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Abstract
We analytically extend the 5D Myers–Perry metric through the event and Cauchy
horizons by defining Eddington–Finkelstein-type coordinates. Then, we use the
orthonormal frame formalism to formulate and perform separation of variables on
the massive Dirac equation, and analyse the asymptotic behaviour at the horizons
and at infinity of the solutions to the radial ordinary differential equation (ODE) thus
obtained. Using the essential self-adjointness result of Finster–Röken and Stone’s for-
mula, we obtain an integral spectral representation of the Dirac propagator for spinors
with low masses and suitably bounded frequency spectra in terms of resolvents of the
Dirac Hamiltonian, which can in turn be expressed in terms of Green’s functions of
the radial ODE.

Keywords Myers–Perry metric · Massive Dirac equation · Horizon-penetrating
coordinates · Hamiltonian formalism · Integral spectral representation
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1 Introduction

Detailed study of solutions of the massive Dirac equation in the Kerr geometry was
made possible by Chandrasekhar’s separation of variables procedure [2], in which
the Dirac equation is separated into radial and angular systems of ordinary differential
equations (ODEs). Finster, Kamran, Smoller andYau use properties of the latterODEs,
notably the radial asymptotic behaviour of their solutions, to derive an integral spectral
representation for the Dirac propagator [5] and study the long-term behaviour of Dirac
particles [4, 5]. However, this analysis is performed on the Kerr(–Newman) metric in
Boyer–Lindquist coordinates, which are singular at the event and Cauchy horizons.
The results obtained in this coordinate system are thus valid only in the region outside
the event horizon.

To study the Dirac equation in all regions of the Kerr geometry, Röken [13]
uses Eddington–Finkelstein-type coordinates, an analytic extension of the usual
Boyer–Lindquist coordinates which is regular through the horizons, up until the ring
singularity. However, an additional technical difficulty arises in the construction of an
integral spectral representation for the Dirac propagator. Since the Dirac Hamiltonian
is not elliptic at the horizons, standard results pertaining to elliptic operators cannot be
applied to conclude its self-adjointness. To remedy this issue, Finster and Röken [6]
construct a self-adjoint extension of the Dirac Hamiltonian on a class of Lorentzian
spin manifolds, in particular the Kerr geometry in Eddington–Finkelstein-type coordi-
nates with an additional inner radial boundary inside the Cauchy horizon. This allows
them in [7] to use Stone’s formula [12] to construct an integral spectral representation
for the Dirac propagator in terms of the Green’s matrix of the radial ODE obtained by
[13] using the Newman–Penrose formalism. Their construction involves spectral pro-
jectors onto the eigenspaces of the angular Dirac operator. However, Stone’s formula is
expressed in terms of slightly complex frequencies, in which case it is unclear whether
such spectral projectors exist, as the angular Dirac operator is no longer self-adjoint.

Derived by Myers and Perry [11], the Myers–Perry metrics generalize the Kerr
metric to higher dimensions. In particular, the 5-dimensional Myers–Perry geometry
describes a black hole rotating in two independent directions. In contrast to Röken [13]
using a null frame in theKerr geometry,Wu [16] uses the orthonormal frame formalism
to formulate the Dirac equation in the 5D Myers–Perry geometry in Boyer–Lindquist
coordinates, then separates it into radial and angular ODEs. It is possible [15] to use the
latter equations to derive an integral spectral representation for the Dirac propagator
in the exterior region of this geometry using the methods of [5].

A problem of interest would therefore be to study the separability and radial asymp-
totics of the Dirac equation through the horizons of the 5D Myers–Perry geometry
using a suitable analogue of Eddington–Finkelstein-type coordinates in 5 dimensions
and the orthonormal frame formalism. As the self-adjointness result of [6] is not spe-
cific to 4 dimensions, it is natural to ask whether it may be applied in these coordinates
to construct an integral spectral representation for the Dirac propagator, analogously
to [7]. To address these questions is the objective of the present work. In the case
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of sufficiently small (spinor) masses and of frequencies satisfying a specific mass-
dependent bound, it is possible to resolve the aforementioned difficulty in constructing
spectral projectors for the angular Dirac operator by using the method of slightly non-
self-adjoint perturbations of [8]. A limitation of this approach is that we may only
obtain an integral spectral representation for the Dirac propagator applied to initial
data with small masses and with frequency spectra contained in the above-mentioned
mass-dependent bounded interval. In other words, to obtain an integral spectral rep-
resentation for the solution to the Cauchy problem with arbitrary initial data, one
would need to show the existence of angular spectral projectors for all masses and
frequencies, which are not available via this method.

The paper is organized as follows. In Sect. 2, we introduce the 5D Myers–Perry
geometry in Boyer–Lindquist coordinates, and in Sect. 3 we derive Eddington–
Finkelstein-type coordinates which are regular across the horizons. In Sect. 4, we
use a regular orthonormal frame to explicitly formulate the Dirac equation. The con-
struction of the regular frame from the Kinnersley-type Newman–Penrose vectors of
[16], as well as details of the computation of the Dirac operator, can be found in
Appendix A. We then use an ansatz similar to Chandrasekhar’s ansatz [2] to separate
the Dirac equation into radial and angular ODEs in Sect. 5. The asymptotic behaviour
of solutions to the radial ODE is described by Propositions 2, 3 and 4 in Sect. 6. In
Sect. 7, we establish the essential self-adjointness of the Dirac Hamiltonian with a suit-
able domain of definition using the results of [6], and in Sect. 8 we construct spectral
projectors for the angular Dirac operator with slightly complex frequencies for small
masses and suitably bounded frequencies using themethod of slightly non-self-adjoint
perturbations [8]. Finally, we construct in Sect. 9 an integral spectral representation for
the Dirac propagator for initial data subject to the above restrictions on the mass and
frequency spectrum in terms of Green’s functions of the radial ODE using a variant
of Stone’s formula.

2 The 5DMyers–Perry black hole in Boyer–Lindquist coordinates

In this section, we introduce the 5D Myers–Perry black hole in Boyer–Lindquist
coordinates, well-defined outside of the event horizon.

In Boyer–Lindquist coordinates (t, ρ, ϑ, ϕ,ψ), a 5D Myers–Perry black hole is
represented by the manifold

M = Rt × (0,∞)ρ × (0,
π

2
)ϑ × [0, 2π)ϕ × [0, 2π)ψ

equipped with the Lorentzian metric

g = −dt2 + �ρ2

�
dρ2 + �dϑ2 + (r2 + a2) sin2 ϑdϕ2

+(r2 + b2) cos2 ϑdψ2 + μ

�
(dt − a sin2 ϑdϕ − b cos2 ϑdψ)2, (1)

whereμ/2 is themass of the black hole, a and b its two independent angularmomenta,

� = (ρ2 + a2)(ρ2 + b2) − μρ2, � = ρ2 + a2 cos2 ϑ + b2 sin2 ϑ.
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The Lorentzian manifold (M, g) solves the vacuum Einstein equations in 5 dimen-
sions, i.e. it is Ricci flat. Furthermore, it has three commuting Killing vector fields ∂t ,
∂ϕ and ∂ψ . We restrict our attention to the non-extreme case μ > a2 + b2 + 2|ab|, for
which �(ρ) has two distinct positive roots

ρ2± = 1

2

(
μ − a2 − b2 ±

√
(μ − a2 − b2)2 − 4a2b2

)
.

The radii ρ−, ρ+ are those of the Cauchy and event horizons respectively.

3 Eddington–Finkelstein-type coordinates

In this section, we derive Eddington–Finkelstein-type coordinates for the 5D Myers–
Perry black hole. We also derive the transformation laws between Boyer–Lindquist
and Eddington–Finkelstein-type coordinates for the coordinate 1-forms and vector
fields, for use in subsequent sections.

The 5D Myers–Perry metric in Boyer–Lindquist coordinates (1) is singular at the
event and Cauchy horizons, as gρρ = �ρ2/� → ∞ as � → 0. Since the black
hole has coordinate singularities rather than curvature singularities at the horizons,
it is possible to construct a system of coordinates that analytically extends the 5D
Myers–Perry metric through them. This results in the metric (5), which is fully regular
up until the essential singularity at r = 0.

The 5D Myers–Perry geometry has a pair of real principal null geodesic vector
fields [3] which, in Boyer–Lindquist coordinates, are of the form

V ± = (ρ2 + a2)(ρ2 + b2)

�

(
∂t + a

ρ2 + a2 ∂ϕ + b

ρ2 + b2
∂ψ

)
± ∂ρ.

The tangent vectors to the principal null geodesics satisfy, in terms of an affine param-
eter λ,

dt

dλ
= (ρ2 + a2)(ρ2 + b2)

�
C,

dρ

dλ
= ±C,

dθ

dλ
= 0,

dϕ

dλ
= a(ρ2 + b2)

�
C,

dψ

dλ
= b(ρ2 + a2)

�
C . (2)

We will use the “Regge–Wheeler” radial coordinate x defined by

dx

dρ
= (ρ2 + a2)(ρ2 + b2)

�
. (3)
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Following the form of (2), we then define the Eddington–Finkelstein-type coordinates
(τ, r , θ, φ, ξ) on the 5D Myers–Perry black hole by the coordinate transformation

τ = t + x − ρ

r = ρ

θ = ϑ

φ = ϕ +
∫

a(ρ2 + b2)

�
dρ

ξ = ψ +
∫

b(ρ2 + a2)

�
dρ.

(4)

In terms of the coordinate 1-forms, the above change of variables reads

dτ = dt + μρ2

�
dρ

dr = dρ

dθ = dϑ

dφ = dϕ + a(ρ2 + b2)

�
dρ

dξ = dψ + b(ρ2 + a2)

�
dρ.

The metric (1) can thus be written as

g =
(
−1 + μ

�

)
dτ 2 + 2μ

�
dτ(dr − a sin2 θdφ − b cos2 θdξ)

+
(
1 + μ

�

)
(dr − a sin2 θdφ − b cos2 θdξ)2

+�dθ2 + (r2 + a2) sin2 θdφ2 + (r2 + b2) cos2 θdξ2

−(a sin2 θdφ + b cos2 θdξ)2. (5)

The above metric, regular across the horizons, is defined on the Lorentzian manifold
(N , g), where

N = Rτ × (0,∞)r × (0,
π

2
)θ × [0, 2π)φ × [0, 2π)ξ .

As the induced metric on constant-τ hypersurfaces is positive definite, τ is a proper
time function. Furthermore, we note that the coordinate vector fields transform as,
keeping the same notation for �(ρ) = �(r) and �(ρ, ϑ) = �(r , θ),

∂t = ∂τ

∂ρ = ∂r + μr2

�
∂τ + a(r2 + b2)

�
∂φ + b(r2 + a2)

�
∂ξ
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∂ϑ = ∂θ

∂ϕ = ∂φ

∂ψ = ∂ξ . (6)

4 Orthonormal frame formalism for the Dirac equation

In the absence of a suitable Newman–Penrose formalism in 5 dimensions, we resort to
using the equivalent but more computationally tedious orthonormal frame formalism
for the Dirac equation. In this section, we first introduce the Dirac equation and the
choice of gammamatrices used. Then, we use the regular orthonormal frame (48), (49)
constructed in Appendix A to obtain an explicit expression for the Dirac operator,
noting that its angular part is identical in Eddington–Finkelstein-type and Boyer–
Lindquist coordinates [3, 16].

We choose the gamma matrices γ A, A = 0, 1, 2, 3, 5, as

γ 0 = i

(
0 I
I 0

)
, γ 1 = i

(
0 σ 3

−σ 3 0

)
, γ 2 = i

(
0 σ 1

−σ 1 0

)
,

γ 3 = i

(
0 σ 2

−σ 2 0

)
, γ 5 =

(
I 0
0 −I

)
,

where the σ j are the Pauli matrices

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7)

They satisfy the Clifford algebra anticommutation relations

{γ A, γ B} = 2ηAB, (8)

where ηAB = diag{−1, 1, 1, 1, 1} is the five-dimensional Minkowski metric in our
chosen signature. We define the matrices �A by �0 = iγ 0 and � j = −γ 0γ j for
j �= 0; they satisfy the anticommutation relations

{�A, �B} = 2δAB,

where δAB = diag{1, 1, 1, 1, 1} is the Kronecker delta.
The massive Dirac equation takes the form

(γ A(∂A + �A) − m)ψ = 0, (9)

where �A are the components of the spinor connection � = �AeA = 1
4γ

Aγ BωAB

in an orthonormal pentad frame eA = eA
μdxμ, and ωAB is the connection 1-form

in the same frame. Cartan’s first structure equation then relates the components of
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ωA
B = ηACωC B and the orthonormal frame eA via

deA = −ωA
B ∧ eB . (10)

In the 5D Myers–Perry geometry extended through the horizons, one can find the
regular orthonormal frame (48),(49). In this frame, we can compute ωA

B , from which
we obtain the coefficients �A of the spinor connection �AeA = 1

2

∑
A<B γ Aγ BωAB .

Details of the construction of the frame and explicit formulae for the connection
coefficients can be found in Appendix A. Using the anticommutation relations (8), the
relation γ 5 = −iγ 0γ 1γ 2γ 3 and the form of the orthonormal frame (48), the Dirac
operator can therefore be written, after various simplifications, as

γ A(∂A + �A) = γ 0 1

r3+
√

�

((
�

2
+ 2Mr2 + r6+

2r2

)

∂τ +
(

�

2
− r6+

2r2

)

∂r

+a(r2 + b2)∂φ + b(r2 + a2)∂ξ + ∂r�

4
+ �

4r
+ r6+

4r3
+

(
�

2
− r6+

2r2

)
r − i pγ 5

2�

)

+γ 1 1

r3+
√

�

((
�

2
+ 2Mr2 − r6+

2r2

)

∂τ +
(

�

2
+ r6+

2r2

)

∂r

+a(r2 + b2)∂φ + b(r2 + a2)∂ξ + ∂r�

4
+ �

4r
− r6+

4r3
+

(
�

2
+ r6+

2r2

)
r − i pγ 5

2�

)

+γ 2 1√
�

(
∂θ + cot θ

2
− tan θ

2
− (a2 − b2) sin θ cos θ

2p�
iγ 5(r − i pγ 5)

)

+γ 3 sin θ cos θ

p
√

�

(
(a2 − b2)∂τ + a

sin2 θ
∂φ − b

cos2 θ
∂ξ

)

+γ 5 1

r p
(ab∂τ + b∂φ + a∂ξ ) + γ 0γ 1 iab

2r2 p2
(r + i pγ 5),

where p =
√

a2 cos2 θ + b2 sin2 θ .

5 Separation of variables

In this section, we follow [3] and perform an invertible, time-independent transfor-
mation of spinors ψ �→ ψ ′ = Pψ . We then put the Dirac equation into Hamiltonian
form and separate it into radial and angular ODEs. The angular ODE thus obtained is
the same as in Boyer–Lindquist coordinates [15].

Let P be a square root of r + i pγ 5, for instance

P =
√

r + √
�

2
+ i

√√
� − r

2
γ 5. (11)

123



28 Page 8 of 30 Q. S. Wang

In terms of ψ ′ = Pψ , the Dirac equation (9) is then

[(
1

r3+

(

γ 0

(
�

2
+ 2Mr2 + r6+

2r2

)

+ γ 1

(
�

2
+ 2Mr2 − r6+

2r2

))

+γ 3 sin θ cos θ

p
(a2 − b2) +

(
γ 5

p
− i

r

)

ab

)

∂τ

+ 1

r3+

(

γ 0

(
�

2
− r6+

2r2

)

+ γ 1

(
�

2
+ r6+

2r2

))

∂r + γ 2
(

∂θ + cot θ

2
− tan θ

2

)

+γ 3 1

p
(a cot θ∂φ − b tan θ∂ξ ) + γ 5 1

p
(b∂φ + a∂ξ )

+
(

(γ 0 + γ 1)
a(r2 + b2)

r3+
− ib

r

)

∂φ +
(

(γ 0 + γ 1)
b(r2 + a2)

r3+
− ia

r

)

∂ξ

+γ 0γ 1 iab

r2
+ γ 0 1

r3+

(
∂r�

4
+ �

4r
+ r6+

4r3

)

+γ 1 1

r3+

(
∂r�

4
+ �

4r
− r6+

4r3

)

− mr + impγ 5

]

ψ ′ = 0. (12)

Denote the prefactor of ∂τ by

P ≡ γ 0

(
�

2r3+
+ 2Mr2

r3+
+ r3+

2r2

)

+ γ 1

(
�

2r3+
+ 2Mr2

r3+
− r3+

2r2

)

+γ 3 sin θ cos θ

p
(a2 − b2) +

(
γ 5

p
− i

r

)

ab.

It is invertible, with inverse

P−1 = −1

� + 2M

(

γ 0

(
�

2r3+
+ 2Mr2

r3+
+ r3+

2r2

)

+ γ 1

(
�

2r3+
+ 2Mr2

r3+
− r3+

2r2

)

+γ 3 sin θ cos θ

p
(a2 − b2) +

(
γ 5

p
+ i

r

)

ab

)

.

Left-multiplying (12) by −i P−1 and defining D j = −i∂ j , one obtains

i∂τ ψ
′ = P−1

[
1

r3+

(

γ 0

(
�

2
− r6+

2r2

)

+ γ 1

(
�

2
+ r6+

2r2

))

Dr + γ 0
DS3

+
(

(γ 0 + γ 1)
a(r2 + b2)

r3+
− ib

r

)

Dφ +
(

(γ 0 + γ 1)
b(r2 + a2)

r3+
− ia

r

)

Dξ
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+ γ 0γ 1 ab

r2
− γ 0 i

r3+

(
∂r �

4
+ �

4r
+ r6+

4r3

)

− γ 1 i

r3+

(
∂r �

4
+ �

4r
− r6+

4r3

)]

ψ ′,

where

DS3 = iγ 0γ 2
(
∂θ + cot θ

2
− tan θ

2

)
+ iγ 0γ 3 1

sin θ
∂φ + iγ 0γ 5 1

cos θ
∂ξ (13)

is the Dirac operator on S3 [3]. For convenience, we make the substitution P−1 =
−Nγ 0/r , and thus obtain the Hamiltonian form of the Dirac equation

i∂τψ
′ = ND0ψ

′, (14)

where

D0 =
(

1

rr3+

(
�

2
− r6+

2r2

)

+ �1 1

rr3+

(
�

2
+ r6+

2r2

))

Dr + 1

r
DS3

+
(

(14 + �1)
a(r2 + b2)

rr3+
+ γ 0 ib

r2

)

Dφ +
(

(14 + �1)
b(r2 + a2)

rr3+
+ γ 0 ia

r2

)

Dξ

+γ 1 ab

r3
− i

r3+

(
∂r �

4r
+ �

4r2
+ r6+

4r4

)

−�1 i

r3+

(
∂r �

4r
+ �

4r2
− r6+

4r4

)

− γ 0im + �5 mp

r
.

Using the ansatz [15]

ψ ′(τ, r , θ, φ, ξ) = e−iωτ e−i((ka+ 1
2 )φ+(kb+ 1

2 )ξ)

⎛

⎜⎜
⎝

X+(r)Y+(θ)

X−(r)Y−(θ)

X−(r)Y+(θ)

X+(r)Y−(θ)

⎞

⎟⎟
⎠ , (15)

where ω ∈ R is the frequency of the Dirac particle and ka, kb ∈ Z its “azimuthal
quantum numbers” along the two independent axes of rotation ∂φ , ∂ξ respectively, one
can write the Dirac equation as

(D0 − ωN−1)ψ ′ = 0, (16)

where

N−1 = −γ 0P

r

=
(

�

2rr3+
+ 2Mr

r3+
+ r3+

2r3

)

+ �1

(
�

2rr3+
+ 2Mr

r3+
− r3+

2r3

)
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+�3 sin θ cos θ(a2 − b2)

r p
+ �5 ab

r p
+ γ 0 iab

r2
. (17)

The Dirac equation (16) can be separated into purely angular and radial parts,

1

r
(R + A)ψ ′ = 0,

where

A = DS3 + mp�5 − ω
( (a2 − b2) sin θ cos θ

p
�3 + ab

p
�5

)
(18)

as in Boyer–Lindquist coordinates [3], and

R = 1

r3+

((
�

2
− r6+

2r2

)

+ �1

(
�

2
+ r6+

2r2

))

Dr − mr�0

+
(

(I + �1)
a(r2 + b2

r3+
+ �0 b

r

)

Dφ +
(

(I + �1)
b(r2 + a2)

r3+
+ �0 a

r

)

Dξ

+ab

r2
γ 1 − i

r3+

(
∂r �

4
+ �

4r
+ r6+

4r3

)

− �1 i

r3+

(
∂r �

4
+ �

4r
− r6+

4r3

)

−ω

((
�

2r3+
+ 2Mr2

r3+
+ r3+

2r2

)

+ �1

(
�

2r3+
+ 2Mr2

r3+
− r3+

2r2

)

+ ab

r
�0

)

.

As in [15], the ansatz (15) allows the replacements Dφ → −(ka + 1/2) and Dξ →
−(kb + 1/2), under which the Dirac equation separates into the ODEs

−Rψ ′ = Aψ ′ = γ 1λψ ′

for a separation constant λ. Explicitly, the radial ODE is

(
r3+
r2

∂r − r3+
2r3

+ iωr3+
r2

)

X+

=
(

−λ + i

r
(mr2 + a(ka + 1

2
) + b(kb + 1

2
) + ωab) − ab

r2

)
X−

(
�

r3+
∂r − 2i

r3+
((ka + 1

2
)a(r2 + b2) + (kb + 1

2
)b(r2 + a2))

+∂r�

2r3+
+ �

2rr3+
− iω

r3+
(� + 4Mr2)

)

X−

=
(

−λ − i

r
(mr2 + a(ka + 1

2
) + b(kb + 1

2
) + ωab) − ab

r2

)
X+. (19)
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We remark that (19) resembles the analogous result for the Kerr geometry in
Eddington–Finkelstein-type coordinates [7], namely

1

r+

(
�K ∂r + ∂r�K

2
− iω(�K + 4Mr) − 2iak

)
X+ = (λ + imr)X−

r+(∂r + iω)X− = (λ − imr)X+,

where�K = (r2 +a2)−2Mr is the horizon-defining function for the Kerr geometry,
vanishing at the event and Cauchy horizons.

Making the transformation X̃− = r
√|�|X− and X̃+ = r3+ X+, (19) takes the more

symmetric form

(
�∂r − �

2r
+ �iω

)
X̃+

= sgn(�)
√|�|

(
−λr + i(mr2 + a(ka + 1

2
) + b(kb + 1

2
) + ωab) − ab

r

)
X̃−,

(
�∂r − �

2r
− 2i((ka + 1

2
)a(r2 + b2) + (kb + 1

2
)b(r2 + a2)) − iω(� + 4Mr2)

)
X̃−

= √|�|
(

−λr − i(mr2 + a(ka + 1

2
) + b(kb + 1

2
) + ωab) − ab

r

)
X̃+. (20)

The angular ODE is, exactly as in Boyer–Lindquist coordinates [15],

AY ≡
(

Cb(θ) Lθ + Ca(θ)

−Lθ + Ca(θ) −Cb(θ)

) (
Y+
Y−

)
= λ

(
Y+
Y−

)
, (21)

where

Lθ = ∂θ + cot θ

2
− tan θ

2

Ca(θ) = − (ka + 1
2 )

sin θ
− ω(a2 − b2) sin θ cos θ

p

Cb(θ) = − (kb + 1
2 )

cos θ
+ mp − ωab

p
.

(22)

As in the Kerr-Newman geometry [5], the angular eigenvalues satisfy certain nonde-
generacy and regularity properties. The following was shown in [15, Appendix A].

Proposition 1 For any ω ∈ Rand ka, kb ∈ Z, the angular operator A (21) has discrete,

real, nondegenerate spectrum σ(Akakbω) = {λl} and eigenvectors
(

Y kakb+,l , Y kakb−,l

)
,

where l ∈ Z, both smoothly dependent on the frequency ω. As functions of ω, the
eigenvalues can thus be ordered λl(ω) < λl+1(ω).
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6 Asymptotic behaviour of solutions of the radial ODE

Following [5], we study in this section the asymptotic behaviour of solutions of the
radial ODE (20) near the event and Cauchy horizons and at radial infinity.

In terms of the radial coordinate x defined in (3) and X̃ = (X̃+, X̃−), the radial
ODE may be rewritten

∂x X̃ = 1

(r2 + a2)(r2 + b2)

(
�
2r − �iω −r−1 sgn(�)

√|�| S(r)

−r−1√|�| S(r) �
2r + 2iU (r) + iω(� + 4Mr2)

)
X̃ ,

where

U (r) =
(

ka + 1

2

)
a(r2 + b2) +

(
kb + 1

2

)
b(r2 + a2) (23)

S(r) = λ + i

(
mr + a

r

(
ka + 1

2

)
+ b

r

(
kb + 1

2

)
+ ωab

r

)
+ ab

r2
. (24)

The asymptotic behaviour of X̃ at the horizons is similar to the case of the Kerr
geometry in Eddington–Finkelstein-type coordinates [13], but different from the case
of the 5D Myers–Perry geometry in Boyer–Lindquist coordinates [15]. Namely, we
have

Proposition 2 Every nontrivial solution X̃ of (20) is asymptotically as r ↘ r+ of the
form

X̃(x) =
(

g+,1

g+,2e2i�+x

)
+ R+(x)

with

|g+,1|2 + |g+,2|2 �= 0

�+ = ω + a(ka + 1
2 )

r2+ + a2
+ b(kb + 1

2 )

r2+ + b2

|R+| ≤ c+ed+x (25)

for suitable constants c+, d+ > 0.

Proof We make the ansatz

X̃(x) =
(

g1(x)

g2(x)e2i�+x

)
.

Then, by direct computation, g(x) = (g1(x), g2(x)) satisfies the differential equation

∂x

(
g1(x)

g2(x)

)
= 1

(r2 + a2)(r2 + b2)

(
�( 1

2r − iω) − 1
r sgn(�)

√|�|S(r)e2i�+x

− 1
r

√|�| S(r)e−2i�+x T (r)

)
,
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where, using the form of �+ (25),

T (r) = �

2r
+ 2iU (r) + iω(� + 4Mr2) − 2i�+(r2 + a2)(r2 + b2)

= �

2r
− iω�.

As r ↘ r+ and x → ∞, � decays to zero exponentially, and thus g1(x) and g2(x)

tend to constants. The exponential decay of the error term R+ then follows from the
same proof as in [5]. �

The asymptotic behaviour near the Cauchy horizon r− is similar to the above, as
� → 0 exponentially as r → r±. More precisely, we have

Proposition 3 Every nontrivial solution X̃ of (20) is asymptotically as r ↘ r− of the
form

X̃(x) =
(

g−,1

g−,2e2i�−x

)
+ R−(x) (26)

with

|g−,1|2 + |g−,2|2 �= 0

�− = ω + a(ka + 1
2 )

r2− + a2
+ b(kb + 1

2 )

r2− + b2

|R−| ≤ c−ed−x

for suitable constants c−, d− > 0.

To study the asymptotics at infinity, we note that all terms in (20) are analytic in r
away from the horizons. As such, we may expand (20) in powers of 1/r . We obtain

∂r X̃ =
[(−iω im

−im iω

)
+ 1

r

( 1
2 −λ

−λ 1
2

)
+ O(r−2)

]
X̃ . (27)

The eigenvalues of the matrix potential between the square brackets are not purely
imaginary, and the method used by [5] cannot be directly applied to (27). However,
this issue may be circumvented by the substitution X± = r−1/2 X̃±. In terms of the
original functions X± from the separation ansatz (15), we have

X− = √
r |�|X− and X+ = r3+√

r
X+.

The asymptotic form of the radial ODE at infinity then becomes

∂r X =
[(−iω im

−im iω

)
+ 1

r

(
0 −λ

−λ 0

)
+ O(r−2)

]
X . (28)
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Noting that (28) is precisely the same as in [15], which is a strict simplification from
[5], we therefore have

Proposition 4 Every nontrivial solution X of (20) has for large r the asymptotic form

X(r) = A

(
e−i�(r) f∞,1

ei�(r) f∞,2

)
+ R∞(r), (29)

with, for some constant C > 0,

| f∞,1|2 + | f∞,2|2 �= 0

�(r) = sgn(ω)
√

ω2 − m2 r

A =
(
cosh� sinh�

sinh� cosh�

)
, � = 1

4
log

(
ω + m

ω − m

)

|R∞| ≤ C

r
.

Thus, up to some suitable reparametrization X , the asymptotic behaviour at infinity
of Dirac spinors is identical in Eddington–Finkelstein-type coordinates and Boyer–
Lindquist coordinates. This is to be expected, as the two coordinate systems tend
towards each other at radial infinity.

7 Essential self-adjointness of the Dirac Hamiltonian

Across the event and Cauchy horizons of the 5D Myers–Perry black hole, the Dirac
Hamiltonian loses ellipticity. Standard results for elliptic operators can therefore not be
applied to conclude its essential self-adjointness. In [6], Finster and Röken construct
an essentially self-adjoint extension of the Dirac Hamiltonian for a class of non-
uniformly elliptic boundary value problems which include the Kerr geometry [7]
and the 5DMyers–Perry geometry in Eddington–Finkelstein-type coordinates. In this
section, we apply the main result of [6] to obtain essential self-adjointness for the
Dirac Hamiltonian with suitable boundary conditions.

Given a systemof coordinates xμ = (t, x j )on a spinmanifoldMwithmetric tensor
g = gμν dxμ ⊗ dxν , a set of gamma matrices γ A satisfying (8) and an orthonormal
frame ∂A = eA

μ∂μ, one can form Dirac matrices γ̃ μ = γ AeA
μ. The orthonormal

frame condition ηABeA
μeB

ν = gμν implies that they satisfy the anticommutation
relations

{γ̃ μ, γ̃ ν} = 2gμν. (30)

We can therefore write the Dirac equation (9) equivalently as

(
i γ̃ μ∇μ − m

)
ψ = 0,
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where ∇ is the spinor connection. It can be rewritten in the Hamiltonian form

i∂tψ = Hψ, (31)

with
H = −(γ̃ t )−1(iγ j∇ j − m).

In particular, the principal symbol of H as a partial differential operator is

P(ζ ) = α jζ j with α j = −i(γ̃ t )−1γ̃ j .

Under an invertible, time-independent transformation of spinorsψ ′ = Pψ , the trans-
formed Hamiltonian form of the Dirac equation becomes i∂tψ

′ = H ′ψ ′, where the
principal symbol of H ′ is now

P ′(ζ ) = α′ jζ j with α′ j = −iP(γ̃ t )−1γ̃ jP−1.

Its determinant is given by

det P ′(ζ ) = det(γ̃ jζ j )

det(γ̃ t )
.

Using the relations (γ̃ τ )2 = gττ and γ̃ jζ j γ̃
kζk = g jkζ jζk arising from the anticom-

mutation relations (30), one obtains

det P ′(ζ ) =
√

g jkζ jζk

gττ
.

Thus, the determinant of the principal symbol vanishes and the Dirac Hamiltonian
loses ellipticity precisely where the spatial part of the background metric is no longer
positive or negative definite.

Now, we consider the 5D Myers–Perry geometry in Eddington–Finkelstein-type
coordinates xμ = (τ, x j ), where x j = (r , θ, φ, ξ), with the orthonormal frame (48)
and the invertible spinor transformation (11). We note that the transformed Dirac
Hamiltonian H ′ is exactly H ′ = ND0 of (14). The components of the spatial part of
the inverse of the metric (5) are

g jk = 1

�r2

⎛

⎜⎜
⎝

� 0 a(r2 + b2) b(r2 + a2)

0 r2 0 0
a(r2 + b2) 0 r2 csc2 θ + b2 ab
b(r2 + a2) 0 ab r2 sec2 θ + a2

⎞

⎟⎟
⎠ .

At the horizons, where� = 0, wemay take ζ = (1, 0, 0, 0)which yields g jkζ jζk = 0.
Thus H ′ is not elliptic there, and we have to apply the results of [6].
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LetM = Rτ ×[r0,∞)r × (0, π
2 )θ × (0, 2π)φ × (0, 2π)ξ with r0 < r−. Equipped

with themetric (5), it is a submanifoldwith boundary of the 5DMyers–Perry geometry.
It has an inner boundary

∂M = {τ, r = r0, θ, φ, ξ}
and a family of spacelike hypersurfaces

�τ = {τ = const ., r , θ, φ, ξ}

with compact boundaries

∂�τ = {τ = const ., r = r0, θ, φ, ξ} � S3.

The construction of [6] is crucially dependent on the existence of a Killing vector
field K which is timelike and tangential at the boundary ∂M, as the choice of time
coordinate t used to formulate the Cauchy problem for the Dirac equation is precisely
along K = ∂t . However, as in the Kerr geometry, the Killing vector field ∂τ is not
everywhere timelike on ∂M, as can be seen as follows. The condition for ∂τ to be
timelike on ∂M, in our chosen metric signature, is

g(∂τ , ∂τ ) = gττ = −1 + μ

�
< 0,

or equivalently

μ − r20 < a2 cos2 θ + b2 sin2 θ

for all θ ∈ (0, π/2). Supposing this were satisfied and using the fact that

r20 < r2− = 1

2
(μ − a2 − b2) −

√
(μ − a2 − b2)2 − 4a2b2,

we then must have

√
(μ − a2 − b2)2 − 4a2b2 < a2

(
cos2 θ − 1

2

)
+ b2

(
sin2 θ − 1

2

)
− μ

2

for all θ ∈ (0, π/2). This is clearly false, as the right-hand side simplifies to−μ/2 < 0
when θ = π/4. Therefore the vector field ∂τ is not timelike everywhere on ∂M.

Analogously to what was done in [7], it is possible to construct a Killing vector
field timelike and tangential at r = r0 in the following way, recalling that ∂τ , ∂φ and
∂ξ are commuting Killing vector fields on M.

Lemma 1 There exist α, β ∈ R such that K = ∂τ + α∂φ + β∂ξ is tangential and
timelike at ∂M.
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Proof Clearly K is tangential to ∂M. The condition for K to be timelike is equivalent
to

p(α, β) ≡ g(K , K ) = gττ + 2αgτφ + 2βgτξ + 2αβgφξ + α2gφφ + β2gξξ < 0.

Denote by discx (q(x)) the discriminant of a polynomial q(x). For a given α ∈ R

fixed, since

gξξ = (r2 + b2) cos2 θ + μb2 cos4 θ

�
> 0,

there exists a β ∈ R such that p(α, β) > 0 if and only if discβ(p(α, β)) > 0.
As discβ(p(α, β)) is a degree 2 polynomial in α, there is an α ∈ R such that
discβ(p(α, β)) > 0 if discα(discβ(p(α, β))) > 0. Doing the explicit computation
gives

discα(discβ(p(α, β)))

= 64� cos6 θ sin2 θ

�

(
(r2 + b2)(r2 sec2 θ + a2 + b2 tan2 θ) + μb2

)
.

This is strictly positive at r = r0 for all θ ∈ (0, π/2), as � > 0 inside the Cauchy
horizon. �

In the Kerr geometry [6], the time coordinate τ ′ is chosen along the integral curves
of theKilling vector field K , i.e. K = ∂τ ′ , then “spatial” coordinates are chosen on con-
stant τ ′ hypersurfaces. Analogously, in the 5D Myers–Perry geometry we may relate
the coordinate system (τ ′, r , θ, φ′, ξ ′) to the Eddington–Finkelstein-type coordinates
(τ, r , θ, φ, ξ) by the coordinate transformation

τ ′ = τ, φ′ = φ − ατ, ξ ′ = ξ − βτ.

The induced metric on constant τ ′ hypersurfaces is the same as that on constant τ

hypersurfaces, sincewe have dτ ′ = dτ = 0, which results in dφ = dφ′ and dξ = dξ ′.
Furthermore, τ ′ is a proper time function just as the original time function τ , as can
be seen by the following consideration. The gradient

∇τ ′ = gμ′ν′
(∂μ′τ ′)∂ν′ = gτ ′ν′

∂ν′

satisfies

g(∂τ ′,∇τ ′) = gτ ′
τ ′ = 1 > 0 and g(∇τ ′,∇τ ′) = gτ ′τ ′ = gττ = −1 − μ

�
< 0,

showing that ∇τ ′ is future-pointing and timelike. As such, the results of [6], valid for
the coordinates (τ ′, r , θ, φ′, ξ ′), will also hold in Eddington–Finkelstein-type coordi-
nates (τ, r , θ, φ, ξ).
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The untransformed Dirac Hamiltonian H is symmetric [6] with respect to the scalar
product

(ψ |φ) =
∫

�τ

≺ψ |/νφ� dμ

together with the boundary condition

(/n − i)ψ |∂�τ = 0,

where μ is the induced measure on constant τ hypersurfaces �τ , ν is the future-
directed, timelike normal, n is the inner normal on ∂M, the slashes are Clifford
contraction with respect to γ̃ μ and

≺ · | · � : SpM × SpM → C

is the spin scalar product of signature (2, 2), provided by the spin structure onM. The
scalar product is independent of the choice of τ .

Define the scalar product 〈·|·〉 on the transformed spinors ψ ′, φ′ by

〈ψ ′|φ′〉 = (P−1ψ ′|P−1φ′),

with P given by (11). Note that 〈·|·〉 is bounded near the boundary ∂�τ , for both
/ν = γ ανα and P are bounded near the boundary. Let H and G be the Hilbert spaces
obtained by completing the space of spinors with respect to (·|·) and 〈·|·〉 respectively.
By construction, the spinor transformationψ �→ ψ ′ = Pψ is aHilbert space isometry
H → G. Since P is time-independent, the Dirac equation in Hamiltonian form (31)
is equivalent to (

i∂τ − PHP−1
)

ψ ′ = 0,

and therefore H ′ = PHP−1. Then, clearly H ′ is symmetric with respect to 〈·|·〉 on
spinors that vanish on ∂M, for

〈ψ ′|H ′φ′〉 = 〈φ′|PHP−1φ′〉 = (P−1ψ ′|HP−1φ′)
= (HP−1ψ ′|P−1φ′) = 〈H ′ψ ′|φ′〉.

For spinors that may be nonzero on ∂M, the boundary condition that one must impose
to preserve the symmetry of the Hamiltonian are such that≺ψ ′|/nφ′� vanishes on ∂�τ

[6, 7]. As in the Kerr geometry [7], it is sufficient to require that
(
/n − iP(P†)−1

)
ψ ′|∂M = 0.

We therefore can apply [6, Theorem 1.2] and conclude that

Theorem 1 The Dirac Hamiltonian H ′ in the non-extreme 5D Myers–Perry geometry
in Eddington–Finkelstein-type coordinates with domain of definition

Dom(H ′) = {ψ ′ ∈ C∞
0 (�τ )

4|
(
/n − iP(P†)−1

)
(H ′pψ ′)|∂�τ = 0

for each integer p ≥ 0} (32)
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is essentially self-adjoint.

Note that Dom(H ′) is dense in L2(�τ , 〈·|·〉)4, for it is a subset of C∞
0 (�τ )

4 with
boundary conditions on a compact boundary ∂�τ

∼= S3, and the scalar product 〈·|·〉
is bounded near ∂�τ .

8 Angular spectral projectors

In order to write the resolvents of the Dirac Hamiltonian H ′ in terms of the Green’s
matrix of the radial ODE (20), we need to decompose the Hilbert space of spinors
into eigenspaces of the angular Dirac operator given in (21). The main difficulty in
doing so is that in order to use Stone’s formula, one must consider the angular operator
A = A(ωε) with slightly complex frequencies ωε ≡ ω ± iε, which is no longer self-
adjoint. In this section, we use themethod of slightly non-self-adjoint perturbations [8]
to construct spectral projectors {Q±

l }l∈Z onto one-dimensional eigenspaces of A(ωε)

for small masses |m| and suitably bounded frequencies |ω|. To do so, we use the
following result from [8], adapted for our purposes.

Theorem 2 Suppose that T is a self-adjoint operator with nondegenerate spectrum
{λn}n∈Z and that there exists an ε > 0 such that λn+1 − λn > ε for all n. Suppose
also that W is a bounded operator satisfying ‖W‖op ≤ ε/16 and let A = T + W .
Then there exists a family of spectral projectors {Ql}l∈Z such that

• The image of Ql is a 1-dimensional eigenspace of A for each l.
• Ql is a projection for each l, that is, Q2

l = Ql.
• {Ql}l∈Z is complete, that is,

∑
l Ql = 1 with strong convergence of the series.

In [8, Section 8], Theorem 2 is shown for an unperturbed operator T with positive
spectrum 0 ≤ λ1 < λ2 < · · · . Nonetheless, the same proof works for a two-sided
spectrum · · · < λ−1 < λ0 < λ1 < · · · .

The angular operator A of (21) acts on L2((0, π/2), sin θ cos θ dθ)2. It may be
written as

A(ωε) = Dkakb
S3

+ mpσ3 + ωV ± iεV ,

where Lθ is as in (22), σ3 is one of the Pauli matrices shown in (7),

Dkakb
S3

=
(

− kb+1/2
cos θ

Lθ − ka+1/2
sin θ

−Lθ − ka+1/2
sin θ

kb+1/2
cos θ

)

,

V =
(

− ab
p − (a2−b2) sin θ cos θ

p

− (a2−b2) sin θ cos θ
p

ab
p

)

. (33)

To apply Theorem 2, we will consider the unperturbed operator to be A(ω) = Dkakb
S3

+
mpσ3 + ωV , and denote its eigenvalues by {λl}l∈Z. By Proposition 1, it suffices to
require that consecutive eigenvalues of A(ω) be separated by a uniform nonzero gap
λl+1 − λl > ε > 0 for all l ∈ Z. For general m and ω, it is not clear how to obtain
such a spectral gap.
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The key is to notice that Dkakb
S3

is equal to the intrinsic Dirac operator on S3 with
the usual metric and a particular choice of representation for the Clifford algebra,
restricted to the bi-azimuthal mode (ka, kb). More precisely, the Dirac operator on
S3 in Hopf coordinates (θ, ϕ, ψ) is given [3] by (13). Choosing the 3-dimensional
representation �2 = σ2, �3 = −σ1, �5 = −σ3, where σ j are the Pauli matrices (7),
and taking ∂ϕ → −i(ka + 1/2) and ∂ψ → −i(kb + 1/2), we see that (13) agrees
exactly with (33), as required.

The spectrum of the Dirac operator on S3, acting on L2(S3)2, is known [1] to
be σ(DS3) = {± 3

2 ,± 5
2 ,± 7

2 , . . . }, and as a result σ(Dkakb
S3

) ⊂ {± 3
2 ,± 5

2 ,± 7
2 , . . . }.

In particular, any two eigenvalues of Dkakb
S3

differ by at least 1 in absolute value.

Considering A(ω) as a bounded perturbation of Dkakb
S3

and denoting by ‖·‖op the

operator norm on L2((0, π/2), sin θ cos θ dθ)2 and by ‖·‖ the θ -pointwise matrix
norm, we estimate

‖A(ω) − Dkakb
S3

‖op = ‖mpσ3 + ωV ‖op

≤ sup
θ

‖mp(θ)σ3 + ωV (θ)‖ ≤ sup
θ

(|m||p(θ)| + |ω|‖V (θ)‖) . (34)

In (34), we used the fact that for a zeroth order matrix operator T (θ) on L2, ‖T ‖op ≤
supθ‖T (θ)‖. An explicit computation of the eigenvalues of V (θ) yields, recalling that

p =
√

a2 cos2 θ + b2 sin2 θ ,

‖V (θ)‖2 = a2b2

p2
+ (a2 − b2)2 sin2 θ cos2 θ

p2

= a2b2(cos4 θ + sin4 θ) + (a4 + b4) sin2 θ cos2 θ

a2 cos2 θ + b2 sin2 θ

= a2 sin2 θ + b2 cos2 θ.

As the spectral gaps of Dkakb
S3

are of size 1, in order to obtain a nonzero uniform
gap between each pair of eigenvalues of A(ω), it suffices by standard perturbation
theory [9, Theorem 4.10] to require that ‖A(ω)−Dkakb

S3
‖op < 1

2 . In terms of the above
estimates, the latter bound is implied by

sup
θ

(
|m|

√
a2 cos2 θ + b2 sin2 θ + |ω|

√
a2 sin2 θ + b2 cos2 θ

)
<

1

2
,

which in turn is implied by

|m| + |ω| <
1

2max(|a|, |b|) .

In particular, we must have

|m| <
1

2max(|a|, |b|) . (35)
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Then, it would suffice to require that

|ω| <
1

2max(|a|, |b|) − |m|. (36)

In which case, by [9, Theorem 4.10], the consecutive eigenvalues of A(ω) would
satisfy

λl+1 − λl ≥ 1 − 2‖A(ω) − Dkakb
S3

‖op ≥ 1 − 2(|m| + |ω|)max(|a|, |b|). (37)

Notice that (36) implies that the right-hand side of (37) is strictly positive. In order to
satisfy the hypothesis of Theorem 2 on the norm of the non-self-adjoint perturbation,
it suffices then to require that for all l ∈ Z,

‖±iεV ‖op ≤ ε sup
θ

√
a2 sin2 θ + b2 cos2 θ ≤ ε max(|a|, |b|) <

1

16
(λl+1 − λl).

This is implied by

ε <
1

16max(|a|, |b|) − |m| + |ω|
8

.

We have therefore shown the following proposition.

Proposition 5 If |m| < 1
2max(|a|,|b|) and 0 ≤ E0 < 1

2max(|a|,|b|) − |m|, then there
exists an ε > 0 such that whenever |ω| ≤ E0, there exists a complete set of spectral
projectors {Q±

l }l∈Z onto the 1-dimensional eigenspaces of A(ωε) = A(ω ± iε).

9 Integral spectral representation

With the essential self-adjointness of H ′ and the existence of angular projectors Q±
l

established, we are now ready to construct in this section an integral spectral rep-
resentation for the Dirac propagator through the horizons of the 5D Myers–Perry
geometry for initial data with small m and frequency spectrum contained in an inter-
val (−E0, E0) with E0 as in Proposition 5. More specifically, we will use a variant of
Stone’s formula [10], which states in our context that

1

2
e
−iτ H ′

ka kb (P[−E0,E0] + P(−E0,E0))ψ
′
0,ka ,kb

= 1

2π i
lim
ε↘0

∫ E0

−E0

e−iωτ
[
(H ′

kakb
− ω − iε)−1 − (H ′

kakb
− ω + iε)−1

]
ψ ′
0,ka ,kb

dω.

(38)

The requirement we impose on the frequency spectrum of the initial data is most
conveniently written as

ψ ′
0 ∈ im(P(−E0,E0)), (39)
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where P is the spectral projector for the Dirac Hamiltonian H ′. In this case, we have

1

2
(P[−E0,E0] + P(−E0,E0))ψ

′
0 = ψ ′

0. (40)

As the Dirac Hamiltonian commutes with ∂φ and ∂ξ , (40) also holds for each bi-
azimuthal mode, that is,

1

2
(P[−E0,E0] + P(−E0,E0))ψ

′
0,ka ,kb

= ψ ′
0,ka ,kb

for each ka, kb ∈ Z. (41)

Before stating the main result of this section, it is convenient to recast the radial ODE
(20) as

R2×2
(

X+
X−

)
= 0,

where

R2×2 =
(

r3+R+ Sl

Sl r−3+ R−

)
, (42)

with

R+ = 1

r2
∂r − 1

2r3
+ iω

r2

R− = �∂r − 2iU (r) + ∂r�

2
+ �

2r
− iω(� + 4Mr2)

and U (r), Sl(r) as in (23), (24) respectively, with the replacement λ → λ±
l .

Theorem 3 Suppose that ψ(τ, r , θ, φ, ξ) satisfies the massive Dirac equation (9)
across the horizons of the non-extreme 5-dimensional Myers–Perry geometry with
ψ0(·) ≡ ψ(0, ·) ∈ C∞

0 ((r0,∞) × S3)4 for some 0 < r0 < r− and with |m| <
1

2max(|a|,|b|) . Suppose furthermore that there exists an E0 < 1
2max(|a|,|b|) − |m| such

that ψ ′
0 = Pψ0 ∈ im(P(−E0,E0)), where P is the spectral projector for the Dirac

Hamiltonian H ′.
Then, the transformed solution ψ ′(τ, r , θ, φ, ξ) admits the integral spectral repre-

sentation

ψ ′(τ, r , θ, φ, ξ) = 1

2π i

∑

ka ,kb∈Z
e−i((ka+ 1

2 )φ+(kb+ 1
2 )ξ)

× lim
ε↘0

∫ E0

−E0

e−iωτ
(
(H ′

kakb
− ω − iε)−1 − (H ′

kakb
− ω + iε)−1

)
(r , θ; r ′, θ ′)

×ψ ′
0,ka ,kb

(r ′, θ ′) dω, (43)

where ψ ′
0,ka ,kb

∈ C∞
0 ((r0,∞) × [0, π/2])4 is the initial data for fixed ka, kb and

(H ′
kakb

− ω ∓ iε)−1 are the resolvents of the Dirac Hamiltonian on the upper and
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lower complex half-planes. The resolvents are unique and of the form

(H ′
kakb

− ω ∓ iε)−1(r , θ; r ′, θ ′)ψ ′
0,ka ,kb

(r ′, θ ′)

= −
∑

l∈Z

∫ 1

−1
Q±

l (θ; θ ′)
∫ ∞

r0
C

(
G(r; r ′)ka ,kb,ω±iε 0

0 G(r; r ′)ka ,kb,ω±iε

)

×E (r ′, θ ′)ψ ′
0,ka ,kb

(r ′, θ ′) dr ′ d
(
cos θ ′)

with Q±
l (·, ·) the integral kernel of the spectral projector onto a 1-dimensional, invari-

ant subspace of the angular operator (21) corresponding to the angular eigenvalue
λ±

l and the frequency ω ± iε, G(r; r ′)ka ,kb,ω±iε the two-dimensional Green matrix of
the radial first order ODE (20),

C =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ ,

and

E (r , θ) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

ir3+
r2

− sin θ cos θ(a2−b2)
p ab

(
− i

r − 1
p

)
0

ab
(

i
r − 1

p

)
0 − i

r3+
(� + 4Mr2) − sin θ cos θ(a2−b2)

p

0 ab
(
− i

r + 1
p

)
− sin θ cos θ(a2−b2)

p
ir3+
r2

− sin θ cos θ(a2−b2)
p − i

r3+
(� + 4Mr2) 0 ab

(
i
r + 1

p

)

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.

For a general ψ ′
0 ∈ C∞

0 ((r0,∞)× S3)4 that may not satisfy (39) but nonetheless must
satisfy the mass restriction (35), the right-hand side of (43) is instead equal to

1

2
e−iτ H ′

(P[−E0,E0] + P(−E0,E0))ψ
′
0(r , θ, φ, ξ). (44)

Before we begin the proof, we remark that the matrix E (r , θ), up to some column
swaps and factors of the event horizon radius r+, is similar in form to the analogous
matrix EK (r , θ) arising in the corresponding integral spectral representation in the
Kerr geometry [7], namely

EK (r , θ) = −

⎛

⎜⎜
⎝

i(�K + 4Mr) r+a sin θ 0 0
0 0 −ir+ a sin θ

0 0 r+a sin θ i(�K + 4Mr)

a sin θ −ir+ 0 0

⎞

⎟⎟
⎠ .

Proof of Theorem 3 Consider a spinor ψ ′ with complex frequency ωε which is an i∂φ

and i∂ξ eigenstate, namely

ψ ′ = e−iωετ+(ka+ 1
2 )φ+(kb+ 1

2 )ξ�(r , θ).
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The Dirac equation then takes the form

(H ′
kakb

− ωε)� = 0. (45)

Since the hypotheses of Proposition 5 are satisfied, there exists for each l ∈ Z an
idempotent angular spectral projector

Q±
l � =

∫ 1

−1
Q±

l (θ; θ ′)�(r , θ ′) d
(
cos θ ′)

onto a finite-dimensional, invariant subspace of the angular operator A(ω ± iε) (21)
corresponding to the angular eigenvalue λ±

l . The angular operator may then be written
as

A(ω ± iε) =
∑

l∈Z
λ±

l Q±
l .

Using the relation H ′ = ND0, (45) can be rewritten as

N (D0 − ωε N−1)� = 1

r
N (Rωε + Aωε )� = 0.

On fixed ka, kb-modes, the angular system (21) is equivalent to

A� =
∑

l∈Z
γ 1λ±

l Q±
l �.

We therefore have
1

r
N

∑

l∈Z
(Rωε + γ 1λ±

l )Q±
l � = 0.

We note that wemay write the above in terms of the radial operator (42) withω → ωε ,
λ → λ±

l as

R + γ 1λ±
l =

⎛

⎜
⎜
⎝

iR+ 0 i Sl 0
0 −iR− 0 −i Sl

−i Sl 0 −iR− 0
0 i Sl 0 iR+

⎞

⎟
⎟
⎠ = −i�1C

(R2×2 0
0 R2×2

)
C−1,

with

C =

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞

⎟⎟
⎠ .

Defining E −1(r , θ) = i
r N (r , θ)�1C , we obtain

−E −1(r , θ)
∑

l∈Z

(R2×2 0
0 R2×2

)
C−1Q±

l � = 0.
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Using (17) yields, via an explicit computation,

E (r , θ) = −iC−1�1N−1(r , θ) = −iC−1�1

[(
�

2r3+
+ 2Mr2

r3+
+ r3+

2r2

)

+�1

(
�

2r3+
+ 2Mr2

r3+
− r3+

2r2

)

+ �3 sin θ cos θ(a2 − b2)

p
+ �5 ab

p
+ γ 0 iab

r

]

=

⎛

⎜⎜⎜⎜⎜
⎜
⎝

ir3+
r2

− sin θ cos θ(a2−b2)
p ab

(
− i

r − 1
p

)
0

ab
(

i
r − 1

p

)
0 − i

r3+
(� + 4Mr2) − sin θ cos θ(a2−b2)

p

0 ab
(
− i

r + 1
p

)
− sin θ cos θ(a2−b2)

p
ir3+
r2

− sin θ cos θ(a2−b2)
p − i

r3+
(� + 4Mr2) 0 ab

(
i
r + 1

p

)

⎞

⎟⎟⎟⎟⎟
⎟
⎠

.

By the standard theory of ODEs [14], there exist Green’s functions G(r; r ′) solving
for each ωε, l, ka, kb the distributional equation

R2×2(∂r ; r)G(r; r ′) = δ(r − r ′)12,

in terms of which the resolvent of the Dirac Hamiltonian is

(H ′
kakb

− ωε)
−1� = −

∑

l∈Z
Q±

l

∫ ∞

r0
C

(
G(r; r ′) 0

0 G(r; r ′)

)
E (r ′, θ)�(r ′, θ) dr ′.

The identity
(H ′

kakb
− ωε)(H ′

kakb
− ωε)

−1� = �

may be verified in the exact same manner as in [7].
To derive the integral spectral representation (43),we expand the smooth, compactly

supported initial data ψ ′
0 in terms of ka, kb-modes as

ψ ′ = e−iτ H ′
ψ ′
0 =

∑

ka ,kb∈Z
e−i((ka+ 1

2 )φ+(kb+ 1
2 )ξ)e

−iτ H ′
ka kb ψ ′

0,ka ,kb
.

The form of the integral representation (43) then follows from Stone’s formula (38),
the fact that identity (41) holds for ψ ′

0 ∈ im(P(−E0,E0)) and the same considerations
as in [7]. In the caseψ ′

0 /∈ im(P(−E0,E0)), (44) is precisely the left-hand side of Stone’s
formula (38) summed over the bi-azimuthal modes. �

In the future, it would be of interest to prove Proposition 5 without the restriction
|m|+ |ω| < 1

2max(|a|,|b|) , using another method than that of [8]. This would enable the
construction of an integral spectral representation for the full Dirac propagator, which
would open the door to the study of the Green’s functions G(r; r ′)ka ,kb,ω±iε using Jost
equation methods, as in [7] and [10].
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A Regular orthonormal frame and connection coefficients

In this appendix, we transform the frame (46) defined on the 5D Myers–Perry geom-
etry into a regular orthonormal frame across the event and Cauchy horizons by using
Eddington–Finkelstein-type coordinates and the regularising local Lorentz transfor-
mation (47). We then present explicit formulae for the components of the connection
1-form and the spinor connection in this regular frame, computed using the first Cartan
structure equation.

The 5-dimensional Myers–Perry black hole has a frame consisting of a pair of
real principal null vectors {l,n}, a pair of complex-conjugate principal null vectors
{m,m}, and a spatial vector k. Letting (·, ·) denote themetric scalar product, the above
frame satisfies (l,n) = −1, (m,m) = 1 and all other pairwise products vanish. In
Boyer–Lindquist coordinates, it reads [16]

l = (ρ2 + a2)(ρ2 + b2)

|�|
(

∂t + a

ρ2 + a2 ∂ϕ + b

ρ2 + b2
∂ψ

)
+ sgn(�)∂ρ

n = sgn(�)
(ρ2 + a2)(ρ2 + b2)

2ρ2�

(
∂t + a

ρ2 + a2 ∂ϕ + b

ρ2 + b2
∂ψ

)
− |�|

2ρ2�
∂ρ

m = 1√
2(ρ + i p)

(
∂ϑ + i

sin ϑ cosϑ

p

(
(a2 − b2)∂t + a

sin2 ϑ
∂ϕ − b

cos2 ϑ
∂ψ

))

m = 1√
2(ρ − i p)

(
∂ϑ − i

sin ϑ cosϑ

p

(
(a2 − b2)∂t + a

sin2 ϑ
∂ϕ − b

cos2 ϑ
∂ψ

))

k = 1

ρ p
(ab∂t + b∂ϕ + a∂ψ), (46)
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where p =
√

a2 cos2 θ + b2 sin2 θ . Let r+ = ρ+ denote the event horizon radius.
Applying a local Lorentz transformation l′ = ς l, n′ = ς−1n, m′ = ei�m, m′ =
e−i�m with

ς = |�|
r3+

√
2�

, ei� =
√

�

ρ − i p
, (47)

we obtain the frame

l′ = 1

r3+
√
2�

(
(ρ2 + a2)(ρ2 + b2)∂t + �∂ρ + a(ρ2 + b2)∂ϕ + b(ρ2 + a2)∂ψ

)

n′ = r3+
r2�

√
2�

(
(ρ2 + a2)(ρ2 + b2)∂t − �∂ρ + a(ρ2 + b2)∂ϕ + b(ρ2 + a2)∂ψ

)

m′ = 1√
2�

(
∂ϑ + i

sin ϑ cosϑ

p

(
(a2 − b2)∂t + a

sin2 ϑ
∂ϕ − b

cos2 ϑ
∂ψ

))

m′ = 1√
2�

(
∂ϑ − i

sin ϑ cosϑ

p

(
(a2 − b2)∂t + a

sin2 ϑ
∂ϕ − b

cos2 ϑ
∂ψ

))

k′ = k.

Transforming to Eddington–Finkelstein-type coordinates, the above frame takes the
form

l′ = 1

r3+
√
2�

(
(� + 4Mr2)∂τ + �∂r + 2a(r2 + b2)∂φ + 2b(r2 + a2)∂ξ

)

n′ = r3+
r2

√
2�

(∂τ − ∂r )

m′ = 1√
2�

(
∂θ + i

sin θ cos θ

p

(
(a2 − b2)∂τ + a

sin2 θ
∂φ − b

cos2 θ
∂ξ

))

m′ = 1√
2�

(
∂θ − i

sin θ cos θ

p

(
(a2 − b2)∂τ + a

sin2 θ
∂φ − b

cos2 θ
∂ξ

))

k′ = 1

r p
(ab∂τ + b∂φ + a∂ξ ),

where M = μ/2 is the mass of the black hole. We construct a frame ∂A satisfying
(∂A, ∂B) = ηAB (i.e. an orthonormal frame) by

∂0 = l′ + n′
√
2

, ∂1 = l′ − n′
√
2

, ∂2 = m′ + m′
√
2

, ∂3 = m′ − m′

i
√
2

, ∂5 = k′.
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Explicitly, it is written

∂0 = 1

2r3+
√

�

((

� + 4Mr2 + r6+
r2

)

∂τ +
(

� − r6+
r2

)

∂r

+ 2a(r2 + b2)∂φ + 2b(r2 + a2)∂ξ

)

∂1 = 1

2r3+
√

�

((

� + 4Mr2 − r6+
r2

)

∂τ +
(

� + r6+
r2

)

∂r

+ 2a(r2 + b2)∂φ + 2b(r2 + a2)∂ξ

)

∂2 = 1√
�

∂θ

∂3 = sin θ cos θ

p
√

�

(
(a2 − b2)∂τ + a

sin2 θ
∂φ − b

cos2 θ
∂ξ

)

∂5 = 1

r p
(ab∂τ + b∂φ + a∂ξ ).

(48)

The corresponding dual orthonormal 1-forms are

e0 = 1

2r2r3+
√

�

(
(r2� + r6+)dτ

+(−�r2 − 4Mr4 + 2r4(a2 sin2 θ + b2 cos2 θ) + 2a2b2r2 + r6+)dr

−a sin2 θ(r2� + r6+)dφ − b cos2 θ(r2� + r6+)dξ
)

e1 = 1

2r2r3+
√

�

(
(−r2� + r6+)dτ

+(�r2 − 4Mr4 − 2r4(a2 sin2 θ + b2 cos2 θ) − 2a2b2r2 + r6+)dr

−a sin2 θ(−r2� + r6+)dφ − b cos2 θ(−r2� + r6+)dξ
)

e2 = �dθ

e3 = sin θ cos θ

p
√

�

(
(b2 − a2)dτ + (b2 − a2)dr + a(r2 + a2)dφ − b(r2 + b2)dξ

)

e5 = 1

r p

(
−abdτ − abdr + (r2 + a2)b sin2 θdφ + (r2 + b2)a cos2 θdξ

)
. (49)

Using (10), the connection coefficients ωA
B for the frame (49) are computed to be

ω0
1 = ∂r

(
r2� + r6+
2r2r3+

√
�

)

e0 − ∂r

(
−r2� + r6+
2r2r3+

√
�

)

e1 − (a2 − b2)r sin θ cos θ

p�3/2 e3 − ab

r2 p
e5

ω0
2 = − (a2 − b2) sin θ cos θ

�3/2 e0 +
(

r2� − r6+
2rr3+�3/2

)

e2 − p(r2� + r6+)

2r2r3+�3/2
e3
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ω0
3 = − (a2 − b2)r sin θ cos θ

p�3/2 e1 + p(r2� + r6+)

2r2r3+�3/2
e2 +

(
r2� − r6+
2rr3+�3/2

)

e3

ω0
5 = − ab

r2 p
e1 +

(
r2� − r6+
2r3r3+

√
�

)

e5

ω1
2 = − (a2 − b2) sin θ cos θ

�3/2 e1 −
(

r2� + r6+
2rr3+�3/2

)

e2 − p(−r2� + r6+)

2r2r3+�3/2
e3

ω1
3 = − (a2 − b2)r sin θ cos θ

p�3/2 e0 + p(−r2� + r6+)

2r2r3+�3/2
e2 −

(
r2� + r6+
2rr3+�3/2

)

e3

ω1
5 = − ab

r2 p
e0 −

(
r2� + r6+
2r3r3+

√
�

)

e5

ω2
3 = − p(r2� + r6+)

2r2r3+�3/2
e0 + p(−r2� + r6+)

2r2r3+�3/2
e1 − p

sin θ cos θ
∂θ

(
sin θ cos θ

p
√

�

)
e3 − ab

r p2
e5

ω2
5 = − ab

r p2
e3 + (a2 − b2) sin θ cos θ

p2
√

�
e5

ω3
5 = ab

r p
e2.

Recalling that in our chosen metric signature ω0A = −ω0
A and ω jk = ω j

k

for spatial indices j, k �= 0, the coefficients of the spinor connection �AeA =
1
2

∑
A<B γ Aγ BωAB are thus

�0 = 1

2

(

−∂r

(
r2� + r6+
2r2r3+

√
�

)

γ 0γ 1 + (a2 − b2) sin θ cos θ

�3/2 γ 0γ 2

− (a2 − b2)r sin θ cos θ

p�3/2 γ 1γ 3 − ab

r2 p
γ 1γ 5 − p(r2� + r6+)

2r2r3+�3/2
γ 2γ 3

)

�1 = 1

2

(

−∂r

(
−r2� + r6+
2r2r3+

√
�

)

γ 0γ 1 − (a2 − b2) sin θ cos θ

�3/2 γ 1γ 2

+ (a2 − b2)r sin θ cos θ

p�3/2 γ 0γ 3 + ab

r2 p
γ 0γ 5 + p(−r2� + r6+)

2r2r3+�3/2
γ 2γ 3

)

�2 = 1

2

(

−
(

r2� − r6+
2rr3+�3/2

)

γ 0γ 2 − p(r2� + r6+)

2r2r3+�3/2
γ 0γ 3 −

(
r2� + r6+
2rr3+�3/2

)

γ 1γ 2

+ p(−r2� + r6+)

2r2r3+�3/2
γ 1γ 3 + ab

r p2
γ 3γ 5

)

�3 = 1

2

(
(a2 − b2)r sin θ cos θ

p�3/2 γ 0γ 1 + p(r2� + r6+)

2r2r3+�3/2
γ 0γ 2 −

(
r2� − r6+
2rr3+�3/2

)

γ 0γ 3
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− p(−r2� + r6+)

2r2r3+�3/2
γ 1γ 2 −

(
r2� + r6+
2rr3+�3/2

)

γ 1γ 3

− p

sin θ cos θ
∂θ

(
sin θ cos θ

p
√

�

)
γ 2γ 3 − ab

r p2
γ 2γ 5

)

�5 = 1

2

(
ab

r2 p
γ 0γ 1 −

(
r2� − r6+
2r3r3+

√
�

)

γ 0γ 5 −
(

r2� + r6+
2r3r3+

√
�

)

γ 1γ 5

− ab

r p2
γ 2γ 3 + (a2 − b2) sin θ cos θ

p2
√

�
γ 2γ 5

)
.
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