
Approach for Selecting and Integrating Cloud Services
to Construct Hybrid Cloud

Joonseok Park & Ungsoo Kim & Donggyu Yun &

Keunhyuk Yeom

Received: 28 September 2018 /Accepted: 26 April 2020
The Author(s) 2020

Abstract With the popularization of cloud computing,
various cloud services have emerged, and hybrid clouds
that can take advantage of combining public and private
clouds are attracting attention. However, because of their
variety, determining a combination of cloud services
suited to the user’s current environment and requirements
is expensive when deploying a hybrid cloud. Even if the
required services are available, there is a lack of tools to
connect them, manage them in batches, and utilize the
integrated environment. To solve these problems, this
paper proposes a cloud selection and integration process
(C-SIP), which selects and integrates a combination of

cloud services through a hybrid cloud service broker
(hybrid CSB), which is an automation solution
supporting hybrid cloud deployment. Moreover, the pro-
posed method is realized using a script including the
application programming interface of each cloud service.
The proposed C-SIP will be used as a core approach
toward the hybrid CSB, which is expected to facilitate
the introduction of hybrid clouds and the acquisition of
cloud strategies.

Keywords Cloud service brokerage . Cloud service
selection . Cloud service integration . Cloud service
evaluation . Hybrid cloud

1 Introduction

Cloud computing is a computing paradigm that allows
remote access via Internet without the need to directly
install information technology resources such as servers,
platforms, and software [1]. Cloud computing can be
classified regarding the service provision method into
public and private clouds. According to the latest edition
of Flexera’s “Rightscale 2019 state of the Cloud Re-
port,” [2] 84% of companies have a multi-cloud strate-
gy, and 58% have a hybrid cloud strategy. Marketwatch
[3] states that the global hybrid market is expected to
grow at an average annual rate of 22.8% by 2025,
reaching USD 140.86 billion by 2025.

A hybrid cloud is a cloud deployment model that
combines a public and a private cloud, or a public cloud
with an existing on-premise environment [4]. With a

https://doi.org/10.1007/s10723-020-09519-x

Ungsoo Kim and Donggyu Yun contributed equally to this work.

J. Park
Research Institute of Intelligent Logistics Big Data, Pusan
National University, Busandaehak-ro 63beon-gil, Geumjeong-gu,
Busan 46241, South Korea
e-mail: pjs50@pusan.ac.kr

U. Kim
SK Holdings Co Ltd, 9 Seongnam-daero 343beon-gil,
Bundang-gu, Seongnam-si, Gyeonggi-do 13558, South Korea
e-mail: kus9010@sk.com

K. Yeom (*)
School of Computer Science and Engineering, Pusan National
University, Busandaehak-ro 63beon-gil, Geumjeong-gu,
Busan 46241, South Korea
e-mail: yeom@pusan.ac.kr

D. Yun
Department of Electrical and Computer Engineering, Pusan
National University, Busandaehak-ro 63beon-gil, Geumjeong-gu,
Busan 46241, South Korea
e-mail: lodestar692@pusan.ac.kr

/ Published online: 13 May 2020

J Grid Computing (2020) 18:441–469

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-020-09519-x&domain=pdf

hybrid cloud, both cost-effectiveness and security can
be achieved by storing security-sensitive data such as
personal information or company confidential docu-
ments in a private cloud or on-premise environment
and storing other data in a public cloud. Additionally,
there are different forms of utilizing the private cloud,
such as switching to a public cloud backup system in the
event of a disaster. With the advent of the fourth indus-
trial revolution, cloud computing is valuable as a foun-
dational technology and technical studies are required to
promote the adoption of hybrid cloud.

There are various problems involved in introducing a
hybrid cloud and securing an optimized cloud strategy.
The current state of private infrastructure in the enter-
prise and the characteristics of public cloud should be
understood. Furthermore, the cloud architecture should
be constructed by appropriately combining private and
public clouds. In addition, each public cloud environ-
ment that constitutes the cloud architecture must be
connected to the private cloud environment and used
as if it was a single cloud environment. There are many
issues to be resolved, such as consolidation of different
clouds to combine complex configurations, metadata
movement between clouds, migration complexity prob-
lems related to workload distribution and execution
depending on the nature and type of the workload, and
security problems [5–7].

However, not all companies or organizations currently
have cloud experts, and there are inadequate solutions to
solve these problems and help them transition to a hybrid
cloud environment. Although some public cloud compa-
nies such as Amazon, Microsoft, and Google provide
consulting services on building a cloud environment, there
is a limit to passive consulting, which depends on the
experience of cloud experts, and the hybrid cloud that is
built in this manner is limited to those provided by the
vendors. In other words, problems that depend on the
vendor should be solved when building a hybrid cloud.

To solve these problems, we proposed the concept of
a hybrid cloud service broker (CSB) [8, 9]. A CSB is an
intermediary between cloud users and providers, which
selects or serves and manages cloud services to users
[1]. Traditional CSBs focus on recommending a single
cloud service and do not employ an approach for
recommending a combination of individual vendors’
cloud service configurations, even if recommending
multiple cloud services. To realize an optimal hybrid
cloud environment, it is necessary to utilize various
cloud services from different vendors.

The hybrid CSB proposed in this paper extends pre-
vious CSB research [10]. It selects a combination of
cloud services according to the user’s requirements
and supports the establishment of a hybrid cloud envi-
ronment through a combination of selected services [8,
9]. The proposed method differs from other approaches
to construct hybrid cloud environments, as it is used to
select an architecture structure, which is difficult for
hybrid clouds, and enhances the convenience of build-
ing a customized hybrid cloud environment considering
the purpose and cost. Therefore, in this paper, we pro-
pose a cloud selection and integration method as an
important technology of the hybrid CSB for building a
hybrid cloud environment.

Cloud vendors such as Amazon, Microsoft, and IBM
provide the types (e.g., “designs” or “architectures”)
used to build the cloud which are called “reference
architectures” [11–13] or “cloud design patterns”
(CDPs) [14, 15]. However, providing an automated
solution that supports hybrid cloud deployment by au-
tomating the types of cloud services offered by vendors
without the involvement of vendor experts in hybrid
cloud deployments is a new approach. In this paper,
we propose a cloud service selection approach, in which
a combination of various clouds is selected according to
the user’s requirements in the core function of the hybrid
CSB, and a script generation approach is used to solve
the problem of complexity between clouds.

The cloud selection approach presented in this paper
provides a cloud service combination type expressed in the
form of a pattern by abstracting the cloud coupling type
according to the purpose and requirements of building a
hybrid cloud environment. Additionally, by matching the
services of different cloud vendors to patterns, it allows
users to combine environments to create a suitable hybrid
cloud environment. Moreover, there is a need for an ap-
proach that realizes the capabilities of a hybrid cloud
environment based on the recommended combination.
Thus, we present a script generation approach for creating
an integration script to implement the functions performed
in a hybrid cloud environment. The script generation ap-
proach that supports cloud-to-cloud coupling allows the
control of different cloud services in a hybrid cloud envi-
ronment. Additionally, it allows users who can only im-
plement one service to implement the desired function of
the hybrid cloud through an application programming
interface (API) combination of various services.

The proposed approach can be applied as a base tech-
nology and template of the hybrid CSB, which forms a

442 J. Park et al.

hybrid cloud environment by combining various individual
services of many different vendors. By using the selection
and script generation approach of the hybrid CSB proposed
in this paper, users can build their own hybrid cloud envi-
ronment, which is expected to facilitate the adoption of
hybrid clouds and the acquisition of cloud strategies.

The major contributions of this study are as follows.

& In this paper, we proposed a process and technique to
determine the cloud combining structure when
implementing hybrid cloud and to achieve the cloud-
to-cloud integration according to the combining struc-
ture. This can be applied as a foundational model that
can realize automation of hybrid cloud introduction;

& We proposed a pattern-based service selection tech-
nique that recommends a combination of public cloud
services that meets the cloud construction objectives
when introducing hybrid cloud using hybrid CSB;

& Existing service selection techniques research [16, 17]
mostly select a single cloud service, but the method
proposed can recommend a combination of services
that are selected considering the hybrid cloud environ-
ment. The user can also configure cloud service com-
binations to suit user requirements by reflecting differ-
ent selection criteria, such as service scores, single
vendor, and multi-vendor type selection;

& We proposed a script generation method that can per-
form the integration between clouds by applying the
design pattern. In other words, it is an executable script
that implements the integration function between clouds;

& Existing integration technique research [18–20] is
proposed as a method to support or control the
integration between clouds by using defined APIs,
methods, libraries, etc.; it cannot create new func-
tions. In contrast, the integration technique proposed
in this paper can flexibly create new integration
functions desired by the user by defining methods,
script connections and integration relationships.

2 Related Work

2.1 Related Research on Cloud Service Selection
and Cloud Combination Pattern

Garg et al. [16] proposed an “SMICloud” framework for
selecting cloud services. The architecture of the
SMICloud framework consists of three parts: SMI cloud

broker, monitoring, and service catalog. It has the form
of a basic CSB. The service selection method proposed
in this study employs the analytic hierarchy process
(AHP) [21]. This is one of the representative multi-
criteria decision-making (MCDM) algorithms [22, 23].
It uses evaluation criteria that are layered in several
levels. In this study, the quality of service (QoS) attri-
butes were evaluated using the service attribute index
(SMI) [24]. The SMI is a standardized method for
measuring and comparing the QoS of cloud services. It
is defined by high-quality attributes such as accountabil-
ity, agility, cost, performance, assurance, security and
privacy, and usability. According to the calculation
method of the AHP, it is possible to obtain the score of
the upper quality attribute by measuring each of the
measurable lower quality attributes and calculating the
scores reflecting the importance of each lower quality
attribute. Similarly, the score obtained for the upper
quality attribute reflects its importance, and if it is re-
peatedly raised to the highest level, the final score of the
service can be obtained. This method can evaluate the
service by reflecting different requirements of each user.
However, the intuitiveness of the pairwise comparison
matrix [25] to be input is low when the user inputs a
value without sufficient understanding of the pairwise
comparison matrix.

Zheng et al. [17] proposed a method of selecting a
cloud service using a collaborative filtering algorithm
[26] based on the QoS of the cloud service. The Pearson
[27] and the Spearman correlation coefficients [28] are
calculated according to the QoS value measured by each
user. The similarity between users is calculated using the
correlation coefficient to find a user similar to the new
user and select a cloud service for the new user. How-
ever, the collaborative filtering algorithms cannot be
used until a sufficient amount of user data is obtained.

The aforementioned studies focused on the selec-
tion of a single cloud service; multi-cloud and hy-
brid cloud environments, which have been discussed
recently, were not considered. Service selection
using QoS is the most commonly used method in
the service selection and cloud fields, utilizing the
MCDM algorithm [22, 29, 30]. In addition, the
cloud computing service selection comparative
study presented by Sirohi [31] et al. classifies
MCDM and optimization, trust [32], and incentive
based service selection techniques as cloud service
selection research types. In this study, MCDM was
analyzed as the most widely used technique.

443Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

Martino et al. [33] proposed a semantic expression
method for representing cloud patterns in machine-
readable form and proposed an approach to support
application development in a multi-cloud environment.
In this study, they defined a set of cloud services as a
cloud pattern and a set of cloud patterns as an applica-
tion pattern and aimed to deal with these patterns using
semantic technology. They classified cloud patterns into
two types: vendor-dependent and agnostic. The vendor-
dependent cloud pattern, as the name implies, is a cloud
vendor-dependent pattern, such as a pattern composed
of AWS or Azure services. In contrast, the agnostic
cloud pattern is defined independently of the cloud
vendor. Additionally, according to the defined semantic
model, the semantic web rule language and SPARQL
(SPARQL protocol and RDF query language) [34] are
used to identify and search for patterns and services.
Hence, it is possible to express and search the combina-
tion service for the hybrid cloud, but the point of
selecting the service is not revealed.

Liu et al. [35] proposed a method employing a social
learning optimization (SLO) algorithm to select a com-
bination of cloud services. The SLO is an evolutionary
algorithm [36] that imitates a human social learning
process. After the fitness is calculated using the QoS
of the candidate services, a combination of cloud ser-
vices is selected using variation and intersection tech-
niques such as evolutionary algorithms, and the learning
and observation learning mechanisms added in the SLO
are simulated. However, because only the QoS was
considered as an attribute of the cloud service in this
study, and the semantic part, such as the type and
purpose of the cloud service, was not considered, it
was difficult to combine different types of services
considering the respective roles.

2.2 Cloud Service Integration

The cross-platform cloud API provides a higher level of
abstraction than the cloud API provided by the cloud
provider and allows unified API calls to leverage the
resources of one or more cloud services. This reduces
the complexity of the code within the script and reduces
the development costs by eliminating the need to imple-
ment access to a variety of cloud services.

Apache Libcloud [37] is one of the representative
cross-platform cloud APIs. It is a library of cloud ser-
vices in various service categories and their APIs are
written in Python. Developers can easily use Libcloud to

develop products that support a variety of services.
Libcloud acquires the driver of the corresponding cloud
provider and performs the work of the corresponding
cloud service, such as compute or storage, through the
API. It offers service categories such as compute, block
storage, object storage, CDN (content delivery net-
work), load balancer, and DNS (domain name system),
and other services are provided for each category. Ad-
ditionally, various methods are supported for each ser-
vice. In this study, we created an integration script with
executable code through an integration script generation
model built using Libcloud.

Apache jclouds [38] is a Java-based open-source API
library that facilitates the development of a common
API for making Apache’s cloud services compatible
with each other. Jclouds provides a framework for
accessing each cloud service and provides a common
set of APIs available through drivers that are provided
for each service. Jclouds supports service categories
such as compute, blobstore, and load balancer, and
supports fewer service categories and cloud services
than Libcloud.

Deltacloud [39] is an open-source project for the
interoperability of public and private clouds. The most
important goal is to integrate the public and the private
clouds and manage them with the same interface.
Deltacloud is available through a REST API and can
be used with libraries written in various languages.
However, the project was suspended on July 20, 2015.

Grozev et al. [18] proposed four types of inter-cloud
and multi-cloud coupling schemes: centralized and
peer-to-peer coupling structures, and coupling structures
using a multi-cloud service and a multi-cloud library. In
this study, a hybrid combination of the CSB of the
hybrid cloud service adopts a combination structure
using the multi-cloud library, which provides APIs of
various cloud services as a library.

Markoska et al. [19] proposed a method for develop-
ing interoperable cloud services using software design
patterns. Their method employs an adapter interface that
can simplify the cloud service development process by
integrating APIs of OpenStack [40] and Eucalyptus,
which are heterogeneous clouds. The adapter class al-
lows users to configure scripts on a function-by-function
basis using OpenStack and Eucalyptus cloud services.
However, this study considered only these two cloud
services and only a few compute-related functions.

Meireles [20] presented a cloud resource integration
management architecture using Deltacloud, which is

444 J. Park et al.

one of the multi-cloud libraries. Users can invoke the
architecture in a REST fashion or through an interface
and use the OpenNebula, OpenStack, CloudStack, and
LunaCloud APIs within the architecture through
Deltacloud. However, Deltacloud has been a deprecated
project since 2015, and the architecture presented in that
paper supports only private clouds such as OpenStack.

Silva et al. [41] proposed a service delivery cloud
platform in which applications can interoperate with
different cloud services through a common API and a
standardized interface. The proposed platform separates
APIs of various cloud services into a unique abstraction
and a normalized interface for the supported cloud ser-
vice. However, this platform cannot support all of the
various unique APIs of the cloud service, because it
provides a common abstraction of the API of the cloud
service.

Related works [18–20, 41] have not provided a meth-
od for creating new functions by combining methods or
scripts. They suggest techniques for controlling various
cloud services through a method that is commonly
abstracted.

2.3 Multi-Cloud Supporting Tools

AWS offers VMWare Cloud on AWS, which can be
scaled to seamlessly migrate a specific cloud environ-
ment, i.e., a VMware VSphere-based environment, to
the AWS cloud. Additionally, the AWS Outpost service
provides a hybrid cloud solution that virtually brings
AWS operational models to on-premise facilities [42].

Microsoft Azure provides API Service, Logic Apps,
a Service Bus [43], and an Event Grid as integration
services. API Service allows APIs to be published and
managed. This API service [43, 44] makes software
services accessible to other software, and the services
may run in the cloud or on-premise. The Service Bus
allows secure communication between hybrid cloud
solutions and allows a variety of apps to be accessed
through a single connection. Logic Apps support or-
chestration of business processes and workflows. The
Event Grid allows events to be raised and forwarded.

Google offers technology to support Anthos and
hybrid connections [45–47]. Anthos is a platform for
building and managing modern hybrid applications on
existing on-premise devices or public clouds [46]. Con-
nectivity products [47] that support hybrid connectivity
include Cloud Interconnect, Cloud VPN (virtual private
network), and peering. Cloud Interconnect provides

enterprise-class connectivity to Google virtual private
cloud (VPC). Cloud VPN allows an on-premise or other
public cloud network to be securely connected to a GCP
(Google Cloud platform) VPC via IPSec VPN over the
Internet when a data bandwidth of 3.0 Gbps is needed.
Google and Google Cloud features can be accessed
through a peering VPN or the Internet.

As suggested in related works [42–47], there are tools
for linking a public cloud with existing on-premise
systems. However, to understand these technologies,
users must analyze the services of the vendor, and it is
not easy to apply the services without the help of a cloud
vendor expert. Additionally, it is difficult to construct a
hybrid environment through a combination of various
types of services provided by each vendor.

Terraform [48] is an open-source infrastructure-as-
code software developed by HashiCorp. It allows devel-
opers to define and deploy data center infrastructure
using the high-level configuration language called
HashiCorp used in Terraform or JSON. Terraform fo-
cuses on the deployment of the infrastructure and only
has a command-line interface [49]. In contrast, the inte-
gration script proposed in this paper can flexibly define
the customized function by selecting the functions pro-
vided by the cloud service in the hybrid cloud environ-
ment composed of the recommended patterns. In creat-
ing a script, it is convenient to generate a script with an
XML structure by choosing a method selected by the
user using a graphical user interface and a connection
relationship (e.g., sequence, fork and join) between
methods. When a new cloud vendor is created and a
corresponding new cloud service is created, it can be
easily applied by additionally mapping service catego-
ries and new service and vendor information to refer-
ence patterns and CDPs managed as resources in the
hybrid CSB. For generating the integration script, the
integration script generation model with the design pat-
tern is employed, as shown in Fig. 6. Therefore, when a
new cloud vendor opens and provides a service API, as
shown in Fig. 6, it has the scalability to create and
support a vendor-specific ServiceDriver in the same
structure as the currently supported Libcloud-based con-
nected structure.

Caballer et al. [50] presented a mechanism called the
INDIGO-DataCloud [51] Project to orchestrate comput-
ing resources across a heterogeneous cloud. In this
study, they used the description language TOSCA,
which is a standard designed specifically to model
cloud-based application architectures [52, 53]. In

445Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

contrast, in our study, the model employed for cloud
service selection is defined using the unified modeling
language [54–56]. The pattern of the defined model is
represented in the form of nodes and edges, and the
internal structure is transformed and managed in XML.
In the case of using TOSCA, tools such as TOSCA
Parser, Heat Translator, etc. to interpret and process
TOSCA should be linked and employed [57]. Our pro-
posed method creates a combined script that defines the
function by connecting the necessary methods to create
the supported hybrid cloud function after the hybrid
cloud combining structure is selected. Additionally, the
integration script generates Python code that is directly
mapped to the component-defined APIs of each existing
cloud vendor service.

Kovács et al. [49] presented Occopus, which is an
open-source cloud orchestration and management
framework for heterogeneous multi-cloud platforms.
This framework uses two types of design patterns—
abstract factory and strategy—to implement the pro-
posed architecture model. Additionally, it defines the
description language to specify a virtual infrastructure.
We also used a design pattern to generate integration
scripts. However, Occopus does not consider the com-
bination of methods or the selection of abstract patterns
according to the user’s business goal.

3 Selection and Integration Process in Hybrid CSB

3.1 Hybrid CSB

The CSB is a concept or service that is responsible for
brokering cloud service selections, contracts, and usage
between cloud service providers and users [1]. Howev-
er, existing CSBs are mainly focused on brokering pub-
lic clouds. We previously proposed Virtual Cloud Bank
(VCB), which is an architecture model for a CSB [10].
Many companies want to adopt a hybrid cloud; howev-
er, considering the current situation of hybrid cloud
deployment and the complexity of the hybrid cloud
environment, the CSB must support the establishment
and operation of a hybrid cloud environment. We refer
to this as a hybrid CSB, which is an expansion of the
concept of our proposed VCB [10]. In our previous
study [8], we presented the requirements and conceptual
architecture of this hybrid CSB, which are shown in
Fig. 1. The functional requirements for supporting

hybrid cloud environments are classified into interme-
diation, management, and optimization.

Intermediation is performed in the service intermedi-
ation layer, which includes the ability to recommend
public clouds, combine private and public clouds, and
support migration and scheduling in a combined envi-
ronment. Management is required to operate a hybrid
CSB. It includes a function to manage resources, con-
tracts, and policies, which are components of a hybrid
CSB, and is a layer of operation support. Optimization is
part of the evolution management layer, with features to
improve the quality of hybrid cloud environments built
with hybrid CSBs. It detects errors or performance
issues in the cloud environment through monitoring
and performs service evaluation and architecture im-
provement through feedback.

In this study, among the functions of the hybrid CSB,
we focused on service selection and integration. There-
fore, among the various modules shown in Fig. 1, the
service selection and service integration modules are
described in detail. The service selection module rec-
ommends the appropriate integration pattern and public
cloud service considering the private cloud environment
and requirements. The service integration module inte-
grates multiple cloud services constituting the hybrid
cloud environment to be built after the contract is con-
cluded through an integration script.

Section 3.2 describes the service selection and ser-
vice integration modules. In Sections 4 and 5, we de-
scribe the methods used for service selection and inte-
gration within the modules and present experimental
results.

3.2 Selection and Integration Processes

In this section, we first present the interaction and over-
all process of each module of the hybrid CSB used for
service selection and integration. If a user accesses a
hybrid CSB, receives a service selection, which is a
basic scenario from combining selected services to
building a hybrid cloud environment; the functions of
the modules shown in Fig. 2 are used.

The operation of each module is as follows.

& Registration: The user enters the requirements
through the registration module to select and merge
the cloud services.

& Resource management: The input requirements
from the registration module are stored, along with

446 J. Park et al.

the specification of the service received from the
cloud service provider. Additionally, the require-
ments and service information, such as evaluations,
requirement analysis, and service analysis, are de-
livered to other modules.

& Requirement analysis: The user requirements are
analyzed and reworked into a form that can be used
for service selection and combination.

& Service analysis: The specifications of the service
are analyzed, the service selection is scored accord-
ing to analyzed service specification, and the infor-
mation necessary for the combination is
reprocessed.

& Service selection: Information regarding require-
ments is received from the requirement analysis
module, and the service description is received from
the service analysis module. The selection result is
output through the service selection mechanism.

& Service integration: The combination service selec-
tion result is received, and the integration script is
generated using APIs of the corresponding services.

The detailed operation process of the service selec-
tion and integration modules is shown in Fig. 3. A brief
description of each step in the process is presented
below, and additional details are provided in Sections 4.

3.2.1 Patten-Based Cloud Service Selection

& Select pattern: Selects a pattern for a service combi-
nation based on the purpose for which the user
wants to build a cloud environment. Details are
presented in Section 4.1.1.

& Modify pattern: Adds or deletes the components of a
pattern according to functional requirements entered
by the user. Details are presented in Section 4.1.2.

& Bind existing service: Adds the cloud service that
the user already has to the pattern. Details are pre-
sented in Section 4.1.3.

& Select service: Completes the service combination
by selecting and adding a new public cloud service
to the pattern. Details are presented in Section 4.1.4.

3.2.2 Cloud Service Integration

& Decide script elements: Determine the components
of the integration script, including services,
methods, and parameters to be controlled by the
integration script. Details are presented in
Section 4.2.1.

& Generate integration script: Generates an integration
script that can perform the functions of a user’s

Fig. 1 Conceptual architecture of the hybrid csb that reflects requirements

447Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

desired hybrid cloud. Details are presented in
Section 4.2.2.

3.3 Basic Concept and Model for Pattern-Based Cloud
Service Selection

We constructed the model shown in Fig. 4 by summa-
rizing the elements that should be defined for selecting
the pattern-based cloud service. The model was divided
into two parts: one that specifies requirements and other
that specifies patterns. The details are as follows.

3.3.1 Requirements

& Business requirement: This section covers the user’s
requirements for building a cloud environment in
which the hybrid CSB receives input. It includes
information regarding what type of system is re-
quired to be built through the cloud (target system)
and the maximum budget for building the cloud
environment (maximum budget). Additional quality
constraints and functional requirements may also be
included. Furthermore, QoS priorities to be applied
in service selection can be input, which are convert-
ed into a weight value in the service selection
algorithm.

& Quality constraints: Users can enter quality con-
straints to be applied when a service is selected. This
is the minimum condition that should be satisfied for
quality. For example, there may be a requirement

that an availability of ≥99.9% is required for a
particular type of service, and this is reflected in
the service selection phase.

& Functional requirements: Users can enter require-
ments for functional characteristics of the cloud
environment. To satisfy these requirements, it is
often necessary to use additional cloud services.
For example, to add the ability to dynamically in-
crease or decrease the number of servers according
to the amount of traffic, an autoscaling service [58]
should be used. When a user enters a functional
requirement, a corresponding CDP containing a so-
lution to satisfy the corresponding requirement is
found and applied.

3.3.2 Pattern

& Integration pattern: We define the concept of a com-
bining pattern (hereinafter referred to as “pattern”)
to represent a combination service. A pattern is a
framework required for a service combination,
consisting of a node and an edge. A node is an
abstraction of a cloud service and contains informa-
tion about a service type, but not a specific service.
A node may be bound to an actual cloud service of
the same type as the service about which it contains
information. An edge represents a connection rela-
tionship between nodes, through which interactions
can bemade. A pattern comprises one ormore nodes
connected, and the binding of actual services to each

Fig. 2 Module interaction and related resources for usage scenario of hybrid CSB

448 J. Park et al.

node constituting the pattern is a combination ser-
vice for a hybrid cloud, as shown in Fig. 5. Addi-
tionally, when each vendor’s cloud service corre-
sponding to the recommended node type is bound,
information such as the average cost of using the
individual cloud service or the measurement cost of
moving data can be specified in the additional infor-
mation attribute part of the class called “Integration
Pattern,” as shown in Fig. 4.

& Reference pattern: The reference pattern (or ref-
erence architecture) defines a set of commonly
used services depending on the type of cloud
system to be built. AWS, Azure, and IBM pro-
vide such reference patterns [11–13]. However,
the reference patterns that they provide are
vendor-dependent and use their services. In con-
trast, the technique presented in this study is for a
hybrid cloud environment and is multi-vendor.
Therefore, each service constituting the reference
pattern is abstracted and stored in the node.

& CDPs: Summarize the solutions that are available
for common issues that often arise when building a
cloud environment. Here, the solution is generally
presented as a combination of services similar to a
reference pattern or as additional settings for a par-
ticular service. There are vendor-dependent CDPs,
such as AWS and Azure [14, 15], and generic CDPs
that are independent of vendors, such as those re-
ported in [59, 60]. As in the case of the reference
pattern, the vendor-dependent CDP is abstracted and
stored as a combination of nodes.

& Master/slave service: There is a service dependency
that should be considered when combining cloud
services. Although there is no problem in
connecting at the service-type level, there may be
cases where the actual service is not technically
connected if it is a service of a different vendor when
the service is bound. For example, AWS’s
autoscaling service is designed for EC2 [61], which
is the compute service of AWS, and cannot be
combined with compute services of other vendors.
Therefore, when binding a service to a pattern, this

Fig. 3 Process for service
selection and integration

Fig. 4 Model for pattern-based cloud service selection using uml(unified modeling language)

449Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

service dependency should be considered. To deal
with this, the service is classified as a “master ser-
vice” or a “slave service.” A master service can be
independently selected because it can perform func-
tions or roles independently, and a slave service
must be used with other specific services.

3.4 Basic Concept and Model for Cloud Service
Integration

3.4.1 Definition of Integration Script and Template

In a hybrid CSB, cloud combining is performed when
the services that compose the hybrid cloud and their
relationship are determined through the selection func-
tion. In a hybrid CSB, cloud binding is script-based. An
integration script implements the functionality provided
by a user’s hybrid cloud built with a hybrid CSB. Cloud
combining generates integration scripts that satisfy the
user’s requirements for a hybrid cloud service. Figure 6
shows the components of an integration script and the
templates. As shown in Fig. 6, the structure of the
integration script is composed of method, parameter,
service endpoint, and authentication information.

“Method” is a function desired by the user of the
hybrid cloud service, and the integration script can have
several methods. Method basically supports the
Libcloud method, and the methods supported by differ-
ent cloud services may differ. “Parameter” refers to the
data instance to be used in the method. “Service End-
point” is the endpoint of each cloud service, and the
authentication information is the API key, token, etc.
required to access the cloud service. The Service End-
point and Authentication Information can be acquired
through user input or through a method.

As shown on the right side of Fig. 6, the integration
script has representation templates called Method,
Script, and Script_Topology (Topology). An integration
script can have two or more methods in a single script
and can consist of a topology composed of multiple
scripts.

The Method template in Fig. 6 shows the function of
each cloud service in the hybrid CSB. Here, “id” and
“name” are the attributes for managing the method in the
hybrid CSB, and “service_name” indicates the function
of the service. The method consists of two types, as
shown in Fig. 6. Type 1 is the type of result of the
method that affects the service or service resources, such
as “create,” “delete,” “update,” and “upload” parame-
ters. Type 2 obtains the result of a method through a
script, such as “read,” “obtain,” or “download”
parameters.

The method type eases the selection of a method by
allowing the user to select the method before the script
element determination process. The input and output of
a method refer to its input and output parameters and
may have more than two items. A precondition is a
condition that a method assumes to be performed nor-
mally, and a postcondition is an attribute described in
order to grasp the result of a method execution. Two or
more situations can be defined in the precondition and
postcondition.

Figure 7 shows examples of templates, in accordance
with Fig. 6. The left side of Fig. 7 shows the
object_download() method template of S3, which is
the object storage service of AWS. The hybrid CSB
stores Method, Script, and Script_Topology in XML
form. As shown in Fig. 7, the script template consists
of one or more methods. It has its own id and name, and
it refers to numerous methods. It also has a method
composition structure. The upper right side of Fig. 7
shows a sc r ip t t empla t e composed of the
object_download() method of S3. Script templates are
stored as XML-like resources and then converted into
executable integration scripts. In the hybrid CSB, the
topology consisting of a combination of scripts has
attributes of the Script_Topology template. Script has a
script composition structure. The lower right of Fig. 7
shows a move_object() topology template that com-
bines the object_download() script in S3 and the
object_upload() script in Swift.

Thus, a script and a topology can be generated by a
combination of methods and scripts, respectively. The
composition structures of the script and topology (each

Fig. 5 Structure and representation example of a pattern

450 J. Park et al.

denoted as method_composition_structure and
script_composition_structure, as shown in Fig. 6) are
explained in sequence. Script and topology templates
are converted into executable Python scripts to realize
real-world functionalities.

3.4.2 Integration Script Configuration Structure

As shown in Fig. 8, there are four types of configuration
structures that can be combined when a method or script
is combined in an integrated script combination struc-
ture: sequence, loop, choice and merge, and fork and
join. Sequence is a structure in which a method or a
script is sequentially executed, as shown in Fig. 8.

In the sequence structure, a link that connects a
method or a script is required. The sequence example
shown in Fig. 8 is a function to download an object from
S3, which is an object storage cloud service; move the
object to Swift; and reboot the node of EC2, which is a
computing service of AWS. When creating such a func-
tion, we connect each method through a link.

A loop is a structure in which a method or script
within a loop range is repeatedly executed according to a
condition, a period, and a count. The condition is the

output of the method or script included in the loop.
Among the condition, period, and frequency, at least
one should be expressed in the loop structure. The loop
in Fig. 8 shows an example of repeatedly executing the
object list of the container with a period of 3 s and a
count of 3 in OpenStack Swift, where the service cate-
gory is object storage.

Choice and merge are structures that represent selec-
tive branches, and they have different paths depending
on the conditions. The path is selected according to the
condition through the choice, and it becomes one path
through merge, as necessary. Choice and merge are
expressed through a link and a condition, and the con-
dition is the output of the preceding method in which the
branch occurs. As shown in an example of choice and
merge in Fig. 8, if attach_volume’s output is true, the
virtual machine node is deployed, and if it is false, the
node is rebooted. Finally, we run list_nodes() to exam-
ine the state of the node.

Fork and join is an element that supports multiple
operations of a method or a script. It separates each
method or script operation through a fork and merges
the result through a join after the separated operation is
completed. The fork and join structure is represented by

Fig. 6 Structure of integration script, templates, and method type

451Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

a link. When two or more start and end elements are
present in a link, they represent a fork or join, as shown
in an example of the fork and join structure in Fig. 8. In
the compute service EC2, generating a node, creating a
virtual machine, and generating a volume are performed
(fork), and a method of attaching the created volume to
the generated node is executed after all the operations
are completed.

The integration script can implement new functions
by combining various methods and scripts through se-
quence, loop, choice and merge, and fork and join.

3.4.3 Combination Structure of Integration Script

The integration script features a method unit combina-
tion structure in which numerous methods are combined
into one script, as well as a script unit combination
structure in which topologies are formed by combining
multiple scripts.

In the method unit combination structure, an integra-
tion script is composed of a combination of methods.
The left side of Fig. 9 shows an example of a structure
that combines functions in a method unit. Here,
OpenStack Swift and AWS S3, which are cloud object
storage services, are used. The figure corresponds to a
function to download object A from OpenStack Swift
and move object A from OpenStack Swift to AWS S3
by uploading object A downloaded to AWS S3.

The function in Fig. 9 receives a token to access
OpenStack Swift through OpenStack Swift’s getToken()
method and downloads object A from Swift using the
token and download_object() method. Next, it obtains
the API key of AWS S3 and uploads object A using the
API key and upload_object() method. In the method
unit combination structure, as shown in the figure, nu-
merous methods are combined into one integration
script.

The right side of Fig. 9 shows the structure of the
script unit combination, where one integration script is

Fig. 7 Method, script, and topology template representation example

Fig. 8 Four types of script configuration structures

452 J. Park et al.

composed of a combination of different integration
scripts. The functions shown in the figure are the same
as those described in the method unit combination
structure.

The methods in the method unit combination struc-
ture are implemented as one integration script, and the
actual function is implemented as a combination of
scripts.

4 Pattern-Based Cloud Service Selection and Cloud
Integration

4.1 Process and Method for Pattern-Based Cloud
Service Selection

We propose a method and a process for selecting a
combination of cloud services according to a pattern
using the model presented in Section 3.3. The proposed
process is shown in Fig. 10.

As shown in Fig. 10, the hybrid CSB receives the
business requirements, as shown in Fig. 4, from a user
who wants to receive a combination service through the
registration module. The input business requirements
consist of the target system, budget, QoS importance,
functional requirements, and quality constraints, as de-
scribed in the model in Section 3.3, which are processed
through the requirement analysis module and used at
different stages of the selection process. Additionally,
the registration module provides an interface for enter-
ing and selecting business-requirement elements. In this
study, for constructing the hybrid CSB based on the
proposed selection process, the XML format is used to
process data internally, but format can be extended to
define and convert to the TOSCA format, JSON struc-
ture, etc.

The selection process consists of four steps: select
pattern, modify pattern, bind existing service, and select
new service. Details of each step are presented in Sec-
tions 4.1.1–4.1.4.When the selection process of step 4 is

Fig. 9 Example of method unit and script unit combinations

Fig. 10 Selection process and interaction in service selection module

453Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

completed and the combination service is selected, the
service selection module transmits information regard-
ing the combination service to the service integration
module, which uses this information to create a connec-
tion script (integration script) to allow connections be-
tween the selected services.

4.1.1 Select Pattern in C-SIP

In the first part of the pattern selection phase, we refer to
the reference pattern provided by cloud service vendors
and select a pattern that matches the user’s purpose. A
reference architecture is a collection of commonly used
services for building a cloud environment for a specific
purpose. As shown in Fig. 10, the reference pattern and
CDPs are internally stored as resources. Additionally, a
recommendation rule that relates the user’s purpose and
suitable patterns is defined. In the pattern selection step,
a user inputs the type of system to be constructed ac-
cording to the purpose, that is, a cloud, and selects a
pattern in which the reference architecture is abstracted.
Pattern selection is a rule-based one-to-one correspon-
dence method, and a rule is defined according to infor-
mation provided by each cloud service vendor.

For example, if a user wants to deploy a cloud to
build a service that distributes content or media, such as
a video-streaming service, the user can select the

“content and media serving” pattern among the AWS
reference patterns [62]. Figure 11 shows an example.
However, the AWS reference pattern is a combination of
AWS services: Route 53, S3, CloudFront, and EC2.
Table 1 presents an example of the mapping of AWS
services to generalized service categories. Therefore, as
shown in Fig. 11, a combination of nodes, i.e., a gener-
alized pattern, is selected.

Table 2 presents a mapping example for the same
types of services provided by different cloud vendors:
OpenStack, AWS, Google Cloud, and MS Azure. In the
phase called “select new service in C-SIP,” the service
binding to the pattern is performed according to the
selected vendor service using the information in
Table 2, which is stored in reference patterns/CDP re-
sources, as shown in Fig. 10.

4.1.2 Modify Pattern in C-SIP

In the second step, i.e., the pattern correction step, the
patterns selected in the pattern selection step can be
customized according to the user’s additional
requirements.

Whenmodifying the pattern, we refer to the CDP. For
each additional requirement that the user chooses, a
CDP that can be employed to satisfy the requirement
is used. When the user selects a requirement, the CDP
corresponding to the pattern is compared with the pat-
tern selected in the pattern selection step. If there is a
node that exists in the CDP but does not exist in the
selected pattern, this node is added and is connected to
the combinable node.

The requirements satisfied by the components of the
pattern that were selected in the pattern selection step are
checked by default; the user can opt for deleting the
service from the pattern to eliminate the check to satisfy
the requirement. This is because the reference architec-
ture may contain a mix of unwanted services, or the user
may not want to use many services, owing to a lack of
budget.

An example of pattern modification is presented as
follows. The user decides to employ the AWS content
and media serving pattern, as shown in Fig. 12(a). Users
want cloud servers to be flexible with regard to traffic
volume, it means, they want the number of virtual
machines to be automatically adjusted when large and
small amounts of traffic comes in. However, the combi-
nation of the currently selected nodes cannot be used to
implement this function. A CDP that satisfies these

Fig. 11 Pattern selection example for content and media serving

Table 1 Mapping example of AWS services and generalized
service categories

Generalized service category AWS service

DNS Amazon Route 53

CDN Amazon CloudFront

Compute Amazon EC2

Object Storage Amazon S3

Load Balancing Elastic Load Balancing

Autoscaling Autoscaling

RDB Amazon RDS

454 J. Park et al.

requirements is the scale-out pattern, which is one of the
AWS CDPs [14]. The AWS scale-out pattern consists of
EC2, CloudWatch, Autoscaling, and AMI. Figure 12(b)
shows the scale-out pattern. Here, nodes that are present
in this pattern but not in the currently selected pattern are
indicated by dotted lines.

4.1.3 Bind Existing Service in C-SIP

If a pattern is selected through the procedures in Sec-
tions 4.1.1 and 4.1.2, there remains a process of binding
the actual service to each node constituting the pattern.
Users may wish to introduce a new cloud without
existing infrastructure, but they may want to build a
hybrid cloud or a multi-cloud environment by combin-
ing their existing private or public clouds with new
public cloud services.

In the existing service binding stage, information
regarding the existing infrastructure is input to these

users, and the corresponding service is bound to the
appropriate node of the pattern. If there is no existing
user infrastructure and a new service is selected at all
nodes, this step is omitted. In the service binding step,
information regarding the cloud service that is already
held is input. The input information is presented in
Table 3. This information is used to combine the ser-
vices in the service integration module after the service
selection is completed, as described in Section 4.2.

4.1.4 Select New Service in C-SIP

In the service selection phase, which is the last step, the
service selects a new cloud service to be bound to the
remaining nodes to which the service was not bound in
the service binding step, described in Section 4.1.3.

In the service selection method, the service score is
calculated to reflect both the objective and subjective
evaluation factors of the service. This process is per-
formed in the evaluation module of the hybrid CSB
module, as shown in Fig. 10, and the service selection
module receives the final calculated service score.

The objective evaluation method is to score the QoS

Table 2 Mapping example of vendor services and generalized service categories

Generalized service category OpenStack AWS Google cloud MS azure

Compute Nova EC2 Compute Engine Virtual machine

Container Magnum (optional) ECS Container Engine Azure Container
Service & Registry

Object Storage Swift S3 Storage Azure storage

RDB Trove (optional) RDS SQL SQL Database

Monitoring Horizon CloudWatch StackDriver Azure Portal

Networking Neutron VPC Networking (Cloud Virtual Network) Virtual Network

Fig. 12 Pattern modification example applying the scale-out
pattern

Table 3 Required information for binding service

Information Description

Service name Name of service

Service type Type of service (e.g., compute, storage, load
balancing)

Endpoint URL to access the service

Authentication
information

Authentication information required to
access the service. Depending on the
service, the authentication information
may have different names, e.g., “access
key,” “secret key,” or “token,” and there
may be one or two pairs of keys.

455Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

of the cloud service. Various types of QoS can be used
as evaluation criteria. In this study, the QoS is scored
using a simple additive weighting (SAW) MCDM algo-
rithm [29].

Thus, the score and the weight of each criterion are
calculated and added. However, the scale and distribu-
tion of the numerical values differ according to the type
of QoS, and the QoS value cannot be directly used in
SAW. Therefore, we need a method to standardize the
score. In this study, we propose the standard and per-
centile scores.

The standard scores ease the expression of compara-
tive advantages over other services. We use the T-score
system with an average of 100 and a standard deviation
of 20. Thus, if the availability of all services belonging
to the same type of service A is 99.5%, the T-score of the
availability of service A is 100 points. If the weight
value for availability determined according to the re-
quirements entered by the user is 0.25, 25 points (100
points multiplied by 0.25) is the availability score of
service A.

However, when the standard score is used, it is nec-
essary to assume that the evaluation value is a normal
distribution. If the distribution of the QoS is far from the
normal distribution, the discrimination power of the
standard score may deteriorate. In this case, instead of
the standard score, we use the percentile score [63].

In summary, we propose a method to use the follow-
ing scores in SAW according to QoS metric
characteristics:

– If the distribution of QoS values is close to the
normal distribution, we use the standard score;

– If the distribution of QoS values is far from the
normal distribution, we use the percentile score;

– If the current distribution of values is unknown, we
use the standard score + percentile score.

The subjective evaluation method reflects the user
feedback. The score is calculated by summing the re-
sults of applying sentiment analysis to the rating and
reviewing the text entered by the user for each service.

The most common method to provide feedback is by
entering a rating and a review (text). In the rating eval-
uation, the method of using a score ranging from 1 to 5
(or 1 to 10) is the most widely used in various evaluation
systems, e.g., for shopping malls and movie review
sites, and is the simplest way to reflect user feedback.

We propose a method of rating user feedback by
applying sentiment analysis to review text with a rating.
This allows us to identify the well-graded and weighted
reviews to some extent, and we can increase the preci-
sion if we give precise corrections using the sentiment
score/polarity score. Figure 13 shows an example of a
cloud service review and sentiment analysis. The user
ratings are all the same (5 points), but reviews that
include Excellent twice, Powerful, Elegant, and Fun
yield a slightly higher score. The user rating starts with
user input to the hybrid CSB in the form of review text.
As an algorithm for sentiment analysis, Valence Aware
Dictionary for Sentiment Reasoning (VADER) [64]—a
sentiment-analysis tool in the Python NTK library—
was used. In VADER, the sentiment score is calculated
in the range of −1 to +1.

Each service has a score that corresponds to the sum of
the two aforementioned evaluation scores. Finally, on the
basis of the service score, the service selection result is
calculated according to the service dependency and the
vendor. In the example, a pattern consisting of two objects
(public and private), compute, and load balancing is select-
ed, and the OpenStack Swift (private cloud storage) owned
by the user is bound to the private object storage node.

The process of calculating the combination service
selection result for the example shown in Fig. 14 is
described below.

-Basic selection method: This is the most basic method
to independently select the service with the highest score
among the candidate services for each node and select a
combination of selected services. In this case, the selected
services are B storage, A compute, and B load balancing.

-Consideration of service dependencies: As de-
scribed in Section 4, there are service-dependency issues
that may hinder the combination of services. For exam-
ple, suppose that the load-balancing service of company

Fig. 13 Sentiment-analysis
example

456 J. Park et al.

B is designed only for company B’s computing service.
Therefore, it is not possible to select the load balancing
of compute B from company A as above; thus, it should
be selected and recommend to be bundled with the load
balancing of compute A from company A or load
balancing of compute B from company B.

-One-vendor selection: There is a form to uniformly
select vendors of all services to bind to the pattern. The
following is a method of collecting the scores of the same
vendors, calculating the score for each vendor, and selecting
the combination of their serviceswith the highest total score.
For example, storage, compute, and load-balancing services
of company B are selected. With one-vendor selection, the
aforementioned service dependency problem does not ap-
ply, and the service of the same vendor is generally con-
nected to a leased line, which is advantageouswith regard to
network latency. Additionally, to use the service, only the
method of using the service for one vendor needs to be
learned, and the burden of operation can be reduced by
facilitating the deployment and cost management. However,
there is increased dependency on the vendor, as well as
disadvantages with regard to availability and disaster recov-
ery, and the total price can be higher than that in the case of
multiple-vendor services [65].

– Company A: Storage 138 points + Compute 148
points + Load Balancing 115 points = 401 points.

– Company B: Storage 145 points + Compute 145
points + Load Balancing 120 points = 410 points.

– Company C: Storage 137 points + Compute 138
points + Load Balancing 111 points = 386 points.

Review of quality constraints: Users can enter quality
constraints for a certain type of service, and services that
do not satisfy them are excluded from the selection. For
example, suppose that in the example in Fig. 10, the user
inputs the requirement “Object storage service must
guarantee a response time of 500 ms or less.” At this
time, if the response time of B storage is 600 ms and the
response time value of A storage is 490 ms, B storage is
excluded from the selection although the service score
of B storage is high.

Considering the maximum budget: If we enter a
constraint on the maximum budget, we should select
the service so that the sum of the scores is the maximum
within the range satisfying the constraint. In the example
in Fig. 14, the total price of the currently selected ser-
vices is $250. If the user has entered $240 as the max-
imum budget, the service combination with the highest
score among the possible combinations of $240 should
be output. In the example, we can use company A’s
instead of company B’s load balancing (because com-
pany A’s load balancing is $10 less expensive than
company B’s load balancing).

4.2 Process and Method for Cloud Service Integration

This section describes the services that compose
the hybrid cloud in a hybrid CSB and how to
combine clouds with scripting, which is performed
when the relationship is determined by the selec-
tion functionality.

Fig. 14 Selected pattern and
calculated score example for each
candidate service

457Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

4.2.1 Deciding Script Element in C-SIP

The “decide script element” step in Fig. 3 follows the
process shown in Fig. 15. In the hybrid CSB, the user
can generate the integration script that went through the
script element decision process in Fig. 15. The first
step— “select service”—determines the service catego-
ry and the corresponding service in the category. Next,
the method type is selected as one of the two types
shown in Fig. 6, in section 3.4. In the next step, the
method is output according to the method type, and the
user selects the desired method.

When two or more methods are selected, the combi-
nation of methods is determined in the method combi-
nation. If the user needs an additional method, we pro-
ceed from the select service step according to the desired
service or proceed from selecting the method type.
Script unit or method unit combinations are performed
according to the number of methods selected by the
user, and script or topology templates are created. The
generated script and topology templates are stored in the
hybrid CSB for reuse. This creates a real executable
integration script written in Python or Java. In Fig. 20

of Chapter 6, a case study, i.e., a prototype of a support
tool, is presented to validate the proposed process.

4.2.2 Generating Integration Script in C-SIP

When a script or topology template of XML type gen-
erated through the script element determination process
is created and stored in the hybrid CSB, an integration
script that can be executed is generated through an
integration script generation model.

Figure 16 shows the integration script generation
model, which is based on Apache Libcloud and soft-
ware design patterns. It generates real executable code-
level integration scripts based on script and topology
templates generated by the script element determination
process.

Table 4 presents each element of the integration script
generation model. Each element was constructed by
applying GoF design pattern [66]. Table 5 presents the
five design patterns applied to the integration script
generation model.

The integration script generation model can be used
as a basic generation model of integration script

Fig. 15 Deciding script element
process

Fig. 16 Integration script generation model using software design pattern

458 J. Park et al.

generation for building a hybrid cloud service. We can
use all the services supported by Libcloud and the
methods of these services built on Libcloud. The model
can be used for Libcloud and also various multi-cloud
library methods. Additionally, it has a structure that can
easily expand to include new categories, cloud services,
and service methods; thus, it can support various hybrid
cloud services.

The hybrid CSB supports the creation of customized
hybrid cloud services by creating scriptable element
decision processes and models to create executable
scripts.

5 Evaluation

5.1 Experiments and Evaluation for Selection

In this section, we present experiments and evaluation
results for the pattern-based service selection method
presented in this study. In Section 5.1.1, we show that

Table 4 Elements of the integration script generation model

Element Description

Integration Script It is a script generated
through an integration
script generation
model and has one or
more service instances.

<<VariationPoint> > Category A category is a variation
point where variability
occurs. It is instantiated
and bound to a variant
service. The category
is typically compute,
block storage, or object
storage.

<<Variant> > Service It is an element that is
bound to a variation
point category and acts
as a parent of a specific
service belonging to
the same category.

Specific Service It is an element of the
actual script, which is a
specific cloud service.
It executes the method
in the actual script.

Service Creator The service creator is
responsible for
creating instances of
the selected service.

Service Set The service set is an
element that has
services as
components. Services
can be added to and
removed from the set
through “add” and
“remove” methods.

<<abstract> > getCertificationStrategy It is a class that obtains a
strategy to be certified
by the cloud service.

getOneKeyFromDB It is a strategy to acquire
an already stored key
from the DB; services
using one key are used.

getTwoKeyFromDB It is a strategy to acquire a
key already stored in
the DB; services using
two keys are used.

getFromService It is a strategy to regain
the key from the cloud
service when no key is
stored or the expired
key is in the DB.

Table 5 Integration script generation model elements with design
pattern concepts

Pattern Applicable element Role

Factory
method

<<class> > Service Creator Creator

<<class> > Service Product

<<class> > Specific Service Concrete
Product

Template
method

<<method> > getService() Template
Method

<<method> > getInstance() Hook Method

<<class> > Service Abstract Class

<<class> > Specific Service Concrete
Class

Strategy <<class> > Service Context

<<class> > getCertificationStrategy Strategy

<<class> > getOneKeyFromDB Concrete
Strategy A

<<class> > getTwoKeyFromDB Concrete
Strategy B

<<class> > getKeyFromService Concrete
Strategy C

Composite <<class> > Service Component

<<class> > Service Set Composite

<<class> > Specific Service Leaf

Adapter <<class> > Service Target

<<class> > Specific Service Adapter

<<class> > ServiceDriver Adaptee

459Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

the patterns selected by the users after pattern selection
and revision are reliable via a comparison with the cloud
architecture in the AWS casebook. Next, Section 5.1.2
shows how to use the standard and percentile scores in
the SAW algorithm, among the various methods for
service selection used in the service selection process.

5.1.1 Evaluation for Pattern Selection

In this section, we evaluate the pattern selection part
(corresponding to stages 1–2 of the 4th stage service
selection process). The evaluation method is as follows.

Among the cloud use cases of 31 companies intro-
duced in the “2017 AWS Korea Customer Casebook”
[67], we used 25 cases in which the architecture (AWS

service combination) was illustrated. The “2017 AWS
Korea Customer Casebook” consists of a company in-
troduction, a challenge for each case, the reason for
choosing AWS, the architecture, and the benefits. From
the “challenge” and “reason for choosing AWS” sec-
tions, we derived the requirements of the company and
selected the pattern by applying the pattern selection
method. Then, we computed the similarity by compar-
ing the proposed pattern with the architecture of the
actual customer case. The similarity was calculated
using the following three metrics.

a. The percentage of services that are selected through
the selection techniques that constitute the architec-
ture of the actual customer case;

Table 6 Evaluation results: AWS customer cases

Case Applied Reference Pattern Applied CDP a (%) b
(%)

c
(%)

1 Web Application Scale Out 85.7 66.7 76.2

2 Web Application, Content, and Media
Serving

Monitoring Integration 46.2 75 60.6

3 e-Commerce Scale Out 60 60 60

4 Content and Media Serving Scale Out, In-Memory DB Cache, DB Replication, Cache
Distribution

53.8 77.8 65.8

5 Web Application 100 85.7 92.9

6 Web Application In-Memory DB Cache 100 75 87.5

7 Web Application Snapshot, Floating IP, Backnet, Scale Out 81.8 75 78.4

8 Online Games Scale Out, Cache Distribution 87.5 63.6 75.6

9 Online Games Scale Out, Cache Distribution 100 63.6 81.8

10 Online Games 75 37.5 51.3

11 Online Games, Log Analysis Scale Out 100 66.7 83.4

12 Online Games Queuing Chain 77.8 77.8 77.8

13 Ad Serving, Log Analysis 83.3 71.4 77.4

14 Ad Serving, Log Analysis Floating IP, In-Memory DB Cache 63.6 63.6 63.6

15 Web Application Queuing Chain, Web Storage 83.3 62.5 72.9

16 e-Commerce On-Demand Disk, Backnet 75 66.7 70.9

17 Ad Serving, Log Analysis In-Memory DB Cache, Backnet 60 60 60

18 Web Application Queuing Chain, In-Memory DB Cache 80 88.9 84.5

19 Media Sharing In-Memory DB Cache 87.5 77.8 82.7

20 Web Application Scale Out, In-Memory DB Cache 90 90 90

21 Large Scale Processing Multi-Server, In-Memory DB Cache 60 50 55

22 Web Application, Content and Media
Serving

Backnet, Storage Index 88.9 88.9 88.9

23 Web Application Backnet 62.5 62.5 62.5

24 Web Application Queuing Chain, Storage Index 66.7 44.4 55.6

25 Web Application Scale Out, Queuing Chain 100 80 90

Average 78.7 69.2 73.8

460 J. Park et al.

b. Among the services selected through the selection
techniques, the ratio of services that exist in the
architecture of the actual customer case;

c. Arithmetic mean of a and b.

The pattern was selected for all 25 cases, and the
similarity was calculated as shown in Table 6. The
average values of the accuracy metrics a, b, and c
defined for evaluating the pattern selection performance
were calculated as 78.7%, 69.2%, and 73.8%, respec-
tively. Thus, according to the metric defined in this
experiment, the proposed pattern selection method ex-
hibited an average accuracy of 73.8%.

5.1.2 Evaluation for Service Selection

The SAW score calculation method most commonly
used in related studies [29] involves calculating the ratio
of the QoS value of the corresponding service to each
QoS (maximum value – minimum value). The formula
is as follows:

rij ¼ xij
x*j
i ¼ 1;…;m; j;¼;…; n:

We conducted experiments to compare the perfor-
mance of the conventional calculation method and the
calculation method using the standard and percentile
scores proposed in this study. We created a Java pro-
gram that generates 2000 arbitrary services for the ex-
periment. A score can be calculated for all the measur-
able QoS metrics, which were described in our previous
work [10], and the QoS score of service A can be
obtained by summing all of the calculated scores. For
evaluating our approach, we selected three QoS metrics:

throughput, fault rate, and response time, as shown in
Table 7. Each service had these three QoS metrics, and
the user’s weight for each QoS was set as 1:1:1. The
scope of generation by the QoS metric was created by
referring to the data distribution of the web service QoS
dataset used in the study performed by Zheng et al. [68].
For example, according to [68], approximately 17% of
services were in the throughput range of 4–8 kbps, and
approximately 19% of services were in the throughput
range of 8–16 kbps. In each section, uniform random
quantities were generated.

In these experiments, we analyzed the characteristics
of the top-ranked services when ranking was performed
using standard scores and methods used in related stud-
ies. The main focus of the evaluation was to confirm that
the service with high average quality was stably recom-
mended to the top level. The standard deviations (stdev)
of the top 300 selected services (with regard to the total
score) calculated using the SAWweremeasured, includ-
ing their QoSmetrics. The number of cases belonging to
the highest (#best) and lowest (#worst) levels were
measured. For example, with regard to the response
time, the highest and lowest frequencies were < 0.1
and 3.2 ms, respectively. A #worst value of 10 for the
response time indicates that for the 2000 services gen-
erated, the response time exceeded 3.2 ms, but there
were 10 services ranked within the top 300 (with regard
to the total score). The “good” selection method as-
sumed in this experiment ensured that the overall QoS
was stable and that an excellent service was selected at
the top level. Therefore, it aimed to reduce the value of
#worst and increase the value of #best. The average
value was calculated by repeating the experiment five
times. The experimental results are presented in Table 7.

Table 7 Standardization comparison: using standard and percentile scores

QoS Metric Evaluation CRITERIA Conventional method [29] Using standard score Using percentile
score

Using (Standard score +
percentile score)

Throughput Stdev 44.43 22.60 37.14 34.23

#best 147.8 254.4 127.0 174.6

#worst 10.4 0.0 1.0 0.0

Fault Rate Stdev 0.027 0.01 0.002 0.003

#best 290.8 277.0 299.3 295.6

#worst 4.0 0.2 0.0 0.0

Response Time Stdev 0.648 0.260 0.161 0.173

#best 101.2 70.8 112.6 100.3

#worst 22.2 0.0 0.33 0.0

461Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

In the case of the method used in a previous related
study [29], it was often found that the best quality
appears at the top of the selection result if the QoS
values are significantly lower than other QoS values
(#worst). However, when the standard score was used,
it was rarely found that only one QoS was selected
within the 300th rank of the lowest class level. The
standard deviations of the top 300 services (with regard
to the QoS) were also lower when the standard scores
were used. Thus, when the standard scores were used,
all the QoS values were stable, and the stable services
were concentrated at the top of the selection results.

However, the #best values for the fault rate and
response time were lower than those for the standard
score. In the data used in this experiment, the distribu-
tion of the fault rate was significantly shifted to one side,
and the response time was close to the normal distribu-
tion. However, the scale of the value was smaller than
the throughput. In this case, it was judged that it would
be more effective to use the percentile score. Table 7
presents the results of using the percentile score and
standard score + percentile score instead of the standard
score while performing the foregoing experiment.

Regarding the fault rate and response time, when the
percentile score was used instead of the standard score,
both the #best evaluation criteria and the other two
evaluation criteria exhibited good results. However,
the standard score yielded better performance when
the distribution of values, such as the throughput and
the scale of the scores, was above average. Using both
standard and percentile scores can compromise the fea-
tures of the two methods, both of which exhibited better
performance than the conventional method.

5.2 Integration Approach Evaluation

The script generation method to support cloud combin-
ing, proposed in this study, was realized by creating
scripts using a multi-cloud library that employs the
inter-cloud and multi-cloud coupling structure intro-
duced in Grozev’s study [18]. Table 8 compares previ-
ously reported models [19, 20] and the integration script
generation model of this study with regard to the service
category, number of services, number of supporting
parameters, and number of methods. The support pa-
rameter refers to the object to which the method is

Table 8 Comparison with related research

[19] [20] Script generation model

Service category Compute Compute, block, object storage, load balancer Compute, block, object storage, load
balancer, CDN, DNS, container, backup

Number of services 2 8 97

Number of parameters 1 11 18

Number of methods 5 54 75

Fig. 17 Execution time of
integration script combination
structure

462 J. Park et al.

applied, for example, a node representing a virtual ma-
chine of a compute service, and a container representing
a compartment of data in a storage service. The number
of parameters excludes the key or token that accesses the
service’s resources. Table 6 indicates that the integration
script generation model supports more categories, ser-
vices, parameters, and methods than the previously re-
ported models [19, 20].

Compared with Silva’s platform [41], which provides
an integration script generation model and an abstrac-
tion function, the generation model supports more
methods, because abstraction methods common to
Libcloud and specific methods of services can be used.

Additionally, the generation model adopts the soft-
ware design pattern and is constructed according to the
model; thus, the service category, service, and method
can be easily expanded. For example, to add a service

category, we create a newmodel with the structure of the
integration script generation model. To add a new ser-
vice, we add a specific service of the integration script
generation model and define a new method in the cor-
responding specific service to newly define the method.

The previously reported models [19, 20, 41] did not
introduce an approach to combine the provided method
or a script to create a new function and a technique to
control various cloud services through a common ab-
straction method. However, the integration script gener-
ation method can realize new functions and reuse by
combining various methods supported by Libcloud, as
well as techniques for combining scripts that have al-
ready been generated.

In addition, to compare and analyze the two
types of combinatorial scripts, we measured their
execution speeds. Each combination structure was
written in Python, and 10 functions were sequen-
tially performed in OpenStack Swift . The
execution-time measurement was performed 10
times, and the measurement results are shown in
Fig. 17.

The combined structure of method units was approx-
imately 1.67 times faster than the combined structure of
script units. It is expected that the difference in execu-
tion speed is larger when the number of combined
functions is increased, complex functions are per-
formed, and functions of multiple cloud services are
executed.

Table 9 User requirements for selection

Type of requirement Requirements

Target system Media streaming service

Quality constraints Response time of CDN: <100 ms

Functional
requirements

Server status backup
Simultaneously use public and private

storage

Maximum budget $1000/month

Existing
infrastructure

OpenStack Nova, Glance, Cinder, Swift

Fig. 18 Pattern selection, modification, and service binding of the case study

463Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

The execution speed of the script unit combination
structure is lower than that of the method unit combina-
tion structure, but when the pool of the script is formed
later, the new function can be quickly implemented by
combining the existing script. Therefore, the reusability
of the script can be increased, and the resources of the
hybrid CSB can be efficiently used.

If we allow the user to choose a combination struc-
ture, most users will choose method unit combination
because it is faster. Therefore, to efficiently manage
scripts in the hybrid cloud service, the number of
methods to be combined in the script is set as the
criterion for the combination structure selection accord-
ing to the experiment results, as shown in Fig. 17. If the
number of combined methods is smaller than the stan-
dard, we configure the script with a combination of
script units that can reuse the script.

6 Case Study of C-SIP

This section presents an example of building a hybrid
cloud environment via the pattern selection and integra-
tion process described in Section 4.

The user in this case is a cloud administrator of a
company that is building a private cloud based on
OpenStack. The company is planning a video-
streaming service with new services. Although they
already have computing resources, OS, and storage,
they wish to add the infrastructure to quickly transfer
media content to customers on video-streaming sites
worldwide using the public cloud. The user enters the
requirements presented in Table 9 into the hybrid CSB.

6.1 Pattern and Combination Service Selections

First, in the pattern selection step, a reference pattern
suitable for a video-streaming service is found and se-

Fig. 19 New service selection

Table 10 Selected options: multi-vendor vs. one-vendor

Options Cost Score Remarks

Multi-vendor
option

$1000 691

AWS $950 660

Google $960 647 Google CDN: Quality
requirements not satisfied

Azure $965 668

Bluemix $1010 672 Overbudget

Table 11 Function of the script to be created

Function Required
services

Required
method

Create a new virtual machine
(VM) and a new volume
and attach the volume to the
VM

Nova,
Cinder

create_node,
create_volume,

attach_volume

464 J. Park et al.

lected. It is similar to the user’s goal of building a video-
streaming service with the “Content and Media Serv-
ing” architecture, which is one of the reference architec-
tures provided by AWS. Figure 18(a) shows an abstrac-
tion of the pattern defined in this study. This pattern is
selected by the user.

In the pattern modification phase, the functional re-
quirement entered by the user is checked to find a CDP
that can satisfy the requirement. There is a snapshot
pattern of the AWS CDP in the CDP that can be
employed to add a server state backup function. The
snapshot pattern consists of compute (EC2), block

Fig. 20 User interface for creating a script and the topology template

Fig. 21 Executable topology script, executions, and result

465Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

storage (EBS), and image service (AMI). We add
block storage and image service nodes that do not
exist in the currently selected pattern. The require-
ment to use both public and private storage can be
addressed by using the hybrid data pattern of the
CDP provided in [12–14]. This pattern consists of
two types of object storage (public and private);
thus, we add another object storage node to the
pattern. The modified pattern using these two
CDPs is shown in Fig. 18(b).

The next step is the existing service binding step.
Users have an OpenStack-based private cloud environ-
ment, and four types of services are in operation: Nova
(compute), Glance (image), Cinder (block storage), and
Swift (object storage). Figure 18(c) shows the service
corresponding to each node of the selected pattern after
it is bound.

Finally, there is a process of selecting a new service
for each of the remaining three nodes. In this case study,
it is assumed that there are candidate services with the
same price and QoS for each service type, as shown in
Fig. 19 (each QoS is arbitrary, not a measured value).
Each candidate service has an SAW score based on the
QoS and a feedback score based on user feedback. The
service score is the sum of the SAW and feedback
scores.

Once the service scores for each service have been
calculated, the combination service is finally selected
through the following procedure.

– Confirmation of quality requirement: Google
CDN’s response time was 103 ms and did not
satisfy the quality requirements entered by the user.
Therefore, they are excluded from referrals.

– Consideration of maximum budget: We use the
MCKP algorithm to find the service combina-
tion with the highest total score within the
maximum budget of $1000 per month. For
example, if we individually select the service
with the highest score for each service type,
the sum of the prices exceeds $1050.

– Service dependency checking: AWS storage and
Azure CDN cannot be combined, assuming that
the CDN and object storage services have depen-
dencies on the combination of services from the
same vendor. In this case, a combination of AWS
storage and AWS CDN ($750, 445 points), or a
combination of Azure storage and Azure CDN ($
745, 443 points) is available.

– One-vendor option offered: Through the above pro-
cess, an optimal multi-vendor combination is selected.
However, if the user wants to take advantage of the
one-vendor combination even though the total service
score is low, the one-vendor combination can be
selected. Combining services with a single vendor
can benefit from administrative and operational ad-
vantages, such as managing the entire service through
only the console provided by the vendor, and advan-
tages related to network latency. However, the price-
to-performance ratio of individual services and the
ability to endure disasters may be inferior to those of
the multi-vendor combination.

Table 10 presents the sum of the price and service
points for each of the one-vendor combinations and the
multi-vendor combinations selected above. For the
Google service combinations, Google CDNs do not
satisfy the quality requirements, and the Bluemix ser-
vice combinations exceed the budget. Therefore, AWS,
Azure, and multi-vendor combinations are preferred (as
highlighted in bold in Table 10).

6.2 Service Integration

In this section, we present an example of prototyping a
script that implements a function in a selected hybrid
cloud environment. The function for the case is de-
scribed in Table 11. In the current prototype, scripts with
corresponding functions are created via a combination
of script units. Figure 20 shows the Create Script screen
of the integration script generation. If we need another
service or method in the process, we can add elements as
they are. When we click the Create Script button, an
integration script is created through the elements that we
have determined.

The right side of Fig. 20 shows the XML topology
template (indicated in Table 11), which is created
through the process of generating the integration script
of the prototype. The fork and join structure is repre-
sented by Link. Additionally, this process creates an
executable topology script, as shown on the left side of
Fig. 21. It imports three scripts and executes the main
function. The fork and join structure is implemented via
Python threading. OpenStack volumes can be imple-
mented via OpenStack Cinder (block storage) and can
also be implemented through Nova. The script manages
volumes with Nova.

466 J. Park et al.

The upper right side of Fig. 21 shows the screen
where the function is executed. We ran the Python script
generated from the command prompt port of Windows.
The required input was obtained via user input, and it
executed the methods. The log of each method execu-
tion result was output. The bottom right side of Fig. 21
shows the resources of OpenStack after the actual func-
tion was executed. As shown in Fig. 21, a virtual ma-
chine called kusVM and a volume called kusVolume
were created, and we see that kusVolume was connected
to kusVM.

Thus, the hybrid CSB can combine the selected
services and their methods, and it can combine the
methods and scripts that users want with the script
generation prototype.

7 Conclusion

We proposed a C-SIP and a hybrid CSB, which are
automation solutions that support hybrid cloud deploy-
ment. The C-SIP consists of a cloud service selection
method that chooses a combination of various clouds
according to user’s requirements and a script generation
method to solve the complexity problem between
clouds. In the selection technique, we refer to the refer-
ence patterns and CDPs provided by major public cloud
vendors such as AWS and Azure. We defined a gener-
alized pattern and proposed a method for selecting pat-
terns, suggesting that the service derived from the selec-
tion result is bound to a pattern. Finally, the accuracy of
the proposed pattern selection method for evaluation
was measured through comparison with the architecture
in the AWS casebook. We proposed a combination of
cloud services with customized patterns, so that users
can simply input the purpose and requirements of build-
ing the cloud services. Script generation techniques that
support cloud-to-cloud integration include a process in
which a user determines the elements of a script, as well
as a model that supports executable code-level script
generation. The integration script generation model has
a structure that can easily expand the services and
methods belonging to various service categories by
applying a design pattern. When a user selects a service,
method, and method structure through the integration
script generation process, a script having a desired func-
tion is generated through the combination of a script unit
or a method unit. A case study of script generation via
method unit and script unit combination was presented.

Additionally, we showed that the integration script gen-
eration technique can support various service categories,
services, and methods through comparative analysis
with related studies. The script generation method al-
lows the user to conveniently utilize various cloud func-
tions. The case study was conducted for an integrated
scenario of the selection and script generation tech-
niques. The processes of selecting an actual cloud and
generating a script were presented for a prototype.
Through the proposed C-SIP, users can build their own
hybrid cloud environment, which is expected to facili-
tate the introduction of hybrid clouds and the acquisition
of cloud strategies. In future research, we plan to im-
prove the cloud environment by analyzing the user
feedback andmonitoring the log of the established cloud
environment.

Acknowledgements This work was supported by the National
Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIP) and the Ministry of Education (No. NRF-
2016R1D1A1B03935865, No. NRF-2017R1D1A1B03030243).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party
material in this article are included in the article's Creative Com-
mons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Com-
mons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L.,
Leaf, D.: NIST cloud computing reference architecture.
NIST Special Publication. (2011)

2. Flexera, RightSclae 2019 State of the Cloud Report form
Flexera, https://www.flexera.com/about-us/press-
center/rightscale-2019-state-of-the-cloud-report-from-
flexera-identifies-cloud-adoption-trends.html

3. Marketwatch, Hybrid Cloud Market Size, Growth,
Opportunity and Forecast. https://www.marketwatch.
com/press-release/hybrid-cloud-market-size-growth-
opportunity-and-forecast-2019-11-04

4. Dillon, T., Wu, C., Chang, E.: Cloud computing: issues and
challenges. IEEE International Conference on Advanced
Information Networking and Applications. (2010).
https://doi.org/10.1109/AINA.2010.187

467Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/AINA.2010.187

5. Micore Solutions,What are the major challenges of adopting
a hybrid cloud approach? http://www.micoresolutions.
com/major-challenges-adopting-hybrid-cloud-approach

6. Informa PLC, Managing Hybrid Cloud: 3 Challenges,
h t t p s : / / www. n e tw o r k c ompu t i n g . c om / c l o u d -
i n f r a s t r u c t u r e / m a n a g i n g - h y b r i d - c l o u d - 3 -
challenges/2100227984

7 . O TAVA , R e s o u r c e s , h t t p s : / / w ww. o t a v a .
com/about/resources/videos/

8. Park, J., Yun, D., Kim, U.: Approach for cloud recommen-
dation and integration to construct user-centric hybrid cloud.
IEEE Conference on SmartCloud. (2017). https://doi.
org/10.1109/SmartCloud.2017.11

9. Park, J., Yun, D., Kim, U., Yeom, K.: Pattern-based cloud
service recommendation and integration for hybrid cloud.
IEEE Symposium onCloud and Service Computing. (2017).
https://doi.org/10.1109/SC2.2017.40

10. Park, J., Kim, U., Yun, D., Yeom, K.: C-RCE: an Approach
for Constructing and Managing a Cloud Service Broker. C-
RCE: An approach for constructing and managing a cloud
service broker. J. Grid Comput. 17, 137–168 (2019).
https://doi.org/10.1007/s10723-017-9422-2

11. AWS, AWS Reference Architecture, https://aws.amazon.
com/architecture/?nc1=h_ls

12. Microsoft Azure, Azure Reference Architecture,
h t t p s : / / d o c s . m i c r o s o f t . c o m / e n -
us/azure/architecture/reference-architectures

13. IBM, IBM Bluemix Reference Architecture. https://www.
ibm.com/cloud/garage/architectures

14. Young, M.: Implementing cloud design patterns for AWS.
O’REILLY. (2015)

15. Microsoft Azure, Azure Cloud Design Pattern. https://docs.
microsoft.com/en-us/azure/architecture/patterns

16. Garg, K.S., Versteeg, S., Buyya, R.: SMICloud: a framework
for comparing and ranking cloud services. IEEE
International Conference on Utility and Cloud Computing.
(2011). https://doi.org/10.1109/UCC.2011.36

17. Zheng, X., Xu, D.L., Chai, S.: QoS recommendation in
cloud services. IEEE Access. 5, 5171–5177 (2017).
https://doi.org/10.1109/ACCESS.2017.2695657

18. Grozev, N., Rajkumar, B.: Inter-cloud architectures and ap-
plication brokering: taxonomy and survey. Softw.: Pract.
Exp. 44, 369–390 (2014). https://doi.org/10.1002/spe.2168

19. Markoska, E., Ackovsak, N., Ristov, S., Gusev, M.:
Software design patterns to develop an interoperable cloud
environment. IEEE Telecommun. Forum Telfor. (2015).
https://doi.org/10.1109/TELFOR.2015.7377630

20. Meireles, F.: Integrated Management of Cloud Computing
Resources. Diss. Instituto Superior de Engenharia do Porto
(2014)

21. Saaty, R.: The analytic hierarchy process – what it is and
how it is used. Math. Model. 9, 161–176 (1987). https://doi.
org/10.1016/0270-0255(87)90473-8

22. Gal, T., Stewart, T., Hanne, T.: Multicriteria Decision
Making: Advances in MCDM Models. Theory, and
Applications. Kluwer Academic Publishers, Algorithms
(1999)

23. Whaiduzzaman,M., Gani, A., Anuar, N., Shiraz, M., Haque,
M., Haque, I.: Cloud service selection using multicriteria
decision analysis. Sci. World J. 2014, 1–10 (2014).
https://doi.org/10.1155/2014/459375

24. Carnegie Mellon University, Service Measurement Index
Framework Version 2.1 (2014)

25. Taira, H., Fan, Y., Yoshiya, K., Miyagi, H.: A method of
constructing pairwise comparison matrix in decision mak-
ing. In: Proc. IEEE International Conference on Systems,
Man and Cybernetics. Information Intelligence and System.
pp. 2511–2516 (1996)

26. Su, X., Khoshgoftaar, T.: A survey of collaborative filtering
techniques. Adv. Artif. Intell. 2009, 1–19 (2009). https://doi.
org/10.1155/2009/421425

27. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson
Correlation Coefficient. In: Noise Reduction in Speech
Processing. Springer Topics in Signal Processing, Vol 2.
Springer, Berlin, Heidelberg (2009)

28. Myers, L., Sirois, M.: Spearman correlation coefficients.
Differences Between. In: Wiley StatsRef: Statistics
Reference Online. (2006). https://doi.org/10.1002
/0471667196.ess5050.pub2

29. Saripalli, P., Pingali, G.: MADMAC: multiple attribute de-
cision methodology for adoption of clouds. IEEE
International Conference on Cloud Computing. (2011).
https://doi.org/10.1109/CLOUD.2011.61

30. Sidhu, J., Singh, S.: Design and comparative analysis of
MCDM-based multi-dimensional trust evaluation schemes
for determining trustworthiness of cloud service providers. J.
Grid Comput. 15, 197–218 (2017). https://doi.org/10.1007
/s10723-017-9396-0

31. Sirohi, P., Agarwal, A., Maheshwari, P.: A comparative
study of cloud computing service selection. Int. J. Eng.
Adv. Technol. 8, 259–266 (2019)

32. Sidhu, J., Singh, S.: Improved TOPSIS method based trust
evaluation framework for determining trustworthiness of
cloud service providers. J. Grid Comput. 15, 81–105
(2017). https://doi.org/10.1007/s10723-016-9363-1

33. Martino, D.B., Esposito, A., Cretella, G.: Semantic
Representation of Cloud Patterns and Services with
Automated Reasoning to Support Cloud Application
Portability. In: Semantic Representation of Cloud Patterns
and Services with Automated Reasoning to Support Cloud
Application Portability. IEEE Trans, Cloud Comput (2015).
https://doi.org/10.1109/TCC.2015.2433259

34. W3C, SPARQL Query Language for RDF, http://www.w3.
org/TR/rdf-sparql-query

35. Liu, Z., Chu, D., Song, C., Xue, X., Lu, B.: Social learning
optimization (SLO) algorithm paradigm and its application
in QoS-aware cloud service composition. Inf. Sci. 326, 315–
333 (2016). https://doi.org/10.1016/j.ins.2015.08.004

36. Câmara, D., :1- Evolution and Evolutinary Algorithms, in
Bio-inspired Network, https://www.sciencedirect.
com/science/article/pii/B9781785480218500016#!

37. Apache, Apache Libcloud, http://libcloud.apache.org
38. Apache, Apache Jcloud, https://jclouds.apache.org
39. Apache, Apache Deltacloud, https://deltacloud.apache.org
40. Chadwick, D., Siu, K., Lee, C., Fouillat, Y., Germonville,

D.: Adding federated identity management to OpenStack. J.
Grid Comput. 12, 3–27 (2014). https://doi.org/10.1007
/s10723-013-9283-2

41. Silva, L., Costa, C., Oliveira, J.: A common API for deliv-
ering services over multi-vendor cloud resources. J. Syst.
Softw. 86, 2309–2317 (2013). https://doi.org/10.1016/j.
jss.2013.04.037

468 J. Park et al.

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SmartCloud.2017.11
https://doi.org/10.1109/SmartCloud.2017.11
https://doi.org/10.1109/SC2.2017.40
https://doi.org/10.1007/s10723-017-9422-2
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/UCC.2011.36
https://doi.org/10.1109/ACCESS.2017.2695657
https://doi.org/10.1002/spe.2168
https://doi.org/10.1109/TELFOR.2015.7377630
https://doi.org/10.1016/0270-0255(87)90473-8
https://doi.org/10.1016/0270-0255(87)90473-8
https://doi.org/10.1155/2014/459375
https://doi.org/10.1155/2009/421425
https://doi.org/10.1155/2009/421425
https://doi.org/10.1002/0471667196.ess5050.pub2
https://doi.org/10.1002/0471667196.ess5050.pub2
https://doi.org/10.1109/CLOUD.2011.61
https://doi.org/10.1007/s10723-017-9396-0
https://doi.org/10.1007/s10723-017-9396-0
https://doi.org/10.1007/s10723-016-9363-1
https://doi.org/10.1109/TCC.2015.2433259
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ins.2015.08.004
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10723-013-9283-2
https://doi.org/10.1007/s10723-013-9283-2
https://doi.org/10.1016/j.jss.2013.04.037
https://doi.org/10.1016/j.jss.2013.04.037

42. AWS, Hybrid Cloud with AWS, https://aws.amazon.
com/hybrid/?nc1=h_ls

43. Microsoft Azure, Service Bus, https://azure.microsoft.
com/en-us/services/service-bus/

44. Microsoft Azure, Integration Services, https://azure.
microsoft.com/mediahandler/files/resourcefiles/azure-
integration-services/Azure-Integration-Services-
Whitepaper-v1-0.pdf

45. Google, Manage hybrid cloud, https://cloud.google.
com/solutions/manage-hybrid-cloud/

46. Google, Anthos, https://cloud.google.com/anthos/
47. Google, Google cloud Hybrid Connectivity, https://cloud.

google.com/hybrid-connectivity/
48. Hashicorp, Terraform. https://www.terraform.io/
49. Kovács, J., Kacsuk, P.: Occopus: a multi-cloud orchestrator

to deploy and manage complex scientific infrastructures. J.
Grid Comput. 16, 19–37 (2018). https://doi.org/10.1007
/s10723-017-9421-3

50. Caballer, M., Zala, S., García, Á., Moltó, G., Fernández, P.,
Velten, M.: Orchestrating complex application architectures
in heterogeneous clouds. J. Grid Comput. 16, 3–18 (2018).
https://doi.org/10.1007/s10723-017-9418-y

51. Salomoni, D., Campos, I., Gaido, L., de Lucas, J.M.,
Solagna, P., Gomes, J., Matyska, L., Fuhrman, P., Hardt,
M., Donvito, G., Dutka, L., Plociennik, M., Barbera, R.,
Blanquer, I., Ceccanti, A., Cetinic, E., David, M., Duma, C.,
López-García, A., Moltó, G., Orviz, P., Sustr, Z., Viljoen,
M., Aguilar, F., Alves, L., Antonacci, M., Antonelli, L.A.,
Bagnasco, S., Bonvin, A.M.J.J., Bruno, R., Chen, Y., Costa,
A., Davidovic, D., Ertl, B., Fargetta, M., Fiore, S., Gallozzi,
S., Kurkcuoglu, Z., Lloret, L., Martins, J., Nuzzo, A.,
Nassisi, P., Palazzo, C., Pina, J., Sciacca, E., Spiga, D.,
Tangaro, M., Urbaniak, M., Vallero, S., Wegh, B., Zaccolo,
V., Zambelli, F., Zok, T.: INDIGO-DataCloud: a platform to
facilitate seamless access to E-infrastructures. J. Grid
Comput. 16, 381–408 (2018). https://doi.org/10.1007
/s10723-018-9453-3

52. OASIS, OASIS: TOSCA Simple Profile in YAML Version
1.1, http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.
html (2018)

53. OASIS, Topology and Orchestration Specification for Cloud
Applications Version 1.0, http://docs.oasis-open.
org/tosca/TOSCA/v1.0/TOSCA-v1.0.html (2013)

54. Bernal, A., Cambronero, E., Núñez, A., Cañizares, P.,
Valero, V.: Improving cloud architectures using UML pro-
files and M2T transformation techniques. J. Supercomput.
75, 8012–8058 (2019). https://doi.org/10.1007/s11227-019-
02980-w

55. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A.,
Solberg, A., Wimmer, M., Kappel, G., Leymann, F.: A
systematic review of cloud modeling languages. ACM

Comput. Surveys. 51, 1–38 (2018). https://doi.org/10.1145
/3150227

56. OMG, OMG Unified Modeling Language Version 2.5,
https://www.omg.org/spec/UML/2.5/PDF

57. Katsaros, G., Menzel, M., Lenk, A., Rake-Revelant, J.,
Skipp, R., Eberhardt, J.: Cloud application portability with
TOSCA, Chef and Openstack: Experiences from a proof-of-
concept implementation. In: Proc. IC2E 2014. pp. 295–302
(2014)

58. Galante, G., Erpen De Bona, L.C., Mury, A.R. et al. : An
Analysis of Public Clouds Elasticity in the Execution of
Scientific Applications: a Survey, J. Grid Comput. (2016)
doi: https://doi.org/10.1007/s10723-016-9361-3

59. Arcitura, Cloud Computing Design Patterns and
Mechanisms, https://patterns.arcitura.com/cloud-
computing-patterns

60. Cloud Computing Patterns, Cloud Computing Patterns,
http://www.cloudcomputingpatterns.org

61. Expósito, R.R., Taboada, G.L., Ramos, S., González-
Domínguez, J., Touriño, J., Doallo, R.: Analysis of I/O
performance on an amazon EC2 cluster compute and high
I/O platform. J. Grid Comput. 11, 613–631 (2013).
https://doi.org/10.1007/s10723-013-9250-y

62. AWS, AWS Architecture Center, ht tps: / /www.
umbrellainfocare.com/wp-content/uploads/2017/07
/architecture

63. Neukrug, E., Fawcett, R.: Essentials of testing and assess-
ment: a practical guide for counselors, social works, and
psychologists. CENGAGE Learning. (2006)

64. Hutto, C., Gilbet, E.: VADER: A Parsimonious Rule-Based
Model for Sentiment Analysis of Social Media Text,
International AAAI Conference on Weblogs and Social
Media, pp. 216–225 (2014)

65. Blogs, C.: Multi-Vendor vs. Single-Vendor: Making the
Choice. https://blogs.cisco.com/smallbusiness/multi-
vendor-vs-single-vendor-making-the-choice

66. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Reading, Massachusetts (1995)

67. AWS, AWS Customer stories, https://aws.amazon.
com/ko/blogs/korea/now-available-aws-korean-customer-
cases (in korean)

68. Zheng, Z., Zheng, Y., Lyu, R.M.: Investigating QoS of real-
world web services. IEEE Trans. Serv. Comput. 7, 32–39
(2014). https://doi.org/10.1109/TSC.2012.34

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

469Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10723-017-9421-3
https://doi.org/10.1007/s10723-017-9421-3
https://doi.org/10.1007/s10723-017-9418-y
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11227-019-02980-w
https://doi.org/10.1007/s11227-019-02980-w
https://doi.org/10.1145/3150227
https://doi.org/10.1145/3150227
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10723-016-9361-3
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10723-013-9250-y
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSC.2012.34

	Approach for Selecting and Integrating Cloud Services to Construct Hybrid Cloud
	Abstract
	Introduction
	Related Work
	Related Research on Cloud Service Selection and Cloud Combination Pattern
	Cloud Service Integration
	Multi-Cloud Supporting Tools

	Selection and Integration Process in Hybrid CSB
	Hybrid CSB
	Selection and Integration Processes
	Patten-Based Cloud Service Selection
	Cloud Service Integration

	Basic Concept and Model for Pattern-Based Cloud Service Selection
	Requirements
	Pattern

	Basic Concept and Model for Cloud Service Integration
	Definition of Integration Script and Template
	Integration Script Configuration Structure
	Combination Structure of Integration Script

	Pattern-Based Cloud Service Selection and Cloud Integration
	Process and Method for Pattern-Based Cloud Service Selection
	Select Pattern in C-SIP
	Modify Pattern in C-SIP
	Bind Existing Service in C-SIP
	Select New Service in C-SIP

	Process and Method for Cloud Service Integration
	Deciding Script Element in C-SIP
	Generating Integration Script in C-SIP

	Evaluation
	Experiments and Evaluation for Selection
	Evaluation for Pattern Selection
	Evaluation for Service Selection

	Integration Approach Evaluation

	Case Study of C-SIP
	Pattern and Combination Service Selections
	Service Integration

	Conclusion
	References

