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Serum N-glycan profiles differ for various breast cancer subtypes
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Abstract
Breast cancer is the most prevalent cancer in women. Early detection of this disease improves survival and therefore population
screenings, based on mammography, are performed. However, the sensitivity of this screening modality is not optimal and new
screening methods, such as blood tests, are being explored. Most of the analyses that aim for early detection focus on proteins in
the bloodstream. In this study, the biomarker potential of total serum N-glycosylation analysis was explored with regard to
detection of breast cancer. In an age-matched case-control setup serum protein N-glycan profiles from 145 breast cancer patients
were compared to those from 171 healthy individuals.N-glycans were enzymatically released, chemically derivatized to preserve
linkage-specificity of sialic acids and characterized by high resolution mass spectrometry. Logistic regression analysis was used
to evaluate associations of specific N-glycan structures as well as N-glycosylation traits with breast cancer. In a case-control
comparison three associations were found, namely a lower level of a two triantennary glycans and a higher level of one
tetraantennary glycan in cancer patients. Of note, various other N-glycomic signatures that had previously been reported were
not replicated in the current cohort. It was further evaluated whether the lack of replication of breast cancerN-glycomic signatures
could be partly explained by the heterogenous character of the disease since the studies performed so far were based on cohorts
that included diverging subtypes in different numbers. It was found that serum N-glycan profiles differed for the various cancer
subtypes that were analyzed in this study.
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Introduction

Worldwide 2,089,000womenwere diagnosedwith breast cancer
with an estimated related death of 626,000 in 2018 [1].
Population-based breast cancer screening reduces mortality and
is commonly performed with mammography [2]. However,
mammography-based screening can be improved with regard
sensitivity and specificity levels. It is furthermore known that
tumors in dense breast tissue are often missed in a mammogram
and although outweighed by mortality reduction low energy X-
ray imaging carries a risk of causing radiation-induced tumors
[3]. Available clinical biomarkers cancer antigen (CA) 15 − 3,

27–29 and 125 as well as carcinoembryonic antigen (CEA) are
only of use to indicate treatment failure and are not recommend-
ed for screening, diagnosis, or staging purposes [4]. Therefore,
discovery of novel biomarkers with improved test performance is
widely pursued to potentially provide an add-on diagnostic tool
[5]. Next to genomic markers, proteins that are present in the
circulation have received great attention [6, 7]. Although a large
number of mass spectrometry (MS)-based exploratory studies
has resulted in breast cancer protein signatures, none of these
findings has been translated into a laboratory test [8]. As a con-
sequence, biomarker strategies have been improved by properly
defining the unmet clinical needs and by implementing protocols
for standardized body fluid collection, high-throughput sample
preparation and robust and precise MS-measurements [5, 9–12].

At the same time, MS-based proteomics studies demon-
strated that post-translation modifications (PTMs) on proteins
are often overlooked, although these modulate protein func-
tion and are thus an interesting source of functional bio-
markers. One of the most, if not the most frequent PTMs is
protein glycosylation [13–15]. Changes in protein glycosyla-
tion may have influence on or may be caused by tumor
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growth, differentiation, metastasis, transformation, adhesion,
pathogen recognition and immune surveillance [16, 17].
Protein glycosylation and its association with various cancers
has been studied for more than half a century, but recent de-
velopments have allowed glyco(proteo)mics strategies to join
forces with high-throughput cancer proteomics efforts to de-
termine glycomic phenotypes and improve our understanding
of the pathophysiology of various cancers [18–24]. For exam-
ple, large-scale glycosylation biomarker studies based on for
example immunoglobulin glycosylation and total serum N-
glycome (TSNG) have reported changes upon cancer treat-
ment and associations with survival [25, 26]. Moreover, aber-
rant glycosylation profiles have been found on the surface of
cancer cells with potentially diagnostic value towards evalu-
ating tumor progression [27, 28]. Breast cancer biomarker
signatures have been pursued by analysis of N-glycan profiles
in blood-derived or other body fluid samples using ultrahigh
performance liquid chromatography (UPLC) methods com-
bined with MS identification or detection of fluorescent labels
[29–36]. These studies reported associations with cancer or
treatment regimes, but interestingly did not always corrobo-
rate previous findings.

In this study we report TSNG profiles from an in-house
collected breast cancer cohort and compare our results with
the aforementioned reports. Our sample cohort consists of 145
breast cancer patients that are age-matched with 171 healthy
control individuals. N-glycan analysis includes linkage-
specific derivatization of α2-3- and α2-6-linked sialic acids
and MS-profiles are obtained using a matrix-assisted laser
desorption/ionization Fourier Transform ion cyclotron reso-
nance (MALDI-FT-ICR) platform. The potential of N-glycan
profiles for diagnosis or staging of breast cancer is evaluated.

Materials and methods

Patients

Serum samples of 159 female patients with breast cancer and
173 female healthy volunteers were collected at the outpa-
tients clinic at Leiden University Medical Center prior to
any treatment between 2002 and 2013. The samples of the
controls were matched to the cases based on age and date of
sample collection. Criteria for case exclusion were; a history
of cancer (other than basal cell carcinoma or cervical carcino-
ma in situ) shorter than 10 years before blood sampling and
breast cancer in medical history. From the controls only date
of birth was recorded. Table 1 provides an overview of patient
characteristics and information on the invasive cancer cases
(i.e. excluding ductal carcinoma in situ (DCIS). Written in-
formed consent was obtained from patients and healthy vol-
unteers prior to sample collection. The study was approved by
the Medical Ethical Committee of the LUMC.

Serum sample collection

Blood specimens were collected and processed according to a
standardized protocol. Blood was collected in a 8.5 cc
vacutainer serum separator tube and centrifuged for 10 min
at 1000 g. After centrifugation the serum was divided into 5
mL polystyrene tubes. Within 4 h after blood collection the
serum samples were stored at -80 °C. The samples underwent
one freeze-thaw cycle for aliquoting in eight 60-µl tubes. All
serum samples were randomly distributed in six 96-well
plates, along with plasma standards (Visucon-F frozen normal

Table 1 Patient characteristics and invasive tumor characteristics

% Cases
(n=145)

Controls
(n=171)

Age in years, mean (SD) 68 (13.1) 67 (11.2)

Histological type

DCIS 16 23 n/a

Invasive ductal carcinoma 66 96 n/a

Invasive lobular carcinoma 14 21 n/a

Other 4 5 n/a

Invasive tumors (n =127)

Grade

I 18 26 n/a

II 40 58 n/a

III 37 53 n/a

Missing 5 8 n/a

Tumor stage

pT1 67 80 n/a

pT2 30 36 n/a

pT3/4 3 4 n/a

Nodal stage

N0 63 77 n/a

Nmi 4 5 n/a

N1 26 32 n/a

N2 3.5 4 n/a

N3 3.5 4 n/a

Estrogen receptor (ER)- status

Negative 16 23 n/a

Positive 68 98 n/a

Missing 16 24 n/a

Progesterone receptor (PR)-status

Negative 54 78 n/a

Positive 30 43 n/a

Missing 16 24 n/a

Human epidermal growth factor receptor-2 (Her2)-status

Negative 68 99 n/a

Positive 10 15 n/a

Missing 22 31 n/a

n, number of individuals; SD, standard deviation; n/a, not applicable;
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control plasma, pooled from 20 human donors, citrated and
buffered with 0.02 M HEPES, Affinity Biologicals, Ancaster,
ON, Canada) as technical quality control samples and blanks.

Chemicals

Nonidet P-40 substitute (NP-40), potassium dihydrogenphosphate
(KH2PO4), disodium hydrogen phosphate dihydrate (Na2HPO4×
2 H2O), sodium chloride (NaCl), 50 % sodium hydroxide
(NaOH), 1-hydroxybenzotriazole 97% (HOBt) and super-DHB
(9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-
methoxybenzoic acid, sDHB) were obtained from Sigma-
Aldrich (Steinheim, Germany). Potassium hydroxide (KOH), so-
dium dodecyl sulfate (SDS), analytical grade ethanol and
trifluoroacetic acid (TFA) were purchased from Merck
(Darmstadt, Germany). HPLC-grade acetonitrile (ACN) was pur-
chased from Biosolve (Valkenswaard, The Netherlands) and 1-
ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) hydro-
chloride was obtained from Fluorochem (Hadfield, UK).
Recombinant peptide-N-glycosidase F (PNGase F) was purchased
fromRocheDiagnostics (Mannheim,Germany). From aMillipore
Q-Gard 2 system (Amsterdam, The Netherlands) maintained at ≥
18 MΩ milli-Q water (MQ) was generated.

Sample preparation and MALDI-FTICR-MS
measurement

Enzymatic N-glycan release was performed as previously de-
scribed [37]. In short, 6 µL sample was added to 12 µL 2%
SDS and incubated for 10 min at 60 °C. After incubation 12.6
µL release mixture (6 µL 4% NP40, 6 µL 5× PBS and 0.6 µL
PNGase F) was added and the samples were incubated over-
night at 37 °C. The samples were stored at -20 °C before
further preparation.

Ethyl esterification was performed for linkage specific sta-
bilization of the sialic acid moieties of the glycans [38]. One
microliter of released glycan sample was added to 20 µL of
ethyl esterification reagent (0.25 M EDC 0.25 M HOBt in
pure ethanol) and incubated for one hour at 37 °C.
Subsequently 20 µL ACN was added.

Glycan purification was performed using cotton HILIC
SPEmicrotips [38, 39]. These HILIC tips were prewetted with
three times 20 µLMQ and conditioned with three times 20 µL
85% ACN. Next, the sample was pipetted up and down 20
times in the HILIC tip. The HILIC phase was first washed
three times with 20 µL 85% ACN with 1% TFA and second
three times with 20 µL 85% ACN. Elution was performed by
pipetting 10 µL MQ five times up and down. Two microliters
of sample was spotted with 1 µL matrix (5 mg/mL sDHB in
50%ACNwith 1 mMNaOH) onto aMALDI target (800/384
MTP AnchorChip, Bruker Daltonics, Bremen, Germany) and
the spots were allowed to dry.

MALDI-FTICR-MS experiments were performed as de-
scribed before [40]. A Bruker 15T solariX XR FTICR MS
(Bruker Daltonics) recorded the spectra in the m/z-range from
1011.86 to 5000.00, with 1 M data points. The obtained aver-
age spectra contained ten acquired scans. The system was
operated by ftmsControl (version 2.1.0) software.

Data preprocessing, batch correction and statistics

Serum N-glycosylation profiles were obtained for 159 breast
cancer patient samples and 173 healthy volunteer samples, of
which respectively 145 and 171 spectra passed the quality
criteria [40]. The analyte list consisted of 101 analytes which
passed the quality criteria (Supporting information Table S-1).
The areas of the signals were extracted using MassyTools
(version 0.1.8.1). To correct for batch effects from the two
MALDI-target batches (number of samples exceed the num-
ber of spots on a MALDI-target), the effect was estimated per
analyte in a linear model and the values of these analytes were
regressed on the MALDI-target batch (categorical variable).
The standardized values were normalized to the sum of all
analytes for relative quantification. Subsequently, derived
traits were calculated (Supporting information Table S-2)
and logistic regression was performed for each individual gly-
can and each derived trait using R version 3.3.2 (R Foundation
for Statistical Computing, Vienna, Austria) and RStudio, ver-
sion 1.0.136 (RStudio, Boston, MA; released 21 December
2016) [41]. The odds ratios (ORs) were calculated with their
95 % confidence intervals (CIs) assuming a Student’s t-
distribution and are referring to an increase of 1 SD in the
tested traits. Multivariate (principal component) analysis was
performed on both individual glycans and derived traits using
the various clinical parameters of the breast cancer subtypes.

Results and discussion

Serum protein N-glycan profiles were obtained from an in-
house breast cancer cohort, consisting of 145 breast cancer
cases and 171 healthy controls. In total 101 N-glycans were
relatively quantified, including differentiation species with
α2-3- and α2-6-linked sialic acids (see Materials and
Methods section). Patient characteristics and information on
the invasive cancer cases (i.e. excluding ductal carcinoma in
situ (DCIS) is provided in Table 1. The patient group had an
average age of 68 years and almost half of the group had stage
II breast cancer. Quality control samples were taken along in
the TSNG analysis to enable potential batch correction, as
described in materials and methods.

Logistic regression analysis was performed to reveal po-
tential differences between the glycosylation profiles of breast
cancer patients and healthy controls. Moreover, it was evalu-
ated whether glycosylation associated with one of the various
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clinical parameters listed in Table 1. This was done by using
multivariate (principal component) analysis as well as by as-
suming a t-distribution of the various breast cancer subtypes.
All analyses were performed for both single compositions and
combined glycosylation features (further referred to as derived
traits), of which the latter analysis focused on the most com-
monly reported cancer-associated changes in glycosylation,
namely sialylation, fucosylation, and N‑linked glycan
branching [30].

Student’s t-test indicated two glycans to be lower in breast
cancer patients, namely a fucosylated triantennary glycan that
carries three α2-3-linked sialic acids (further referred to as
H6N5F1L3, Fig. 1, Supporting information Table S-3 and
Supporting material) and a non-fucosylated triantennary gly-
can that carries a combination ofα2-3-linked and α2-6-linked
sialic acids (H6N5L2E1). Furthermore, it was found that one
fucosylated tetraantennary glycan that carries a combination
of α2-3-linked and α2-6-linked sialic acids (H7N6F1L1E3)
was significantly elevated in breast cancer patients.

Interestingly, in one previous study H6N5F1L3 has been as-
sociated with breast cancer, however in the opposite direction
with elevated levels in patients as compared to controls (as is
summarized in Fig. 2a) [30]. Similar elevated levels of
triantennary trisialylated fucosylated glycans were reported
in earlier studies, although it is emphasized that in these stud-
ies sialic acids were not determined with linkage-specificity,
but rather as summarized triantennary trisialylated fucosylated
glycans (referred to as H6N5F1S3, consisting of H6N5F1E3,
H6N5F1L3, H6N5F1L2E1, H6N5F1L1E2 and H6N5F1E3,
Supporting information Table S-3) [32, 42].

In one of the older studies a significant increase was found
in trisialylated triantennary glycans containing α1-3-linked
fucose, pointing towards elevated levels of the sialyl-Lewis
X (sLex) epitope [32]. Similarly, Pierce and co-workers re-
ported elevated levels of agalactosylated diantennary glycans
and glycans containing the sLex epitope in patients with
tumor-positive lymph nodes compared to women with no
lymph node metastasis [33]. Such increased levels of the
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Fig. 1 Association of H6N5F1L3, H6N5L2E1 and H7N6F1L1E3 with breast cancer
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sLex epitope in serum and on the tumor cell surface are fre-
quently associated with cancer [30, 31, 43–47], but were not
observed in our study upon considering different stages.

With regard to the analysis of derived glycosylation traits
from our data, TSNG profiles showed differences for CF,
A2LF and A2F0B between breast cancer patients and healthy
controls (Supporting information Table S-4). Additional dif-
ferences were found when clinical parameters (Table 1) were
taken into account as summarized in Fig. 2b. Upon consider-
ing cancer staging, as an example the levels of oligomannose
structures in breast cancer cases are plotted in Fig. 3a. A trend
towards a lower level of oligomannose can be seen at stage III
cancer, whereas in a previous mouse study on breast cancer
elevated levels of oligomannose glycans were observed [34].
In the same study a decreased level was reported after resec-
tion and furthermore a small number of case-control human
serum samples were evaluated, in which similar elevations of
oligomannose glycans were observed in breast cancer patients
[34]. In addition, this elevation was supported by a breast
cancer cell line study [48]. Here, released glycans from cyto-
solic and membrane-bound glycoproteins from normal epithe-
lial cells, invasive and non-invasive breast cancer cells were
measured with MALDI-MS and the obtained profiles were
compared. Notably, a decrease of oligomannose glycans in
serum of breast cancer patients has also been reported [31],
and literature findings on serum oligomannose glycan levels
of total serum appear contradictory.

Results for fucosylation and sialylation traits are exempli-
fied in Fig. 3b (triantennary non-fucosylated glycans; A3F0)
and Fig. 3c (α2-3-sialylation of triantennary glycans; A3L),
respectively. This data which is obtained from a fair number
of patient samples (n = 145) is not in line with previous

findings of increased fucosylation and sialylation levels asso-
ciated with cancer progression and staging of the disease [29,
32, 42]. However, when other clinical parameters are consid-
ered certain derived traits exhibit significant p-values, for ex-
ample when only lobular carcinomas are compared to controls
(CF, A3F, A2LF, A3LF, A3EF and A4EF, see Supporting
material). Moreover, when considering stage III patients with
lobular carcinoma the levels of the three earlier mentioned
glycan compositions (Fig. 1) are increased by a factor of 1.5,
whereas in stage III patients with ductal carcinoma these
levels are decreased by a factor of 2. Although these latter
observations are not significant (due to low sample numbers),
this is a clear indication that the heterogeneous character of
breast cancer that includes a large number of disease subtypes
(as summarized in Table 1) is reflected in various N-glycan
profiles. Of note, for our current data set, stratification accord-
ing to histological subtypes did result in clear disease
glycomic signatures yet. This is exemplified for fucosylation
and sialylation in Fig. 4a and b, respectively, where glycomic
data are plotted separately for the two histological breast can-
cer types. No statistically significant were observed, possibly
due to limited sample numbers. It is noted that patient cohorts
in earlier studies likely consisted of different combinations of
these histological subtypes. The various results reported so far
emphasize the importance of detailed knowledge of clinical
data and inclusion of even larger patient numbers.

In conclusion, we have analyzed serum N-glycosylation
profiles from breast cancer patients and healthy controls. A
distinguishing signature for breast cancer was not found, al-
though a significant difference between both groups were ob-
served for H6N5F1L3, H6N5L2E1 and H7N6F1L1E3. In
previous studies, various changes in TSNG were reported,
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Fig. 2 a Comparison of previously reported data and results of the current study. b Significant direct traits (glycan compositions) for specific breast
cancer subtypes and stages as determined in a Student’s t-test
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but also these results differed from each other and could not be
replicated in our study. An evaluation of literature, together
with the results of the current study, does not converge into a
general breast cancer N-glycomic signature that distinguishes
cases from controls. However, the fact that such glycomic
markers are not observed can be explained by the

heterogeneity of the disease and by the small size of patient
cohorts. The heterogeneous character of the disease becomes
clear from Table 1 that lists patients that exhibit various com-
binations of receptor statuses. Furthermore it is known that
breast cancer tumors present a variety of histological patterns
and biological characteristics [49]. In addition, the clinical
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response of breast cancer tumors is very different per type and
up to 25% of the invasive breast cancer tumors is histologi-
cally seen a special type [49]. It is therefore recommended that
in future biomarker discovery studies different subtypes with-
in the breast cancer samples should be taken into account,
instead of analyzing all breast cancer tumor subgroups togeth-
er and aiming for an overarching signature.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10719-021-10001-3.
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