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Abstract
We study the renormalized stress-energy tensor (RSET) for a massless, conformally
coupled scalar field on global anti-de Sitter space-time in four dimensions. Robin
(mixed) boundary conditions are applied to the scalar field. We compute both the vac-
uum and thermal expectation values of the RSET. The vacuum RSET is a multiple
of the space-time metric when either Dirichlet or Neumann boundary conditions are
applied. Imposing Robin boundary conditions breaks the maximal symmetry of the
vacuum state and results in an RSET whose components with mixed indices have
their maximum (or maximum magnitude) at the space-time origin. The value of this
maximum depends on the boundary conditions. We find similar behaviour for ther-
mal states. As the temperature decreases, thermal expectation values of the RSET
approach those for vacuum states and their values depend strongly on the boundary
conditions. As the temperature increases, the values of the RSET components tend to
profiles which are the same for all boundary conditions. We also find, for both vacuum
and thermal states, that the RSET on the space-time boundary is independent of the
boundary conditions and determined entirely by the trace anomaly.
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1 Introduction

In the absence of a full theory of quantum gravity, quantum field theory in curved
space-time (QFTCS) provides us with an effective theory in which we study quantum
fields propagating on a background classical curved space-time. In QFTCS, the renor-
malized expectation value of the stress-energy tensor operator (RSET) 〈T̂μν〉 plays a
pivotal role. The expectation value of this operator is used as the source term in the
semiclassical version of Einstein’s field Eq. (1) (here and through this paper we use
units in which � = c = G = 1):

Rμν − 1

2
R gμν + gμν� = 8π〈T̂μν〉, (1)

and therefore governs the backreaction effect of the quantum field on the space-time
geometry.

In this paper we consider the RSET for a quantum scalar field on global anti-de
Sitter (adS) space-time. Although this is a maximally symmetric space-time, quantum
fields on this background have rich properties, not least because of the need to impose
boundary conditions on the field due to the fact that adS is not a globally hyperbolic
space-time. The study of quantumfields on adSwas initiatedmanyyears ago [1],where
amassless, conformally coupled scalar fieldwas studied, subject to either “transparent”
or “reflective” boundary conditions. The latter correspond to either Dirichlet (the field
vanishes on the boundary) or Neumann (the normal derivative of the field vanishes on
the boundary) boundary conditions. The vacuum state retains the maximal symmetry
of the underlying geometry when either Dirichlet or Neumann boundary conditions
are applied and the vacuum expectation value of the RSET is a constant multiple of
the space-time metric [2–4]. The introduction of a nonzero temperature breaks this
symmetry but, nonetheless, the thermal expectation value of the RSET for a massless,
conformally coupled scalar field can be found using an elegant method based on the
time-periodicity properties of the thermal Green’s function [3].

The simplest boundary conditions, as studied in [1–5], are by no means the only
possibilities [1, 6–16]. The wide range of valid boundary conditions gives rise to an
extensive set of possible quantum states that can be studied. Amongst the various
possible boundary conditions, in this paper we focus on Robin (mixed) boundary
conditions (see, for example, [7, 9, 14, 16, 17] for more general boundary conditions
that can be applied). For a massless, conformally coupled scalar field, Robin boundary
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conditions correspond to the vanishing of a linear combination of the field and its
normal derivative on the boundary. Such boundary conditions break the maximal
symmetry of the vacuum state [6, 8, 14, 18, 19].

The renormalized vacuum polarization (VP, the square of the scalar field) was com-
puted in [20] for a massless, conformally coupled scalar field on four-dimensional adS
with Robin boundary conditions applied to all field modes. For both vacuum expec-
tation values (v.e.v.s) and thermal expectation values (t.e.v.s) it was found that, on the
space-time boundary, the VP has the same value for all boundary conditions except for
Dirichlet, where the value was different. The same conclusion was reached recently
[21] on three-dimensional adS for a scalar field with nonzero mass and values of the
coupling to the space-time curvature for which Robin boundary conditions can be
applied. As a result, while Dirichlet boundary conditions are the most widely consid-
ered in the literature due to their simplicity, it is the Neumann boundary conditions
which give the generic behaviour of the VP on the space-time boundary. In contrast, if
Robin boundary conditions are applied only to a subset of the scalar field modes cor-
responding to s-wave perturbations, then the VP for a massless, conformally coupled
scalar field on four-dimensional adS always takes the Dirichlet value on the boundary
[6].

In this paper we explore whether the result in [20] extends to the v.e.v.s and t.e.v.s
of the RSET for a massless, conformally coupled scalar field on four-dimensional
adS. In [6], applying Robin boundary conditions just to the s-wave modes, it is found
that the RSET on the space-time boundary again takes the same value as for Dirichlet
boundary conditions. Here we follow [20] and apply Robin boundary conditions to all
field modes. As in [20], we employ Euclidean methods to find the v.e.v.s and t.e.v.s of
the RSET, paying particular attention to how these depend on the parameter describing
the Robin boundary conditions.

Our paper is structured as follows. In Sect. 2 we outline the construction of the
vacuum and thermal Green’s functions for a massless, conformally coupled, scalar
field on four-dimensional adS. This is followed, in Sect. 3, with the calculation of the
expectation values for the RSET in both vacuum and thermal states, including a brief
discussion of the numerical methods employed. The results for the v.e.v.s and t.e.v.s
for the RSET are given in Sects. 4 and 5 respectively. The behaviour of these quantities
approaching the space-time boundary is explored further in Sect. 6. Finally we present
our conclusions in Sect. 7.

2 Euclidean Green’s functions

AdS space-time is a maximally symmetric solution of Einstein’s field equations of
general relativity, with constant negative curvature. In global coordinates (t, ρ, θ, φ)

the metric is

ds2 = L2 sec2 ρ [−dt2 + dρ2 + sin2 ρ (dθ2 + sin2 θ dφ2)], (2)

where 0 ≤ ρ < π/2, 0 ≤ θ < π, and 0 ≤ φ < 2π . In four dimensions, the cosmo-
logical constant (� < 0) is related to the adS radius of curvature, L , via � = −3/L2.
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In adS the time coordinate is periodic with t ∈ (−π, π ] and the end points identified.
This results in somewhat unphysical closed time-like curves. This is circumvented by
considering the covering space (CadS) where the time coordinate is ‘unwrapped’ to
give −∞ < t < ∞.

We work in Euclidean space where the Green’s function is a unique, well-defined
distribution. The Euclidean metric is obtained from the adS metric (2) by performing
a Wick rotation, t → iτ , leading to

ds2 = L2 sec2 ρ [dτ 2 + dρ2 + sin2 ρ (dθ2 + sin2 θ dφ2)]. (3)

We consider the Euclidean Green’s functions for a massless, conformally coupled
scalar field in the vacuum state and in a thermal state at inverse temperature β. The
vacuum Green’s function GE

ζ,0(x, x
′) takes the form [20]

GE
ζ,0(x, x

′) = 1

8π2L2 cos ρ cos ρ′

×
∫ ∞

ω=−∞
dω eiω�τ

∞∑
=0

(2 + 1)P(cos γ )gω(ρ, ρ′), (4)

where ω is the frequency, �τ = τ − τ ′, the radial Green’s function is denoted by
gω(ρ, ρ′) and P(x) is a Legendre polynomial. The angular separation of the space-
time points, γ , is given by

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos�φ, (5)

where �φ = φ − φ′. For a thermal state at inverse temperature β, the frequency ω

takes the quantized values ω = nκ where κ is related to the inverse temperature by

κ = 2π

β
. (6)

With this notation, the thermal Euclidean Green’s function GE
ζ,β(x, x ′) is then [20]

GE
ζ,β(x, x ′) = κ

8π2L2 cos ρ cos ρ′
∞∑

n=−∞
einκ�τ

∞∑
=0

(2 + 1)P(cos γ )gω(ρ, ρ′).

(7)

The radial Green’s function gω(ρ, ρ′) satisfies the inhomogenous equation

{
d

dρ

(
sin2 ρ

d

dρ

)
− ω2 sin2 ρ − ( + 1)

}
gω(ρ, ρ′) = δ(ρ − ρ′), (8)
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and takes the form

gω(ρ, ρ′) = pω(ρ<)qω(ρ>)

Nω

, (9)

where ρ< = min{ρ, ρ′} and ρ> = max{ρ, ρ′}, with Nω a normalization constant.
Here pω and qω are solutions of the homogeneous version of (8) and can be written
in terms of conical (Mehler) functions. The function pω(ρ) is regular at the origin
ρ = 0 and takes the form

pω(ρ) = 1√
sin ρ

P−−1/2
iω−1/2 (cos ρ), (10)

where Pν
μ(z) are associated Legendre functions. At ρ = π/2, the function qω(ρ)

satisfies Robin boundary conditions:

qω(ρ) cos ζ + dqω(ρ)

dρ
sin ζ = 0, (11)

where ζ ∈ [0, π) is the Robin parameter. The value ζ = 0 corresponds to Dirichlet
boundary conditions, while ζ = π/2 gives Neumann boundary conditions. Imposing
(11) on the general solution of the homogeneous version of (8) gives

qω = 1√
sin ρ

[
Cζ

ωP
−−1/2
iω−1/2 (cos ρ) + P−−1/2

iω−1/2 (− cos ρ)
]
, (12)

where the constant Cζ
ω is given by

Cζ
ω = 2|�(

iω++2)
2 )|2 tan ζ − |�( iω++1

2 )|2
2|�( iω++2

2 )|2 tan ζ + |�( iω++1
2 )|2 . (13)

We have C0
ω = −1 for Dirichlet boundary conditions and Cπ/2

ω = 1 for Neumann
boundary conditions. The normalization constant Nω is then given by [20]

Nω = 2

|�( + 1 + iω)|2 . (14)

Following [20], we now write the vacuum and thermal Euclidean Green’s function
with Robin boundary conditions as follows:

GE
ζ,0(x, x

′) = GE
D,0(x, x

′) cos2 ζ + GE
N,0(x, x

′) sin2 ζ + GE
R,0(x, x

′) sin 2ζ, (15)

GE
ζ,β(x, x ′) = GE

D,β(x, x ′) cos2 ζ + GE
N,β(x, x ′) sin2 ζ + GE

R,β(x, x ′) sin 2ζ, (16)
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where GE
D,0(x, x

′) and GE
D,β(x, x ′) are the vacuum and thermal Euclidean Green’s

functions with Dirichlet boundary conditions, given by

GE
D,0(x, x

′) = 1

16π2L2

cos ρ cos ρ′
√
sin ρ sin ρ′

∫ ∞

ω=−∞
dω eiω�τ

×
∞∑

=0

(2 + 1)P(cos γ )|�( + 1 + iω)|2

×P−−1/2
iω−1/2 (cos ρ<)

[
P−−1/2
iω−1/2 (− cos ρ>)−P−−1/2

iω−1/2 (cos ρ>)
]
, (17)

GE
D,β(x, x ′) = κ

16π2L2

cos ρ cos ρ′
√
sin ρ sin ρ′

×
∞∑

n=−∞
einκ�τ

∞∑
=0

(2 + 1)P(cos γ )|�( + 1 + inκ)|2

×P−−1/2
inκ−1/2(cos ρ<)

[
P−−1/2
inκ−1/2(− cos ρ>) − P−−1/2

inκ−1/2(cos ρ>)
]
, (18)

GE
N,0(x, x

′) andGE
N,β(x, x ′) are the vacuum and thermal Euclidean Green’s functions,

with Neumann boundary conditions, given by

GE
N,0(x, x

′) = 1

16π2L2

cos ρ cos ρ′
√
sin ρ sin ρ′

∫ ∞

ω=−∞
dω eiω�τ

×
∞∑

=0

(2 + 1)P(cos γ )|�( + 1 + iω)|2

× P−−1/2
iω−1/2 (cos ρ<)

[
P−−1/2
iω−1/2 (− cos ρ>) + P−−1/2

iω−1/2 (cos ρ>)
]
,

(19)

GE
N,β(x, x ′) = κ

16π2L2

cos ρ cos ρ′
√
sin ρ sin ρ′

×
∞∑

n=−∞
einκ�τ

∞∑
=0

(2 + 1)P(cos γ )|�( + 1 + inκ)|2

× P−−1/2
inκ−1/2(cos ρ<)

[
P−−1/2
inκ−1/2(− cos ρ>) + P−−1/2

inκ−1/2(cos ρ>)
]
,

(20)

GE
R,0(x, x

′) and GE
R,β(x, x ′) are the vacuum and thermal regular contributions (not

Green’s functions), given by

GE
R,0(x, x

′) = 1

16π2L2

cos ρ cos ρ′
√
sin ρ sin ρ′

∫ ∞

ω=−∞
dω eiω�τ

×
∞∑

=0

Dζ
ωP(cos γ )P−−1/2

iω−1/2 (cos ρ) P−−1/2
iω−1/2 (cos ρ′), (21)
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GE
R,β(x, x ′) = κ

16π2L2

cos ρ cos ρ′
√
sin ρ sin ρ′

∞∑
n=−∞

einκ�τ

×
∞∑

=0

Dζ
ωP(cos γ )P−−1/2

inκ−1/2(cos ρ) P−−1/2
inκ−1/2(cos ρ′), (22)

where the constants Dζ
ω are given by

Dζ
ω = (2 + 1)|�(1 +  + iω)|2

[
2|�( iω++2

2 )|2 cos ζ − |�( iω++1
2 )|2 sin ζ

2|�( iω++2
2 )|2 sin ζ + |�( iω++1

2 )|2 cos ζ

]
,

(23)

with ω = nκ in the thermal sum (22). It is clear from (21, 22), that
GE

R,0(x, x
′),GE

R,β(x, x ′) will diverge if there are values of the Robin parameter ζ

satisfying

2 tan ζ = −|�( iω++1
2 )|2

|�( iω++2
2 )|2 . (24)

If the Robin parameter ζ lies in the interval ζcrit < ζ < π , where ζcrit ≈ 0.68π
for a massless, conformally coupled scalar field on four-dimenional adS, then there
exist real values of ω satisfying (24) [20]. Such values of ω give rise to classical mode
solutions of the scalar field equation on the adS space-time (2) which are exponentially
growing in time and are therefore classically unstable [20]. To consider a quantum
scalar field, we require the classical scalar field to be classically stable, so for the
remainder of this work we restrict our consideration of Robin boundary conditions to
values of the Robin parameter ζ in the interval 0 ≤ ζ < ζcrit.

3 Expectation values of the RSET

Having given expressions for the vacuum and thermal Green’s functions for the mass-
less, conformally coupled, scalar field on four-dimensional adS, we now determine
the v.e.v.s and t.e.v.s of the RSET. For both vacuum and thermal states, the Euclidean
Green’s functions are singular in the coincidence limit x ′ → x . Assuming that both
these states satisfy the Hadamard condition, the singular part of the Green’s function is
given by the singular part of theHadamard parametrixGS(x, x ′), which is independent
of the quantum state. The RSET expectation value for a particular quantum state is
found by subtractingGS(x, x ′) from the Euclidean Green’s functionGE(x, x ′) for that
state, applying a second order differential operator, and then taking the coincidence
limit, namely [22]:

〈T̂μν(x)〉 = lim
x ′→x

{
Tμν(x, x

′)
[
GE(x, x ′) − GS(x, x ′)

]
− gμνv1(x, x

′)
}

, (25)
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where Tμν(x, x ′) is the second order differential operator [22]

Tμν = 2

3
g ν′
ν ∇μ∇ν′ − 1

6
gμνg

ρσ ′∇ρ∇σ ′ − 1

3
g μ′
μ g ν′

ν ∇μ′∇ν′

+ 1

3
gμν∇ρ∇ρ + 1

6

(
Rμν − 1

2
gμνR

)
,

(26)

and gμν′ represents the bivector of parallel transport between the points x and x ′.
The final term in (25), v1(x, x ′), is a state-independent biscalar, regular in the coin-
cidence limit, which ensures that the RSET is conserved [22]. Using (15, 16, 25) the
vacuum/thermal expectation values of the stress energy tensor 〈T̂μν〉ζ can be written
as:

〈T̂μν〉ζ = lim
x ′→x

{Tμν(x, x
′)

[
GE

D(x, x ′) − GS(x, x ′)
]

− gμνv1(x, x
′)} cos2 ζ

+ lim
x ′→x

{
Tμν(x, x

′)
[
GE

N(x, x ′) − GS(x, x ′)
]

− gμνv1(x, x
′)
}
sin2 ζ

+ lim
x ′→x

{Tμν(x, x
′)GE

R(x, x ′)} sin 2ζ. (27)

The quantityGE
R(x, x ′) in the final term in (27) is regular in the coincidence limit. Since

the singular terms Tμν(x, x ′)GS(x, x ′) and the final subtraction term gμνv1(x, x ′) are
both independent of the quantum state, we therefore obtain the following expression
for the expectation values of the stress-energy tensor when Robin boundary conditions
are applied, in terms of those when Dirichlet or Neumann boundary conditions are
applied:

〈T̂μν〉ζren = 〈T̂μν〉Dren cos2 ζ + 〈T̂μν〉Nren sin2 ζ + lim
x ′→x

{Tμν(x, x
′)GE

R(x, x ′)} sin 2ζ.

(28)

From henceforth, the ‘ren’ subscript will be omitted and it can be assumed that all
〈T̂μν〉 terms are renormalised. The t.e.v.s of the RSET with Dirichlet and Neumann
boundary conditions have been determined in [3] (see (3.13), in which there is a minor
typographical error which is corrected below):

〈T̂μν 〉D/N
β = 1

8π2L4

{[
− 1

120
+ 4

3
cos4 ρ f3

(
β

L

)]
gμν +

[
16

3
cos4 ρ f3

(
β

L

)]
τμτν

}

± cot ρ

8π2L4

{[
− 1

6
csc2 ρ cos 2ρ S0

(
β

L
, ρ

)
+ 1

3
cot ρ C1

(
β

L
, ρ

)
+ 2

3
cos2 ρ S2

(
β

L
, ρ

)]
gμν

+
[
1

6
(3 − cot2 ρ)S0

(
β

L
, ρ

)
+ cot ρ

(
1 − 2

3
cos2 ρ

)
C1

(
β

L
, ρ

)
+ 2 cos2 ρ S2

(
β

L
, ρ

)]
τμτν

+
[
1

6
(3 csc2 ρ − 4)S0

(
β

L
, ρ

)
+ cot ρ

(
2

3
sin2 ρ − 1

)
C1

(
β

L
, ρ

)
− 2

3
cos2 ρ S2

(
β

L
, ρ

)]
ρμρν

}
,

(29)

where gμν is the space-time metric (3), and τμ, ρμ are unit vectors in the τ and ρ

directions, respectively. The Dirichlet boundary condition corresponds to the + sign
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whilst the Neumann boundary condition has the− sign. The functions fm , Sm andCm

are given by [3]

fm(x) =
∞∑
n=1

nm(enx − 1)−1, (30)

Sm(x, ρ) =
∞∑
n=1

nm(−1)n(enx − 1)−1 sin(2nρ), (31)

Cm(x, ρ) =
∞∑
n=1

nm(−1)n(enx − 1)−1 cos(2nρ). (32)

To obtain the corresponding vacuum expectation value from (29), we take the limit as
β → ∞, as will be discussed in Sect. 4.

The expression lim
x ′→x

{Tμν(x, x ′)GE
R,β(x, x ′)} in the final term in (28), has been

evaluated with MATHEMATICA. Using the recurrence relations for the conical functions
[23, §14.10.1], the nonzero components of this contribution to the v.e.v.s of the RSET
are given by

〈T̂ τ
τ 〉ζR,0 = cos ρ cot3 ρ

192L4π2

∞∑
=0

∫ ∞

ω=−∞
Dζ

ω

{
− 2χ2

ω [P−3/2−
iω−1/2 (cos ρ)]2 sin2 ρ

− 2 χω P
−3/2−
iω−1/2 (cos ρ)P−1/2−

iω−1/2 (cos ρ) sin 2ρ

−
[
2(2 + 1) + 2(1 − 2 − 5ω2) sin2 ρ

]
[P−1/2−

iω−1/2 (cos ρ)]2
}
, (33)

〈T̂ ρ
ρ 〉ζR,0 = cos ρ cot3 ρ

192L4π2

∞∑
=0

∫ ∞

ω=−∞
Dζ

ω

{
6χ2

ω [P−3/2−
iω−1/2 (cos ρ)]2 sin2 ρ

+ 2(3 + 2) χω P
−3/2−
iω−1/2 (cos ρ)P−1/2−

iω−1/2 (cos ρ) sin 2ρ

+
[
2 − 2(1 + 4 + 32 + 3ω2) sin2 ρ

]
[P−1/2−

iω−1/2 (cos ρ)]2
}
, (34)

〈T̂ θ
θ 〉ζR,0 = cos ρ cot3 ρ

192L4π2

∞∑
=0

∫ ∞

ω=−∞
Dζ

ω

{
− 2χ2

ω [P−3/2−
iω−1/2 (cos ρ)]2 sin2 ρ

− 2( + 1) χω P
−3/2−
iω−1/2 (cos ρ)P−1/2−

iω−1/2 (cos ρ) sin 2ρ

+ 2
[
2 + (1 + 2 + 2 − ω2) sin2 ρ

]
[P−1/2−

iω−1/2 (cos ρ)]2
}
, (35)

with 〈T̂ φ
φ 〉ζR,0 = 〈T̂ θ

θ 〉ζR,0, where Dζ
ω is given by (23), and χω is

χω = 1 + 2 + 2 + ω2. (36)
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For the corresponding expressions for the t.e.v.s we replace ω with nκ and change the
integral to a sum to obtain the following nonzero components

〈T̂ τ
τ 〉ζR,β = κ cos ρ cot3 ρ

192L4π2

∞∑
=0

∞∑
n=−∞

Dζ
n

{
− 2χ2

n [P−3/2−
inκ−1/2(cos ρ)]2 sin2 ρ

− 2 χn P
−3/2−
inκ−1/2(cos ρ)P−1/2−

inκ−1/2(cos ρ) sin 2ρ

−
[
2(2 + 1) + 2(1 − 2 − 5n2κ2) sin2 ρ

]
[P−1/2−

inκ−1/2(cos ρ)]2
}
,

(37)

〈T̂ ρ
ρ 〉ζR,β = κ cos ρ cot3 ρ

192L4π2

∞∑
=0

∞∑
n=−∞

Dζ
n

{
6χ2

n [P−3/2−
inκ−1/2(cos ρ)]2 sin2 ρ

+ 2(3 + 2) χn P
−3/2−
inκ−1/2(cos ρ)P−1/2−

inκ−1/2(cos ρ) sin 2ρ

+
[
2 − 2(1 + 4 + 32 + 3n2κ2) sin2 ρ

]
[P−1/2−

inκ−1/2(cos ρ)]2
}
, (38)

〈T̂ θ
θ 〉ζR,β = κ cos ρ cot3 ρ

192L4π2

∞∑
=0

∞∑
n=−∞

Dζ
n

{
− 2χ2

n [P−3/2−
inκ−1/2(cos ρ)]2 sin2 ρ

− 2( + 1) χn P
−3/2−
inκ−1/2(cos ρ)P−1/2−

inκ−1/2(cos ρ) sin 2ρ

+ 2
[
2 + (1 + 2 + 2 − n2κ2) sin2 ρ

]
[P−1/2−

inκ−1/2(cos ρ)]2
}
, (39)

and 〈T̂ φ
φ 〉ζR,β = 〈T̂ θ

θ 〉ζR,β . The D
ζ
n and χn terms are obtained from the corresponding

terms in (23, 36) by replacing ω with nκ . It is straightforward to check that the
contributions to the RSET expectation values arising from the last term in (28) have
vanishing trace.

The v.e.v.s and t.e.v.s of the RSET are calculated numerically using MATHEMATICA.
The sums in (29) converge extremely rapidly and are straightforward to compute.
The remaining contributions (33–39) which arise when we impose Robin boundary
conditions involve either a double infinite summation (for the t.e.v.s) or an integral
and a summation (for the v.e.v.s). For the v.e.v.s, we performed the integral overω first
before summing over . For fixed , the integral over ω is rapidly convergent, and we
integrated over the interval |ω| ≤ 100. For the t.e.v.s, the sum over n again converges
rapidly, and we summed over n with a magnitude of less than or equal to 50.

Aswas found in the computation of theVP [20], the sumover  exhibits nonuniform
convergence with respect to the radial coordinate, ρ, converging more quickly nearer
the origin and much slower as the space-time boundary is approached (see Fig. 1).
For the v.e.v.s, we summed over 0 ≤  ≤ 100 and for the t.e.v.s 0 ≤  ≤ 80. We
used a smaller range of values of n and  for the t.e.v.s compared to the v.e.v.s due to
increased computation time required for the function evaluations.

We estimated the errors in truncating the sums and integrals as follows. For the
v.e.v.s, for a selection of values of the Robin parameter ζ and radial coordinate ρ,
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Fig. 1 Log-log plot of the -summand in 〈T̂ τ
τ 〉ζR,β (37) as a function of  for a selection of values of the

radial coordinate ρ. With ζ = 3π/5 and κ = 1/2, we have performed the sum over |n| ≤ 50. It can be seen
that, as ρ increases, the -summand decreases at a much slower rate with increasing , resulting in a sum
over  which converges more slowly for larger values of ρ

we compared our results obtained by integrating over |ω| ≤ 100 and summing over
0 ≤  ≤ 100 with those found from increasing the maximum values of the magnitudes
of ω and  to 170. For example, for ζ = 3π/10 and ρ = 94π/200, by this method
we estimate the relative error in (33) to be of order 10−2. The relative error was much
smaller further away from the space-time boundary, and is estimated to be of order
10−18 at ρ = 3π/10 and ρ = π/20. However, the contributions to the RSET in (33-
35) contribute only a small proportion of the overall value. For example, the value of
(33) at ρ = 94π/200 and ζ = 3π/10 as a fraction of the total v.e.v. of 〈T̂ τ

τ 〉ζ0 was
∼ 5×10−4, meaning that the errors in the numerical calculations of the contributions
(33-35) are much less significant in the final results. The same holds for the t.e.v.s.
We employed the same method to estimate the relative errors in the t.e.v.s, and find
that the errors depend strongly on both the temperature and the radial coordinate ρ.
For κ = 1/2 and ζ = π/10, the relative error in the numerical computation of (37)
at ρ = 80π/200, for example, was ∼ 3.5 × 10−5. As a result of increasing errors
encountered close to the boundary, the numerical calculation of (37), for κ = 1/2 was
performed up to ρ = 85π/200 only. The relative errors near the space-time boundary
improved somewhat with increasing κ . For ρ = 90π/200, for instance, the relative
errors in (37) were ∼ 2× 10−10 and ∼ 5× 10−11 for κ = 2 and κ = 2π respectively.

4 Vacuum expectation value of the RSET with Robin boundary
conditions

In the low temperature limit (β → ∞), the v.e.v. of the RSET, 〈T̂μν〉D/N
0 , derived from

(29) reduces to [3]
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〈T̂μν〉D/N
0 = − 1

960π2L4 gμν (40)

in agreement with the calculation in [4] for a scalar field with Dirichlet boundary con-
ditions. In particular, the v.e.v. (40) is identical for Dirichlet and Neumann boundary
conditions. This does not occur for the VP (where the v.e.v.s for Dirichlet and Neu-
mann boundary conditions are different), and can be understood as follows. For both
Dirichlet and Neumann boundary conditions, the vacuum state is maximally symmet-
ric, and therefore theRSETwill be a constantmultiple of themetric, 〈T̂μν〉D/N

0 = αgμν

for some constant α. Taking the trace, α = 〈T̂μ
μ 〉D/N

0 /4. For a massless, conformally

coupled scalar field, the trace 〈T̂μ
μ 〉D/N

0 is fixed to be the trace anomaly, which, on
four-dimensional adS is [4]

〈T̂μ
μ 〉 = − 1

240π2L4 . (41)

Therefore, for a massless, conformally coupled scalar field, the RSET for a maximally
symmetric state is entirely determined by the trace anomaly and is independent of any
boundary conditions applied.

While the v.e.v of the RSET with either Dirichlet or Neumann boundary respects
the maximum symmetry of the underlying space-time, this is not the case when Robin
boundary conditions are applied, as can be seen in Fig. 2. For all values of ζ =
0, π/2 each component of the RSET varies with the radial coordinate ρ. The energy
density −〈T̂ τ

τ 〉ζ0 is positive throughout the space-time, reaching the common vacuum
Dirichlet/Neumann value at the space-time boundary. This is in contrast to the findings
in [6] where the energy density is negative onmost of the space-time and only becomes
positive as the boundary is reached. This is due to the application of Robin boundary
conditions to only a subset of the modes in [6]. The other components of the RSET
take the same constant values when ζ = 0 or π/2 and Dirichlet or Neumann boundary
conditions are applied. The quantities plotted in Fig. 2 are greatest at the space-time
origin and converge to the Dirichlet/Neumann value as the space-time boundary is
reached (ρ → π/2). Their values at the space-time origin increase as ζ increases
from zero, attain a maximum at some value of ζ ∈ (0, π/2) and then decrease as
ζ approaches π/2. As ζ increases above π/2, these quantities increase rapidly as ζ

approaches ζcrit ≈ 0.68π . As discussed at the endof Sect. 2, for values of ζ greater than
ζcrit, there are classical mode solutions of the scalar field equation which are unstable
[20]. Due to this classical instability, the semiclassical approximation employed in
this paper will break down for ζcrit < ζ < π .

Whilst the v.e.v. of the 〈T̂ ρ
ρ 〉 and 〈T̂ θ

θ 〉 components of theRSETare negative, they are
greater (less negative) for Robin boundary conditions than when Dirichlet/Neumann
boundary conditions are applied. However, the variation in the v.e.v.s of the RSET
components due to varying the boundary conditions is rather small, at roughly the
percent level.

While it may appear from Fig. 2 that the v.e.v.s of the 〈T̂ ρ
ρ 〉ζ0 and 〈T̂ θ

θ 〉ζ0 components
are the same, there is in fact a subtle difference. Writing the components of the RSET
in the Landau decomposition, analogous to that employed in the thermal state [5],
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Fig. 2 V.e.v.s of the RSETwith Robin boundary conditions. The top row shows the energy density−〈T̂ τ
τ 〉ζ0 ,

the middle row 〈T̂ ρ
ρ 〉ζ0 and the bottom row 〈T̂ θ

θ 〉ζ0 . On the left are 3D surface plots showing the variation

of the nonzero components of 〈T̂ ν
μ 〉ζ0 with ρ and ζ . On the right are the nonzero components of 〈T̂ ν

μ 〉ζ0
as functions of ρ for a selection of values of the Robin parameter ζ . Dirichlet and Neumann boundary
conditions are shown as dashed lines

gives

〈T̂ ν
μ 〉ζ0 = Diag

{
− Eζ

0 , Pζ
0 + �

ζ
0, P

ζ
0 − 1

2
�

ζ
0, P

ζ
0 − 1

2
�

ζ
0

}
(42)

where Eζ
0 is the energy density, Pζ

0 the pressure and �
ζ
0 is the shear stress or pressure

deviator [5]. The pressure deviator measures the difference between the RSET of the
quantum scalar field compared with that found if the field were modelled as a classical
gas of particles (as it vanishes in the latter case). As the 〈T̂ θ

θ 〉ζ0 component of the RSET

is greater than the 〈T̂ ρ
ρ 〉ζ0 , component, in Figure 3 we show −�

ζ
0 as a function of the

radial coordinate ρ for the vacuum state. For both Dirichlet and Neumann boundary
conditions, the vacuum pressure deviator is zero (not shown in Fig. 3). For Robin
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Fig. 3 Vacuum pressure deviator −�
ζ
0 (42) with Robin boundary conditions. On the left is a 3D surface

plot showing the variation of −�
ζ
0 with ρ and ζ . On the right is −�

ζ
0 as a function of ρ for a selection of

values of the Robin parameter ζ . Robin parameters ζ > π/2 are shown with dotted curves. The pressure
deviator vanishes identically when Dirichlet or Neumann boundary conditions are applied and is not plotted
in these cases

boundary conditions �
ζ
0 vanishes at both the origin and boundary of the space-time

and attains its maximum absolute value between the two.

5 Thermal expectation value of the RSET with Robin boundary
conditions

The t.e.v.s of the nonzero components of the RSET with various values of κ (6)
are shown in Figs. 4, 5 and 6 (as in the vacuum state, the 〈T̂ φ

φ 〉ζβ component has the

same values as the 〈T̂ θ
θ 〉ζβ component). The nonzero components have very similar

behaviour. Unlike the vacuum case, the t.e.v.s with Dirichlet and Neumann boundary
conditions, for all nonzero components of the RSET, are no longer constant and vary
with the space-time location. The difference between the t.e.v.s with Dirichlet and
Neumann boundary conditions is a maximum at the space-time origin and decreases
with increasing ρ. The RSET components for these two boundary conditions converge
to their common v.e.v. at the space-time boundary (ρ → π/2). The absolute difference
seen between the nonzero RSET components for the Dirichlet and Neumann boundary
conditions increases with increasing κ (and hence increasing temperature) and is not
clearly discernible at low temperatures in Figs. 4, 5 and 6 due to the scales used.

The energy density −〈T̂ τ
τ 〉ζβ , is positive throughout the space-time, achieves its

maximum value at the space-time origin and increases with increasing temperature.
For all Robin parameters studied, the energy density converges to the common vacuum
Dirichlet/Neumann value at the space-time boundary. For the other nonzero compo-
nents of the RSET, the t.e.v.s are predominantly negative at low temperature and
increase with increasing temperature, becoming positive in a neighbourhood of the
space-time origin at ρ = 0 for sufficiently large κ . They also achieve their maxi-
mum values at the space-time origin, converging to the v.e.v. (40) at the space-time
boundary.

It can be seen that at low temperature (κ = 1/2), the curves for t.e.v.s with Robin
boundary conditions lie outside of the curves corresponding to Dirichlet/Neumann
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Fig. 4 T.e.v.s of the energy density −〈T̂ τ
τ 〉ζβ , with Robin boundary conditions and a selection of values of κ

(6). On the left are 3D surface plots showing the variation of −〈T̂ τ
τ 〉ζβ with ρ and ζ . On the right is −〈T̂ τ

τ 〉ζβ
as a function of ρ for a selection of values of the Robin parameter ζ . Dirichlet and Neumann boundary
conditions are shown with dotted lines
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Fig. 5 T.e.v.s of the RSET, 〈T̂ ρ
ρ 〉ζβ , with Robin boundary conditions and a selection of values of κ (6). On

the left are 3D surface plots showing the variation of 〈T̂ ρ
ρ 〉ζβ with ρ and ζ . On the right is 〈T̂ ρ

ρ 〉ζβ as a function
of ρ for a selection of values of the Robin parameter ζ . Dirichlet and Neumann boundary conditions are
shown with dotted lines
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Fig. 6 T.e.v.s of the RSET, 〈T̂ θ
θ 〉ζβ , with Robin boundary conditions and a selection of values of κ (6). On

the left are 3D surface plots showing the variation of 〈T̂ θ
θ 〉ζβ with ρ and ζ . On the right is 〈T̂ θ

θ 〉ζβ as a function
of ρ for a selection of values of the Robin parameter ζ . Dirichlet and Neumann boundary conditions are
shown with dotted lines
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Fig. 7 Thermal pressure deviators −�
ζ
β (42) with Robin boundary conditions and a selection of values of

κ (6). On the left are 3D surface plots showing the variation of −�
ζ
β with ρ and ζ . On the right is −�

ζ
β

as a function of ρ for a selection of values of the Robin parameter ζ . Dirichlet and Neumann boundary
conditions are shown with dotted lines

boundary conditions. With increasing temperature, the curves for t.e.v.s with Robin
boundary conditions increasingly lie within those for Dirichlet/Neumann boundary
conditions and are mostly contained within them for κ = 2π . As the temperature
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increases, the variation in the nonzero components of the RSET with varying Robin
parameter ζ becomes much less apparent, as seen in Figs. 4-6.

As in the vacuum case, we also plot minus the thermal pressure deviator (−�
ζ
β ),

which is the difference between the 〈T̂ ρ
ρ 〉ζβ and 〈T̂ θ

θ 〉ζβ components of the t.e.v. of
the RSET (see Fig. 7). The pressure deviator is not only sensitive to the different
Robin boundary conditions (as in the vacuum case) but also to the different tempera-
tures. Unlike the vacuum case, the pressure deviator is no longer zero everywhere for
Dirichlet and Neumann boundary conditions (see also [5], where Dirichlet boundary
conditions are applied). For these boundary conditions, the pressure deviator does van-
ish at the space-time origin and boundary and attains its maximummagnitude between
these, this maximum magnitude increasing as the temperature increases. There is a
difference in sign with −�

ζ
β being negative for Dirichlet and positive for Neumann

boundary conditions respectively.
For Robin boundary conditions, the profile of the pressure deviator is largely similar

to that for Dirichlet or Neumann boundary conditions, vanishing at the origin and
space-time boundary and having a maximum magnitude at some ρ ∈ (0, π/2). At
the higher temperatures we see that �

ζ
β is most positive with Dirichlet boundary

conditions (ζ = 0) but with increasing Robin parameter, ζ , the pressure deviator
becomes increasingly negative. As seen in the RSET components, we find that with
increasing temperature, the thermal pressure deviators with different Robin boundary
conditions are increasingly ‘contained’ within the Dirichlet and Neumann curves.

6 The RSET at the boundary

The behaviour of the RSET components as the space-time boundary is approached
may be understood from the corresponding analysis in [20] for the VP. Since we are
considering a massless, conformally coupled scalar field, we can make a conformal
transformation to the Einstein static universe (ESU), containing a time-like surface
which is the image of the adS boundary under this mapping. Using the general con-
struction in [24], the Green’s function for the scalar field on ESUwith Robin boundary
conditions applied can be written as an asymptotic series in terms of the Green’s func-
tion on ESU with Neumann boundary conditions applied GESU

N (x, x ′) (see [20, 24]
for more details). This procedure gives the following asymptotic series for the vacuum
Euclidean Green’s function on ESU, GESU

ζ,0 , with Robin boundary conditions applied:

GESU
ζ,0 (x, x ′) = GESU

N,0 (x, x ′) − 1

L
G(1)

ζ,0(x, x
′) cot ζ + 1

L2G
(2)
ζ,0(x, x

′) cot2 ζ + . . .

(43)

where the first two terms in the series are given by

G(1)
ζ,0(x, x

′) =
∫
Iπ/2

GESU
N (x, y)GESU

N (y, x ′) dS, (44)
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G(2)
ζ,0(x, x

′) =
∫
I π

2

GESU
N (x, y)

[∫
I π

2

GESU
N (y, z)GESU

N (z, x ′) dS
]
dS. (45)

Here Iπ/2 is the surface at ρ = π/2 in ESU, and the integrals are performed over the
space-time points y, z on this surface in ESU. Higher-order terms in the series can be
found iteratively. The Green’s function on ESU with Neumann boundary conditions
applied has a compact closed-form expression [20]

GESU
N (x, x ′) = 1

8π2L2

{
1

cosh�τ + cos�
+ 1

cosh�τ + cos�∗

}
(46)

where �τ = τ − τ ′ is the separation of the points in the τ -direction,

� = arccos
[− cos ρ cos ρ′ − cos γ sin ρ sin ρ′] , (47)

�∗ = π + arccos
[− cos ρ cos ρ′ + cos γ sin ρ sin ρ′] (48)

and γ is the angular separation of the points (5). Applying the differential operator
Tμν(x, x ′) to the Green’s function (43) and bringing the space-time points together
gives

〈T̂μν〉ESUζ,0 = 〈T̂μν〉ESUN,0 − cot ζ

L
lim
x ′→x

{
Tμν(x, x

′)
[
G(1)

ζ,0(x, x
′)
]}

+cot2 ζ

L2 lim
x ′→x

{
Tμν(x, x

′)
[
G(2)

ζ,0(x, x
′)
]}

+ . . . (49)

We can relate the RSET on ESU to that on adS using [25]

〈T̂ ν
μ 〉adSζ,0 = 〈T̂ ν

μ 〉ESUζ,0

√
g̃√
g

− 1

2880π2

[
1

6
(1)H ν

μ − (3)H ν
μ

]
, (50)

where g̃ and g are the determinants of the metrics on ESU and adS respectively and
(1)Hμν and (3)Hμν are given by [25]

(1)Hμν = 2R;μν − 2gμν�R − 1

2
gμνR

2 + 2RRμν, (51)

(3)Hμν = R ρ
μ Rρν − 2

3
RRμν − 1

2
Rρσ R

ρσ gμν + 1

4
R2gμν. (52)

On adS, (1)Hμν vanishes identically and (3)Hμν = 3gμν/L2. Using (49, 50) we can
write

〈T̂ ν
μ 〉adSζ,0 = 〈T̂ ν

μ 〉adSN,0 − cot ζ

L
lim
x ′→x

{
Tμν(x, x

′)
[
G(1)

ζ,0(x, x
′)
]}

cos4 ρ

+cot2 ζ

L2 lim
x ′→x

{
Tμν(x, x

′)
[
G(2)

ζ,0(x, x
′)
]}

cos4 ρ + . . . (53)
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From the analysis in [24], theRSETonESU(49) can also be expressed as an asymptotic
series at an arbitrarily small distance, ε, from the boundary at ρ = π/2 as

〈T̂μν〉ESUζ,0 ∼ gα′
μg

β ′
ν

(
ε−4 T (4)

α′β ′ + ε−3 T (3)
α′β ′ + ε−2 T (2)

α′β ′
)

+ O(ε−1), (54)

where gα′
μ(x, x ′) is the bivector of parallel transport between the space-time points

x and x ′. When substituted in (50), the leading-order term ε−4gα′
μg

β ′
ν T

(4)
α′β ′ , together

with the contribution from (3)Hμν , yields 〈T̂μν〉adSN,0 in (53). The next-to-leading order

quantity ε−3gα′
μg

β ′
ν T

(3)
α′β ′ , corresponds to the second term in the expansion (49), and

the quantity ε−2gα′
μg

β ′
ν T

(2)
α′β ′ to the third term in (49). From [24], the next-to-leading

order term is given, up to a multiplicative constant, by:

T (3)
μν ∝ (

3χμν − χhμν

)
, (55)

where χμν = nμ;αhα
ν and nμ is a unit vector normal to the boundary. The nonzero

components of χμν are χθθ = L cos ρ sin ρ and χφφ = L cos ρ sin ρ sin2 θ , giving
χ = 2 cot ρ/L . As we approach the boundary (ρ → π/2), we have χμν = χ = 0,
and therefore the second term in (54) is zero. We arrive at the same conclusion from a
direct computation of the second term in the asymptotic expansion (49). Subsequent
terms in the expansion are of lower order in ε. This means that, as we approach the
boundary, 〈T̂ ν

μ 〉adSζ,0 = 〈T̂ ν
μ 〉adSN,0 as shown numerically in Sect. 4. Similar arguments

apply to the t.e.v. of the RSET.

7 Discussion

In this paper we have determined the v.e.v.s and t.e.v.s of the components of the
RSET for a massless, conformally coupled scalar field propagating on a background
four-dimensional global adS space-time. We have used Euclidean methods, which
give a unique Green’s function and avoid the need for an ‘iε’ prescription, render-
ing the numerical calculations easier than in the corresponding Lorentzian case (see,
for example [6], whose results we have been able to reproduce with our Euclidean
methods).

With mixed indices, the v.e.v.s of the nonzero components of the RSET are con-
stant when both Dirichlet and Neumann boundary conditions are applied, respecting
the underlying maximal symmetry of the adS space-time. Furthermore, the constant is
fixed by the trace anomaly (since we are considering a massless, conformally coupled
scalar field), and hence is the same for both Dirichlet and Neumann boundary condi-
tions. This common value for the v.e.v. with both Dirichlet and Neumann boundary
conditions differs from that seen with the VP [3, 20, 21]. The maximal symmetry is
broken when Robin boundary conditions are applied, and the v.e.v.s depend on the
space-time location. However, for all Robin boundary conditions, the v.e.v.s of the
nonzero components of the RSET with mixed boundary conditions take the same
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value on the space-time boundary, namely that for Dirichlet and Neumann boundary
conditions.

This symmetry breaking is also seenwith the t.e.v.s, even forDirichlet andNeumann
boundary conditions. The t.e.v.swith eitherDirichlet orNeumann boundary conditions
are no longer constant and depend on the spatial location,with themaximumdifference
between them being found at the space-time origin. For thermal states, the boundary
conditions have a significant effect on the expectation values of all nonzero components
of the RSET. This effect is most apparent near the space-time origin, but becomes
diluted with increasing temperature. With increasing temperature we find that the
t.e.v.s with different Robin boundary conditions are increasingly ‘contained’ with the
Dirichlet and Neumann curves, with the difference between all boundary conditions
proportionately decreasingwith increasing temperature. However, for all temperatures
and Robin parameters, the t.e.v.s of all nonzero components of the RSET with mixed
indices converge at the space-time boundary to the common v.e.v. foundwith Dirichlet
and Neumann boundary conditions. This can be compared with the results for the VP
[20] where the v.e.v.s and t.e.v.s for all Robin parameters converged to the Neumann
result, except when Dirichlet boundary conditions were applied. In the case of the
RSET, as both Dirichlet and Neumann boundary conditions result in the same v.e.v.s,
in this case, all boundary conditions, including Dirichlet, converge to the same result.
This supports the conclusion in [20, 21] that Neumann boundary conditions reflect the
generic behaviour of the quantum scalar field at the boundary.

The value of the VP on the boundary is a priori unconstrained by the renormal-
ization process, whereas the RSET for any maximally symmetric state of a massless,
conformally coupled scalar field is completely determined by the trace anomaly. This
is not the case for scalar fields with mass and/or more general coupling to the space-
time curvature, when, even for a maximally symmetric state, the trace of the RSET
depends on the constant value of the VP as well as the mass and coupling [4]. It would
therefore be interesting to compute the RSET for massive or nonconformally-coupled
scalar fields, extending the work of [21], which we plan to do in a forthcoming paper.
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