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well as candidate metabolic pathways and pathway 
genes involved in it. A panel of 151 tropical inbred 
maize lines were used to assess the genetic architec-
ture of FER resistance over two seasons. During the 
study period, seven SNPs associated with FER resist-
ance were identified on chromosomes 1, 2, 4, 5, and 
9, accounting for 4–11% of the phenotypic variance. 
These significant markers were annotated into four 
genes. Seven significant metabolic pathways involved 
in FER resistance were identified using the Pathway 
Association Study Tool, the most significant being 
the superpathway of the glyoxylate cycle. Overall, 
this study confirmed that resistance to FER is indeed 
a complex mechanism controlled by several small to 
medium-effect loci. Our findings may contribute to 
fast-tracking the efforts to develop disease-resistant 
maize lines through marker-assisted selection.
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Introduction

Fusarium ear rot (FER), which is caused by Fusarium 
verticillioides (Saccardo) Nirenberg, is a significant 
disease that affects maize worldwide (Stagnati et  al. 
2019) targeting almost all of its growth stages (Lanu-
bile et al. 2014). FER leads to significant yield losses, 
which are estimated between 10 and 30% and can 

Abstract Breeding for host resistance is the most 
efficient and environmentally safe method to curb 
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ventional breeding for resistance to FER is hampered 
by the complex polygenic nature of this trait, which 
is highly influenced by environmental conditions. 
This study aimed to identify genomic regions, sin-
gle nucleotide polymorphisms (SNPs), and putative 
candidate genes associated with FER resistance as 
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reach 50% or more in severely infected regions (Yao 
et  al. 2020). In addition, this disease leads to poor 
grain quality and contamination of the infected ker-
nels with fumonisin, a mycotoxin and known carcino-
gen reported to be harmful to both animal and human 
health (Czembor et  al. 2019; Stagnati et  al. 2019). 
In areas where maize is a staple food, such as sub-
Saharan Africa, FER infection has been reported to 
be high (Bigirwa et al. 2007; Tembo et al. 2022).

Traditional FER management methods primar-
ily involve the use of fungicides or other agronomic 
approaches, but these have been reported to be inef-
fective and environmentally unfriendly, and to 
increase the costs of maize production (Lanubile 
et  al. 2017). Breeding for disease resistance is rec-
ommended because it is an efficient and ecologically 
safe strategy (Chen et al. 2016; Lanubile et al. 2017). 
Despite the benefits of using resistant cultivars, only 
a few resistant genotypes are available because of 
the complex genetic architecture of FER resistance 
(de Jong et al. 2018). This complexity is attributed to 
the fact that the resistance mechanism is controlled 
by multiple genes with minor effects that are highly 
influenced by the environment and are not consist-
ent between populations (Butrón et  al. 2015; Chen 
et al. 2012; Clements et al. 2004; de Jong et al. 2018; 
Holland et al. 2020; Samayoa et al. 2019; Zila et al. 
2013).

Genome-Wide Association Studies (GWASs) are 
particularly suitable for the identification of marker-
trait associations in complex quantitative traits using 
diverse germplasm lines (Cui et  al. 2016; Samayoa 
et  al. 2019). GWASs based on genetic linkage dise-
quilibrium (LD) are preferred to traditional linkage-
based analyses because of their excellent mapping 
resolution that allows to capture and map small effect 
loci (Sitonik et al. 2019). In maize, GWASs have suc-
cessfully been used to detect genomic regions (Chen 
et al. 2016; Wang et al. 2012; Zila et al. 2013, 2014) 
and analyze the genetic architecture of various impor-
tant and complex traits, such as resistance to afla-
toxin and ear rot caused by Aspergillus flavus (Tang 
et  al. 2015; Warburton et  al. 2015), common maize 
rust caused by Puccinia sorghi Schwein (Kibe et al. 
2020; Olukolu et al. 2016), northern corn leaf blight 
(Ding et al. 2015; Rashid et al. 2020), oil biosynthesis 
(Li et al. 2013), resistance to head smut (Wang et al. 
2012), and seedling root development (Pace et  al. 
2015).

In addition to identifying genomic regions and 
genes involved in disease resistance, GWASs also 
assist in identifying resistance pathways and asso-
ciated genes. Metabolic pathway analysis focuses 
on the combined effects of many genes clustered 
together because of their shared biological functions 
(Tang et al. 2015; Warburton et al. 2022). This type 
of research complements the study of the most sig-
nificant marker-trait associations in addition to giv-
ing clues on the genetic basis of specific traits (Tang 
et al. 2015). Combining FER resistance data derived 
from GWASs in a pathway analysis allows to jointly 
consider all the genetic sequences positively associ-
ated with resistance to this disease and consequently 
to potentially identify pathways and associated genes 
involved in it. Identifying these genes will eventually 
lead to more efficient breeding procedures and the 
development of FER-resistant maize hybrids. A better 
understanding of the pathways involved in resistance 
will also lead to a broader understanding of plant 
defense mechanisms against other fungi.

The aim of this study was to identify genomic 
regions, single nucleotide polymorphisms (SNP), and 
putative candidate genes as well as candidate meta-
bolic pathways and associated genes involved in FER 
resistance.

Materials and methods

Plant materials and field management

A total of 151 inbred maize lines were evaluated at 
the National Livestock Resources Research Institute 
(NaLIRRI) of the National Agricultural Research 
Organization of Uganda, which is located in a mid-
altitude agroecological zone (0° 32’N and 32° 35´E) 
at 1150  m above sea level (Sserumaga et  al. 2021). 
Detailed information on these inbred lines is included 
in our previous study (Ayesiga et  al. 2023). The 
Alpha lattice design with two replications was used 
in the present study. The two-row plots were 5 m long 
and placed 0.75  m apart, and the spacing between 
plants was 0.5  m. Two seeds per hill were planted 
and, 4 weeks after seedling emergence, one of them 
on each hill was removed. Standard agronomic and 
cultural practices were followed. Fertilizers were 
applied at two different rates: 77 kg N  ha−1 at plant-
ing and 27  kg  P   ha−1 at topdressing 4 weeks after 
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planting. Phenotyping for FER was conducted over 
two seasons.

FER inoculation and evaluation

The pathogen was initially isolated from infected 
maize cobs obtained from the fields at NaLIRRI. The 
inoculum was prepared using a procedure modified 
from Chambers (1988). The infected grains were ster-
ilized for 3 min in 10% commercial JIK bleach con-
taining 0.39% sodium hypochlorite (NaClO) solution 
(Tembo et al. 2013) and then rinsed three times using 
distilled water. The sterilized infected grains were 
then placed in a flask together with toothpicks. Before 
use, the toothpicks were autoclaved to remove tannins 
and other antifungal compounds. The flask contain-
ing the infected grains and toothpicks was then sealed 
and left standing for 3 weeks to allow the fungus to 
grow on the toothpicks. The fully colonized tooth-
picks were used to inoculate the maize ears approxi-
mately 7 days after flowering. Inoculation was con-
ducted by piercing through the middle of the primary 
ear of five plants per plot. Paper bags were used to 
cover the ears to avoid allo-infection. At maturity, the 

inoculated ears from each plot were harvested, and 
FER symptoms were assessed based on the percent-
age of infected area using the following nine-point 
scale: 1 = 0% (no visible disease symptom), 2 = 1%, 
3 = 2–5%, 4 = 6–10%, 5 = 11–20%, 6 = 21–40%, 
7 = 41–60%, 8 = 61–80%, and 9 = 81–100% (Fig.  1) 
(Guo et al. 2020).

DNA isolation and genotyping

Once the three-leaf stage was reached, leaf samples 
from all the 151 inbred lines were harvested, pack-
aged, and shipped for DNA extraction and genotyp-
ing at the Integrated Genotyping Sequence Support 
(IGSS) at the Bioscience for East and Central Africa 
(BecA)-Hub in Nairobi, Kenya. Imputation of the 
missing markers and data filtering were carried out 
for a minimum count of 80% of the sample size using 
TASSEL v.5.2 software (Bradbury et  al. 2007). To 
avoid spurious marker-trait associations, monomor-
phic SNPs with missing data points > 10%, a minor 
allele frequency < 0.05, and heterozygosity > 5% were 
discarded, leaving a total of 20,900 high-quality SNPs 
distributed across 10 chromosomes for analysis.

Fig. 1  Images of maize 
showing fusarium ear rot 
symptoms scored as 1 A 
and 9 B on the nine-point 
scale
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Statistical analyses

The effects of seasons and inbred lines on the sever-
ity of FER were analyzed in R using the agricolae 
package (R Core Team 2015). Analysis of variance 
(ANOVA) was also performed using the same pack-
age in R and applying the restricted maximum like-
lihood method based on the following equation:

where Yijk is the kth observation for the ith genotype, 
μ is the overall mean, Gi is the genotype effect, Rj is 
the replication effect, and R/Bjk is the effect of blocks 
nested in replicates; εijk is the error term associated 
with Yijk. Best linear unbiased predictors were com-
puted in R (R Core Team 2015).

Population structure, linkage disequilibrium, and 
association analysis

Principal component analysis (PCA) was performed 
using the Genome Association and Prediction Inte-
grated Tool (GAPIT) in R (R Core Team 2015) to 
assess the population structure of the 151 inbred 
lines. The relative kinship coefficient matrix (K) 
was generated to determine the relatedness among 
inbred lines (Liu et al. 2021) using the GAPIT pack-
age (Lipka et al. 2012). Pairwise measures of link-
age disequilibrium (LD) were calculated to assess 
the degree of cosegregation among the blocks of 
SNPs in TASSEL v.5.2 (Bradbury et  al. 2007). 
The LD decay rate between each pair of SNPs was 
determined based on the squared Pearson corre-
lation coefficient  (r2). To estimate the overall LD 
decay pattern over genetic distances, pairwise LD  r2 
estimates from the 10 chromosomes examined were 
plotted against the corresponding pairwise genetic 
distances in base pairs (Coan et  al. 2018) using R 
software (R Core Team 2015).

A GWAS was conducted using the multi-locus 
fixed model and random circulating probabil-
ity unification model in R via the rMVP package 
(Liu et  al. 2016). After the analysis, Manhattan 
plots were generated to visualize the associations 
between SNP markers and the trait of interest (i.e., 
FER resistance) by plotting the genomic positions 
of the SNPs against their negative log base 10 of 

Yijk = � + Gi + Rj + R∕Bjk + �ijk

the p-values obtained from the GWAS model. The 
overall proportion of phenotypic variance explained 
by the discovered quantitative trait loci (QTLs) was 
obtained by fitting all significant SNPs together in 
a linear model to determine  R2. The putative can-
didate genes containing or adjacent to the signifi-
cant SNPs were identified using the B73 reference 
genome information in the MaizeGDB database 
(https:// www. maize gdb. org).

Pathways Analysis

The GWAS output was run through the Pathway 
Analysis Study Tool (PAST) (Thrash et al. 2020) on 
the MaizeGDB website (https:// www. maize gdb. org/ 
past), as described in Tang et al. (2015) and Warbur-
ton et  al. (2022). The data used in PAST included 
the p-values (the significant SNP-trait association 
values);  R2 (proportion of the explained phenotypic 
variation), effect values along with the calculated LD 
values for D’ and  R2, and the p-value between each 
SNP marker and its closest neighboring SNPs (Tang 
et al. 2015; Warburton et al. 2022). SNPs were then 
assigned to genes, and the functions of candidate 
genes were assessed by examining the pathways in 
which the encoded enzymes were involved (War-
burton et al. 2022). In this process, the SNP marker 
sequences were aligned to the B73 reference genome, 
and then the overlapping genes with the highest blast 
score and identity percentage were selected (Tang 
et  al. 2015). The candidate genes’ gene ontology, 
molecular functions, and biological processes were 
obtained from the MaizeGDB database (https:// www. 
maize gdb. org). For the pathway analysis, which was 
conducted in PAST, the SNP to gene algorithm was 
run for associations for the FER data across the two 
seasons, and genes were grouped into pathways. Sev-
eral genes contributed to these pathways and were 
ranked according to their running enrichment score 
(RES). The RES shows the extent to which the genes 
in a gene set are overrepresented at the extremes 
(either top or bottom) of their complete ranked list. 
Only pathways with at least five annotated genes 
were analyzed to avoid minor sample size effects 
(Tang et al. 2015; Warburton et al. 2022). The genes 
that contributed the most to the RESs of pathways 
with FDR < 0.2 were selected for further analysis 
(Tang et  al. 2015). Pathway Identification (PWID) 

https://www.maizegdb.org
https://www.maizegdb.org/past
https://www.maizegdb.org/past
https://www.maizegdb.org
https://www.maizegdb.org
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values were assigned based on the CornCyc database 
(https:// maize gdb. org/ metab olic_ pathw ays).

Results

Statistical analysis

FER severity for all the 151 inbred lines across the 
two seasons examined ranged from score 1 (1% ear 
rot symptoms) to 9 (over 80% ear rot symptoms). 
The ANOVA results showed significant variation 
(P < 0.05) among inbred lines; there was also con-
siderable variation across the two seasons and in the 
genotype-by-season interaction. In the combined 
ANOVA, differences in FER severity among seasons 
and inbred lines were significant (Table  1). Overall, 
12 inbred lines had the lowest scores for FER symp-
toms across the two seasons, namely, CKL150038, 

CKL150105, CKL150109, CKL150105, JPS25-11, 
JPS26-4, JPS25-40, JPS25-36, JPS25-14, JPS25-11, 
DL141392, and WL429-24.

Population structure and LD

Based on the results of population structure analy-
sis, the 151 inbred lines were divided into four sub-
groups. In this subdivision, 54% of the inbred lines 
were assigned to distinct groups and the remaining 
lines were assigned into a mixed group. Detailed 
information on these lines is included in Ayesiga et al. 
(2023). The grouping was confirmed using PCA, 
as illustrated by the first two principal components 
(Fig. 2) and a heatmap (Fig. 3). Both the population 
structure (Ayesiga et al. 2023) and the kinship matrix 
revealed a clear differentiation of the assessed maize 
inbred lines. LD analysis showed that LD declined as 
the distance between SNP markers increased (Fig. 4). 
In this study, a total of 519,417 marker pairs were 
detected (based on SNP combinations across 10 chro-
mosomes), and the SNPs were uniformly distributed 
across the 10 chromosomes (Fig. 5).

Association mapping

The GWAS conducted using data for season one 
identified 10 SNPs significantly associated with FER 
resistance at P < 1 ×  10−3 on chromosomes 1, 2, 3, 6, 
9, and 10 (Fig.  6A) with phenotypic variation rang-
ing from 8.6 to 9.9%. The GWAS using the data for 
season two identified 20 significant SNPs on all chro-
mosomes except for 3, 6, and 10 (Fig.  6B), and the 
phenotypic variation accounted for by these SNPs 

Table 1  Combined analysis of variance for the 151 maize 
inbred lines evaluated after artificial Fusarium  verticillioides 
inoculation at Namulonge across two seasons

*, **, *** Significant at the 0.05, 0.01, and 0.001 probability 
levels, respectively

Source of variation Degrees of free-
dom

Mean square

Replication 1 4.86
Season 1 276.08***
Genotype 150 331.02***
Replication:Block 109 120.36
Season:Genotype 149 374.67***
Residual 192 181.78

Fig. 2  Principal compo-
nent (PC) biplot showing 
the clustering of the 151 
tropical maize inbred lines 
assessed in this study

https://maizegdb.org/metabolic_pathways
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ranged from 8.4 to 12.3%. In the analysis combining 
the two seasons, seven significant SNPs were identi-
fied at P < 1 ×  10−3 on chromosomes 1, 2, 4, 5, and 

9 (Fig.  6C). Across the two seasons, the most sig-
nificant SNP (2,396,181|F|0–39:G > T-39:G > T) was 
identified on chromosome 1, and the least significant 

Fig. 3  Heat map of the 
kinship matrix values show-
ing the level of relatedness 
among inbred lines (the 
darker red regions indicate 
highly related lines)

Fig. 4  Genome-wide 
average linkage disequilib-
rium (LD) decay r2 values 
over genetic distances (bp) 
showing that LD decayed 
rapidly as the distance 
between single nucleotide 
polymorphisms increased
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(2,428,673|F|0–67:A > G-67:A > G) on chromosome 
9. The seven SNPs detected in the abovementioned 
analysis accounted for 53% of the total phenotypic 
variation, with values ranging from 4.6 to 11.9%. 
Detailed information on these seven SNPs signifi-
cantly associated with FER resistance across the two 
seasons and candidate genes is provided in Table 2. 
The candidate genes were identified using the B73 
reference genome.

Pathways

Pathway analysis identified seven significant path-
ways, namely LIPASYN-PWY, known as the phos-
pholipase pathway, which hydrolyzes phospholip-
ids and had nine genes involved in it contributing to 
the calculation of the enrichment score; PWY-5143, 
which is a fatty acid activation pathway and was asso-
ciated with five genes; PWY-561, a superpathway of 
the glyoxylate cycle that links the conversion of fatty 
acids to carbohydrates and involved16 genes; PWY-
5995, known as the linoleate biosynthesis I (plants) 
pathway and associated with eight genes; PWY-5136, 
a fatty acid β-oxidation II (plant peroxisome) path-
way associated with nine genes; PWY-3561, a cho-
line biosynthesis III pathway, which had the lowest 
number of genes associated with it (only four); and 
finally, PWY-5004, a superpathway of the citrulline 
metabolism, associated with nine genes (Table  3). 
Of the seven pathways, PWY-561 had the highest 
enrichment score (5.61) because the genes involved 

in it were among the highest ranking in the list. In 
contrast, PWY-3561 had the lowest enrichment score 
(2.06) and fewer high-ranking genes associated with 
it. LIPASYN-PWY, the phospholipase pathway, was 
the most significant (p = 0.01702). The details of 
these pathways, the genes involved, and their RESs 
are included in Table S1 and the associated graphs in 
Fig. S1.

Discussion

Breeding for resistance is the best approach for man-
aging FER, especially for smallholder farmers, who 
mostly grow maize for their own consumption and do 
not usually have the resources to adopt other control 
approaches (Chen et al. 2016). However, for an effi-
cient use of this approach, it is important to identify 
sources of disease resistance that are effective and 
stable across environments. In this study, significant 
differences were detected among the 151 inbred lines 
evaluated for FER resistance across two seasons, and 
genotype-by-season interaction effects on FER resist-
ance were also observed, as similarly reported in 
Afolabi et al. (2007) and Balconi et al. (2014).

The success of GWASs mainly depends on the LD 
of the genetic material examined because they exploit 
historical recombinations (de Jong et  al. 2018; Kibe 
et al. 2020). In the present study, the rapid LD decay 
observed implied significant diversity in this panel of 
inbred lines, which made it suitable for GWAS (Kibe 

Fig. 5  Distribution of high-
quality single nucleotide 
polymorphisms retained for 
population and marker-trait 
analysis against the B73 
reference genome
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et  al. 2020; Yan et  al. 2011). Previous research has 
also reported rapid LD decay in tropical maize inbred 
lines (Romay et al. 2013; Coan et al. 2018; Kuki et al. 
2020). LD is affected by both genetic and nongenetic 

factors, such as population stratification, genetic relat-
edness, recombination, linkage, genetic drift, selec-
tion, and mutation (Barreto et  al. 2019; Flint-Garcia 
et  al. 2003). The decay of LD is faster in tropical 

Fig. 6  Manhattan plots for the genome wide analysis study (GWAS) of fusarium ear rot resistance showing significant single nucle-
otide polymorphisms (SNPs) detected in season 1 (10 SNPs) (A), season 2 (20 SNPs) (B), and combined seasons (7 SNPs) (C)
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and subtropical lines since they are more genetically 
diverse and have more rare alleles than the temperate 
ones (Kuki et al. 2020).

GWASs have been successful in the genetic dissec-
tion of various complex traits. In this study, a GWAS 
was conducted to detect genomic regions and SNP 
markers associated with FER resistance in 151 tropi-
cal maize inbred lines. The comparison of the SNPs 
significantly associated with FER revealed no consist-
ent marker-trait associations between the two seasons. 
Across seasons, seven significant SNPs were identi-
fied on chromosomes 1, 2, 4, 5, and 9. Each of these 
SNPs explained a small percentage of phenotypic 
variation, ranging from 4.6 to 11%, confirming that 
FER resistance is indeed a complex trait controlled by 

multiple QTLs with minor effects, in line with obser-
vations reported in previous research (Chen et  al. 
2016; Ju et al. 2017; Stagnati et al. 2019; Zila et al. 
2013, 2014).

The candidate genes in this study were char-
acterized as transcription factors as well as being 
involved in protein binding and intracellular signaling 
(Table 3). The GRMZM2G068963 gene on chromo-
some 5 is an FK506 binding protein. These proteins 
are known to play various roles in many processes 
critical for abiotic stress responses, plant growth, and 
development (Dong et  al. 2018). GRMZM2G104516 
encodes for zinc finger proteins, which participate 
significantly in numerous biological processes, such 
as transcription, DNA recognition, translation, RNA 

Table 2  Location, chromosome (Chr), P-values, position, and 
proportion of phenotypic variation explained  (R2) for the most 
significant single nucleotide polymorphisms (SNPs) and cor-

responding candidate genes associated with fusarium ear rot 
resistance across the two seasons examined

SNP Allele Chr Position P-value R2 Candidate gene Annotation

2,396,181|F|0–
39:G > T-39:G > T

G/T 1 210,459,200 0.000788 0.098 GRMZM2G104516 Zinc ion binding

2,463,074|F|0–
20:G > A-20:G > A

G/A 4 181,707,160 0.0022 0.119 GRMZM2G047319 Serine-type endopeptidase 
activity

2,508,896|F|0–
55:G > A-55:G > A

G/A 2 18,248,031 0.02137 0.053 GRMZM2G318949 Uncharacterized

2,591,766|F|0–
50:A > G-50:A > G

A/G 2 22,241,420 0.00467 0.059 GRMZM2G337229 monolayer-surrounded lipid 
storage body

100,066,545|F|0–
47:C > G-47:C > G

C/G 2 125,710,681 0.05477 0.046 GRMZM2G703158 Uncharacterized

2,383,629|F|0–
19:T > C-19:T > C

T/C 5 12,219,628 0.0048 0.075 GRMZM2G068963 Protein peptidyl-prolyl 
isomerization

2,428,673|F|0–
67:A > G-67:A > G

A/G 9 16,488,512 0.00712 0.081 GRMZM2G008152 uncharacterized

Table 3  Summary of the gene set enrichment analysis for the seven most significant pathways detected

PW Pathway, RES Running enrichment score
a  The number of genes mapped to a pathway that contributes to the calculation of the enrichment score
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively

MaizeCyc ID PW name RES p Genesa Significant gene ID

LIPASYN-PWY phospholipases 3.97 0.017 9 GRMZM2G426556
PWY-3561 choline biosynthesis III 2.06 0.040 4 GRMZM2G133943
PWY-5004 superpathway of citrulline metabolism 4.26 0.044 9 GRMZM2G061990
PWY-5136 fatty acid &beta-oxidation II (core pathway) 3.76 0.033 9 GRMZM2G339336
PWY-5143 fatty acid activation 2.74 0.025 5 GRMZM2G339336
PWY-561 superpathway of glyoxylate cycle 5.61 0.027 16 GRMZM2G459755
PWY-5995 linoleate biosynthesis I (plants) 3.59 0.028 8 GRMZM2G339336
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packaging, regulation of apoptosis, protein–protein 
interaction, photosynthesis, lipid binding as well as in 
the regulation of resistance to various biotic (pathogen 
responses) and abiotic stresses (Ciftci-Yilmaz & Mit-
tler 2008; Gupta et al. 2012; Laity et al. 2001; Stanton 
et al. 2022; Takatsuji 1998). GRMZM2G337229, also 
known as ole1 or oleosin1, accounts for 80%–90% of 
the oil body structural proteins and plays an impor-
tant role in lipid accumulation and storage (Chen 
et  al. 2019). These results revealed the complexity 
of FER resistance in tropical maize and showed that 
various mechanisms may be involved in conditioning 
this resistance, including complex biosynthesis pro-
cesses, which also may include interactions between 
numerous metabolic pathways (Chen et al. 2019).

It is important to note that the significant SNPs 
detected in this study differed from those identified 
in previous research. Chen et al. (2016) evaluated 818 
tropical inbred lines using 43,424 SNP markers and 
identified 45 significant SNPs associated with FER 
resistance. In the present study, the nearest marker 
to those identified by Chen et al. (2016) was located 
on chromosome 5, at a distance of approximately 
27  Mbp, and the same was observed by Guo et  al. 
(2020), who identified 23 SNPs associated with FER 
resistance in a collection of 509 diverse inbred lines 
using 37,801 SNPs. Specifically, the study identified 
a SNP on chromosome 1 (position 226,233,417  bp) 
which was 15  Mbp away from the one detected in 
the present study at 210,459,200 bp. Another GWAS 
study conducted on a panel of 183 inbred lines using 
267,525 SNP markers identified 14 SNPs signifi-
cantly associated with FER resistance on chromo-
somes 1, 2, 3, 5, 6, 7, and 10 (Coan et al. 2018). In 
the present study, a SNP on chromosome 2 at position 
22.24  Mbp was identified very close to the SNP on 
the same chromosome (9.6 Mbp).

According to Zila et al. (2014) and de Jong et al. 
(2018), these differences could be attributed to the 
different genetic backgrounds of the germplasm used, 
since the genetic background of populations signifi-
cantly influences FER resistance, the markers used, 
the rapid LD decay, and the differences in sample 
sizes. The research confirmed that FER resistance is 
indeed a quantitative trait conditioned by many genes 
with relatively small effects that are not consistent 
between populations and environments (de Jong et al. 
2018; Holland et  al. 2020; Mesterházy et  al. 2012; 
Zila et al. 2014).

Understanding the pathways involved in resist-
ance is important to (1) advance our broader knowl-
edge of plant defense mechanisms against pathogens 
(Tang et  al. 2015), (2) complement conventional 
single-marker analysis in GWASs by providing nec-
essary information, in particular through the iden-
tification of additional genes, and (3) elucidate the 
issue of “missing heritability” (Wang et  al. 2010). 
Pathway analysis is also important in mechanistic 
research, as these reveal the underlying disease path-
ways without narrowing down each GWAS locus to 
a single gene (Wang et  al. 2010). In this study, the 
most significant genes and their MaizeCyc enzyme 
annotations across the seven identified pathways 
were GRMZM2G133943 (phosphatidate metabo-
lism, as a signaling molecule), GRMZM2G061990 
(obsolete carbamoyl-phosphate synthase activ-
ity), GRMZM2G426556 (no annotation), 
GRMZM2G459755 (3-hydroxyacyl-CoA dehydroge-
nase), and GRMZM2G339336, which is significant 
for three MaizeCyc pathways (Table 3). Specifically, 
this gene was mapped to PWY-5136, PWY 5,143, 
and PWY-5995, and was located on chromosome 4 
between positions 185,864,998 and 185,869,115 bp. 
GRMZM2G339336 encodes a long-chain fatty acid-
CoA ligase protein which plays a role in the physi-
ological regulation of numerous cellular functions by 
producing long-chain fatty acyl-CoA esters. These, 
in turn, have been reported to be involved in protein 
transport, protein acylation enzyme activation, tran-
scriptional regulation, and cell signaling (Fulda et al. 
2002).

Among the detected pathways, the most significant 
one, LIPASYN-PWY, is regulated by a phospholipase 
that hydrolyzes phospholipids. Phospholipases are 
involved in various plant responses related to plant 
signal transduction, such as responding to auxin stim-
ulation, pathogens, and elicitors (Ryu 2004), as well 
as responses to pathogen elicitation, abscisic acid, 
ethylene, nodulation, wounding, water loss, and seed 
germination (Wang & Wang 2001). According to 
Guo et al. (2009), pathway-based analysis is a useful 
and promising approach to effectively analyze GWAS 
data and detect disease variants by jointly considering 
gene variants that belong to the same biological path-
way. For example, in this study, pathway PWY-561, 
which was the most significant, had 16 genes con-
tributing to its enrichment score, implying that these 
genes were grouped together based on their shared 
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biological functions, and their cumulative effects 
contributed to further elucidating the genetic dif-
ferences that distinguished resistant and susceptible 
maize inbred lines (Tang et al. 2015). The results of 
this study are in line with those reported in Yao et al. 
(2020) indicating that FER resistance is a complex 
trait and depends on a network of multiple defense 
pathways.

For quantitative traits controlled by numerous 
genes, as in the case of FER resistance, the best 
strategy for molecular breeding is transitioning from 
marker-assisted breeding to genomic selection (Guo 
et  al. 2020). In maize, genomic selection has been 
reported as an important genomics tool to improve 
breeding efficiency and accelerate genetic gain in sev-
eral target traits, especially complex traits (Cao et al. 
2021).

In conclusion, the creation of inbred maize lines 
resistant to FER or to the accumulation of the asso-
ciated mycotoxin would be aided by the identifica-
tion of the pertinent alleles and metabolites involved 
in the resistance mechanism. The present study con-
tributed to such knowledge by identifying significant 
genes via GWAS and pathway analysis. It is advis-
able to use pathway analysis in conjunction with 
GWASs to (1) identify biological processes that are 
broadly distributed across an entire network of genes 
that have subtle effects at the individual level and (2) 
detect biological aspects that could have been missed 
while concentrating on only one or a few genes exhib-
iting the most significant associations with the trait of 
interest. FER-resistant inbred lines could also poten-
tially be used as sources to develop hybrids resistant 
to this disease.
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