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Abstract
It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), 
with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether 
variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic 
PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with 
PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. 
GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain 
substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a 
heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dys-
function are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between 
lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and 
PD and the mechanisms by which these changes can affect neurodegeneration.
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Introduction

Glycosphingolipids (GSLs) are  composed of a hydropho-
bic ceramide moiety linked to a hydrophilic glycan head  
group [1]. The complexity of GSLs is a result of the 
diversity of sugars in the head group (the monosaccha-
ride type, number, and linkage) and heterogeneity in both 
the long-chain base and the fatty acyl moiety of the cera-
mide (chain length, hydroxylation, and saturation) [1] 
(Fig. 1). The biosynthesis of GSLs is also complex and 
begins in the ER with the generation of their precursor, 
ceramide, through the differential activities of multiple 

ceramide synthases (CERS) that generate ceramide back-
bones with different chain lengths [2, 3]. The first step in 
the biosynthesis of most GSLs is the transfer of glucose 
to the ceramide backbone on the outer leaflet of an early 
Golgi compartment, generating glucosylceramide (GlcCer) 
(Fig. 2). Neutral GSLs are synthesised in the trans Golgi, 
whereas gangliosides (GSLs containing charged sialic 
acids) are synthesised luminally in an early Golgi com-
partment [1]. The regulation of these two branches of GSL  
biosynthesis is regulated through vesicular and non-vesicular  
transfer, respectively. If GlcCer moves via vesicular trans-
port through the Golgi stack, it is preferentially used to build 
gangliosides (starting with GM3). Non-vesicular transfer of 
GlcCer to late Golgi compartments is mediated by the action 
of the lipid transfer protein FAPP2 and leads to preferential 
production of globosides (starting with Gb3) [4]. GSLs have 
a stable cell-type specific expression pattern and mediate 
numerous biological functions, such as cell adhesion and 
migration, cell signalling, proliferation, endocytosis, intra-
cellular transport, inflammation and apoptosis [5]. The 
biosynthesis, trafficking, and catabolism of GSLs is tightly 
regulated (Fig. 2).
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Insights into GSL functions and metabolism have arisen 
in part from the study of inborn errors of metabolism in 
which genes encoding lysosomal enzymes involved in GSL 
catabolism are mutated. Typically, these diseases are inher-
ited as autosomal recessive traits [6]. This family of rare 
diseases are termed lysosomal storage diseases (LSDs) and 
include Gaucher disease (GBA mutations) and Sandhoff dis-
ease (HEXB mutations). All sphingolipid lysosomal storage 
diseases are multimorbidity diseases and the majority have 
a neurodegenerative clinical course, emphasising the bio-
logical importance of GSLs in the brain. The mammalian 
brain GSL profile is dominated by gangliosides. The main 
four gangliosides, GM1a, GD1a, GD1b and GT1b make 
up > 90% of GSLs in the brain of all mammals, and reside 
primarily on the outer leaflet of the plasma membrane (PM) 
[7].

As mice engineered to be null for GlcCer synthase are 
embryonically lethal [8], it was hypothesised that there 
would be no human diseases arising from mutations in GSL 
biosynthetic genes as they would result in lethality dur-
ing embryonic development. However, there are ultra-rare 
diseases of ganglioside biosynthesis that have been identi-
fied in Old Amish communities in the USA. For example, 

B4GALNT1 variants, encoding GM2-synthase, lead to a lack 
of GM2 and higher GSLs (a-series), resulting in a complex 
form of hereditary spastic paraplegia, and in mice lead to 
parkinsonism [9]. Mutations in ST3GAL5, encoding GM3 
synthase, which initiates the synthesis of all downstream 
cerebral gangliosides, result in an extremely severe epilepsy 
syndrome [10].

The link between Gaucher disease 
and Parkinson’s disease

The first link found between an LSD and PD was the asso-
ciation with Gaucher Disease (GD). Initially clinicians 
observed an unusually high subset of GD patients as well 
as their relatives developing parkinsonism over time [11]. 
In 2009, a major worldwide multi-centre genetic study 
reported a significant association between mutations in the 
GBA gene, the genetic cause of GD, and sporadic PD [12]. 
Subsequently, it was established that 10–15% of those with 
heterozygous and homozygous GBA mutations develop 
PD, a 20-fold increased risk compared to non-carriers [13]. 
Furthermore, 5–15% of sporadic PD patients carry a GBA 

Fig. 1  Simplified scheme of GSL biosynthesis. Major gangliosides 
expressed in the central nervous system (CNS) in adult mammalian 
brain are boxed in pink. Biosynthetic enzyme genes are indicated in 

blue. GSL  names are abbreviated according to Svennerholm [123] 
and recommended by IUPAC [124]
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mutation and present earlier, meaning GBA is the highest 
genetic risk factor for developing PD and carrying this gene 
increases the rate of progression [14].

Homozygous mutations in the GBA gene, encoding the 
enzyme glucocerebrosidase (GCase), mean the enzyme is 
unable to degrade its GSL substrates GlcCer and glucosyl-
sphingosine (GlcSph) [15]. It has always been believed that 
heterozygosity was not associated with storage or pathol-
ogy, however no systematic studies have been performed on 
Gaucher carriers as they age to determine if they are more 
susceptible to certain diseases.

The pathogenic mechanism linking GBA to PD is unclear, 
but several studies have linked it directly to alpha-synuclein. 
A key question is whether this association results from gain 
or loss of enzymatic function. The fact that most GCase 

mutations result in misfolded protein could theoretically 
lead to a gain of function, either directly by causing alpha-
synuclein aggregation, or by causing ER stress or lysoso-
mal/autophagosomal disruption [16]. Mutant GCase has 
been found in 75% of Lewy bodies in post-mortem GBA-PD 
brain which could suggest it enhances aggregation of alpha-
synuclein, or alternatively is simply the cell trying to clear 
it [17]. Supporting the gain of function hypothesis, there are 
mutations that do not cause GD but do predispose to PD [18]. 
However, there are null mutations that also predispose to PD, 
thus suggesting the pathological mechanism is not solely due 
to gain of function.

There is increasing evidence that it is loss of function of 
GCase that results in alpha-synuclein aggregation. Mazzulli  
et al. found that the lipid substrate GlcCer was able to stabilise  

Fig. 2  Metabolism and trafficking of GSLs. Ceramide is synthesised 
in the ER and transported to the Golgi by vesicular transport where 
it is converted to GlcCer. Ceramide can also be bound by CERT and 
transported by non-vesicular pathway to the late Golgi for the syn-
thesis of SM [125]. Also, via a non-vesicular pathway, the transfer 
protein FAPP2 transports GlcCer  from cis to trans golgi  and cou-
ples it specifically to the synthesis of globosides [126]. GSLs are 
then carried by vesicular transport to the plasma membrane where 
they can be remodelled. Upon endocytosis GSLs are degraded into 
monosaccharides, free fatty acids, and sphingoid bases, which are 

recycled for sphingolipid synthesis by the salvage pathway (modified 
after [127]). ASM, acid sphingomyelinase; β-Gal, β-Galactosidase; 
Cer, ceramide; CERT, ceramide transfer protein; chol, cholesterol; 
ER, endoplasmic reticulum; FAPP2, phosphatidylinositol-four- 
phosphate adapter protein 2; GCase, glucocerebrosidase; GlcCer, 
glucosylceramide; Hex, hexosaminidase; LacCer, lactosylceramide; 
Neu, neuraminidase; PM, plasma membrane; SM, sphingomyelin; 
Sph, sphingosine; Sph1P, sphingosine-1-phosphate. The figures were 
created with BioRender.com 
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alpha-synuclein oligomeric intermediates in the lysosome, 
which led to further reduction in GBA activity, resulting in 
a self-propagating feedback loop, leading to neurodegen-
eration [19, 20]. GCase also binds alpha-synuclein in the 
lysosome, but this interaction is reduced with mutant GCase 
[20]. A recent study further supported the direct effect on 
alpha-synuclein, indicating that GCase is able to inhibit lipid-
induced alpha-synuclein amyloid formation, and that there 
is competition between lipid and GCase for alpha-synuclein 
binding [21].

Rocha et al. found that sustained GCase inhibition (with 
the chemical inhibitor conduritol B epoxide (CBE)) induces 
alpha-synuclein aggregation, microglial and C1q activa-
tion in mouse substantia nigra, with GlcCer and GlcSph 
increases leading to neurodegeneration [22]. This accumu-
lation is cell type specific: both PD brains and CBE treated 
mice have increased neutral lipid accumulation in dopa-
minergic neurons and microglia, whereas astrocytes have 
an overall reduced lipid load [23]. Although a recent study 
found that reduced GCase activity in mice did not result 
in alpha-synuclein aggregation alone, but when misfolded 
alpha-synuclein was present, GCase activity modulated neu-
ronal susceptibility to pathology [24]. In an over-expressing 
alpha-synuclein mouse model, gene therapy with GCase 
prevented alpha-synuclein accumulation in the substantia 
nigra and striatum, and overexpression of GBA prevented 
alpha-synuclein-mediated dopamine neuron degeneration in 
rats [25]. Furthermore, in a mutant GBA mouse model, CNS 
expression of GCase alleviated GlcSph and alpha-synuclein 
accumulation and, importantly, reversed cognitive impair-
ment [26]. This is  supportive of loss of function being  
the main driver of alpha-synuclein aggregation and subse-
quent neurodegeneration.

Interestingly, GCase activity is also reduced in sporadic 
PD patients who do not have GBA mutations [27]. It has 
been reported that progressive decline of GCase also occurs 
in normal ageing, and results in an increase in glucosyl 
sphingosine (GlcSph) in the substantia nigra [28]. Elevated 
GlcCer has been observed in iPSC-derived dopaminergic 
neurons from GBA associated PD patients, but studies dif- 
fer  as to whether there is accumulation of GlcCer and GlcSph  
in the human PD brain [16, 28–30]. In one large study, no 
association was found between storage of GlcSph and the 
hyperechogenic area of the substantia nigra, a prodromal PD 
marker in GBA mutation carriers [31].

Some studies have associated ‘severe’ GBA mutations 
with a higher risk of PD in carriers [32, 33] as well as an 
earlier onset and more rapid cognitive decline [34]. In CSF of 
PD with GBA mutations, GCase activity was decreased with 
a concomitant increase in GlcCer, and total alpha-synuclein 
was lower [30, 34]. This difference was greater in those with 
‘severe’ risk GBA variants than ‘mild’ or ‘low’ risk. How-
ever, evidence  shows there is low penetrance of PD with 

GBA variants, suggesting the existence of modifier genes 
that determine risk for PD [35, 36]. A genome-wide asso-
ciation study (GWAS) in mice identified 17 putative modi-
fier genes, the highest significance being those involved in 
neuronal excitability (Adk, Dpp10, Ctnnd and Grin2b), and 
secondly in endolysosomal function and neurodevelopment 
[36]. A recent large GWAS analysing PD associated genetic 
risk score, to detect genetic influences on GBA risk and age 
of onset, found the most significant contributors were genes 
implicated in lysosomal function, notably SNCA and CTSB 
[35]. Schierding et al. also found a number of common vari-
ants (non-coding snps) that regulate GBA expression and 
co-regulate modifier genes [37]. Such evidence provides 
a possible explanation for the variable phenotypes seen in 
GBA-linked PD.

Several other known genetic risk factors for PD are 
directly linked to GCase activity. LIMP-2 (GBA traffick-
ing receptor that delivers the enzyme to the lysosome) is 
encoded by SCARB2, of which gene variants are associ-
ated with PD [38]. These variants were not associated with 
reduced GCase activity; however, activity was measured in 
dried blood spots so would not be picked up if the enzyme 
were mis-localised [39]. In a recent study, GCase was found 
to be reduced in both GBA and non-GBA PD fibroblasts [40]. 
The idiopathic PD patients were found to have reduced 
LIMP-2 protein levels, and this correlated with GCase 
activity. Similarly, variants in ATP10B, which encodes a late 
endo-lysosomal lipid flippase that translocates GlcCer to the 
cytosolic leaflet, has been associated with PD risk [41]. A 
number of studies have also linked progranulin (PGRN) with 
PD. Heterozygous PGRN mutations cause frontotemporal 
dementia with parkinsonism, and reduced progranulin levels 
are associated with severity of PD [42–44]. Progranulin is 
lysosomal and thought to bind GCase leading to reduced 
GCase activity [45].

Links between PD and multiple LSDs

Although Gaucher disease is the most extensively researched 
LSD in the context of PD, a number of other LSDs have 
been associated with parkinsonism, alpha-synuclein accu-
mulation and substantia nigra pathology. The burden of 
gene variants associated with lysosomal storage disorders 
in sporadic PD is very significant [46]. A large genetic asso-
ciation study looked at fifty-four LSD genes in the largest 
PD whole exome sequencing dataset available. Fifty six 
percent of PD patients  had at least one putative damag-
ing lysosomal storage disorder gene variant and twenty one 
percent of PD patients carried multiple alleles [46]. As well 
as those previously linked to PD, the study newly implicated 
SLC17A5, ASAH1, and CTSD causing Salla disease, Farber 
lipogranulomatosis, and a neuronal ceroid lipofuscinosis 
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variant, respectively. SLC17A5 encodes a lysosomal mem-
brane transporter for sialic acid, ASAH1 encodes acid cer-
amidase, which participates in ceramide metabolism, and 
CTSD encodes a lysosomal aspartyl proteinase that has been 
implicated in alpha-synuclein degradation [47]. The overall 
implication of LSD-associated genes in PD is significant and 
indicates a link between defective catabolism of GSLs and/
or other lysosomal substrates in PD pathogenesis.

It is interesting to note that in addition to multiple GSL 
catabolic genes being over-represented in sporadic PD, het-
erozygous mutations were identified in ST3GAL5, encoding  
GM3 synthase, which catalyses the first step in gan- 
glioside biosynthesis (Fig. 1). GM3 synthase is a sialyltrans-
ferase responsible for the generation of GM3 in the Golgi  
apparatus. Deficiency leads to loss of complex gangliosides, 
and accumulation of LacCer and neutral globosides [48], 
causing an early onset severe epilepsy syndrome [10, 46].  
This further underlines the imbalance in ganglioside expres-
sion as a potential risk factor in PD.

Alpha-synuclein aggregation has been observed in sev-
eral LSDs [49]. Increased prevalence of PD has been seen  
in late onset Fabry Disease patients [50], and the deficient 
enzyme in Fabry disease, alpha-galactosidase, was found 
to be reduced in PD leukocytes and PD brain [51, 52].  
Significant correlation was seen between decreased alpha-
galactosidase, increased Gb3 and pathological accumula-
tion of alpha-synuclein [51, 52]. Krabbe disease, caused 
by mutations in galactocerebrosidase (GALC), results in 
accumulation of GalCer, which leads to a similar pattern 
of alpha-synuclein aggregation in the brain of the mouse 
model to that seen in the human PD brain [53]. GalCer forms 
hydrophilic clusters and binds the C-terminus of α-synuclein 
[54]. Furthermore, GALC gene therapy completely prevented 
alpha-synuclein aggregation in the Krabbe mouse model 
[54]. GalCer was higher in cerebral cortex of PD patients, 
and controls with heterozygous GALC mutations had evi-
dence of alpha-synuclein pathology [55]. Sandhoff disease 
is caused by mutations in HEXB gene, resulting in deficiency 
in the activities of the enzyme Hexosaminidase A and B, and 
the accumulation of GM2 and GA2. Sandhoff disease brains 
have also shown evidence of alpha-synuclein aggregation 
[56]. Deletion of HEXB results in alpha-synuclein aggrega- 
tion in mice [57], whereas upregulation of beta-hexosaminidase  
expression (by AAV gene therapy) and activity in an alpha-
synuclein rat model prevents alpha-synuclein lipid associa-
tion and protects dopaminergic neurons [58].

Several studies suggest a link between the NPC1 gene 
mutations and PD. Defects in NPC1 are responsible for 95% 
of clinical cases of the autosomal recessive LSD Niemann-
Pick disease type C (NPC). NPC is characterized by lysoso-
mal accumulation of lipids including cholesterol and GSLs, 
and by reduced lysosomal calcium levels [59]. Lipid accu-
mulation and reduced calcium levels within the lysosome 

are also present in PD [60, 61]. Furthermore, aberrant phos-
phorylation of alpha-synuclein and Lewy bodies have been 
found in several brain regions of NPC patients [62, 63]. A 
growing number of reports have identified mutations in one 
allele of NPC1 in patients diagnosed with PD, parkinsonism  
or atypical PD,  such as progressive supranuclear palsy (PSP) or  
corticobasal degeneration (CBD) [46, 64–66]. Some of these 
studies showed common clinical manifestations between 
NPC and PD, such as supranuclear gaze palsy and dementia 
[66]. Moreover, a recent study showed subclinical deficits in 
cognition in NPC1 carriers that correlated with impairment 
of cholinergic circuits [67]. NPC has not explicitly been 
identified in genetic association studies of large PD cohorts. 
Nonetheless, its involvement cannot be ruled out, especially 
for atypical forms of parkinsonism, including PSP/CBD, for 
which more studies are needed [66, 68].

Mutations in the acid sphingomyelin phosphodiester-
ase 1 (SMPD1) gene, which is responsible for Niemann- 
Pick type A/B, have also been associated with PD [69]. Among  
PD patients, reduced acid sphingomyelinase activity was 
associated with a 3.5- to 5.8-year earlier onset of PD [70]. 
Furthermore, SMPD1 knockout and knockdown resulted  
in increased alpha-synuclein levels in dopaminergic cell 
models [70].

One form of the LSD neuronal ceroid lipofuscinosis 
(NCL), known as Batten disease, is caused by homozygous 
mutations in the GRN gene, which encodes progranulin 
(PGRN), a lysosomal glycoprotein. Heterozygous GRN 
mutations cause frontotemporal dementia with parkinsonism  
[42]. In PD, it has been demonstrated that reduced levels of 
progranulin are associated with disease severity [43, 44]. Pro-
granulin gene delivery has been shown to protect dopaminergic  
neurons in a chemically induced (MPTP) mouse model of 
Parkinson's disease [71]. PGRN has been shown to inter-
act with GCase, being essential for its activity, which may  
explain  its role in PD [45]. ATP13A2, encoding a predomi-
nantly neuronal endolysosomal ATPase, is another gene 
associated with a different form of NCL [72]. Also called 
PARK9, autosomal recessive mutations in this ATPase are 
associated with  an early onset PD known as Kufor-Rakeb 
syndrome [73].

The alpha-synuclein accumulation seen in LSDs and its 
reversibility by increasing the expression of the GSL related 
gene or enzyme suggests that proteinopathy might be pre-
ceded by GSL dysregulation/lysosomal dysregulation in the 
course of PD pathogenesis .

GSLs and ageing

The biggest non-genetic risk factor for PD is ageing. There 
have been several studies reporting age-related changes in 
sphingolipids (as well as cholesterol, phosphoinositides and 
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polyunsaturated fatty acids) in the brain (reviewed in [74, 
75]). The associations seen between LSDs and PD led to 
more in-depth studies of lysosomal enzyme levels and GSL 
levels in the ageing and PD brain. During human ageing, 
it was found that GBA activity declined in post-mortem 
substantia nigra and putamen (Table 1) [60]. The lysoso-
mal enzyme levels of GBA as well as several other lyso-
somal enzymes (alpha-galactosidase, beta-hexosaminidase, 
beta-galactosidase and neuraminidase) (see Table 2) were 
reduced even further in PD patients, and the GSL substrate 
GlcCer progressively accumulated with age (Table 4) [60]. 
PD patients had significantly higher GlcCer levels in the 
substantia nigra compared to age-matched controls. How-
ever, the level of ganglioside GM1a in the substantia nigra 
declined with age in both the human control subjects and 
PD patients (Table 3 and 4) [60]. In PD patients all the main 
brain gangliosides (GM1a, GD1a, GD1b and GT1b) were 
significantly reduced compared to control subjects (Table 4) 
[60]. A reduction in gangliosides was also seen in CSF and 
plasma from PD patients compared to age-matched controls 
(Table 4), as well as in prodromal RBD (rapid eye movement 
sleep behaviour disorder) patients [60].

These age-related GSL changes were also  conserved 
in mice, with GCase reduction and GlcCer increase, and 
a reduction in gangliosides, with the notable exception 
of GM1a [76]. Interestingly, in the murine brain, GM1a 
increased with age, as opposed to decreasing in the human 
brain, perhaps due to a compensatory mechanism (Table 3) 
[76]. Although the mouse data is from whole brain homoge-
nates and must be interpreted with caution, it may suggest 
an interesting difference between mouse and human brain 
GSL biochemistry. A similar bypass was seen in the engi-
neered Hexa−/− Tay-Sachs disease mouse [77]. The mouse 
as a model organism only develops a Tay-Sachs disease 

phenotype when the sialidase enzyme neuraminidase 3 
(encoded by Neu3), which is thought to facilitate GM2 deg-
radation through this bypass pathway, is knocked out, in 
combination with the primary Hexa gene [77]. Neuramini-
dase activity normally increases with age in the mouse and 
combined with HEXB activity can bypass the Tay-Sachs 
disease catabolic defect allowing the mouse to escape dis-
ease [76, 77].

The relevance of GM1a to PD

The complex ganglioside GM1a is of known importance in 
PD (reviewed in detail in [78]). GM1a levels increase during 
neuronal development, regulating calcium flux across the 
nuclear membrane [79] and interacting with proteins such 
as NGF (nerve growth factor), BDNF (brain-derived neuro-
trophic factor) and GDNF (glial-derived neurotrophic factor) 
via Trk tyrosine kinases promoting signalling [80]. BDNF 
signalling is involved in neuritogenesis, differentiation and 
survival [81]. Decreased BDNF is seen in serum and brain 
in PD and correlates with degeneration of dopaminergic neu-
rons [82, 83]. Failure of GDNF signalling has been asso-
ciated with dopaminergic cell loss in PD and GDNF has 
been investigated as a PD therapy, though it was able to 
rescue neurons only in the early stages of degeneration in 
rats and has limited success in human PD patients [84–86]. 
Huebecker et al. found that GM1a decreases with age in the 
substantia nigra and putamen in humans, and this occurs to 
an even greater degree in the PD brain [60]. A reduction in 
GM1a levels was previously noted in the substantia nigra 
and occipital cortex from PD patients, and specifically in 
the nigral dopaminergic neurons compared to age-matched 
controls [87, 88]. A significant decrease in both B3GALT4 
(GM1 synthase) and ST3GAL2 (sialyltransferase-4) gene 

Table 1  Enzyme activity changes in ageing mouse [76] and human brain [60]. Arrows indicate significance p = < 0.05

glucocerebrosidase 
(GBA)

β-glucosidase 
(GBA2)

α-galactosidase β-hexosaminidase β-galactosidase neuraminidase

Mouse ↓ ↓ ⎻ ⎻ ↓ ↑
Human Controls  

Substantia Nigra
↓ ⎻ ⎻ ↓ ⎻

Human PD  
Substantia Nigra

↓ ⎻ ⎻ ↓ ⎻ ⎻

Table 2  Enzyme activity changes in PD vs age matched controls [60]. Arrows indicate significance p = < 0.05

glucocerebrosidase (GBA) β-glucosidase (GBA2) α-galactosidase β-hexosaminidase β-galactosidase neuraminidase

Substantia Nigra ↓ ↓ ↓ ↓ ↓ ↓
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expression, resulting in reduced GM1a expression, was 
shown in residual neuromelanin-containing cells in the 
substantia nigra of PD patients compared to age-matched 
controls [89].

Several in vitro cell and mouse models have implicated 
GM1a as important player in PD pathology. Inhibition of 
GM1 synthase in neurons in vitro using siRNA decreased 
GM1a levels and increased cell vulnerability to the neuro-
toxin MPTP [90]. B4galnt1± mice have reduced GM1a and 
substantia nigra neuropathology as well as gastro, cardiac 
and cognitive symptoms [87, 88]. Treatment of B4galnt1± 
mice with GM1a led to decreased alpha-synuclein and res-
cued the motor deficits [88]. Surprisingly, treatment with 
only the oligosaccharide portion of GM1a resulted in com-
plete rescue of the B4galnt1± mice, suggesting the oligosac-
charide is the bioactive element responsible for neurotrophic 
function [91]. No differences in GM1a or gangliosides 
were seen in the brain, therefore the treatment did not alter 
the GSL pathway [91]. It should be noted that B4galnt1± 
mice present with a reduction in all complex gangliosides 
in the brain, but GM1a is only slightly reduced, whereas 
GD1a is further reduced, and GD3 and GD1b are signifi-
cantly increased [9] (see Fig. 2). A GD3 synthase (St8sia1) 
(b-series) lentiviral shRNA KO mouse model demonstrated 
protection against MPTP-induced PD, had increased GM1a 
(and GD1b) in the brain, and reduced nigrostriatal dam-
age, bradykinesia, and fine-motor-skill deficits [92]. One 
study which aimed to increase endogenous GM1a, injected 
Vibrio cholera sialidase in a rodent PD model (MPTP)[93]. 
Although sialidase administration did not demonstrate 
as much benefit good efficacy as systemic GM1a admin-
istration on all aspects of pathology, it did show similar 

efficacy in sparing of the DA neurons and as such may be a 
promising route  [93]. In a rat alpha-synuclein model GM1a 
administration reduced alpha-synuclein aggregation, pro-
tected against loss of substantia nigra dopamine neurons 
and striatal dopamine levels, and furthermore, delayed start 
of GM1a administration was able to reverse behavioural 
deficits [94].

After numerous smaller studies on the use of GM1a 
(administered via subcutaneous injection) clinical trials were 
initiated and demonstrated clinical efficacy in PD patients 
[95, 96]. GM1a administration was shown to be safe and 
resulted in a slower rate of progression of PD symptoms 
[96]. These promising results warrant further research into 
GSLs, including the oligosaccharide moieties, as neuropro-
tective therapies.

Relevance of other gangliosides to PD

When discussing the mouse models used to investigate 
GM1a, such as B4galnt1± and St8sia1−/−, it is important to 
understand that the GSL alterations are not confined only to 
GM1a. It is becoming apparent that the GSL landscape in 
the human brain is altered with ageing and in PD. In addi-
tion to reductions in GM1a; GD1a, GD1b and GT1b are also 
reduced in PD substantia nigra (Table 4) [60]. Another small 
study found a similar reduction in GD1a , GT1b, GD1b, and 
GM1a  in the substantia nigra of PD patients, as well as an 
increase in GlcCer and sphingomyelin [97].

There is evidence that GD1a is also involved in neuronal 
development. GD1a injection into the striatum of MPTP-
treated mice significantly increased striatal dopamine levels, 

Table 3  GSLs level changes in 
ageing mouse [76] and human 
brain [60]. Arrows indicate 
significance p = < 0.05

Total GSLs Total
gangliosides

GlcCer GlcSph LacCer GM1a GD1a GD1b GT1b

Mouse ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓
Human 

Controls 
Substantia 
Nigra

⎻ ⎻ ⎻ ⎻ ⎻ ↓ ⎻ ⎻ ⎻

Human PD 
Substantia 
Nigra

↑ ↓ ↑ ⎻ ⎻ ↓ ⎻ ↓ ⎻

Table 4  GSLs level changes in PD vs age matched controls [60]. Arrows indicate significance p = < 0.05

Total GSLs Total
gangliosides

GlcCer GlcSph LacCer GM1a GD1a GD1b GT1b GM3 GM2 GD3 Gb3 Gb4

Substantia Nigra ↑ ↓ ↑ ↑ ⎻ ↓ ↓ ↓ ↓ ⎻
CSF ↓ ↑ ⎻ ↓ ↓ ↓ ↑ ↓ ↓
Serum ⎻ ⎻ ↓ ↓ ⎻ ⎻ ⎻ ⎻
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to a greater extent than GM1a, in aged mice [98]. GD1a/
GT1b play a role in myelination and axon-myelin stabil-
ity, via interaction with myelin-associated glycoproteins 
(MAGs) [99, 100]. GQ1b has neurotrophic actions such as 
increasing neurite outgrowth, cell proliferation, and long-
term potentiation, by regulating BDNF [101]. The neurami-
nidase inhibitor DANA increased GQ1b/GT1a expression 
in neuronal culture and was shown to regulate glutamate 
release [102]. The addition of endogenous GQ1b was shown 
to ameliorate cognitive impairments via BDNF in another 
neurodegenerative disease, Alzheimer’s (in a triple trans-
genic mouse model), and GQ1b increased BDNF expression 
more effectively than GM1a [103]. As well as a reduction 
of the complex brain gangliosides, GD3 is increased dur-
ing both normal human ageing and in neurodegenerative 
disorders [104]. Interestingly, intranasal GD3 was shown to 
reduce alpha-synuclein in the A53T overexpressing mouse 
model in a similar fashion to GM1a [105]. However the 
addition of GM1a and GD3  had opposing effects on dopa-
minergic TH levels [105].

Neuraminidases (most likely neuraminidase 3) have the 
unique ability to re-model gangliosides at the plasma mem-
brane meaning cells can adapt rapidly to stimuli and are not 
reliant solely on de novo biosynthesis. Neuraminidase activ-
ity actively regulates memory processing in rat hippocam-
pus and enzymatic activity is increased by BDNF signalling 
[106]. Neuraminidase levels were also shown to decrease 
with age in mice and humans (substantia nigra), and there-
fore their ability to finely regulate the plasma membrane 
surface expression of GSLs in the brain may be restricted 
[60, 107]. The age-related reduction in enzymes involved 
in GSL metabolism, including GCase and neuraminidases, 
likely accounts for these changes in GSL composition in the 
ageing brain and may be relevant to PD risk.

GSLs and neurodegeneration

The direct toxic effects of GlcCer and GlcSph remain elu-
sive, particularly in GBA-linked PD. Although the author’s 
studies found a clear increase in GlcCer and GlcSph levels 
in the substantia nigra of PD patients [28, 60], previous stud-
ies have found no accumulation in the PD brain [29]. In 
CBE treated mice, there was a direct correlation between 
the amount of CBE injected and levels of accumulation of 
GlcCer and GlcSph [108]. Disease pathology, indicated by 
altered levels of pathological markers, depended on both 
the levels of accumulated lipids and the time at which their 
accumulation began. Both GlcCer and GlcSph have been 
reported to specifically promote the formation of oligo-
meric alpha-synuclein and thus mediate neuropathology in 
GBA-associated PD [109]. However, when the hyperecho-
genic area of the substantia nigra, a prodromal PD marker, 
was measured in a large cohort of GBA mutation carriers 

(n = 71) and patients with GD (n = 145) it did not correlate 
with levels of GlcSph [31].

The mechanism by which GM1a exerts protection from 
neurodegeneration is still uncertain. It has been postulated 
that it is involved in the degradation of alpha-synuclein via 
enhanced autophagosomal activity [110]. It has also been 
shown that alpha-synuclein binds GM1a rich domains in 
synaptic vesicle fusion [111]. GM1a acts as a plasma mem-
brane anchor for alpha-synuclein, which adopts a stable, 
alpha helical structure when bound, but in the absence of 
GM1a, starts to form fibrils [112].

Impaired GSL metabolism can also affect a plethora of 
downstream cellular processes. GSL accumulation, as well 
as preventing normal lysosomal degradation, affects fun-
damental processes such as mitochondrial respiration and 
autophagy [113]. The most commonly used PD model relies 
on the neurotoxin MPTP that selectively affects the dopa-
minergic neurons of the substantia nigra. MPTP has been 
shown to cause lysosomal dysfunction and its effects to be 
age dependent [114]. Lysosomal disruption causes alpha-
synuclein accumulation, and alpha-synuclein reciprocally 
causes lysosomal dysfunction. 

GD3 is reported to be involved in autophagosomal bio-
genesis [113] and has been shown to mediate mitochondrial 
apoptosis in many cell types [115]. Gangliosides, in particu-
lar GD3, can also induce apoptosis in astrocytes [116]. How-
ever, in a mouse model of Gaucher disease the absence of 
apoptotic cell death and caspase activation despite the onset 
of overt neurodegeneration implicated necroptosis rather 
than apoptosis [117]. Levels of RIPK1 and RIPK3 were ele-
vated both in microglia and neurons correlating with neuro-
inflammation and neuronal cell death and RIPK3 deficiency 
resulted in increased survival [117].

Membrane contact sites (MCS), between organelles, and 
between organelles and the PM, are essential for signalling 
and metabolite exchange, and are composed of discreet 
microdomains of tightly regulated lipids including GSLs 
[118]. Failure to digest or process the GSLs in lysosomes 
alters the lipid composition and functional properties of 
MCS. It has been demonstrated that failure to degrade 
GM1a led to redistribution of GM1a to the PM and ER, 
as seen in the LSD GM1 gangliosidosis. GM1a accumu-
lation at mitochondria:ER MCSs caused  Ca++ dependent 
mitochondrial apoptosis [119] a possible cause of neu-
ronal cell death and neurodegeneration [118]. GBA-PD 
patient-derived dopaminergic neurons exhibit prolonged 
mitochondrial:lysosomal contacts, resulting in disrupted 
mitochondrial distribution and function [120]. This was 
recapitulated with endogenous GlcCer treatment, and GBA-
PD neuron tethering could be rescued by increasing GCase 
activity with a GCase modulator [120].

GSLs at the PM are tightly regulated in a cell-specific 
manner, and different cell types—neurons, astrocytes, and 

46 Glycoconjugate Journal (2022) 39:39–53



1 3

microglia—appear differentially affected by changes in GSLs 
[23]. Dopaminergic neurons of the substantia nigra appear 
to be particularly susceptible in PD and may reflect distinct 
GSL changes. Remodelling at the PM would likely disrupt 
neuronal PM interactions such as those of GM1a with BDNF, 
GDNF and NGF via Trk receptors [121], calcium channel 
signalling and synaptic transmission of dopamine and there-
fore negatively affect neuronal survival [78]. Interestingly, 
cell studies demonstrated that endogenous oligomeric GM1a 
administration was intercalated into the PM and did not enter 
the cell, confirming its neuroprotective action was at the PM 
[122]. The gangliosides play roles in neuronal homeostasis 
including myelination, axon formation, signalling and neu-
rotransmitter release [80, 100, 101, 121, 122]. In the brain, 
GSLs are therefore not only involved in general lysosomal/
autophagic cell functions and mitochondrial function but also 
at the plasma membrane in neuronal signalling and survival, 
and therefore changes  in GSL levels increase the risk for 
PD. Although GM1a is of  importance in neuronal function, 
and administration of GM1a has shown modest effects in the 
human disease, the restoration of normal neuronal GSL levels  
and normal GSL metabolism potentially  may be of even 
greater benefit.

Conclusion

The importance of altered GSL metabolism has become 
apparent in the study of normal ageing of the brain. 
Changes in the GSL ‘landscape’ with ageing (relative 
amounts and distribution) represents a risk factor for PD 
beyond GBA and may explain why so many LSD-causing 
gene variants are found over-represented in the heterozy-
gous state in sporadic PD [46]. The precise mechanisms 
that underpin this increased risk are currently under inves-
tigation and may be multifactorial. GSLs are involved in 
mediating a plethora of cellular functions such as traf-
ficking, autophagy, and signalling. Their biosynthesis and 
expression are highly cell type specific. As evidenced by 
the LSDs, the CNS is particularly vulnerable to lysoso-
mal and GSL perturbations. In neurodegenerative diseases 
such as PD the brain shows age-related regional patterns of 
degeneration. Normal age-related GSL changes, possibly 
due to alterations in GSL metabolising enzyme activity, 
exacerbated by any one of a number of genetic or envi-
ronmental modifiers, could lead to neurodegeneration and 
therefore PD. With greater knowledge of these risk factors, 
it may be possible to identify patients at greater risk of 
PD and target novel clinical intervention points, some of 
which may relate to restoring GSL homeostasis.
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