Domestication and association analysis of $\boldsymbol{H d l}$ in Chinese mini-core collections of rice

Xin Wei - Weihua Qiao • Nannan Yuan -
Youtao Chen • Rongsheng Wang • Lirong Cao -
Wanxia Zhang • Qingwen Yang • Hanlai Zeng

Received: 26 February 2013/Accepted: 25 June 2013/Published online: 15 August 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract

H d l\) is one of the major photoperiod genes with high degree of polymorphisms and contributes to rice (Oryza sativa L.) flowering in different light conditions. Ninety-two rice landraces and 111 accessions of common wild rice (O. rufipogon Griff.) from the mini-core collections in China were selected and sequenced to analyze the domestication process and association of Hdl with rice flowering. Association analysis revealed that three insertions and two deletions in the coding region of $H d l$ are highly correlated with flowering time in the short-day condition. Phylogenetic analysis suggested that the polymorphisms of $H d l$ in wild rice are related to the distributions. Haplotype analysis indicated that Hdl in most O. sativa L. ssp. indica Kato and O. sativa L. ssp. japonica Kato landraces evolved from different O. rufipogon groups containing functional $H d l$ and that most aus varieties were domesticated from

[^0]O. rufipogon containing the long-insertions Hdl, suggesting multiple origins of $H d 1$. Moreover, O. rufipogon which contained the long-insertions $H d l$ could only be found in Southern China, implying that Southern China might be one of the domestication centers of O. sativa. This study provides much significant information to aid further understanding of the domestication process of $H d l$.

Keywords Association analysis .
Domestication • Hdl - Mini-core collections .
Oryza rufipogon • Oryza sativa

Introduction

Rice (Oryza sativa L.) is the most significant crop, feeding approximately half the population of the world. It is believed that rice was domesticated from common wild rice (O. rufipogon Griff.) in East Asia about 10,000 years ago (Doebley et al. 2006). Common wild rice is photoperiod sensitive, flowers at short-day condition, and mainly exists in South and Southeast Asia (Vaughan et al. 2003). However, O. sativa has been spread all around the world, and some can even flower in long-day condition. Previous studies have suggested that the allelic variation of Heading date 1 (Hdl) in O. sativa might be one possible reason for this phenomenon (Yano et al. 2000; Tsuji et al. 2008; Takahashi et al. 2009; Huang et al. 2012a).
$H d l$ is a major photoperiod-sensitive gene and plays a significant role in regulating rice flowering. Previous research revealed that clock genes receive signals from light and circadian clocks and regulate expression of Hdl (Yano et al. 2000). Then Hdl regulates the expression of a mobile flowering signal florigen, Hd3a, and controls the flowering of rice (Tsuji et al. 2008). Hdl is regarded as the major determinant of the variation in flowering-time diversity in cultivated rice, and the high degree of polymorphisms in Hdl is believed to contribute to the regulation of rice flowering time (Takahashi et al. 2009). Although more than 60 cultivated rice accessions have been sequenced and plenty of nucleotide variations have been obtained (Takahashi et al. 2009; Fujino et al. 2010; Huang et al. 2012a), which variations are significantly associated with flowering time is not yet completely clear. Thus, the association of $H d l$ with flowering time was analyzed in the present study to detect these significant variations.

Traditionally, O. sativa is divided into two subspecies: O. sativa L. ssp. indica Kato and O. sativa L. ssp. japonica Kato. These two rice subspecies can be distinguished by both DNA markers and morphologic characteristics. The origin of indica and japonica has been studied for decades, but still with quite varied conclusions (Londo et al. 2006; Gao and Innan 2008; Molina et al. 2011; Huang et al. 2012b; Wei et al. 2012a). However, according to rice diversity research, O. sativa can be divided into several groups. Not only indica and japonica, but also aus should form one group of O. sativa (Garris et al. 2005; Kovach et al. 2007; Zhao et al. 2010). Aus is known as pre-kharif rice or autumn rice which grows mainly in India and Bangladesh. It is usually planted during May to August and harvested in autumn. It was selected from other varieties based on the character of earliness. Earliness is the main character of aus, and most varieties of aus are light insensitive. Few studies about the domestication of aus have been reported. A recently published paper which analyzed the domestication of O. sativa by genome-wide patterns and rich material from a wide range suggests that ancient japonica was first domesticated from O. rufipogon around the middle area of the Pearl River in Southern China and that indica was subsequently developed from crosses between ancient japonica and local wild rice as the initial cultivars spread into Southeast and

South Asia, then initial indica diverged into indica and aus (Huang et al. 2012c). In the present study, japonica, indica, and aus varieties were collected and sequenced to analyze the phylogeny and domestication process of $H d l$ in these groups.

Hdl shows intriguing variations of functions at $31^{\circ} \mathrm{N}$ and $23.5^{\circ} \mathrm{N}$ (Izawa 2007). It promotes flowering in the short-day condition in geographical regions south of $31^{\circ} \mathrm{N}$ but represses flowering in the long-day condition in areas north of $31^{\circ} \mathrm{N}$, while south of the Tropic of Cancer (TOC, $23.5^{\circ} \mathrm{N}$), Hdl tends to be nonfunctional and results in late flowering due to its insensitivity to photoperiod (Huang et al. 2012a). In the present study, all the aus varieties were from tropical areas south of the TOC, but the japonica varieties ranged from $10^{\circ} \mathrm{N}$ to $45^{\circ} \mathrm{N}$ and the indica varieties ranged from $5^{\circ} \mathrm{N}$ to $30^{\circ} \mathrm{N}$. Therefore, japonica could be divided into tropical japonica, subtropical japonica, and temperate japonica according to the geographical divisions at $31^{\circ} \mathrm{N}$ and the TOC. Also, indica could be divided into tropical indica and subtropical indica according to the geographical division at the TOC. The diversity of $H d l$ in different groups and the relationship between $H d l$ in geographical regions are also investigated.

In the present study, 92 accessions of O. sativa and 111 accessions of O. rufipogon were collected and sequenced. All cultivated samples are landraces (pureline varieties developed by farmers without artificial intercrossing). The landraces and O. rufipogon were collected from their mini-core collections in China. The mini-core collections were identified from China National Genebank, which included 50,526 landraces and more than 10,000 accessions of O. rufipogon, by morphological traits and simple sequence repeat (SSR) markers. Through a hierarchical sampling strategy, the mini-core collections of O. sativa and O. rufipogon retained more than 70% of the morphological variation in all germplasm collections (Zhang et al. 2011). Sixty O. sativa accessions originating from other countries have been sequenced and published (Fujino et al. 2010). These sequences are also included in our analysis. In total, Hdl of 263 accessions of O. sativa and O. rufipogon with high diversity has been sequenced and analyzed. Such study with rich and representative materials can provide much significant information to aid further understanding of the domestication process of Hdl .

Materials and methods

Sampling and phenotypic data collection
The materials used in this study included 92 accessions of cultivated rice (Table 1), 111 accessions of O. rufipogon, and 1 accession of O. barthii A. Chev. (Table 2). The selected 46 indica and 46 japonica landraces were from 23 different provinces in China. To distinguish indica and japonica, we investigated all individuals by Cheng's index method (Lu et al. 2009), which has been popularly used in China. O. rufipogon was procured from Guangzhou and Nanning Wild Rice Field Genebanks, except for the wild rice of Yunnan Province, which was collected directly from distribution sites. The O. rufipogon accessions were investigated carefully throughout their whole lifespan to remove the individuals which had significant gene flow from O. sativa from the samples. Currently, O. rufipogon only exists in seven provinces in South China, and samples originating from all seven provinces were included in our research. O. barthii was provided by the International Rice Research Institute and used as the outgroup sample. The geographic localities of O. rufipogon and landraces from China sampled in our research are shown in Fig. 1. Sixty O. sativa accessions originating from other countries were sequenced (Table 3), and the sequences were added in the following analysis.

All landraces were planted in late November at Sanya, Hainan (southernmost China) from 2009 to 2011 and grew mostly under short-day conditions. Ten plants were transplanted in a single row with 20 cm between plants and 30 cm between rows of different accessions. Field management was performed following normal agricultural practices. Heading date was defined as the days from sowing to the appearance of 50% panicles.

DNA extraction, PCR amplification, cloning, and sequencing

Total DNA extraction and polymerase chain reaction (PCR) amplification were conducted generally following the methods of our previous studies (Wei et al. 2012a; Qiao et al. 2012). Primers of $H d l$ are listed in Table S1. Almost the entire gene region of $H d l$ was sequenced, including the promoter, exon 1 , intron, exon 2, and 3'-untranslated region (UTR) (Fig. 2). Sequencing was performed by an ABI 3730 automated
sequencer (Applied Biosystems, USA). Initially, all of the samples were directly sequenced, but if the accession was a heterozygote, the PCR product was ligated into the EASY vector (Transgen, China). Independent plasmid DNA was then selected randomly, and at least four clones were sequenced so that the sequences of both alleles would be obtained. Because Taq errors did occur, when polymorphisms were only found in one of the accessions, this accession was resequenced with the cloning step to ensure these polymorphisms were not false. Because heterozygous individuals exist in O. rufipogon, two sequences of alleles were obtained for some wild samples.

Population structure analysis

Twenty-four simple sequence repeat (SSR) markers were used to detect the structure of the cultivated samples: RM529, RM522, RM526, RM211, RM411, RM60, RM518, RM348, RM574, RM274, RM508, RM412, RM427, RM172, RM339, RM408, RM553, RM321, RM484, RM239, RM224, RM479, RM247, and RM463. One exists in each short and long arm of the 12 rice chromosomes. PCR was performed as described above, and PCR products were separated on 6% polyacrylamide denaturing gels to determine the alleles of each marker. The STRUCTURE 2.3.2 program (Falush et al. 2003) was used to infer the population structure with burn-in of 100,000 , run length of 100,000 , and a model allowing for admixture and correlated allele frequencies. Number of subpopulations K from two to ten was tested, and ten independent runs yielded consistent likelihoods of the population structure for each K.

DNA sequence analysis, neutrality test, and association analysis

The DNA sequences were aligned using the ClustalX program (Thompson et al. 1997) and manually adjusted in BioEdit (Hall 1999). The number of segregating sites (S), the number of haplotypes (h), the haplotype diversity (Hd), and two parameters of nucleotide diversity, namely π (Nei 1987) and Watterson's estimator from $S\left(\theta_{\mathrm{w}}\right)$ (Watterson 1975), were calculated by DnaSP version 5.0 (Rozas 2009).

Two neutrality tests, namely Tajima's D value and Fu and Li's D^{*} / F^{*}, were calculated for all loci to test the neutral mutation hypothesis. Tajima's D (1989) is
Table 1 Details of the landraces from China

Name	Origin	No.	Type	Taxa	Protein type	Coding region haplotype	Heading day (Hainan 2009)	Heading day (Hainan 2010)	Heading day (Hainan 2011)	Q1	Q2	Q3
AH_HN-I	Anhui, Huaining, China	11-00389	Landrace	I	T1	H1	87	85	83	0.976	0.003	0.02
AH_TH-I	Anhui, Taihu, China	11-00403	Landrace	I	T2	H2	88	86	87	0.994	0.003	0.003
AH_WH-I	Anhui, Wuhu, China	11-00322	Landrace	I	T2	H2	84	81	80	0.996	0.002	0.002
FJ_XY-I	Fujian, Xianyou, China	13-00816	Landrace	I	T2	H2	76	66	69	0.995	0.003	0.002
GD_GZ-1-I	Guangdong, Guangzhou, China	15-03168	Landrace	I	T2	H2	90	88	84	0.996	0.002	0.002
GD_GZ-2-I	Guangdong, Guangzhou, China	15-03336	Landrace	I	T3 ${ }^{\text {a }}$	H3	95	92	97	0.992	0.003	0.005
GD_LC-I	Guangdong, Longchuan, China	15-01740	Landrace	I	T3 ${ }^{\text {a }}$	H3	99	97	97	0.993	0.003	0.004
GD_YD-I	Guangdong, Yingde, China	15-03025	Landrace	I	T2	H2	75	74	77	0.987	0.005	0.008
GX_FeS-I	Guangxi, Fengshan, China	16-09350	Landrace	I	T2	H2	90	89	94	0.905	0.022	0.074
GX_HX-I	Guangxi, Hengxian, China	16-00163	Landrace	I	T4 ${ }^{\text {a }}$	H4	97	93	92	0.995	0.003	0.002
GZ_CJ-J	Guizhou, Congjiang, China	22-03815	Landrace	J	T5	H5	112	119	115	0.007	0.054	0.939
GZ_FQ-J	Guizhou, Fuquan, China	22-01439	Landrace	J	T5	H5	95	92	82	0.002	0.005	0.993
GZ_HS-I	Guizhou, Huishui, China	22-01615	Landrace	I	T6 ${ }^{\text {a }}$	H6	77	79	77	0.991	0.004	0.005
GZ_QL-J	Guizhou, Qinglong, China	22-00513	Landrace	J	T7	H7	92	93	91	0.003	0.005	0.992
GZ_SB-J	Guizhou, Shibing, China	22-04053	Landrace	J	T5	H5	96	95	93	0.002	0.004	0.994
GZ_WC-I	Guizhou, Wuchuan, China	22-02148	Landrace	I	T8 ${ }^{\text {a }}$	H8	95	102	88	0.013	0.063	0.925
GZ_ZF-J	Guizhou, Zhenfeng, China	22-00570	Landrace	J	T7	H7	93	100	86	0.003	0.005	0.992
GZ_ZiY-I	Guizhou, Ziyun, China	22-04637	Landrace	I	T2	H2	91	95	90	0.104	0.007	0.889
GZ_ZN-I	Guizhou, Zhenning, China	22-02754	Landrace	I	T9 ${ }^{\text {a }}$	H9	109	112	106	0.973	0.022	0.004
GZ_ZY-I	Guizhou, Zunyi, China	22-00040	Landrace	I	T2	H2	82	87	88	0.994	0.003	0.003
HeB_FN-J	Hebei, Funing, China	02-00058	Landrace	J	T10	H10	73	85	80	0.002	0.021	0.976
HeB_LH-J	Hebei, Longhua, China	02-00133	Landrace	J	T11 ${ }^{\text {a }}$	H11	96	95	97	0.002	0.006	0.992
HeN_HB-I	Henan, Huaibin, China	19-00205	Landrace	I	T2	H2	88	86	84	0.978	0.015	0.007
HeN_ZY-I	Henan, Zhengyang, China	19-00022	Landrace	I	T3 ${ }^{\text {a }}$	H3	98	104	103	0.995	0.002	0.002
HLJ_HL-J	Heilongjiang, Hailin, China	07-00010	Landrace	J	T12	H12	65	49	53	0.002	0.005	0.993
HLJ_SH-J	Heilongjiang, Suihua, China	07-00109	Landrace	J	T13	H13	66	50	53	0.002	0.025	0.973
HN_BT-I	Hainan, Baoting, China	15-04286	Landrace	I	T2	H2	90	81	83	0.968	0.025	0.007
HN_LD-I	Hainan, Ledong, China	31-00042	Landrace	I	T3 ${ }^{\text {a }}$	H3	106	109	107	0.727	0.247	0.027
HN_SY-I	Hainan, Sanya, China	31-00032	Landrace	I	T3 ${ }^{\text {a }}$	H3	113	110	114	0.92	0.068	0.012
HuB_CY-I	Hubei, Chongyang, China	17-00502	Landrace	I	T14 ${ }^{\text {a }}$	H14	89	78	80	0.996	0.002	0.002
HuB_PQ-I	Hubei, Puqi, China	17-00435	Landrace	I	T2	H2	66	67	57	0.993	0.004	0.003

Table 1 continued

Name	Origin	No.	Type	Taxa	Protein type	Coding region haplotype	Heading day (Hainan 2009)	Heading day (Hainan 2010)	Heading day (Hainan 2011)	Q1	Q2	Q3
HuB_TS-I	Hubei, Tongshan, China	17-00524	Landrace	I	T2	H2	87	77	81	0.995	0.003	0.003
HuB_ZX-I	Hubei, Zhuxi, China	17-01470	Landrace	I	T2	H2	94	91	93	0.996	0.002	0.002
HuN_CS-1-I	Hunan, Changsha, China	18-01067	Landrace	I	T3 ${ }^{\text {a }}$	H3	93	86	90	0.996	0.002	0.002
HuN_CS-2-I	Hunan, Changsha, China	18-04906	Landrace	I	T2	H2	92	92	91	0.995	0.002	0.002
HuN_LH-J	Hunan, Longhui, China	18-01903	Landrace	J	T15	H15	93	91	93	0.003	0.016	0.981
HuN_QY-J	Hunan, Qianyang, China	18-04082	Landrace	J	T5	H5	97	89	101	0.002	0.006	0.991
JS_JY-J	Jiangsu, Jiangyin, China	09-00530	Landrace	J	T5	H5	72	73	82	0.003	0.008	0.988
JS_NT-J	Jiangsu, Nantong, China	09-01361	Landrace	J	T16 ${ }^{\text {a }}$	H16	83	88	87	0.013	0.092	0.895
JS_WJ-J	Jiangsu, Wujin, China	09-00724	Landrace	J	T5	H5	68	82	84	0.002	0.05	0.947
JX_DX-I	Jiangxi, Dongxiang, China	12-00589	Landrace	I	T2	H2	69	70	65	0.994	0.003	0.003
JX_GX-I	Jiangxi, Guixi, China	12-00644	Landrace	I	T17	H17	82	73	84	0.981	0.009	0.01
JX_NC-1-I	Jiangxi, Nanchang, China	12-01446	Landrace	I	T18 ${ }^{\text {a }}$	H18	93	77	94	0.993	0.003	0.005
JX_NC-2-I	Jiangxi, Nanchang, China	12-02254	Landrace	I	T19 ${ }^{\text {a }}$	H19	91	103	96	0.993	0.004	0.002
JX_NC-3-I	Jiangxi, Nanchang, China	12-02280	Landrace	I	T2	H2	70	76	72	0.996	0.002	0.002
JX_NC-4-I	Jiangxi, Nanchang, China	12-02373	Landrace	I	T2	H2	71	69	73	0.996	0.002	0.002
LN_DD-J	Liaoning, Dandong, China	05-00052	Landrace	J	T20 ${ }^{\text {a }}$	H20	84	82	89	0.003	0.089	0.907
LN_GX-J	Liaoning, Gaixian, China	05-00024	Landrace	J	T21 ${ }^{\text {a }}$	H21	80	87	90	0.003	0.006	0.991
SAX_LT-J	Shanxi, Lantian, China	24-00215	Landrace	J	T15	H15	88	78	99	0.002	0.007	0.991
SAX_SY-J	Shanxi, Shanyang, China	24-00195	Landrace	J	T10	H10	81	68	78	0.002	0.019	0.979
SC_GL-I	Sichuan, Gulan, China	20-01452	Landrace	I	T3 ${ }^{\text {a }}$	H3	93	91	88	0.995	0.002	0.003
SC_GX-J	Sichuan, Gaoxian, China	20-03215	Landrace	J	T22	H22	91	83	97	0.003	0.923	0.075
SC_LX-J	Sichuan, Luxian, China	20-01734	Landrace	J	T23 ${ }^{\text {a }}$	H23	93	99	85	0.013	0.017	0.971
SC_MN-I	Sichuan, Mianning, China	20-01262	Landrace	I	T2	H2	87	78	79	0.711	0.079	0.209
SC_QX-I	Sichuan, Quxian, China	20-03053	Landrace	1	T2	H2	93	89	81	0.993	0.003	0.004
SC_WQ-I	Sichuan, Wanquan, China	20-02821	Landrace	I	T2	H2	82	80	68	0.995	0.002	0.002
SC_YB-I	Sichuan, Yibin, China	20-02073	Landrace	I	T2	H2	80	76	83	0.995	0.003	0.003
SH_FX-J	Shanghai, Fengxian, China	08-00253	Landrace	J	T5	H5	70	67	80	0.003	0.007	0.99
SH_SH-J	Shanghai, Shanghai, China	08-00036	Landrace	J	T5	H5	70	66	82	0.003	0.009	0.987
SX_TY-J	Shanxi, Taiyuan, China	04-00115	Landrace	J	T24	H24	71	69	75	0.002	0.007	0.99

Table 1 continued

Name	Origin	No.	Type	Taxa	Protein type	Coding region haplotype	Heading day (Hainan 2009)	Heading day (Hainan 2010)	Heading day (Hainan 2011)	Q1	Q2	Q3
TJ_BD-J	Tianjing, Baodi, China	29-00010	Landrace	J	T10	H10	94	86	88	0.003	0.006	0.991
TJ_TJ-1-J	Tianjing, Tianjin, China	02-00294	Landrace	J	T25	H25	69	69	72	0.002	0.007	0.99
TJ_TJ-2-J	Tianjing, Tianjin, China	02-00295	Landrace	J	T10	H10	72	79	71	0.002	0.024	0.973
TW_TB-1-J	Taiwan, Taibei, China	30-00195	Landrace	J	T26	H26	83	88	84	0.154	0.013	0.833
TW_TB-2-J	Taiwan, Taibei, China	30-00206	Landrace	J	T3 ${ }^{\text {a }}$	H3	98	104	103	0.219	0.009	0.772
TW_TB-3-I	Taiwan, Taibei, China	30-00210	Landrace	I	T3 ${ }^{\text {a }}$	H3	99	103	95	0.996	0.002	0.002
TW_TB-4-I	Taiwan, Taibei, China	30-00244	Landrace	I	T3 ${ }^{\text {a }}$	H3	99	105	96	0.996	0.002	0.002
XZ_MT-I	Xizang, Motuo, China	26-00008	Landrace	I	T2	H2	75	91	95	0.985	0.008	0.007
YN_DH-J	Yunnan, Dehong, China	21-00529	Landrace	J	T27 ${ }^{\text {a }}$	H27	95	101	107	0.003	0.993	0.005
YN_DY-J	Yunnan, Dayao, China	21-04506	Landrace	J	T2	H2	85	83	79	0.958	0.028	0.014
YN_GM-J	Yunnan, Gengma, China	21-00785	Landrace	J	T27 ${ }^{\text {a }}$	H27	102	101	104	0.003	0.986	0.011
YN_JH-J	Yunnan, Jinghong, China	21-00357	Landrace	J	T27 ${ }^{\text {a }}$	H27	93	96	97	0.003	0.993	0.004
YN_JP-1-J	Yunnan, Jinping, China	21-01106	Landrace	J	T2	H2	82	79	76	0.985	0.008	0.007
YN_JP-2-I	Yunnan, Jinping, China	21-01120	Landrace	I	T19 ${ }^{\text {a }}$	H19	93	101	95	0.988	0.008	0.005
YN_LaC-1-J	Yunnan, Lancang, China	21-01970	Landrace	J	T15	H15	92	103	82	0.002	0.024	0.974
YN_LaC-2-J	Yunnan, Lancang, China	21-01989	Landrace	J	T28	H28	96	106	97	0.002	0.965	0.033
YN_LC-J	Yunnan, Lvchun, China	21-01165	Landrace	J	T19 ${ }^{\text {a }}$	H19	109	102	105	0.989	0.007	0.004
YN_LiC-I	Yunnan, Lincang, China	21-00694	Landrace	I	T2	H2	71	59	56	0.988	0.005	0.006
YN_LL-J	Yunnan, Longling, China	21-04732	Landrace	J	T15	H15	79	71	72	0.002	0.022	0.975
YN_MaL-J	Yunnan, Malong, China	21-04413	Landrace	J	T29	H29	90	95	83	0.025	0.019	0.956
YN_MH-J	Yunnan, Menghai, China	21-02824	Landrace	J	T2	H2	76	86	84	0.927	0.044	0.029
YN_ML-1-J	Yunnan, Menglian, China	21-00083	Landrace	J	T28	H28	93	94	92	0.017	0.977	0.006
YN_ML-2-J	Yunnan, Menglian, China	21-01853	Landrace	J	T30	H30	89	99	83	0.002	0.963	0.035
YN_ML-3-I	Yunnan, Menglian, China	21-01899	Landrace	I	T2	H2	91	97	95	0.996	0.002	0.002
YN_PE-1-I	Yunnan, Puer, China	21-02171	Landrace	I	T19 ${ }^{\text {a }}$	H19	95	97	98	0.97	0.003	0.026
YN_PE-2-J	Yunnan, Puer, China	21-02224	Landrace	J	T2	H2	87	76	87	0.992	0.004	0.004
YN_XM-J	Yunnan, Ximeng, China	21-02089	Landrace	J	T31	H31	87	79	73	0.005	0.873	0.122
YN_XP-1-I	Yunnan, Xinping, China	21-05072	Landrace	I	T19 ${ }^{\text {a }}$	H19	104	101	100	0.79	0.202	0.008
YN_XP-2-I	Yunnan, Xinping, China	21-05171	Landrace	I	T6 ${ }^{\text {a }}$	H6	96	90	97	0.995	0.002	0.003

Table 1 continued

Name	Origin	No.	Type	Taxa	Protein type	Coding region haplotype	Heading day (Hainan 2009)	Heading day (Hainan 2010)	Heading day (Hainan 2011)	Q1	Q2	Q3
YN_YY-J	Yunnan, Yuanyang, China	21-01257	Landrace	J	T2	H2	88	72	82	0.971	0.005	0.025
YN_ZK-J	Yunnan, Zhenkang, China	21-03879	Landrace	J	T9 ${ }^{\text {a }}$	H9	97	93	95	0.615	0.342	0.043
ZJ_WX-J	Zhejiang, Wuxing, China	10-00463	Landrace	J	T5	H5	75	72	71	0.003	0.031	0.966
Q1, Q2, and Q3 represent the genomic components of each individual that originated from subpopulation 1, 2, and 3, respectively. I: O. sativa L. ssp. indica Kat ssp. japonica Kato ${ }^{\text {a }}$ Nonfunctional proteins												

based on the discrepancy between the mean pairwise differences (π) and Watterson's estimator (θ_{w}), whereas Fu and Li's D^{*} / F^{*} (Fu and Li 1993) relies on the differences between the numbers of polymorphic sites in external and internal groups. In these two tests, negative values indicate an excess of lowfrequency polymorphisms, whereas positive values indicate an excess of intermediate variants.

Association between the phenotypes and sequences was analyzed by TASSEL 2.1 (Bradbury et al. 2007). Single-nucleotide polymorphism (SNP)/indel-trait associations were identified by generating a general linear model (GLM). Linkage disequilibrium (LD) was estimated by DnaSP using standardized disequilibrium coefficients and squared allele-frequency correlations $\left(r^{2}\right)$ for pairs of SNP loci.

Phylogenetic analysis
The haplotype networks of the coding region were constructed by mutational steps with NETWORK 4.6 (Bandelt et al. 1999). Only major haplotypes containing two or more individuals were used. The phylogenetic relationships among the major haplotypes of the coding region and all haplotypes of the whole region were constructed by neighbor-joining (NJ) analysis (Saitou and Nei 1987) using MEGA 4.0 (Tamura et al. 2007). Gaps were treated as missing values, and these sites were excluded from the data matrix. In the NJ analysis, we followed Kimura's two-parameter model (Kimura 1980). The nonparametric bootstrap test was performed to quantify the confidence of internal nodes with 1,000 replications.

Results

Nucleotide diversity and neutrality analysis
The whole genomic DNA sequences of $H d l$ from the 92 cultivated and 111 wild accessions were sequenced, and the nucleotide diversity of $H d l$ in them was analyzed. High degree of polymorphisms and long insertions and deletions were detected in Hdl. The gene lengths ranged from 2,811 to 3,476 bp because of the long indels. In total, 63 indels and 82 SNPs were found. In different regions of $H d 1$, the polymorphisms varied. As shown in Table 4, the pairwise nucleotide diversity parameter (π) and the level of the Watterson
Table 2 List of wild samples used in the study

	会
$\stackrel{\circ}{2}$	
$\begin{aligned} & \stackrel{.0}{\ddot{0}} \\ & \stackrel{\rightharpoonup}{\ddot{0}} \end{aligned}$	
$\begin{aligned} & \text { Eg } \\ & \stackrel{\text { ED }}{0} \end{aligned}$	
疘	

Table 2 continued

$\stackrel{\text { ¢ }}{ }$	㐾
$\begin{aligned} & \stackrel{.0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{n}{n} \end{aligned}$	
$\begin{aligned} & \text { 露 } \end{aligned}$	

Table 2 continued

\%	
$\begin{aligned} & \ddot{0} \\ & \stackrel{\ddot{U}}{\ddot{0}} \\ & \ddot{n} \end{aligned}$	
先	

Table 2 continued

Name	Origin	Species	No.	Whole region haplotype	Coding region haplotype	Protein type
HuN_JY-2-W	Hunan, Jiangyong	R	YD6-0084	h38	H16	T44
JX_DX-1-W	Jiangxi, Dongxiang	R	YD4-0020	h93	H28	T73\&T99
JX_DX-2-W	Jiangxi, Dongxiang	R	YD4-0022	h93	H28	T99
JX_DX-3-W	Jiangxi, Dongxiang	R	YD4-0049	h93	H28	T73
JX_DX-4-W	Jiangxi, Dongxiang	R	YD4-0076	h94\&h95	H28\&H46	T73\&T100
YN_JH-1-W	Yunnan, Jinghong	R	YD3-0002	h96\&h97	H47	T101
YN_JH-2-W	Yunnan, Jinghong	R	YD3-0003	h98\&h99	H47	T101
YN_JH-3-W	Yunnan, Jinghong	R	YD3-0007	h97\&h100	H47\&H48	T101\&T102
YN_JH-4-W	Yunnan, Jinghong	R	YD3-0008	h96\&h97	H47	T101
YN_JH-5-W	Yunnan, Jinghong	R	YD3-0009	h96\&h97	H47	T101
YN_JH-6-W	Yunnan, Jinghong	R	YD3-0011	h97\&h100	H47\&H48	T101\&T102
YN_YJ-1-W	Yunnan, Yuanjiang	R	BC-0046 ${ }^{\text {a }}$	h42	H2	T103
YN_YJ-2-W	Yunnan, Yuanjiang	R	BC-0049 ${ }^{\text {a }}$	h42	H2	T103
YN_YJ-3-W	Yunnan, Yuanjiang	R	BC-0081 ${ }^{\text {a }}$	h42	H2	T103
YN_YJ-4-W	Yunnan, Yuanjiang	R	BC-0085 ${ }^{\text {a }}$	h42	H2	T103
barthii	Gambia	B	$100941^{\text {b }}$			

R: O. rufipogon Griff.; B: O. barthii A. Chev
${ }^{\text {a }}$ Provisional conservation number of Chinese National Germplasm Bank
${ }^{\text {b }}$ Conservation number of Genetic Resources Center, International Rice Research Institute ${ }^{c}$ Nonfunctional proteins

Fig. 1 Geographic origins of the materials from China. Red circles indicate O. sativa L. ssp. indica Kato; blue circles indicate O. sativa L. ssp. japonica Kato; green triangles indicate O. rufipogon Griff. (Color figure online)

estimator $\left(\theta_{\mathrm{w}}\right)$ of promoter were higher than for other regions for O. rufipogon and indica. This result is in line with some other research into another photoperiod gene ($G h d 7$) in rice (Lu et al. 2012). However, for japonica, the first exon had the highest diversity. In the neutrality analysis, only the values for O. rufipogon were significantly negative, suggesting negative selection or quick population expansion of O. rufipogon.

Association analysis

A population structure of the cultivated rice was constructed using the 24 SSR markers (Fig. 3). The structure can be classified into three subpopulations because the highest log-likelihood scores of the population structure were observed when the number of populations was set at 3 ($K=3$; Fig. S1). The first subpopulation (subpopulation 1) contained 51 accessions, of which 86% were indica varieties; subpopulation 2 contained 8 japonica varieties; and subpopulation 3 contained 33 accessions, of which 94% were japonica varieties (Table 1). In fact, when $K=2$, subpopulations 2 and 3 were in the same cluster (Fig. S2). Further analysis revealed most japonica in subpopulation 2 were located south of the TOC, while
all japonica varieties in subpopulation 3 existed north of the TOC, implying that cluster 2 might be tropical japonica and cluster 3 might be temperate japonica. LD was detected in the whole genomic region of Hdl and fast LD decay was observed (Fig. S3), suggesting weak association between the SNPs in Hdl.

Taking the population structure data as covariates (Table 1), we used GLM to identify SNP/indel-trait associations separately for 3 years. SNPs and indels at less than 5% were excluded. No SNP was found to be related to the flowering date in the association analysis. Five significant associated indels were detected and were the same between different years (Table 5). All insertions and deletions were located in the coding region. S3527 and S4199 were 2- and 4-bp deletions, respectively, both of which would lead to loss of function of Hdl . These deletions had also been detected in previous research (Takahashi et al. 2009; Fujino et al. 2010). S1081, S1539, and S1668 were 3-, $33-$, and $156-\mathrm{bp}$ insertions, respectively. The long insertions might lead to partial loss of function of Hdl (Yano et al. 2000). Thus, S1081, S1539, S1668, S3527, and S4199 were the sites associated with flowering time of rice. All of them were in the coding region and would weaken function of $H d l$.

Table 3 List of the cultivated samples used in Fujino et al. (2010)

Name	Origin	No.	Type	Taxa	Protein type	Coding region haplotype
NIPPONBARE	Japan	WRC1	Breeding	J	T10	H10
KASALATH	India	WRC2	Landrace	A	T32 ${ }^{\text {a }}$	H32
BEIKHE	Cambodia	WRC3	Landrace	I	T2	H2
JENA 035	Nepal	WRC4	Landrace	A	T33 ${ }^{\text {a }}$	H33
NABA	India	WRC5	Landrace	I	T19 ${ }^{\text {a }}$	H19
PULUIK ARANG	Indonesia	WRC6	Landrace	I	T34 ${ }^{\text {a }}$	H34
DAVAO 1	Philippines	WRC7	Landrace	I	T3 ${ }^{\text {a }}$	H3
RYOU SUISAN KOUMAI	China	WRC9	Landrace	I	T2	H2
JINGUOYIN ${ }^{\text {a }}$	China	WRC11	Landrace	I	T19	H19
ASU	Bhutan	WRC13	Landrace	I	T19 ${ }^{\text {a }}$	H19
IR 58	Philippines	WRC14	Breeding	I	T34 ${ }^{\text {a }}$	H34
CO 13	India	WRC15	Unknown	I	T2	H2
KEIBOBA	China	WRC17	Landrace	I	T9 ${ }^{\text {a }}$	H9
QINGYU	China	WRC18	Landrace	I	T3 ${ }^{\text {a }}$	H3
DENG PAO ZHAI	China	WRC19	Breeding	I	T2	H2
SHWE NANG GYI	Myanmar	WRC21	Landrace	I	T3 ${ }^{\text {a }}$	H3
CALOTOC	Philippines	WRC22	Landrace	A	T35	H35
LEBED	Philippines	WRC23	Landrace	I	T34 ${ }^{\text {a }}$	H34
PINULUPOT 1	Philippines	WRC24	Landrace	I	T35	H35
MUHA	India	WRC25	Unknown	A	T32 ${ }^{\text {a }}$	H32
JHONA 2	India	WRC26	Unknown	A	T36 ${ }^{\text {a }}$	H36
NEPAL 8	Nepal	WRC27	Landrace	A	T9 ${ }^{\text {a }}$	H9
JARJAN	Bhutan	WRC28	Landrace	A	T9 ${ }^{\text {a }}$	H9
KALO DHAN	Nepal	WRC29	Landrace	A	T32 ${ }^{\text {a }}$	H32
ANJANA DHAN	Nepal	WRC30	Landrace	A	T32 ${ }^{\text {a }}$	H32
SHONI	Bangladesh	WRC31	Landrace	A	T32 ${ }^{\text {a }}$	H32
TUPA 121-3	Bangladesh	WRC32	Landrace	A	T37 ${ }^{\text {a }}$	H37
SURJAMUKHI	India	WRC33	Breeding	A	T32 ${ }^{\text {a }}$	H32
ARC 7291	India	WRC34	Landrace	A	T32 ${ }^{\text {a }}$	H32
ARC 5955	India	WRC35	Landrace	A	T9 ${ }^{\text {a }}$	H9
RATUL	India	WRC36	Landrace	A	T32 ${ }^{\text {a }}$	H32
ARC 7047	India	WRC37	Landrace	A	T32 ${ }^{\text {a }}$	H32
ARC 11094	India	WRC38	Landrace	A	T32 ${ }^{\text {a }}$	H32
BADARI DHAN	Nepal	WRC39	Landrace	A	T38	H38
NEPAL 555	India	WRC40	Unknown	A	T32 ${ }^{\text {a }}$	H32
KALUNEENATI	Sri Lanka	WRC41	Landrace	A	T32 ${ }^{\text {a }}$	H32
LOCAL BASMATI	India	WRC42	Landrace	A	T32 ${ }^{\text {a }}$	H32
DIANYU 1	China	WRC43	Breeding	J	T39 ${ }^{\text {a }}$	H39
BASILANON	Philippines	WRC44	Landrace	A	T35	H35
MA SHO	Myanmar	WRC45	Landrace	J	T27 ${ }^{\text {a }}$	H27
KHAO NOK	Laos	WRC46	Landrace	J	T27 ${ }^{\text {a }}$	H27
JAGUARY	Brazil	WRC47	Unknown	J	T34 ${ }^{\text {a }}$	H34
KHAU MAC KHO	Vietnam	WRC48	Landrace	J	T27 ${ }^{\text {a }}$	H27
PADIPERAK	Indonesia	WRC49	Landrace	J	T34 ${ }^{\text {a }}$	H34

Table 3 continued

Name	Origin	No.	Type	Taxa	Protein type	Coding region haplotype
REXMONT	USA	WRC50	Breeding	J	T34 ${ }^{\text {a }}$	H34
URASAN 1	Japan	WRC51	Landrace	J	T26	H26
KHAU TAN CHIEM	Vietnam	WRC52	Landrace	J	T26	H26
TIMA	Bhutan	WRC53	Landrace	J	T28	H28
TUPA 729	Bangladesh	WRC55	Landrace	A	T32	H32
MILYANG	Korea	WRC57	Breeding	J	T3 ${ }^{\text {a }}$	H3
NEANG MENH	Cambodia	WRC58	Landrace	I	T2	H2
NEANG PHTONG	Cambodia	WRC59	Landrace	I	T2	H2
RADIN GOI SESAT	Malaysia	WRC61	Landrace	I	T2	H2
KEMASIN	Malaysia	WRC62	Landrace	I	T28	H28
BLEIYO	Thailand	WRC63	Landrace	I	T40	H40
PADIKUNING	Indonesia	WRC64	Landrace	I	T34	H34
RAMBHONG	Indonesia	WRC65	Landrace	I	T41	H41
BINGALA	Myanmar	WRC66	Landrace	I	T2	H2
PHULBA	India	WRC67	Landrace	J	T42	H42
KHAO NAM JEN	Laos	WRC68	Landrace	J	T28	H28

A: aus; I: O. sativa L. ssp. indica Kato; J: O. sativa L. ssp. japonica Kato
${ }^{\text {a }}$ Nonfunctional proteins

Fig. 2 Structure of $H d l$ and locations of the regions sequenced. The regions amplified and sequenced are shown as blue lines. (Color figure online)

Hd1 protein diversity

As revealed in the association study, flowering time of rice is strongly related to the coding region rather than to other regions in $H d l$. The diversity of Hdl in all cultivated samples was analyzed to further investigate the variations. Sixty alleles published in a previous study (Fujino et al. 2010) were also added to the analysis. Forty-two protein types were identified, including 31 protein types in this study and 18 protein types in the previous study (Fig. 4). Besides the 18 protein types reported previously, 24 new protein types were found in the present study. Compared with the sequence of the functional $H d l$ allele from the japonica cultivar Ginbouzu (Takahashi et al. 2009), a total of 44 mutation events, including 6 insertions, 2
transposons, 12 deletions, 6 nonsynonymous SNPs, 15 synonymous SNPs, and 3 premature stop codons were detected in the coding region. Twelve mutation events were identified as generating loss-of-function alleles based on their predicted effects on Hd1, including two transposons, three premature stop codons, three 1-bp deletions, one 2-bp deletion, one 4-bp deletion, one 43-bp deletion, and one 144 -bp deletion in the end.

All 42 types of coding region in $H d 1$ were compared with that of Ginbouzu, as shown in Fig. 4. This clearly showed that the coding region sequences could be divided into two different groups: one contained the 33- or 156-bp insertions and had several different polymorphisms with Ginbouzu, while the other did not contain the long insertions and was more similar to Ginbouzu. As mentioned in the association

Fig. 3 Structure of the 92 landraces constructed by 24 SSR markers. $K=3$. Subpopulations are indicated by different colors. (Color figure online)

Table 4 Summary of nucleotide polymorphisms and neutrality test

Taxa	Region	S	h	Hd	$\pi \times 10^{3}$	$\theta_{\mathrm{w}} \times 10^{3}$	D	D^{*}	F^{*}
O. sativa L. ssp. indica Kato	Promoter	4	4	0.602	2.37	1.09	$2.719^{* * *}$	1.024	1.814*
	Exon 1	7	3	0.300	1.65	1.62	0.056	0.478	0.405
	Intron	5	3	0.27	1.52	1.79	-0.361	0.136	-0.023
	Exon 2	3	4	0.274	0.96	1.21	-0.443	-0.420	-0.500
	Coding	10	6	0.347	1.83	1.93	-0.141	0.177	0.084
	Noncoding	9	6	0.682	1.60	1.11	1.255	0.721	1.070
	Total	19	9	0.705	1.69	1.43	0.590	0.548	0.678
O. sativa L. ssp. japonica Kato	Promoter	6	5	0.605	2.04	1.62	0.662	0.324	0.510
	Exon 1	11	9	0.764	4.26	2.77	1.588	0.304	0.882
	Intron	5	4	0.538	3.21	1.79	1.970	0.136	0.837
	Exon 2	1	2	0.502	1.57	0.71	1.659	0.543	0.995
	Coding	12	10	0.766	4.55	2.85	1.780	0.417	1.055
	Noncoding	11	8	0.766	2.15	1.43	1.485	0.304	0.841
	Total	23	17	0.881	3.00	1.94	1.805	0.443	1.134
O. sativa L .	Promoter	5	5	0.655	2.36	1.17	2.172^{*}	1.053	1.678
	Exon 1	11	9	0.677	3.42	2.39	1.130	0.108	0.564
	Intron	6	5	0.437	2.63	1.85	0.958	-0.796	-0.250
	Exon 2	1	2	0.410	1.28	0.61	1.270	0.494	0.844
	Coding	12	11	0.683	3.66	2.47	1.296	1.229	0.734
	Noncoding	11	9	0.785	2.09	1.24	1.813	0.108	0.855
	Total	23	20	0.853	2.65	1.67	1.730	0.217	0.969
O. rufipogon Griff.	Promoter	30	36	0.885	2.87	6.61	-1.637	-0.658	-1.286
	Exon 1	33	33	0.639	2.59	6.41	-1.740	$-3.710^{* *}$	$-3.473^{* *}$
	Intron	17	17	0.599	2.00	4.74	-1.545	$-3.365^{* *}$	$-3.198^{* *}$
	Exon 2	12	22	0.692	2.14	3.77	-1.079	-0.607	-0.937
	Coding	39	40	0.810	2.86	6.24	-1.610	$-3.284^{* *}$	$-3.092^{* *}$
	Noncoding	53	57	0.942	2.20	5.19	-1.754	-2.245	-2.442^{*}
	Total	92	87	0.979	2.45	5.59	-1.764	$-3.176^{* *}$	$-3.023^{* *}$

S : number of segregating sites; h : number of haplotypes; Hd: haplotype diversity; π : nucleotide diversity; θ_{w} : Watterson's parameter for silent sites; D : Tajima's $D ; D^{*}$ and $F^{*}:$ Fu and Li's D^{*} and Fu and Li's F^{*}, respectively
${ }^{*} P<0.05 ;{ }^{* *} P<0.02 ;{ }^{* * *} P<0.01$
analysis, the association containing the long insertions might have lost part of $H d l$ function, so the first group could be regard as a part loss function group and the
second group as a functional group. Both groups contained about half cultivated samples, but the first group included indica, japonica, and aus varieties

Table 5 Results of GLM association analysis

Year	Site	P	R^{2}
2009	1081	0.0076	0.1301
	1539	0.024	0.1011
	1668	0.0444	0.0852
	3527	0.0027	0.1198
	4199	0.0014	0.1353
2010	1081	0.0033	0.1546
	1539	0.0051	0.1438
	1668	0.0103	0.1258
	3527	0.0027	0.1227
	4199	0.0072	0.1
	1081	0.012	0.1199
	1539	0.003	0.154
	1668	0.0096	0.1254
	3527	0.0056	0.1042
	4199	0.0028	0.1198

while the second group mainly contained indica and japonica individuals. This result is in line with the fact that most aus varieties are insensitive to photoperiod.

Haplotype analysis
Haplotype networks were constructed by the whole gene region for the samples from the mini-core collections in China (Fig. 5) and the coding region for all accessions (Fig. 6). The whole gene region network contained 101 haplotypes: 20 O. sativa haplotypes, 86 O. rufipogon haplotypes, and $1 O$. barthii haplotype. O. sativa and O. rufipogon shared six haplotypes.

As shown in Fig. 5, O. rufipogon samples from the same region tended to be in neighboring haplotypes. The phenomenon of geographical difference in O. rufipogon was also detected in previous research (Wang et al. 2008; Wei et al. 2012b). However, obvious association between the distribution of cultivated accessions and the haplotypes had not been observed.

Figure 6 shows the coding region network constructed by 12 haplotypes, including 7 O. sativa haplotypes, $8 O$. rufipogon haplotypes, and $1 O$. barthii haplotype. All haplotypes were major, containing two or more individuals, except the O. barthii haplotype. Among these haplotypes, H1, H2, H3, and H4 were shared by both O. sativa and O. rufipogon. H1 and H 4 belonged to the protein group which had the 33- and 156-bp-long insertions, while H2 and H3
belonged to the other protein group that was similar to Ginbouzu. H1 and H3 contained 1 indica accession and 16 japonica accessions. H2 contained 52 indica accessions, 7 japonica accessions, and 2 aus accessions. In fact, five japonica accessions in H2 were divided into subpopulation 1 in the structure analysis which included most indica. Thus, H 3 and H 2 could be regarded as japonica haplotype and indica haplotype, respectively. Indica, japonica, and aus could all be found in H4 almost averagely, including 15 indica accessions, 27 japonica accessions, and 17 aus accessions. It is hard to define H 4 as an indica, aus or japonica group.

We also used the NJ method to construct the phylogeny of major haplotypes for the coding region (Fig. 7). The phylogenetic result was quite similar to the haplotype network. All branches were divided into two groups: one contained $\mathrm{H} 2, \mathrm{H} 3$, and a major O. rufipogon haplotype, while the other one included $\mathrm{H} 1, \mathrm{H} 4$, and other small O. rufipogon haplotypes.

Geographic distribution
According to geographical division at $31^{\circ} \mathrm{N}$ and the TOC, we further divided O. sativa into six subpopulations: aus, tropical indica, tropical japonica, subtropical indica, subtropical japonica, and temperate japonica. The relationship between the protein type and the distribution for each subpopulation was analyzed. Figure 8 shows the distribution of Hd1 protein type of the six subpopulations of O. sativa in the present study. Aus and tropical japonica mainly evolved from O. rufipogon in haplotype H 4 ; tropical and subtropical indica mainly evolved from O. rufipogon in H 2 with a small part evolved from H 4 , while subtropical and temperate japonica evolved from O. rufipogon in H 3 and H 4 . These results reveal that the Hd1 protein type evolved from H 4 , with part loss of function, was transferred into all subpopulations of O. sativa.

Among these subpopulations, aus and tropical japonica contained the highest percent of Hd 1 protein which had lost its function. Even protein type from H 4 , which might have partly lost its function, would lose its function totally in later artificial selection. In contrast, subtropical indica and subtropical japonica have the highest percent of functional Hd1 protein. Most of the protein types evolving from H2 and H3 were fully functional, while few of them lost function in later artificial selection.

Fig. 4 Nucleotide changes in the coding region of $H d 1$ among cultivated rice. Categories R, S, N, I, D, and $T p$ indicate replacement, synonymous, noncoding site, insertion, deletion, and transposon, respectively. Numbers indicate size of insertions or deletions. Numbers in the right column are numbers of cultivars represented in every protein type. A, I, and J indicated

Discussion

Diversity of $H d l$ in O. sativa and O. rufipogon

The diversity of O. sativa and O. rufipogon in different genes had been analyzed in our previous studies (Wei et al. 2012a, b; Qiao et al. 2012). The results indicated that the diversity of O. rufipogon is much higher than that of O. sativa and that the diversity of indica is
aus, O. sativa L. ssp. indica Kato, and O. sativa L. ssp. japonica Kato. Variations that would not lead Hdl to lose function are shown in yellow; variations that would lead $H d l$ to be nonfunctional are shown in red. Sixty cultivars from a previous study (Fujino et al. 2010) were also included. (Color figure online)
higher than that of japonica. In the present study, we also found that the segregating sites and haplotype numbers of O. sativa were less than those of O. rufipogon. With the haplotype numbers used as a proxy for diversity, common wild rice contained 86% of the total haplotype diversity, whereas cultivated rice only contained 20% of the total haplotype diversity, indicating a strong genetic bottleneck during domestication. The diversity of japonica was higher than that

Fig. 5 Haplotype networks of the $H d l$ whole region. Circle size is proportional to the quantity of samples within a given haplotype. Lines between haplotypes represent mutational steps between alleles. Colors for species: yellow, O. rufipogon Griff.;
orange, O. sativa L. ssp. indica Kato; blue, O. sativa L. ssp. japonica Kato; green, aus; black, O. barthii A. Chev. FJ Fujian, $G D$ Guangdong, GX Guangxi, HN Hainan, HuN Hunan, JX Jiangxi, $Y N$ Yunnan. (Color figure online)

Fig. 6 Haplotype networks of the Hdl coding region. Circle size is proportional to the quantity of samples within a given haplotype, and the numbers next to the circles represent the haplotype number. Lines between haplotypes represent
of indica in the whole gene region except in exon 2. This result is quite different from previous research. It might be related to the wider distribution of japonica. One possible explanation is that domestication made japonica varieties adapt to the varied light conditions in different areas, and more polymorphisms resulted from both natural and artificial selection.

Association analysis of Hd 1
Association analysis revealed that loss-of-function deletion and long insertion in the coding region contributed to the diversity of rice flowering date and transformed rice from a typical short-day plant to a
mutational steps between alleles. Colors for species: yellow, O. rufipogon Griff.; orange, O. sativa L. ssp. indica Kato; blue, O. sativa L. ssp. japonica Kato; green, aus; black, O. barthii A. Chev. (Color figure online)
facultative short-day plant. This result suggests that the coding region was the main target region for artificial selection and that indels that affect Hd 1 protein function were the major selection methods.

Besides the previously reported 2 bp and 4 bp in the coding region that lead to loss of function, three other kinds of mutations associated with flowering in short-day condition were also identified. These four kinds of mutations would all delay flowering for rice to adapt to different light conditions; For example, in the aus subpopulation, the 2-bp and 4-bp deletions caused its loss of function, reduced the floral expression level, and suppressed its flowering. This variation allows the plant to flower later in the short day and improves field

Fig. 7 Phylogenetic tree of $H d l$ coding region. Each haplotype of the loci is indicated by one branch. $\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3$, and H 4 are given. Bootstrap values are shown on the trees. The accessions contained in the haplotypes/branches are indicated by different symbols: O. rufipogon Griff. alleles by diamonds, aus alleles by squares, O. sativa L. ssp. indica Kato alleles by triangles, and O. sativa L. ssp. japonica Kato alleles by inverted triangles. Trees were rooted with O. barthii A. Chev. alleles, indicated by solid circles
production. On the other hand, in temperate region where temperate japonica varieties are widely cultivated, the light period is usually long. Nonfunctional $H d l$ would not inhibit the expression of $H d 3 a$ and avoid too late flowering. Additionally, in the subtropical region, both indica and japonica have high percentage of functional $H d l$. Thus, to enable them to complete the life cycle in a short summer period in temperate region and to help them avoid too early flowering in tropical area, mutations that would lead to total loss of function of Hdl should be transferred into varieties cultivated in these regions. Specific markers could be developed for selection of favorable protein types to meet the demand for varieties in different ecotypes.

Domestication of Hdl

Since O. sativa and O. rufipogon in the same haplotypes had the same nucleotide polymorphisms, O. sativa might have evolved from the O. rufipogon groups in the same haplotypes rather than the O. rufipogon groups in other haplotypes. So, the O. rufipogon

Fig. 8 Hd 1 protein type distribution of the six O. sativa subpopulations in Asia. Hd1 protein types evolved from H2, H3, and H4 are indicated in red, blue, and green, respectively, in solid circles. Squares in red, yellow, and blue represent total loss
of function, part loss of function, and functional Hd1 protein, respectively. The size of the circles and squares is proportional to the quantity of samples. Detailed quantitative information is presented in Table S2. (Color figure onine)
haplotypes shared with O. sativa were regarded as direct ancestors of O. sativa. Figure 6 reveals that the ancestor O. rufipogon could be divided into two groups. One group (H1 and H 4) contained individuals including long insertions and tended to be partly nonfunctional, while the other group (H 2 and H 3) did not include the long insertions and tended to be functional. The functional group could be further divided into an indica subgroup (H2) and a japonica subgroup (H3) which shared haplotype with indica and japonica, respectively, indicating that functional O. rufipogon diverged into indica-like and japonicalike groups in natural environment. We concluded that Hdl in indica and japonica were domesticated from that in indica-like and japonica-like O. rufipogon groups, respectively.

Generally, the debate about rice domestication has focused on the origin of indica and japonica. Some researchers insist on a "single origin" of the two subspecies and suggest that both subspecies were domesticated from one group of O. rufipogon in a narrow region (Gao and Innan 2008; Molina et al. 2011; Huang et al. 2012b), while others propose "multiple origins," which means that domestication of the two subspecies occurred independently in different ecological and geographical environments (Cheng et al. 2003; Zhu and Ge 2005; Londo et al. 2006). Thus, our results support multiple origins of indica and japonica. This conclusion has obtained much support from various rice domestication research (Kovach et al. 2007; Sang and Ge 2007; He et al. 2011; Yang et al. 2011).

As another important group of O. sativa, aus was somewhat different from indica and japonica in terms of the domestication of $H d l$. Most aus accessions shared haplotypes with O. rufipogon in H 4 , which was obviously different from that in H 2 and H 3 , containing long insertions that would make the Hd1 protein partly lose its function. Therefore, we concluded that Hdl in aus were domesticated from O. rufipogon group, partly losing its function (H4), while indica and japonica evolved from functional O. rufipogon, which diverged into indica-like (H2) and japonica-like (H3) groups. Moreover, some varieties of indica and japonica also existed in H 4 , indicating that this haplotype of Hdl might be widely transferred into aus, indica, and japonica to help them adapt to different photoperiods.

Figure 8 shows the $H d l$ gene in the six subgroups of O. sativa in tropical, subtropical, and temperate
regions divided by the TOC and $31^{\circ} \mathrm{N}$. As shown in Fig. 8, $H d l$ in the six subgroups of O. sativa were domesticated from those in different O. rufipogon groups, and $H d l$ in O. sativa varieties that evolved from that in O. rufipogon in H 4 , which contain the long insertions, could be found in each subgroup of O. sativa. This result indicates that $H d l$ which contained the long insertions had been transferred into all subgroups of O. sativa. However, the content of the varieties which evolved from the long-insertions Hdl in the six subgroups were quite different. Most $H d l$ in aus and tropical japonica evolved from that in O. rufipogon in H 4 , but only a small percentage of Hdl in subtropical indica evolved from that in O. rufipogon in H 4 . This phenomenon might result from different light conditions in the tropical and subtropical regions, as explained in the association analysis.

The proportions of functional $H d l$ versus nonfunctional $H d l$ for each subgroup of O. sativa are shown in Fig. 8. This shows that $H d l$ in aus and tropical japonica which existed in the south and most Hdl in temperate japonica which existed in temperate region lost function totally or partly, and that most Hdl in subtropical indica and subtropical japonica were functional in the subtropical region. This result suggests that $H d l$ tends to be selected to be nonfunctional when spread to tropical and temperate regions. Moreover, even $H d l$ in O. sativa, which was supposed to be domesticated from part functional loss (H4) Hdl in O. rufipogon, was also selected to be nonfunctional. We conclude that artificial selection of nonfunctional mutations occurred after domestication in the breeding of varieties to adapt to the changed light conditions when the varieties were brought into a new environment.

Geographic origin of Hd 1

It has been proposed that Asian cultivated rice originated from South Asia (Londo et al. 2006), Southern China (Ting 1957), the lower area of the Yangtze River in China (Vaughan et al. 2008; Zong et al. 2007), and Yun-Gui Highland (Liu 1975) based on different evidence, but the molecular evidence was insufficient. In previous study, to determine the relationship between the haplotypes and geographic origin, the whole gene region of $H d l$ was used in the geographic analysis (Wei et al. 2012a). Twenty-one
accessions of common wild rice from Southern China were regarded as the ancestors of O. sativa in China, and O. sativa might be domesticated from the Pearl River region in Southern China.

Oryza sativa mainly evolved from O. rufipogon in $\mathrm{H} 2, \mathrm{H} 3$, and H 4 . More O. rufipogon was included in H 2 and H 3 than in H 4 . All O. rufipogon accessions in H 4 were from Southern China. To confirm whether O. rufipogon in H 4 only originated from China, we detected the first exon of $H d l$ in 60 accessions of O. rufipogon from South Asia and Southeast Asia. Generally, O. rufipogon accessions in H 4 contained 33- and 156 -bp insertions, and their sequences were longer than other samples. However, the insertions in the first exon were not detected in the samples from South and Southeast Asia (Fig. S4). Thus, we conclude that H4 might only originate from Southern China and that Southern China was one of the domestication centers of O. sativa. A recently published paper also suggested that rice was first domesticated in the Pearl River region of Southern China (Huang et al. 2012c).

Acknowledgments We thank the Chinese National Germplasm Bank for providing the seeds of O. sativa, Guangzhou and Nanning Wild Rice Germplasm Banks for providing the leaves of wild rice, and the International Rice Research Institute for providing seeds of O. barthii. This study was supported by the program of Conservation and Sustainable Utilization of Wild Relatives of Crops by China Ministry of Agriculture (201003021).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37-48
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635
Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67-75
Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309-1321
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567-1587

Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693-709
Fujino K, Wu J, Sekiguchi H, Ito T, Izawa T, Matsumoto T (2010) Multiple introgression events surrounding the Hdl flowering-time gene in cultivated rice Oryza sativa L. Mol Genet Genomics 284:137-146
Gao LZ, Innan H (2008) Nonindependent domestication of the two rice subspecies Oryza sativa ssp. indica and ssp. japonica demonstrated by multilocus microsatellites. Genetics 179:965-976
Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631-1638
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser 41:95-98
He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, Greenberg AJ, Hudson RR, Wu CI, Shi S (2011) Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7: 1002100
Huang CL, Hung CY, Chiang YC, Hwang CC, Hsu TW, Huang CC, Hung KH, Tsai KC, Wang KH, Osada N, Schaal BA, Chiang TY (2012a) Footprints of natural and artificial selection for photoperiod pathway genes in Oryza. Plant J 70:769-782
Huang P, Molina J, Flowers JM, Rubinstein S, Jackson SA, Purugganan MD, Schaal BA (2012b) Phylogeography of Asian wild rice Oryza rufipogon: a genome-wide view. Mol Ecol 21:4593-4604
Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Yan Z, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li Y, Han B (2012c) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497-501
Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091-3097
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of DNA sequences. J Mol Evol 16:111-120
Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23:578-587
Liu Z (1975) The origin and development of cultivated rice in China. Acta Genet Sinica 2:23-29
Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice Oryza rufipogon reveals multiple independent domestications of cultivated rice O. sativa. Proc Natl Acad Sci USA 103:9578-9583
Lu BR, Cai XX, Jin X (2009) Efficient indica and japonica rice identification based on the InDel molecular method: its implication in rice breeding and evolutionary research. Prog Nat Sci 19:1241-1252
Lu L, Yan W, Xue W, Shao D, Xing Y (2012) Evolution and association analysis of Ghd7 in rice. PLoS ONE 7:e34021
Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD (2011) Molecular evidence
for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108:8351-8356
Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York
Qiao WH, Chen YT, Wang RS, Wei X, Cao LR, Zhang WX, Yang QW (2012) Nucleotide diversity in Waxy gene and validation of single nucleotide polymorphism in relation to amylose content in Chinese microcore rice germplasm. Crop Sci 52:1689-1697
Rozas J (2009) DNA sequence polymorphism analysis using DnaSP. Methods Mol Biol 537:337-350
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425
Sang T, Ge S (2007) Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev 17:533-538
Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595
Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehdl expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA 106:4555-4560
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599
Thompson JD, Gibson-Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876-4882
Ting Y (1957) The origin and evolution of cultivated rice in China. Acta Agr Sinica 8:243-260
Tsuji H, Tamaki S, Komiya R, Shimamoto K (2008) Florigen and the photoperiodic control of flowering in rice. Rice 1:25-35
Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139-146
Vaughan DA, Lu BR, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394-408

Wang MX, Zhang HL, Zhang DL, Qi YW, Fan ZL, Li DY, Pan DJ, Cao YS, Qiu ZE, Yu P, Yang QW, Wang XK, Li ZC (2008) Genetic structure of Oryza rufipogon Griff. in China. Heredity 101:527-535
Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256-276
Wei X, Qiao WH, Chen YT, Wang RS, Cao LR, Zhang WX, Yuan NN, Li ZC, Zeng HL, Yang QW (2012a) Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Mol Ecol 21:5073-5087

Wei X, Wang RS, Cao LR, Yuan NN, Huang J, Qiao WH, Zhang WX, Zeng HL, Yang QW (2012b) Origin of Oryza sativa in China inferred by nucleotide polymorphisms of organelle DNA. PLoS ONE 7:e49546
Yang C, Kawahara Y, Mizuno H, Wu J, Matsumoto T, Itoh T (2011) Independent domestication of Asian rice followed by gene flow from japonica to indica. Mol Biol Evol 29:1471-1479
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1 a major photoperiod sensitivity quantitative trait locus in rice is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473-2484
Zhang HL, Zhang DL, Wang MX, Sun JL, Qi YW, Li JJ, Wei XH, Han LZ, Qiu ZE, Tang SX, Li ZC (2011) A core collection and mini core collection of Oryza sativa L. in China. Theor Appl Genet 122:49-61
Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali MC, Tung CW, Reynolds A, Bustamante CD, McCouch SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS ONE 5:e10780
Zhu QH, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249-265
Zong Y, Chen Z, Innes JB, Chen C, Wang Z, Wang H (2007) Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449:459-462

[^0]: Electronic supplementary material The online version of this article (doi:10.1007/s10722-013-0019-8) contains supplementary material, which is available to authorized users.
 X. Wei • W. Qiao • N. Yuan • Y. Chen •
 R. Wang • L. Cao • W. Zhang • Q. Yang (\boxtimes) Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 e-mail: qwyang@mail.caas.net.cn
 X. Wei • H. Zeng (\boxtimes)

 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China e-mail: zenghl@mail.hzau.edu.cn

