tion, where the highest activities in hidden layers only are kept.
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authors used Google dataset collected over one month
from a cluster of 12,500 Physical machines. According
to this work, predictions should be calculated every
minute to maintain the adaptability with the current state
of VM. This may increase the power and computing
consumption.

Authors in [13] have proposed two Markov-based
workload prediction models for CPU cloud resources;
Continuous TimeMarkov Chain (CTMC) and Discrete-
Time Markov Chain (DTMC) models. Dataset used in
this study is real-world data collected from a Google
cluster of 11 k machines. Results have shown that the
CTMC-basedmodel provides performance and efficien-
cy better than the DTMC-based model. Additionally,
the authors have proved that the prediction-based mech-
anisms, such as CTMC, outperform others that do not
employ prediction, such as the Grid Resource Informa-
tion Retrieval (GRIR) mechanism, in maintaining work-
loads balanced in cloud resources.

Authors, in [21], have proposed a web applications’
workload prediction model that is composed of three
prediction mechanisms (i.e., linear regression, ARIMA,
and support vector regression). For evaluating the pro-
posed model, the authors have used real-time web ap-
plication datasets. Applying this model for predicting
workloads related to non-cloud applications, where in-
stability and dynamic nature the dominant features, is
the main drawback.

Accurate prediction of cloud resource workloads re-
sults in addressing some cloud computing challenges,
such as auto-scaling and load-balancing. Therefore, au-
thors in [10] have proposed a self directed workload
forecasting method (SDWF) that depends on calculating
the deviation in fresh forecasts for enhancing the accu-
racy of the future forecasts (i.e., forecasting error). The
SDWFmethod utilizes an optimization algorithm called
Blackhole to improve accuracy of the predicted work-
loads by organizing the learning dataset into a set of
classes. The proposed method has been evaluated using
real world datasets. Due to the instability and sequence
of workloads, dividing data traces into two portions of
fixed lengths (i.e., 60% for training data and 40% for
testing data) might contradict the actual representation
of the used datasets.

For the cloud computing environments, authors in
[66] have proposed a workload prediction model called
POSITING. This model is based on the sequential pat-
tern mining for extracting workload patterns. Despite
the accepted results of the POSITING model, it could

not adapt to the instability and variation of workloads
caused by the dynamical nature of these environments.
For addressing drawbacks, the same authors in [14]
have proposed an improved version of the POSITING
model by exploiting the pros of online learning and the
episode mining techniques. The proposed model has
been evaluated using real and synthetic datasets. The
main drawback of this work is the missing of precise
information about episodes.

For improving the efficiency of workload predictors
in cloud environments, authors in [67] have proposed a
pattern-mining engine. Identifying and omitting redun-
dant patterns from workloads represents the key task of
this engine. Disregarding the dynamic change of work-
loads in the cloud environments represents one of the
main shortcomings of this study.

Authors in [68] have proposed a Reinforcement
Learning (RL) based technique combined with fuzzy
to predict workloads of cloud resources. RL is a ma-
chine learning area concerned with learning values of
actions in particular states. Unfortunately, RL-based
techniques might lead to an overhead of states. Also,
these techniques require a huge volume of data to build
their prediction models. Additionally, their computa-
tional time is very high [69].

Authors in [70] have proposed an integrated work-
load prediction technique, which combines the
Savitzky-Golay (SG) filter and Wavelet Decomposition
(WD) with stochastic configuration networks. Accord-
ing to this technique, SG first smooths workloads, and
the smoothed version of workloads is then decomposed
into multiple components using WD. One of the main
drawbacks of WD is to choose a suitable number of
decomposition levels for the target dataset. Also, it
suffers from shift variance that may change the actual
concept of the dataset [71].

The main aim of cloud resource management
schemes is to smoothing cloud issues, such as minimiz-
ing power consumption, and avoiding resource wastage,
at low cost. The workload prediction plays an important
role in improving these schemes. It provides early esti-
mations of future demands. These estimations help
clouds in assigning necessary resources to new or
existing applications. In the same context, authors in
[72] have studied the performance of several nature-
inspired based metaheuristic techniques for predicting
workload in cloud environments.

The main drawbacks of the covered studies can be
summarized in the following points:
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1 Statistic-based workload prediction studies assume
the stationary of workloads that contradicts dynamic
nature of cloud resources [4].

2 Machine-learning based prediction studies assume
the independence of workloads. This assumption
contradicts the correlated nature of cloud workloads
[35].

3 Although RNN deep learning based studies consider
the dependency of workloads, they fail dealing with
long-term predictions [5].

4 The covered workload prediction studies in this
paper adopt the cross validation procedure for build-
ing and evaluating their prediction models. This
procedure ignores important properties related to
workloads, such as instability and dependency. In
addition, the resampling process of datasets follow-
ed by that procedure renders the consumed time for
building the models is very long [42, 43].

5 In spite of the importance of the memory resource,
most of the covered studies are only care about the
CPU resources. In this paper, both resources are
considered.

3 Preliminaries

An overview of Long-Short Term Memory LSTM) and
Sequence-to-Sequence neural network models is pre-
sented in this section.

3.1 Long Short Term Memory (LSTM)

RNN models are appropriate to process time series data
(i.e., sequence) because these models take into account
relationships between the former states and the latter
states [35]. On the other hand, all models generated
from mult i layer neural networks using the
backpropagation algorithm (e.g., RNN models) fail to
provide accurate results for long sequences (i.e., long
dependency problem) due to vanishing gradient prob-
lem [73]. The greater number of time steps (i.e. memo-
ries), there is a greater chance of the back-propagation
gradients that vanish down to nothing.

As an effective solution for the long dependency
problem, gated neural networks, such as LSTM net-
works that are subset of RNNs, were presented. Due to
the great results of the LSTM networks on various
problems, they have become an alternative and popular

choice than the basic RNNs. So, often, whenever an
RNN is quoted, it usually refers to LSTM network [47].
This network delivers promising results regarding many
long sequence-learning tasks [74]. Therefore, the LSTM
models are suitable for addressing the problem of long
sentence translation [46].

The LSTM networks consist of a set of LSTM cells.
As shown Fig. 2, the structure of these cells consists of a
hidden state (h), cell state (c), and three gates (i.e., Input
gate “i” , Forget gate “f” , and Output gate “o” that
decides whether to update the cell state with the input,
forget the memory from the last step, and output the
memory, respectively). At time step t, given the input xt,
the current hidden state (ht) and the cell state (ct) are
calculated as follows [35]:

f t ¼ σ wf : ht−1; xt½ � þ bf
� � ð1Þ

it ¼ σ wi: ht−1; xt½ � þ bið Þ ð2Þ

ect ¼ tanh wc: ht−1; xt½ � þ bcð Þ ð3Þ

ct ¼ f t⊙ct−1 þ it⊙ect ð4Þ

ot ¼ σ wo: ht−1; xt½ � þ boð Þ ð5Þ

ht ¼ ot⊙tanh ctð Þ ð6Þ
Where ft denotes the forget gate output at time step t, it
denotes the input gate output at time t, ectdenotes candi-
date values to be added to it at time t, ot denotes the
output gate output at time t, wi and bi denote the weight
matrixes and bias for the input gate layer, wc and bc
denote the weight matrixes and bias for the candidate
values’ computational layer (i.e., cell state), wf and bf
denote the weight matrixes and bias for the forget state,
wo and bo denote the weight matrixes and bias for the
output gate at time step t,σ is the sigmoid function, tanh
is the hyperbolic tangent function, and ⊙expresses
element-wise multiplication.
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3.2 Sequence-to-Sequence (Seq2Seq)

Seq2seq is an encoder-decoder framework for translat-
ing one sequence (i.e., string) into another using RNN,
where the gated neural network (i.e., LSTM) is used for
avoiding vanishing gradient problem [46]. Seq2seq
models are widely used with promising results for ad-
dressing challenges related to many areas, such as lan-
guage translation, dialog systems, image captioning,
and text summarization. Unlike the normal neural net-
work, preserving the order of the inputs, where the
context for each element is the output from the previous
step, is the key thing that describes the seq2seq models.
So, these models allow processing information, which
the time or the order of time should be considered. Also,
they encode only the necessary information [47].

As shown in Fig. 3, the simple structure of the
seq2seq model consists of two primary and separate
components (i.e., encoder RNN and decoder RNN). At
each time step (t), the encoder takes one item as an input
(xt). Through a set of time steps (n steps or the length of
input sequence), the entire sequence of items is turned
into a context vector (A) or so-called the encoder’s
hidden states. The decoder takes that vector to be turned
into the desired output sequence (i.e., v1…vk) of length
k items, where the output word (vi) of each decoder step
along with the decoder hidden states (B) from this step
are considered as an input to the next step [47].

3.3 Sequence-to-Sequence with Attention

Traditional seq2seq models fail to capture the essence of
the entire sentence (i.e. sequence of workloads) and
goes worse as the sequence length increases [47]. Dur-
ing the decoding process, these models assign the same
weights for the historical workloads, although their ef-
fect on the current workload is various. Assigning rele-
vancy scores, using what is so-called Attention score
mechanism, to the preceding workloads for evaluating
their differentiated importance may be better for ad-
dressing such situations [35]. Therefore, combining the
attention mechanism with the seq2seq technique may
help assign expressive weights for the corresponding
decoding time steps [35].

Compared to the basic seq2seq model, combing the
attention mechanism achieves better efficiency on the
short-term sequences. The attention mechanism enables
remembering 50 time steps instead of only 30 in case of
the basic models [47]. Additionally, this mechanism

relieves the encoder from the necessity to encode all
information in the input sequence into a fixed-length
vector (i.e., context vector of the last encoder time step).
Instead, the essence of the input sequence will be spread
throughout all the encoder time steps. Therefore, the
context vector of every encoder time step will be con-
sidered in the decoding process. The generated vectors
can be selectively retrieved by the decoder accordingly
[75]. As shown in Fig. 4, the attention-based seq2seq
modeling considers capturing information from the en-
tire input sentence. Hence, the decoding process de-
pends on the combined weights of all the encoder states
(i.e., Real Context) instead of only the last encoder time
step [47].

3.4 Continues Time Markov Chains Based Time-Series
Prediction Model

The field of artificial intelligence has adopted stochastic
techniques for machine learning operations. Bayes’ the-
orem is the basis for these techniques where Bayesian
methods can predict future events from historically re-
corded events. Markov Chain Model (MCM) is one of
these methods. In MCM, the probability value at a
specific time or a given location along a sequence is a
function of the probability values taken at prior time
periods or locations [13].

In MCM, the number of historical locations (i.e.,
states) affect the occurrence probability of a state at a
specific time i. In the first-order MCM used for the
comparative evaluation process in this paper, this prob-
ability is only dependent upon the state located at loca-
tion or time (i-1) [44]. The first-order MC model is
defended by K + K2 probabilities, where K is the
number of states. The K probabilities or so-called initial
probabilities (π) captures the occurrence probability of
the K states at the first position in the given sequences,
while K2 captures the conditional probabilities of ob-
serving a state Kx at position i given the state Ky at
position (i-1). These conditional probabilities are
expressed in so-called K × K transition matrix [13].

According to the Continuous Time Markov Chain
(CTMC) [13], the state transitions happen at any period
of time. CTMCsmove from one state to another accord-
ing to a transition matrix as in MCM combined with a
set of time rates. The time spent in each state is expo-
nentially distributed with parameter λ, where every time
state i is visited, the chain spends there, on average 1/ λi
time units before moving on.
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4 The Proposed Workload Prediction Model

According to my conducted survey study, it is better to
consider the workload problem as a time series predic-
tion problem. During the research process among the
common techniques to address such problems, it is
found that the neural network deep learning techniques
provide solutions outperforming the other machine
learning prediction techniques and statistic-based
methods. By digging deeper into the neural techniques,
it is observed that techniques related to addressing trans-
lation and question-answering problems, such as
encoder-decoder techniques, represent the most suit-
able. Therefore, in this paper, the workload prediction
problem in cloud computing environments is treated as a
translation problem. Hence, the Attention-Seq2Seq-
based NMT technique is adopted for addressing this
problem by predicting future states of cloud resources.

Additionally, a novel validation procedure (i.e.,
CumP) is proposed for validating the robustness of the
constructed workload predictionmodel. So, the CumP is
evaluated compared to the CrossP, which is the most
common validation procedure, in terms of accuracy and
computational time. The construction of the proposed
model and the algorithmic steps are described in the
following subsections.

4.1 Workload Prediction Model Preparation

The construction of the proposed model depends on the
formulation of the workload problem as a translation
problem. Suppose there are a set of workload readings
(i.e., training dataset D) collected from specific re-
sources (e.g., CPU and Memory usage percentage),
these readings can be reformulated as follows (see
Fig. 5):

(1) As an initial step, the given workloads are clustered
into a suitable number of classes (K) using a sim-
ple, fast, and common clustering algorithm, i.e., K-
means, where other algorithms may be more ex-
pensive in cloud environments [13].

(2) The given data are quantized into the generated
classes. In other words, an alphabet character that
indicates its assigned class replaces each workload
value.

(3) The quantized dataset should be grouped into blocks
(i.e., words; w1, w2, w3…etc.) of fixed or variable
window length to form a set of adjacent words. In
this paper, the word length is assumed to be fixed
(e.g., W). These words are formulated into (X, V)
pairs; the formulated dataset (FD) = {(wi, wj) | wj is
the translation of wi, i = 1, 2, 3…, and j = i + 1}.

Fig. 2 Structure of the LSTM
cell [35]

Fig. 3 A simple Seq2Seq
structure

Page 11 of 29     16J Grid Computing (2022) 20: 16



4.2 Smoothing and Discretizing Data

Despite the effectiveness of using a clustering technique
in the data formulation process, the error caused by
noisy data could affect the next phases of the model
construction. In this work, this effect is evaluated com-
pared to use a discretization technique.

Data collected for constructing prediction models
may have unwanted values (i.e., noise), which negative-
ly affect the extraction process of actual relationships
among values. Noisy data have a significant impact on
the predicted values as they provide fake patterns and
miss important patterns, which dramatically led to poor
prediction results [76]. One of the simplest and most
common techniques used for smoothing datasets is the
Savitzky-Golay filter (SG) [49, 77]. Getting rid of high-

frequency noise while preserving the original shape of
data represent the key advantages of SG (all properties
of the SG filter are presented in [78]). For each data
point, the SG assigns a least square fit with a predefined-
order polynomial (i.e., polyorder) over an odd-length
window (i.e., window_length) centered at this point
[79].

For easy and faster data processing, filtered continu-
ous data should be transformed into categorical units by
grouping them. One of the common and effective tech-
niques used for discretizing data is the binning process
(i.e., grouping data into “bins” of equal width). One of
the popular libraries used for this process is the python
library “pandas.cut” [80]. It is used interchangeably
with the K-means clustering technique to measure the
impact of the smoothing technique.

Fig. 4 A simple Attention-based
seq2seq structure

47 44.6 41.1 64.4 63.7 66.9 45 31.5 31.7 30.8

49.1 42 37 37.1 31 31.5 37 41.2 36.1 41.5

44 48.8 42.3 45.7 37.9 46 37.3 13 35 53.3

… … … … … … … … … …

K-means clustering & Savitz-ky-Golay filter

C I I H H H I A A A

C I E E A A E I E I

I C I C E C E G E C

… … … … … … … … … …

Translation Pairs

(CIIHHHIAAA, CIEEAAEIEI), (CIEEAAEIEI, ICICECEGEC) …

Fig. 5 An example of
formulating the workload
problem as a translation problem
using K-means, where K = 9 and
W = 10
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4.3 Algorithmic Steps of the Proposed Model
Construction

Every FD pair encompasses of two items (X, V),
where X is the input sequence to the encoder steps
and V is the output sequence from the decoder
steps (i.e., V is the translation of X). According to
Fig. 4 discussed in Section 3.3, for every pair of
the FD dataset, X (e.g., CIIHHHIAAA) is passed
through the encoder steps (i.e., one step for each
character/workload “xi” in X). LSTM at last step
should have the option of retrieving the hidden
state for every workload “xi” to be true (i.e.,
return_sequences = true) in order to achieve the
full use of the input sequence X. This is the trick
of the attention code to memorize long sequences.

For every decoder step, deciding, which of the re-
trieved hidden states is most associated to the current
step, can be taken by calculating a weighted sum (i.e.,
AttentionWeights) for these hidden states and feeding it
as an input to the decoder stage. This sum is obtained by
applying two activation functions; tanh and softmax,
respectively (see Fig. 4). During the decoding stage,
each encoder-hidden state should be multiplied (i.e.,
element-wise multiplication) by its attention weight for
drowning out hidden states with low weights. Because
of this multiplication, a set of real context vectors (i.e.,
C1, C2….etc.) are generated, one (i.e., Ci) for each
decoder time step i.

LSTM cell in the decoder step j processes its inputs
(i.e., output vj-1 and hidden sate Bj-1 from the preceded
cell j-1) to generate a new hidden state Bj, while output
of the cell is discarded. Inputs to the first cell are initiated
randomly. For the output of the step j, it is calculated as
follows:

– Concatenating Cj and Bj into one vector CBj.
– Passing CBj through a feedforward NN to generate

the output vj.

Outputs of the feedforward NNs indicate the trans-
lated sequence V (i.e., CIEEAAEIEI).

4.4 The Proposed Cumulative-Validation Procedure

Tuning parameters effectively, in proportion to the
nature of the collected datasets, play an important
role in producing a robust prediction model with
high-efficiency and performance. The common

procedure for constructing prediction models de-
pends on splitting the dataset into training dataset
and testing dataset. For an accurate emulation of
the real world prediction, we have to obtain a well
understanding of the present to obtain an accurate
prediction for the future [43]. When dealing with
time series datasets, you have to be careful be-
cause they are collections of chronological data
values that are so related to their historical ones.
Therefore, in this paper, a cumulative-validation
procedure (i.e., CumP) is proposed.

For the CumP, the given dataset is divided into n
periods Pi of same length; FD = {P1, P2, P3, P4…Pn-1,
Pn}. These periods are accumulated to construct the
model Mj-r for predicting the period Pj, where {Pj-r
…Pj-2, Pj-1} are accumulated with the same order and r
is a constant that should be learned (r is set to one as a
default value). Applying this procedure (see Fig. 6)
results in (n – r) prediction models (i.e., M1, M2…Mn-

r) that should be generated. The suitable model j for
predicting workloads at specific time (e.g., t = 6500min
since the launch of the application) can be specified
according to the Eq. 7:

j ¼ t � n
T

j k
−r þ 1 ð7Þ

where T is the total time length of the n periods entirely
(i.e., week, month, or year in minutes or seconds) and t
is greater than length (P) of M1. For example, suppose
that T of the collected data is 28 days (i.e., T = 28 ×
24 h × 60 min = 8064 min) and these data are divided
into 4 periods (i.e., n = 4), the suitable model for
predicting values related to the fourth time-period
(e.g., workloads at time t = 6500) should be the third
model (j = 6500*4/8064 ≈ 3).

Considering n is the largest possible number of
periods (i.e., length of Pi is the shortest possible
length) that can provide an acceptable length of Pi
to be used for learning effectively. This number
varies according to the volume of the collected
dataset. Each set of adjacent periods are accumu-
lated to generate a suitable model for predicting
their next adjacent period. The smallest effective
number of periods to be accumulated should be
specified. This number is assigned to the constant
r. In this paper, model Mi can be generated by
accumulating one more adjacent period to the
model Mi-1. Each time, the accuracy is measured.
This accuracy is expected to be improved till
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specific number of periods, after that the accuracy will
start to be degraded. This number represents r.

For the CrossP procedure, the given dataset is split
into n time-periods FD = {P1, P2, P3, P4…Pn-1, Pn},
where every time-period Pi is used as a testing dataset
while the remaining time-periods are treated as training
datasets. As shown in Fig. 7, applying this procedure
produces n prediction models. The validation accuracy
of these models is calculated as the average of their
accuracies.

The algorithmic steps of the proposed Attention-
Seq2Seq-based workload prediction technique can be
summed up as follows:

(1) Preparing the collected workloads by specifying K
(i.e., number of classes or bins) that can be learned,
W (i.e., workload sequence length) that also can be
earned, and the clustering algorithm (e.g., K-
means) or the discretization algorithm (e.g., bin-
ning technique) to generate quantized formulated
dataset (FD).

(2) Specifying the suitable learning procedure (i.e.,
CrossP or CumP) as well as n (i.e, number of time
periods) to generate the needed workload perdition
models using the Attention-Seq2Seq- based
technique.

(3) During the prediction time, the suitable model is
determined according to the Eq. 7 as discussed
before.

5 Performance Evaluation

The implementation of the proposed technique is intro-
duced in the following subsections.

5.1 Dataset and Implementation Environment

To evaluate the proposed technique in accordance with
the proposed learning procedures, the considered dataset
was released by Google in 2011. This data set represents
twenty-nine days of the status information about a clus-
ter of eleven-kilo physical machines operated as a single
unit. It consists of a realistic mix of workloads, as this
cluster comprises non-homogeneous machines. The
platforms in that cluster can be classified into three
different categories and a variety of memory/compute
ratios (for more details see [81]). These categories in-
clude 126, 10 K, and 795 non-homogeneous machines
for the first category (i.e., A), the second category (i.e.,
B), and the third category (i.e., C) respectively. Mea-
surements (e.g., exact machine configurations, and ex-
act numbers of CPU cores and bytes of memory) in the
Google dataset are normalized into the configuration of
the largest machines. Machines related to the categoryC
have the top configuration [81]. Number of machines
encompassed in this category is large enough (i.s., not
small as in A or huge as in B) to be used for evaluating
the proposed technique and procedure. Therefore, for
simplicity and easy understand, workloads (i.e., CPU

M1 P1 P2

M2 P1 P2 P3

M3 P1 P2 P3 P4

M4 P1 P2 P3 P4 P5

……………….
Mn-1 P1 P2 P3 P4 P5 … Pn-1 Pn

Fig. 6 An example of CumP.
The data are split into n-1
cumulative time-period datasets,
where the training datasets are
colored with the gray while
testing datasets with white

M1 P1 P2 P3 P4 P5 … Pn-1 Pn

M2 P1 P2 P3 P4 P5 … Pn-1 Pn

M3 P1 P2 P3 P4 P5 … Pn-1 Pn

M4 P1 P2 P3 P4 P5 … Pn-1 Pn

……………….
Mn P1 P2 P3 P4 P5 … Pn-1 Pn

Fig. 7 An example of CrossP.
The data are split into n time-
period datasets, where the training
datasets are colored with the gray
while testing datasets with white
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and Memory measurements) of this category’s ma-
chines are only considered in this paper.

The used dataset includes usage percentages (i.e.,
workloads) of resources (e.g., CPU and Memory) by
each task implemented on the Google cluster, as well as,
requests to allocate these resources. In this paper, both
CPU and memory usage percentages are focused. All of
these workloads are stored in a table called “resource
usage” that contains a measurement record every 300 s
for 29 days for each task [13]. The experiments, in this
paper, are conducted on the total CPU and memory
usage of every machine, so the average CPU and mem-
ory usages of all tasks on every machine at every
timestamp were added together to get these total CPU
and memory values (i.e., workloads).

As a result, 795 files were produced. Each file
has almost 8350 records of CPU and memory
workloads and their timestamps. These workloads
are divided into eight time-periods (i.e., n = 8 and
period length is about one thousand workloads) as
an initial division that will be validated with ex-
periments. These periods are used to train and
evaluate the proposed Attention- Seq2Seq-based
technique as discussed before according to CrossP
and CumP validation procedures.

As an example of workloads recorded in the pro-
duced data files, CPU and Memory usage percentages
of two machines with ID “4,802,487,721” and
“4,820,074,350”, which were selected randomly from
the category C, are shown in Figs. 8 and 9. It is observed
that the Memory usage of the two machines is more
stable than that of the CPU. This is due to killing tasks
when the memory request exceeded its limit. But, this
constraint is omitted in case of CPU workload, whereby
tasks can use much more CPU than that of the requested
CPU [82].

5.2 Implementation Environment

The experimental environment, in this paper, is a Laptop
platform with Intel(R) Core(TM) i7-2620M CPU
2.70GHz and 8.0 GB memory. This platform has Win-
dows 10 pro as an operating system. All programs
needed to evaluate the proposed workload prediction
technique are written using Python 3.8 as an Integrated
Development Environment (IDE) with the TensorFlow
2.3.0 open-source software machine-learning package.

Experiments conducted in this work are divided into
three groups. The main purposes of the first group can
be summarized into: a) specifying the most effective
value of K (i.e., number of classes). b) Evaluating the
effectivity of using k-means clustering for discretization
combined with the Savitz-ky-Golay (SG). c) Evaluating
the efficiency (i.e., prediction accuracy and complexity)
of the proposed Attention-Seq2Seq-based NMT Work-
load Prediction technique (AS2S). Finally d) evaluating
the proposed cumulative-validation procedure (CumP).
In this group, two datasets with IDs 4,802,487,721, and
4,820,074,350 are considered randomly.

For the second group, to check the stability of the
proposed AS2S technique in terms of accuracy, exper-
iments are expanded by employing the AS2S on the top
20% of machines (i.e., 159 dataset files) sorted
descendingly by file size and IDs; 4,802,086,681,
4,802,092,023...etc. According to results of this group,
the most effective length of periods is specified (i.e., the
most proper r and n in Eq. 7 are specified).

Experiments of the last group are conducted on
datasets that have achieved the worst accuracy com-
pared to others in order to evaluate how improvement
is achieved due to adjusting parameters (i.e., r, n,
epochs, and latent dimensionality) specified in the pre-
vious group.

Fig. 8 Actual CPU and Memory
workload measurements of the
machine with ID “4,802,487,721”
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5.3 Evaluation Metrics

To evaluate the performance of the proposed AS2S
technique according to the proposed CumP validation
procedure and the common one (i.e., CrossP), three
metrics are used. The first metric is used to evaluate
the accuracy of the generated CPU or Memory work-
loads. This metric is the Standard Deviation (0 ≤ SD ≤
1) between the predicted and actual workloads. A high
value of SD indicates a high prediction error and vice
versa. When SD equals zero, the predicted workloads
exactly matches the actual data and the prediction accu-
racy is 100%. This situation is impossible to occur as the
predicted sequences consist of states represented by
centroids. Of course, these centroids have a percentage
deviation from their associated values.

In order to evaluate the accuracy of the generated
workloads for both resources (i.e., CPU andMemory), a
new metric called μSD is constructed. μSD is the aver-
age SD of CPU andMemory. This metric in turns can be
used to calculate the global_SD, which is the average
μSD of all machines.

The third metric is used to evaluate the computation
time taken by the proposed technique to produce the
required prediction model and to predict one value
according to the adopted validation procedure.

5.4 Experimental Results

Results presented in this section are organized in a way
that demonstrates the performance of the proposed
AS2S technique, as a NMT technique, in terms of two
parameters; prediction accuracy and complexity. Both
parameters are determined according to the proposed
CumP validation procedure and the common one (i.e.,
CrossP). These results are derived based only on the

given datasets. Additionally, those results are obtained
according to a specific set of parameters:

– Number of epochs (i.e., how many times should the
training code be run on the training dataset entirely)
is set to “50” as an initial value that will be tuned
later.

– Batch size (i.e., number of samples fetched every
step, where number of steps in one epoch equal the
total number of samples divided by the Batch size)
is set to one.

– Latent dimensionality (Latent_dim) of the
encoding space (i.e., number of hidden states) is
set to “200” as an initial value that will be tuned
later.

– Activation function or so-called Transfer Function
is set to “softmax”.

– Optimizer is set to “rmsprop” that is good, fast and
the most popular optimizer used in deep learning
[83]

– Error loss function or so-called cost function is set
to “categorical cross entropy”.

These parameters are the most common ones for
constructing Seq2Seq-based techniques. Values of those
arguments are selected particularly as they have
achieved the highest accuracy among a set of explorato-
ry values. However, these values will be tuned in this
paper later.

Experiments in this paper are organized into three
groups presented in the following subsections.

5.4.1 Clustering and Validation Procedure Experiments
Group

Experiments conducted in this group aim to specify the
most effective value of K, evaluate K-means clustering

Fig. 9 Actual CPU and Memory
measurements of the machine
with ID “4,820,074,350”
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with SG filter as a discretization technique compared to
the binning algorithm, and evaluate the proposed CumP
procedure compared to the CrossP. In the same context,
prediction quality and time complexity of the proposed
AS2S technique is evaluated against two of the most
common prediction time series techniques (i.e., CTMC
as a representative of statistical-based techniques, and
LSTM as a representative of deep learning-based tech-
niques). These experiments are conducted under the
same performance parameters’ values and validation
procedures.

For selecting the most appropriate value of K, the
AS2S technique has been applied, under the same pa-
rameters’ values, using various values for K (i.e., 3, 6, 9,
12, 20, and 40) on the workloads dataset of the machine
“4,802,487,721″. It should be noted that the effect of
using the SG filter was taken away from this experi-
ment. As shown in Fig. 10, the highest accuracy (i.e., the
lowest SD for both CPU and Memory) has been
achieved according to the given dataset at K = 9. It is
also obvious that using small numbers of classes
achieves accuracy higher than using large numbers.
The fewer number of classes, the more frequent of these
classes in the given dataset that in turns renders the
higher the prediction accuracy. On the other hand, using
fewer numbers than a specific threshold increases the
deviation of the predicted workloads from the actual
measurements. From my point of view, using a greater
number of classes might reduce the deviation degree and
thus increase the workload prediction accuracy, on the
condition of growing the volume of the training dataset.

For evaluating the performance of the proposed
AS2S technique in terms of accuracy, an experimental
comparison has been conducted among this technique,
the CTMC-based technique proposed in [13], and the
LSTM-based technique. The three techniques have been

applied on the same datasets (i.e., 4,802,487,721 and
4,820,074,350) using the same validation procedures
(i.e., CumP and CrossP). As shown in Fig. 11 that
demonstrates the global average accuracy of the three
techniques over both datasets, the accuracy of the pro-
posed AS2S outperforms the other two techniques. The
AS2S has achieved accuracy about 94% (i.e., 1.0 –
global_SD) using both validation procedures, while
the CTMC has achieved accuracy about 89% using the
same procedures. The LSTM has achieved 80% and
84% in case of the CrossP and the CumP procedures,
respectively.

On the other hand, as shown in Fig. 12, the CTMC-
based technique outperforms the proposed AS2S tech-
nique and the LSTM-based technique in terms of com-
putational time. The CTMC has required about 2.6
microseconds using CumP and 5 microseconds using
CrossP as the average computational time for construct-
ing their required eight prediction models and perform-
ing the learning process, while the proposed AS2S has
required about 346 s using CumP and 647 s using
CrossP for constructing their eight models. The high
computational time of the proposed technique was ex-
pected as the deep learning techniques (e.g., Neural
networks-based techniques) do not care about learning
time. They care only about accuracy. The more learning
time, the higher the accuracy degree [84].

For the prediction time, as shown in Fig. 13, one
word (i.e., sequence of workloads) of length 10 chars
has required about 0.6 of second to be translated in case
of the AS2S technique, 0.6 microseconds for the
CTMC, and 0.014 of second for the LSTM.

For the effect of using the proposed CumP validation
procedure on the performance of prediction techniques
(e.g., AS2S and CTMC) in terms of accuracy, Fig. 11
shows that both the CumP and the CrossP have achieved

Fig. 10 Relation between
number of classes and accuracy of
the AS2S technique without SG
filter given dataset
“4,802,487,721”
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a very close accuracy except in the case of the LSTM
technique that have achieved better accuracy for the
CumP. The difference in the recorded accuracy between
the both procedures is not exceeding 0.006 (0.065–
0.059) for the AS2S and 0.004 for the CTMC, but in
the case of the LSTM, there is a relative superiority of
the CumP over the CrossP by 0.033. On the other hand,
as shown in Fig. 12, the CumP has had a significant
effect on the computational time compared to the
CrossP. The Cump has saved about 50% of time elapsed
using the CrossP for the three techniques; 54% (0.0026 /
0.0048 ≈ 54%) for CTMC, 53% for AS2S, and 56.5 for
LSTM.

For the effect of applying the SG filtering technique
(default parameters; polyorder = 3, and window_length
= 53) combined with the binning process (bins = K) for
discretizing data (i.e., dataset “4,820,074,350”), instead
of using the k-means clustering algorithm to formulate

the collected data in the data preparation stage, Figs. 14
and 15 and Tables 1 and 2 show the importance of the
SG filter. Both SG and binning together have achieved a
superiority over the clustering alone by 4.3% (7.1% -
2.8% for the CumP and 6.8% - 2.5% for the CrossP) on
the average of μSD metric. Filtering and discretizing
improves the accuracy of the proposed AS2S-based
workload prediction model to become about 97% on
the average accuracy of the eight prediction models
compared to about 93% for clustering alone. This un-
derlines the importance of considering the filtering pro-
cesses during the data preparation stage for getting rid of
noisy data.

For using the binning discretization technique, pick-
ing the right range of each bin may represent a chal-
lenge. Also, it is not fair to associate the use of clustering
techniques for data discretization with the negative im-
pact on the accuracy without an experimental

Fig. 11 The accuracy of CTMC-
based, LSTM-based, and the
proposed AS2S-based workload
prediction techniques without SG
filter using the proposed CumP
and CrossP validation Procedures

Fig. 12 The effect of the
proposed CumP and the common
CrossP validation procedures on
the time elapsed by the proposed
AS2S, the CTMC, and LSTM
techniques for constructing the
required prediction models
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verification. So, the experiment is reconducted with the
same parameters, but the K-means clustering with the
SG filter has been applied for data formulation. As
shown in Fig. 16, clustering and filtering achieves the
highest average accuracy (i.e., 98.1%) for the eight
models (i.e., the lowest μSD 1.9%) followed by 97.2%
(i.e., 2.8% on the average SD) for discretizing and
filtering. This explains the great impact of the filtering
techniques because the error caused by the noisy data
could affect the next phases of the model construction.
Also, the clustering techniques have a remarkable effect
on the workload prediction accuracy.

All results indicate the efficiency of the proposed
translation technique for predicting workloads in the
cloud environments. It also indicates the role of the
proposed cumulative validate procedure to improve the
computational time needed to construct the prediction
models by 50%, with an accuracy almost equivalence to
that has been obtained using the cross-validation.

Additionally, using clustering as data discretization
techniques improves the accuracy of the prediction
models.

5.4.2 Period Length and Average Accuracy
Experiments Group

Experiments conducted in the second group have three
aims: a) verifying the accuracy of the AS2S technique
using more datasets. b) Defining the relationship be-
tween computational time and the number of training
samples. c) According to the results of this group, the
most proper r and n in Eq. 7 have been specified. For
achieving these three aims, experiments of the first
group have been expanded to include 20% of datasets
under the same conditions (i.e., validation procedure =
“CumP”, r = 1, Epochs = 50, and Latent_dim = 200).

As shown in Figs. 17, 18, and 19, the results confirm
the superiority of the proposed AS2S in terms of

Fig. 13 Time elapsed by both the
proposed workload pre-diction
AS2S, the CTMC, and LSTM
techniques to predict or translate
only one word (sequence of
workloads) of length ten
workloads in seconds

Fig. 14 Effect of considering
filtering techniques followed by
discretizing data of the machine
with ID “4,820,074,350”
compared to just using clustering
for data formulation on the
accuracy of the proposed AS2S-
based workload prediction
according to the CrossP
validation procedure
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accuracy. It has achieved 96.8% on the average (96.4%
for CPU and 97.2% for Memory) compared to 91% for
CTMC and 86% for LSTM.

For the complexity of the proposed AS2S and CumP
procedure, the time needed to construct one prediction
model increases linearly by increasing number of train-
ing samples according to Eq. 8 (see Fig. 20).

Time ¼ 0:0757 Training Samplesþ 3:1571 ð8Þ

For space complexity, the proposed technique en-
compasses a set of variables for constructing each
period-based prediction model. These variables can be
summarized into: a) Encoder_Inputs that has the shape
(L_FD ×We × Ke), and b)Decoder_Inputs that has the
shape (L_FD × Wd × Kd). “L_FD” denotes to number
of word pairs “(X, V)” in the formulated dataset “FD”,
“We” to length of the longest word “X”, “Ke” to number

of characters in the alphabet of the “X” words, “Wd” to
length of the longest word “V”, and “Kd” to number of
characters in the alphabet of the “V” words. For sim-
plicity, We and Wd are assigned the same value “W”.
Also, Ke is assigned the value of “K”, while Kd is set to
be “K + 2” (e.g., Kd = 9 + start and stop characters =
11). For each character in the word “X”, there are four
functions (i.e., input gate, output gate, forget gate and
candidate values) in the LSTM step. Each function has
Latent_dim dimensionality (i.e., number of hidden
states). In other words, there are 4 × Latent_dim for
each step. c) In case of the encoder model, the input
weighting matrix for predicting one character has the
shape (Ke × 4Latent_dim), while the hidden state
weighting matrix has the shape (Latent_dim ×
4Latent_dim) and the bias vector has the size
4Latent_dim. d) Things are very similar in the case of
decoder model except Kd instead of Ke. e) In case of

Fig. 15 Effect of considering
filtering techniques followed by
discretizing data of the machine
with ID “4,820,074,350”
compared to just using clustering
for data formulation on the
accuracy of the proposed AS2S-
based workload prediction
according to the CumP validation
procedure

Table 1 Accuracy of the AS2S-based workload prediction technique according to CumP and CrossP validation procedures with
considering only clustering process to formulate data of the machine with ID “4,820,074,350”

Model Number Clustering & No Filtering

CumP CrossP

CPU_SD Memory_SD avg_SD CPU_SD Memory_SD avg_SD

1 6.1% 9.1% 7.6% 4.9% 7.5% 6.2%

2 5.1% 8.1% 6.6% 5.0% 8.6% 6.8%

3 4.7% 11.4% 8.1% 5.1% 7.8% 6.4%

4 5.1% 7.6% 6.3% 4.7% 7.5% 6.1%

5 5.2% 8.5% 6.9% 5.2% 7.8% 6.5%

6 6.7% 9.6% 8.2% 5.0% 7.8% 6.4%

7 4.8% 8.5% 6.6% 8.7% 9.1% 8.9%

8 4.1% 9.0% 6.6% 5.5% 8.1% 6.8%

Average 5.2% 9.0% 7.1% 5.5% 8.0% 6.8%
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Dense layer (i.e., final output layer), the weighting ma-
trix has the shape (Latent_dim × Kd) and the bias
vector of this layer has the sizeKd. Therefore, the space
complexity for each model can be denoted by (2L_FD
× W × K + 8Latent_dim2) ≈ O(L_FD × W × K).

For studying the effect of the learning period length,
experiments have been reconducted using various accu-
mulative lengths r × 103, where r = 1, 2… 7. As shown
in Fig. 21, the average accuracy of the proposed AS2S
technique for a wide range of datasets improves pro-
gressively by increasing the value of r up to a specific
value (i.e., r = 3) then it begins to degrade. According to
the experimental results, relation between the accuracy

and the length of the learning period can be expressed
polynomial in terms of μSD, r, n, and T using Eq. 9.

μSD ¼
8 T�r

n

� �2−54 T � r
n

� �
þ 372

104
ð9Þ

5.4.3 Experiments Group for Tuning Parameters

The aims of the third group experiments can be summa-
rized into two points: 1) tuning parameters of the

Table 2 Accuracy of the AS2S-based workload prediction technique according to CumP and CrossP validation procedures with
considering both filtering and discretizing data of the machine with ID “4,820,074,350”

Model Number Discretizing & Filtering

CumP CrossP

CPU_SD Memory_SD avg_SD CPU_SD Memory_SD avg_SD

1 4.3% 2.9% 3.6% 3.1% 2.0% 2.8%

2 3.4% 2.3% 2.8% 3.1% 2.1% 2.5%

3 2.7% 2.5% 2.6% 3.3% 2.2% 2.4%

4 2.6% 2.3% 2.5% 2.8% 2.2% 2.3%

5 2.9% 2.5% 2.7% 3.1% 2.2% 2.5%

6 3.9% 2.5% 3.2% 2.7% 2.3% 2.8%

7 2.7% 2.4% 2.6% 4.3% 2.4% 2.5%

8 2.7% 2.1% 2.4% 2.8% 2.3% 2.4%

Average 3.2% 2.4% 2.8% 3.2% 2.2% 2.5%

Fig. 16 Effect of considering
filtering techniques followed by
discretization interchangeably
with clustering for formulating
data of machine with ID
“4,820,074,350” on accuracy of
proposed AS2S-based workload
prediction according to CumP
validation procedure
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proposed AS2S NMT technique for more improvement
in time complexity and accuracy, and 2) Evaluating the
improvement rate due to these tuned parameters.

For defining the proper value of the Epoch Parame-
ter, the AS2S has been applied on a randomly selected
dataset (i.e., 4,802,086,681) for various numbers of

Fig. 17 The CPU accuracy of
CTMC-based, LSTM-based, and
the proposed AS2S-based
workload prediction techniques
for a wide range of datasets using
the proposed CumP validation
Procedure

Fig. 18 TheMemory accuracy of
CTMC-based, LSTM-based, and
the proposed AS2S-based
workload prediction techniques
for a wide range of datasets using
the proposed CumP validation
Procedure

Fig. 19 The average accuracy of
CTMC-based, LSTM-based, and
the proposed AS2S-based
workload prediction techniques
for a wide range of datasets using
the proposed CumP validation
Procedure
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Fig. 20 Relation between the
number of training samples and
the computational time according
to the proposed AS2S and CumP
validation procedure

Fig. 21 The effect of the learning
period length on the average
accuracy of the prediction model
over a wide range of datasets

Fig. 22 The effect of using
various numbers of epochs on the
average accuracy of the proposed
AS2S technique
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epochs. Results, in Fig. 22, show that the accuracy gets
better by increasing the number of epochs up to specific
value (i.e., epoch = 30). After that, a very simple
fluctuation, which can be neglected, is noticed.

For defining the proper value of the La-tent_dim
Parameter, the AS2S has been applied on the same
previous dataset for various values of hidden states or
so-called latent dimensionality. Results, in Fig. 23, show
that the accuracy gets better by using larger values of
Latent_dim up to a specific value (i.e., Latent_dim =
30). After that, the accuracy has nearly recorded the
same level. According to these results, the value “30”

is selected as the proper value for each Epoch and
Latent_dim parameter.

For evaluating these adjusted parameters (i.e., Epoch
= 30, Latent_dim = 30, and r = 3), the AS2S has been
applied again on the datasets that have recorded the
worst μSD in the second group of experiments (i.e.,
Epoch = 50, Latent_dim = 200, and r = 1). As shown
in Table 3, these adjusted parameters have improved the
prediction accuracy by 1.1% on average. In other words,
according to the proposed CumP validation procedure
and the concept of dividing the prediction model into set
period-based models, the proposed AS2S has improved

Fig. 23 The effect of using
various values of Latent_dim on
the average accuracy of the
proposed AS2S technique

Table 3 The effect of the tuned parameters on the average accuracy of the AS2S using the CumP validation procedure

Dataset
ID

μSD Before
Tuning

μSD After
Tuning

Improvement Accuracy rate

4,802,467,031 0.071 0.046 2.5%

4,802,888,471 0.063 0.058 0.5%

4,802,910,981 0.080 0.060 2.0%

5,017,329,882 0.037 0.032 0.5%

5,115,314,188 0.073 0.061 1.3%

5,777,397,608 0.065 0.063 0.2%

4,802,889,220 0.050 0.034 1.6%

4,802,517,408 0.054 0.042 1.2%

4,802,863,684 0.058 0.044 1.4%

4,802,904,615 0.055 0.049 0.6%

4,802,904,854 0.059 0.032 2.6%

4,820,115,846 0.046 0.040 0.5%

4,820,139,637 0.047 0.040 0.7%

4,820,222,428 0.054 0.053 0.1%

4,892,979,988 0.046 0.039 0.7%

Global_SD 0.057 0.046 1.1%

16    Page 24 of 29 J Grid Computing (2022) 20: 16



the workload prediction accuracy to become 98.1%
(97% + 1.1%).

Of course, these adjustments have had a clear effect
over the computational time. As shown in Fig. 24, the
average time taken for constructing a single period-
based model is improved by 80.2%. The proposed
AS2S has recorded 67 s on average compared to 340 s
recorded before the adjustment process.

For defining the proper length of the predicted word
(i.e., W), the AS2S has been applied on a randomly
selected dataset (i.e., 4,837,752,655) for various lengths.
Results, in Fig. 25 demonstrates that the workload pre-
diction accuracy is inversely proportional to W, as
shown in Eq. 10.

6 Conclusion and Future Work

As mentioned previously, the main objectives of
this paper can be summarized into four points. The
first objective is to study the effectiveness of using
NMT techniques to predict the accuracy of work-
load time-series in cloud environments compared
to other time-series prediction techniques, such as
CTMC and LSTM. Results show that the proposed
NMT-based AS2S technique provides a remarkable
superiority in terms of accuracy by 98.1% com-
pared to 91% and 85% for other sequence-based
techniques, i.e. CTMC and LSTM models,
respectively.

Fig. 24 The effect of tuning
parameters of the proposed model
and length of the learning period
on the average computational
time needed for constructing a
single prediction model

Fig. 25 Relation between the
average prediction accuracy and
the length of the predicted W
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The second objective is to study the effectiveness of
the proposed CumP-validation procedure under the con-
cept of dividing the whole prediction time into subinter-
vals compared to the common one (i.e, CrossP). Results
show that the CumP provides nearly the same accuracy of
the cross-validation with 57% off computational time.

The third objective is to study the effectiveness of
using clustering techniques (i.e., K-means) as a
discretizing technique combined with filtering tech-
niques (i.e., SG) in the data preparation phase. Results
show the effectiveness of using k-means instead of the
binning technique for discretization.

According to the results, considering work-load pre-
diction as a translation problem might open the door for
using other translation techniques. So, studying other
machine translation techniques should be considered as
future work. Also, evaluating the proposed AS2S tech-
nique and the CumP procedure using a huge volume of
time-series training datasets should be considered as
future work.

Data Availability Statement (DAS) Experiments included in
this paper have been conducted on the total CPU and memory
usage, so the average CPU usages and memory usages of all tasks
on everymachine at every timestampwere calculated and stored in
a text file with a name “the machine ID”. Therefore, 790 text files
have been generated and organized in records (one for each 300 s)
of the order “timestamp, CPU, and Memory”. These files are
available in [85] repository.
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