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Abstract
The tidal problem is used to obtain the tidal deformability (or Love number) of stars.
The semi-analytical study is usually treated in perturbation theory as a first order per-
turbation problem over a spherically symmetric background configuration consisting
of a stellar interior region matched across a boundary to a vacuum exterior region
that models the tidal field. The field equations for the metric and matter perturbations
at the interior and exterior regions are complemented with corresponding boundary
conditions. The data of the two problems at the common boundary are related by the
so called matching conditions. These conditions for the tidal problem are known in
the contexts of perfect fluid stars and superfluid stars modelled by a two-fluid. Here
we review the obtaining of the matching conditions for the tidal problem starting from
a purely geometrical setting, and present them so that they can be readily applied to
more general contexts, such as other types of matter fields, different multiple layers
or phase transitions. As a guide on how to use the matching conditions, we recover
the known results for perfect fluid and superfluid neutron stars.

Keywords General relativity · Perturbation theory · Tidal problem · Matching
conditions
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1 Introduction

The purpose of this paper is to briefly review the matching conditions in perturbation
theory to first order involved in the even-parity tidal problem, and present them in a
way that are readily applicable to generalizations other than in the known perfect fluid
[1–3] or two-fluid (to model superfluid) stars [4] contexts.

The aim of studying the tidal problem is to obtain the Love number, or, equivalently,
the tidal deformability, of stars. The global problem consists of a region to model the
stellar interior which is matched to an exterior vacuum region that models a tidal
field, produced e.g. by a companion star. Using perturbation theory the model is built
as a first order perturbation on top of a static and spherically symmetric background
configuration consisting of an interior region ball of radius R∗ with a Schwarzschild
exterior. The Love number is then determined from the value that certain function of
the first order metric perturbation, that depends only on the radial coordinate, y−(r),
takes at the outer surface (the surface as seen from the exterior) of the star, specifically
y−(R∗). That value is found by integrating an analogous function y+(r) in the interior
region from the origin outwards to obtain y+(R∗), and then use whatever information
we have on the jump [y] := y+(R∗) − y−(R∗) to determine y−(R∗) (see [5]).

In the context of perfect fluid models, it was argued in [1, 2] that the jump is given
by (see Eq. (15) in [2])

[y] = κ

R3∗
2M

E(R∗), (1)

where E is the energy density (of the background configuration), M is the mass of
the star, and we use κ for the gravitational coupling constant (κ = 8π in natural
units G = c = 1). The argument uses the fact that the function y(r) is defined
as the quotient r H ′(r)/H(r), where H is a function that describes part of the first
order perturbation (that is the harmonic � = 2 part of the H0 function of the Regge–
Wheeler decomposition [6]). The problem is set on the whole domain r ∈ (0,∞),
and H is implicitly assumed to be continuous at r = R∗, just as well as the rest of the
perturbation metric functions. The key idea is that the Einstein field equations (EFE)
at first order can be defined (in strict terms at least in a distributional sense), and H(r)
thus satisfies a second order ODE that contains a term with dE/dP , where P is the
pressure of the background configuration. Therefore, since P(r) must be continuous
at the surface, if E(r) has a jump at r = R∗, then dE/dP presents a Dirac delta term
there proportional to E(R∗). As a result, the solution of H(r) yields a continuous
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function but discontinuous H ′(r) at r = R∗, with a jump [H ′] proportional to E(R∗).
Completing the chain [y] = [r H ′/H ] = R∗[H ′]/H(R∗) with the explicit expression
of [H ′] leads to (1).

Although the result is correct, the procedure has two drawbacks. The first comes
from a practical point of view. The procedure relies completely on the use of the EFEs
for a perfect fluid at both sides (vacuum taken as a trivial particular case). If one needs
to consider other matter fields at the interior, or even phase transitions in different
regions, the derivation of [y] must be carried out for each different case. Let us stress
that after [1, 2] were published, several works on other types of stellar interiors miss
the derivation of [y] to properly justify that y is taken to be “continuous".

The second drawback is conceptual, since the procedure also relies on the setting
of the interior and exterior problems as one single problem on a common domain,
r ∈ (0,∞), and then implicitly assumes that the perturbed metric functions have the
continuity properties needed to devise the EFEs in a distributional sense. This setting
has its basis in the original Hartle-Thorne perturbative framework [7, 8], where all
the perturbed metric functions were assumed to be continuous in that sense. However,
the study of matchings in perturbation theory has shown that that construction is not
necessary, and not desirable in some cases of interest. In perturbed matching theory,
the interior and exterior first order problems (denoted with a + and − respectively)
are more conveniently treated as two separate (gauge field) problems with related
boundary data at the common boundary r+ = r− =: R∗, with basis on a purely
geometrical construction. In fact, some of the functionsmay indeed present jumps, that
can be made to vanish by partially fixing the gauges, whereas some others necessarily
present jumps in general, as otherwise the setting becomes inconsistent. In particular,
the amendment needed to the original Hartle-Thorne model has consequences in the
computation of the stellar mass to second order [9].

Although perturbed matching theory may seem to be a mere mathematical artifact,
apart from providing firm and rigorous grounds to the results on perturbed matchings
based on the Hartle-Thorne framework (after the needed amendments), it provides,
on the one hand, full control over the gauges at either side independently (see [10]).
This fact is key in the proofs of uniqueness and existence of compact rotating con-
figurations in GR in perturbation theory to second order [11, 12]. On the other hand,
the geometrical basis provides a direct way to generalize the derivation, in particular,
of [y] to any matter field content, even including different kind of layers and phase
transitions.

In this paper we review the matching conditions to first order in perturbation theory
(based on the works [9, 12, 13]) aimed at the tidal problem, starting from a pure
geometrical setting, and thus ready to be used to obtain the matching conditions for
general stellar matter field contents. We take the opportunity to include a formal way
of dealing with multiple concentrically distributed regions. To show how to use the
conditions, we review the obtaining of the perturbed matching conditions to first order
for the tidal problem for perfect fluid stars [3], thus recovering (and putting on firm
grounds) the condition (1), and two-fluid superfluid stars [4]. For completeness, we
also provide in Sect. 4 the usual procedure to compute the Love number and how the
jump [y] enters the calculation.
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We include in the following subsection a brief account on the matching in per-
turbation theory to set the grounds, provide some relevant references, and fix some
notation.

1.1 Matching in perturbation theory

In essence, the problem of matching in perturbation theory to first order in Gen-
eral Relativity starts with a set of two spacetimes with boundary (M+, g+, �+) and
(M−, g−, �−) that have been matched across �+ = �− =: � to create a single
spacetime (M, g) with two regions, whereM = M+ ∪M− and g equals g+ or g−
on each corresponding region. Each region is now endowed with a symmetric tensor,
K+
1 and K−

1 , which describe the metric perturbation on the corresponding region. The
perturbation parameter ε is chosen so that the families of metrics g±

ε := g± + εK±
1

describe the metric to first order at each region. By taking the metric gε onM defined
to be g+

ε on M+ and g−
ε on M−, one can proceed to construct its Riemann tensor

Riem(gε). We say that the two regions of the given background (M, g) perturbed
with K±

1 match (to first order) when Riem(gε) to first order in ε can be constructed
as a distribution and does not have a Dirac delta term. The general treatment of the
matching to first order, explicitly applicable in terms of any gauge, was done in [14]
and [15] (see e.g. [16] and [10] regarding treatments in terms of gauge invariants).
It was shown that the two perturbed regions match to first order if and only if there
exist a couple vectors Z±

1 defined at points on � so that a certain set of conditions on
� are satisfied, which depend on {g±, K±

1 , Z±
1 }. We refer to those as the first order

perturbed matching conditions, and the normal part of Z±
1 to �, that we shall denote

by �±
1 , describe the deformation of � (to first order) as seen from each side [13] in

terms of the gauges (or class of gauges) chosen.
The second order problem is constructed analogously in terms of an extra symmetric

tensor for each region K±
2 to describe the second order perturbations, and the corre-

sponding second order matching conditions (found in [13]) demand the existence of
two extra vectors Z±

2 such that a certain set of conditions for {g±, K±
1 , K±

2 , Z±
1 , Z±

2 }
on � are satisfied.

The particularization to secondorder stationary and axially symmetric perturbations
around static and spherically symmetric backgrounds was performed in [9] (see also
[12]). It must be stressed that the perturbation tensor that suits the even-parity tidal
problem scenario enters those constructions at second order. The first order matching
conditions suitable for the tidal problem correspond to the conditions at second order
with a vanishing first order problem in the treatment in [9, 12] (see [3, 4]).

The local nature of the matching procedure allows us to trivially devise the (per-
turbed)matchingprocedure needed for a stellar interiormadeupof layerswith different
matter contents. For the sake of formality we consider a construction based on a set of
N + 1 regions {M(i)} with boundary where i = 1, ..., N + 1, so that M(1) contains
the origin and are ordered from inner to outer, matched together across the matching
hypersurfaces �(i) with i = 1, . . . , N to form a global static and spherically symmet-
ric background spacetime as depicted in Fig. 1. Note that one may include �(N+1) to
denote “infinity”. At any �(i) separating two regions, say M+ = M

(i) (inner) and
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Fig. 1 Schematic representation of the matching between different manifolds. The i-th manifold M(i) is
matched to M(i+1) through the hypersurface �(i). At �(i) M(i) plays the role of the inner part of the
matching,M+ = M(i), andM(i+1) the outer part, so thatM− = M(i+1). The innermost and outermost
regions,M(1) andM(N+1) are not linked to any other spacetime

M− = M(i+1) (outer), for any pair of functions f + and f − defined on the corre-
sponding region, we will use [ f ]i := f +|�(i)− f −|�(i) to denote the “jumps” of f
there.

2 Geometrical perturbedmatching conditions

In this section we set forth the perturbed matching conditions to first order for static
and axially symmetric even parity perturbations around a static and spherically sym-
metric background at any hypersurface�(i) in purely geometrical terms.With the tidal
problem in mind we restrict the analysis, as usual, to the � ≥ 2 sector. We refer to [4],
based in turn on [12] and [9], for the proving details.

In principle, each M(i) is endowed with the usual spherical coordinates
{ti , ri , θi , φi }, and we may indicate by fi that a function is defined onM(i). However,
to avoid flooding all equations with i indices, in what follows we only show explicitly
the i-dependence at the jumps of functions.

2.1 Background

The metric of the background configuration in spherical coordinates is given by

g = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2)

(i-subindexes ommited in the functions and coordinates) on each M(i). Given the
spherical symmetry of thewhole configuration, thematchinghypersurfaces�(i) inherit
the symmetries and they can be parametrized by common values of {t, θ, φ} at each
side (see e.g. [17]). Then, the matching conditions for the background configuration
are [r ]i = 0, that establishes that �(i) is defined by the same value, say Ri , of the
respective radial coordinates r , and

[λ]i = 0, [ν]i = 0, (3)

[ν′]i = 0. (4)

Observe that the condition [ν]i = 0 is, in fact, a consequence of the choice of the t
coordinate at each side, which have been taken so that their values coincide on �(i).
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It is in that sense that we say that the matching condition just serves to accommodate
the choice of “gauges” on each side.

2.2 First order

We take the first order perturbation tensor K1 describing the static, axially symmetric
and even parity tidal field as given in the Regge-Wheeler gauge, and decomposed in
Legendre polynomials,

K1 =
∑

�

{
eν(r)H0�(r)dt

2 + eλ(r)H2�(r)dr
2 + r2K�(r)(dθ

2 + sin2 θdφ2)
}
P�(cos θ),

(5)

on each region. Thematching conditions for � ≥ 2 on each�(i) read [seeEqs. (37)-(39)
in [4]]

[K�]i = 0, [H0�]i = 0, (6)

[H2�]i − Ri [K ′
�]i = e−λ(Ri )/2��i [λ′]i , (7)

[H ′
0�]i + Ri

2
ν′(Ri )[K ′

�]i = −e−λ(Ri )/2��i [ν′′]i , (8)

for some functions ��i at each � ≥ 2. As mentioned in the Introduction, the functions
��i will describe the deformation of the hypersurface �(i) in the class of gauges
compatible with the problem (and it is equal at both sides) [9, 12]. The first order
problems for � ≥ 2 will then match at �(i) if and only if there exists a quantity ��i

such that Eqs. (6)-(8) are satisfied.
Although the matching conditions for � = 0, 1 are irrelevant as far as the tidal

problem is concerned, they can be obtained from [9] or [12], and find, in particular,
that the jumps become arbitrary enough as to accommodate all the gauge freedom left
at this point.

2.3 Matching conditions in terms of the Einstein tensor

Our goal now is to express the matching conditions in terms of the Einstein tensor of
the background geometryGα

β := Ein(g)αβ . The only independent and nonzero com-
ponents satisfy the relations (we drop the r -dependence here, prime denotes derivative
with respect to r )

λ′ = +1 − eλ

r
− reλGt

t , (9)

ν′ = −1 − eλ

r
+ reλGr

r , (10)

ν′′ = 1

2r
(λ′ − ν′)(2 + rν′) + 2eλGθ

θ , (11)
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on any region M(i). Computing the jumps of the above relations on any �(i) yields

[λ′]i = −Rie
λ(Ri )[Gt

t ]i , (12)

[ν′]i = +Rie
λ(Ri )[Gr

r ]i , (13)

[ν′′]i =
(
1 + Riν

′(Ri )

2

) [λ′]i
Ri

+ 2eλ(Ri )[Gθ
θ ]i . (14)

As a result, using also that the mass function is given by

M(r) = r

2

(
1 − e−λ(r)

)
, (15)

the matching conditions (3)-(4) can be rewritten as

[M]i = 0, [ν]i = 0, (16)

[Gr
r ]i = 0, (17)

while (6)-(8) read

[K�]i = 0, [H0�]i = 0, (18)

[H2�]i − Ri [K ′
�]i = −Rie

λ(Ri )/2��i [Gt
t ]i , (19)

[H ′
0�]i − [K ′

�]i = −2eλ(Ri )/2��i [Gθ
θ ]i −

(
1 + Riν

′(Ri )

2

) [H2�]i
Ri

. (20)

3 Application to general relativity

In this section we review how the above construction of the perturbed matching to
first order applies to problems in perturbation theory to first order in General Relativ-
ity (without cosmological constant) in the present context for the tidal problem, i.e.
perturbations of the form (5) around static and spherically symmetric backgrounds.
For any general case, anyway, the procedure consists in the three following steps.

(i) As a first step, since only the Einstein tensor of the background geometry enters
the perturbed matching to first order, it suffices to introduce the Einstein field
equations (EFE) at the background level (we omit the i index for each region)

Gα
β = κT α

β, (21)

in the equations (16)-(20) to obtain the geometrical perturbed matching conditions
in terms of quantities related to the desired matter field contents of the model. We
are usingG = Ein(g), T for the energy-momentum tensor at the background level,
and κ for the gravitational coupling constant.

(ii) The second step consists in using the EFEs at first order, togetherwith the perturbed
matching conditions from the first step. This may provide additional conditions
on the jumps of the perturbation metric functions {H0�, H2�, K�}.
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(iii) The final step corresponds to the addition of the matter field matching condi-
tions governing the behaviour of the matter fields across layers, such as surfaces
separating different media, phase transitions, charged surfaces, etc...

Beforewe start with the first step, observe that the Einstein tensor of the background
geometry given by (2) only has (at most) three non-vanishing components Gt

t , Gr
r ,

andGθ
θ = Gφ

φ (in all regions). The form of the energy-momentum tensor compatible
with that, c.f. (21), is many times referred to as an “anisotropic fluid” with “radial
pressure” T r

r = κ
−1Gr

r . Equation (17) thus states that the radial pressure cannot
have a jump on any matching hypersurface �(i). If the outermost region is the exterior
vacuum to a compact object, this condition establishes the value RN of the radial
coordinate where the boundary common to the two problems is located. On the other
hand, notice, however, that neither [Gθ

θ ]i nor [Gt
t ]i are necessarily zero in general,

and therefore neither are [T θ
θ ]i nor [T t

t ]i . If there are no equations for the matter
fields, nor additional field matching conditions for them, the necessary and sufficient
conditions for “anisotropic fluids” to match at first order are the background matching
equations (16)-(17) plus the two first order conditions in (18). Therefore, in that case,
the jumps of H2� and the derivatives of all the perturbation metric functions are not
constrained, a priori.

In the following we consider perfect fluid and two-fluid superfluid regions, using
steps (i) and (ii) to recover the known matching conditions in the tidal problem for
neutron and quark stars (see e.g. [1–3]) and superfluid neutron stars (see e.g. [18]).

3.1 Step (i): geometrical perturbedmatching conditions using the background
field equations

Let us start by performing the first step (i) for perfect fluid and two-fluid regions.
Perfect fluid:To fix some notation, wewrite the energy-momentum tensor for a perfect
fluid as

T α
β = (E + P)UαUβ + Pδα

β , (22)

for some unit fluid flow U , where E and P are the corresponding energy density and
pressure, respectively. Given the form of the Einstein tensor for (2), as mentioned
above, the EFEs on the background imply that U = e−ν/2∂t , and require only the
equation

Gr
r = Gθ

θ . (23)

The energy density and pressure are then given by the relations

Gt
t = −κE, Gr

r (= Gθ
θ = Gφ

φ) = κP. (24)

The matching conditions (16)-(20) applied to a perfect fluid thus read

[M]i = 0, [ν]i = 0, (25)
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[P]i = 0, (26)

[K�]i = 0, [H0�]i = 0, (27)

[H2�]i − Ri [K ′
�]i = κRie

λ(Ri )/2��i [E]i , (28)

[H ′
0�]i − [K ′

�]i = −
(
1 + Riν

′(Ri )

2

) [H2�]i
Ri

. (29)

Observe that because of the field equations at the background level, c.f. (23), we now
have [Gθ

θ ]i = 0 and therefore (20), that becomes (29), involves perturbation metric
functions only.

If the outer region is vacuum, the jump of the energy is simply [E]i=N = E+(RN ),
where RN satisfies P+(RN ) = 0. In general, the values of the energy density at
the matching hypersurfaces �(i), and thus the jumps [E]i , will be determined by the
barotropic EOS E = E(P) that govern the stellar configurations on the different
regions. In other cases with no barotropic EOS, such as homogeneous stars [19] and
some Skyrme stars [20], those values will be determined by whatever relations used
to close the system of equations.

Note that at this point the function H2� may present jumps at the matching hyper-
surfaces (see (29)). Later we are going to see how the perfect fluid equations at first
order (in combination with the rest of conditions) imply the vanishing of those jumps.
Superfluid: For completeness, let us introduce very briefly the two-fluid superfluid
formalism, as described in [21] (see also [22]). For brevity, we refer to this formalism
simply as superfluid. The flow of neutrons and protons is given by nα = nuα and pα =
pvα , where n and p are the number densities of neutrons and protons, respectively,
and uα and vα are unit timelike vectors. All the model is determined by the master
function

� = �(n2, p2, x2),

where n2 := nαnα , p2 := pα pα , and x2 := −pαnα is the interaction term. With the
help of the definitions

μα := Bnα + Apα, χα := C pα + Anα,

with

A := −∂�(n2, p2, x2)

∂x2
, B := −2

∂�(n2, p2, x2)

∂n2
, C := −2

∂�(n2, p2, x2)

∂ p2
,

and

� := � − nαμα − pαχα, (30)

the energy-momentum tensor reads

T α
β = �δα

β + pαχβ + nαμβ. (31)
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Similarly as in the perfect fluid case, staticity and spherical symmetry of the back-
ground geometry requires that uα = vα . That induces (31) to take the form of a
perfect fluid with E replaced by−�. As a result, for this two-fluidmodel the perturbed
matching conditions are given by the set {(25),(27),(29)} plus

[�]i = 0, (32)

[H2�]i − Ri [K ′
�]i = −κRie

λ(Ri )/2��i [�]i . (33)

Now, if the outer region is vacuum, then we have [�]i=N = �+(RN ), where RN

satisfies �+(RN ) = 0.
Superfluid and perfect fluid: Some models consider stellar configurations composed
of different kinds of fluids. For instance, in [23] a stellar model with a superfluid core
and perfect fluid crust is studied. In such case, the same arguments as those above
for each side can be used to show that the perturbed matching conditions for an inner
superfluid region and an outer perfect fluid region are given by the set {(25),(27),(29)}
plus

�(Ri ) = P(Ri ), (34)

[H2�]i − Ri [K ′
�]i = −κRie

λ(Ri )/2��i (�(Ri ) + E(Ri )) . (35)

If the star were composed of an inner perfect fluid and an outer superfluid (even
though this might not be physically realistic), Eq. (35) ought to be replaced by the
same equation with a change of sign at the right-hand side.

3.2 Step (ii): adding the field equations at first order

Let us recall how the EFEs at first order are derived from Gε := Ein(gε) and some
ε-family of energy-momentum tensors Tε such that Tε=0 = T . It suffices to consider
the family of equations Gε

α
β = κTε

α
β, that reduces to (21) for ε = 0.

The first order equations are thus given by

G(1)α
β = κT (1)α

β, (36)

where

G(1)α
β = ∂Gε

α
β

∂ε

∣∣∣∣
ε=0

, T (1)α
β = ∂Tε

α
β

∂ε

∣∣∣∣
ε=0

.

For the perfect fluid, one takes the form T α
ε β = (Eε + Pε)Uα

ε Uεβ + Pεδ
α
β , for

some vector Uε unit with respect to gε and such that Uε=0 = U , and corresponding
energy density Eε and pressure Pε satisfying Eε=0 = E , Pε=0 = P . If a barotropic
EOS is given in the form E(P), then it is imposed that Eε = E(Pε). Similarly,
for the two fluid one considers nε

α = nεuε
α , pε

α = pεvε
α and, given a ruling

master function �(n2, p2, x2), takes �ε = �(n2ε, p
2
ε , x

2
ε ) from where the rest of
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quantities are constructed, following the formalism explained above, to form Tε
α

β =
�εδ

α
β + pε

αχεβ + nε
αμεβ.

It is well known that given the form of K1 in (5), and thus of gε = g + εK1, the
resulting G(1) takes a form so that the equations (36) in both the perfect fluid and
two-fluid cases for � ≥ 2 yield [24, 25]

H2� = H0�, (37)

K�
′ = H0

′
� + ν′H0�, (38)

r2ν′H0
′
� = eλ (�(� + 1) − 2) K� +

(
r(λ′ + ν′) − (

rν′)2 − eλ�(� + 1) + 2
)
H0�,

(39)

plus relations that involve the first order quantities relative to the matter fluids.
We can now take differences of these equations at either side of the matching

hypersurfaces �(i) and thus obtain relations between the jumps of the perturbation
metric functions. The task is then to combine the perturbed matching conditions we
already have with those relations.
Perfect fluid: The combination of the set of equations (25)-(29) with the differences
of (37)-(39), using the relations in (9)-(11), is equivalent to the set of equations [3]

[M]i = 0, [ν]i = 0, (40)

[P]i = 0, (41)

[H0�]i = 0, [H2�]i = 0, [K�]i = 0, (42)

[H ′
0�]i = [K ′

�]i = κeλ(Ri )

ν′(Ri )
H0�(Ri )[E]i , (43)

[E]i
(

��i + eλ(Ri )/2

ν′(Ri )
H0�(Ri )

)
= 0, (44)

for � ≥ 2.
Two comments are in order. First, these matching conditions, for � ≥ 2, appeared

already (without proof) in an analogous context in Appendix B in [26]. There, the
matching to all � is included, although the “continuity" of the � = 0, 1 sector may
need some partial gauge fixing [9, 12]. Second, it must be stressed that the background
matching conditions (40) and (41), together with the “continuity" conditions (42), plus
the field equations (38) and (39) guarantee that thematching condition (43) is satisfied.
This fact, which was also already observed in [26], is the reason why the discontinuity
of [H ′

0] can be found using the EFEs provided that the functions involved are asummed
to be continuous.
Superfluid: For the two-fluid model it is easy to see that it suffices to replace E with
−� and P with � in (32) and (33). As a result, the full set of perturbed matching
conditions to first order in this case is given by (40), (42) plus

[�]i = 0, (45)
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[H ′
0�]i = [K ′

�]i = −κeλ(Ri )

ν′(Ri )
H0�(Ri )[�]i , (46)

[�]i
(

��i + eλ(Ri )/2

ν′(Ri )
H0�(Ri )

)
= 0, (47)

for � ≥ 2.
Superfluid and perfect fluid: Likewise, for an inner superfluid model matching to an
outer perfect fluid, the set is given by (40), (42) plus

�(Ri ) = P(Ri ), (48)

[H ′
0�]i = [K ′

�]i = −κeλ(Ri )

ν′(Ri )
H0�(Ri ) (�(Ri ) + E(Ri )) , (49)

(�(Ri ) + E(Ri ))

(
��i + eλ(Ri )/2

ν′(Ri )
H0�(Ri )

)
= 0, (50)

for � ≥ 2.
Clearly, the same equations with a change of sign in E and � hold if the inner

region is a perfect fluid and the outer region is the superfluid.

4 Tidal problem and Love number

The Love number at each harmonic � is obtained from the function H0� and its radial
derivative H ′

0� evaluated at the outermost boundary of the star in the vacuum exterior,
that we denote byM− with relative quantities also tagged with the minus sign. In the
present setting and notation, that is H−

0�(RN ) and H ′−
0�(RN ). The solution H0� of the

equations (38)-(39) for a vacuum region are the associated Legendre functions Pn
� ,

Qn
� with n = 2

H−
0�(r−) = a�P P̂

2
�

(r−
M

− 1
)

+ a�Q Q̂
2
�

(r−
M

− 1
)

, (51)

where the Legendre functions have been normalized so that P̂2
� (x) � x� and Q̂2

�(x) �
1/x�+1 when x → ∞, and are given by

P̂2
� (x) :=

(
2�

√
π

�(� + 1/2)

�(� − 1)

)−1

P2
� (x),

Q̂2
�(x) :=

( √
π

2�+1

�(� + 3)

�(� + 3/2)

)−1

Q2
�(x).

The Love number is defined as

k� := 1

2

(
M

RN

)2�+1

a�, (52)
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where M is the mass of the star M = M(RN ) (observe the mass function has no
jumps, c.f. (40)), and a� is the ratio between the two constants in (51)

a� := a�Q

a�P
= − ∂r− P̂

2
� − (y−

� /RN )P̂2
�

∂r− Q̂
2
� − (y−

� /RN )Q̂2
�

∣∣∣∣
r−=RN

, (53)

where y� := r H ′
0�/H0�. The leading order Love number, k2, is many times replaced

(but often called also Love number) by the tidal deformability λ2 = a2/3.
Computationally, one must fix some boundary conditions at the origin and integrate

the EFE from M(1) to M(N ), respecting the matching conditions at each boundary,
until reaching the outermost boundary, �(N ). Once the interior problem has been
solved (and thus y+

� (RN ) is known), the value of y−
� at the boundary, y−

� (RN ), has to
be obtained from the matching of the two regions,

y−
� (RN ) = y+

� (RN ) − [y�]N
with

[y�]N =
[
r H ′

0�

H0�

]

N
= RN

H0�(RN )

[
H ′
0�

]
N , (54)

after using [H0�]N = 0 in the last equality. Then, using (53) the tidal deformability,
λ2 (and the Love number k2 using also (52)) is computed.
Perfect fluid: For the perfect fluid case, using equations (42) and (43), together with
the vacuum solutions of λ(r) and ν(r),

e−λ(r) = eν(r) = 1 − 2M

r
, (55)

equation (54) reads

[y�]N = κ

RN
3

2M
E(RN ), (56)

thus recovering (1) for � = 2 after denoting RN = R∗. Then,

a� = − ∂r+ P̂
2
� − (y+

� /RN )P̂2
� + (κRN

2E(RN )/2M)P̂2
�

∂r+ Q̂
2
� − (y+

� /RN )Q̂2
� + (κRN

2E(RN )/2M)Q̂2
�

∣∣∣∣
r+=RN

, (57)

where we have recovered the + index in y+
� because y+

� �= y−
� in general.

Superfluid: For the superfluid case, the analogous procedure shows that it suffices to
replace E by −�, so that [4]

[y�]N = −κ

RN
3

2M
�(RN ), (58)

123



50 Page 14 of 16 E. Aranguren, R. Vera

and

a� = − ∂r+ P̂
2
� − (y+

� /RN )P̂2
� − (κRN

2�(RN )/2M)P̂2
�

∂r+ Q̂
2
� − (y+

� /RN )Q̂2
� − (κRN

2�(RN )/2M)Q̂2
�

∣∣∣∣
r+=RN

. (59)

5 Conclusions

The set of geometrical matching conditions reviewed in this article serves as a basis
for those works that aim to study the tidal problem for non perfect fluid stellar config-
urations for which Eq. (15) in [2] no longer applies as such. In this regard, although
equations to first order for perfect fluid and superfluid interiors appear to be analogous
(in the matching conditions it is just a change E → −� and P → �), at second order
this similarity is completely lost; compare, for instance, the contribution of the mass
at second order, δM , from Eq. (103) in [9] with that of Eq. (97) in [18].

Even though we have restricted ourselves to the theory of General Relativity using
the Einstein field equations at some point, due to the geometrical nature of (16)-(20),
which are a consequence of imposing that the Riemann tensor has no Dirac delta
terms, these equations may still hold as a minimum set of matching conditions on
alternative metric theories of gravity, as well as metric-affine theories (except for one
very particular case, see [27]). In those alternative theories one would expect to need
more conditions, as it happens when dealing with quadratic theories of gravity, see
e.g. [28] and references therein. Let us stress finally that the geometrical procedure in
Sec. 2 is suited to be applied to any stellar exterior, that is, regardless of whether the
“vacuum" exterior of some given theory is or is not Schwarzschild, see e.g. [29].
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