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Abstract
The stability of Reissner–Nördstrom black holes with an extremal mass–charge rela-
tion was determined by calculating the propagation speed of gravitational waves on
this background in an effective field theory (EFT) of gravity. New results for metric
components are shown, along with the corresponding new extremal relation, part of
which differs by a global factor of 2 from the past published work. This new relation
further develops the existing constraints on EFT parameters. The radial propagation
speed for gravitational waves in the Regge–Wheeler gauge was calculated linearly
for all perturbations, yielding exact luminality for all dimension-4 operators. The
dimension-6 radial speed modifications introduce no constraints on the sign of the
modified theory parameters from causality arguments, while the deviation from clas-
sical theories vanishes at both horizons. The angular speed was found to be altered for
the dimension-4 operators, with possible new constraints on the modified theory being
suggested from causality arguments. Results are consistent with existing literature on
Schwarzschild black hole backgrounds, with some EFT terms becoming active only
in non-vacuum spacetimes such as Reissner–Nördstrom black holes.

Keywords Modified gravity · Effective field theory · Gravitational waves · Extremal
black holes
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1 Introduction

This investigation focuses on the stability and physical consistency of charged black
holes with a near extremal mass–charge relation. It’s important to note that this kind of
physical phenomenon is yet to be observed experimentally, which reduces this inves-
tigation to a purely conceptual exercise [1]. Nevertheless, this is a rich environment to
study different advanced theories which are not always obviously inconsistent or con-
strained by their compatibility with classical results. This is why the topic of extremal
black holes has been so thoroughly researched in the past and even presently [2, 3],
with applications ranging all the way to connections to dark matter in the primordial
universe [4].

This kind of black hole presents us with an unprotected point of infinite curvature at
its centre,which is severely incompatiblewith our current understandingof physics and
therefore pushes us towards investigating any physical instabilities that could point to
these black holes being kept from ever existing [5, 6]. Our investigation aims to analyse
the effect that an effective field theory of gravity has on this kind of phenomenon, with
the propagation of gravitational waves being employed as a probing mechanism [7].
Using stability and causality arguments, we intend to determine any pathologies that
could provide us with insight into extremal black holes and perhaps even establish
constraints on the coefficients of the perturbations in these kinds of modified theories
of gravity.

Importantly, this is by nomeans an unfounded attempt, as research employing these
types of gravitational wave causality and stability arguments to investigate different
aspects of modified theories of gravity has been around for several years. This includes
literature where the changes implied by a modified theory on the charged black hole
metric were determined [3] and an investigation into wave perturbations to uncharged
black hole backgrounds [7], among many other applications [8, 9]. Modified theories
of gravity themselves have been a growing topic over the past decades, with many pro-
posed alternatives to Einstein’s original theory, such as f(R) gravity [10, 11], patching
profound issues in the current cosmology and quantum gravity landscape [12, 13].
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The layout of this paper is as follows. We discuss the effective field theory of
gravity on which we focused for our research, with details on the perturbed stress-
energy tensor and Maxwell equations given in Sect. 2. The effects of this modified
theory on the black hole metric and its electric field are presented in Sect. 3, along
with the consequences these present on the extremal relation. This is followed by a
discussion of the methods employed to analyse the propagation of gravitational waves
and massless scalar fields on classical and perturbed charged black hole backgrounds,
which is included in Sect. 4. We finalise this paper in Sect. 5, where we present the
obtained results, draw conclusions from them and suggest possible extensions to our
work.Details on someof the longer results are given in theAppendix.Weworkwith the
(−,+,+,+) signature, choose units where c = ε0 = μ0 = 1 and define 8πG = κ2.

2 Effective field theory of gravity

2.1 Perturbed stress-energy tensor

Although theories of quantum gravity add new heavy fields to our physical theories,
leading to extremely non-trivial dynamics, they may be integrated out at low energy
scales and represented through their effects on the classical fields [7]. With this in
mind, throughout this investigation, we analyse a low-energy effective field theory
(EFT) of gravity described by a perturbed EM Lagrangian which is altered by all
possible dimension-4 operators [3] and all vacuum dimension-6 operators [7]. This is
given by

L =√−g

(
R

2κ2 − 1

4
FμνF

μν

)
+ LD4 + LD6, (1)

where the higher dimensional operators are given by

LD4 = √−g
[
c1R

2 + c2RμνR
μν + c3Rμνρσ R

μνρσ

+ c4RFμνF
μν + c5R

μνFμρFν
ρ + c6R

μνρσ FμνFρσ + c7
(
FμνF

μν
)2

+c8
(∇μFρσ

) (∇μFρσ
) + c9

(∇μFρσ

) (∇ρFμσ
)]

(2)
and

LD6 = √−g
[
d1R�R + d2Rμν�Rμν + d3R

3 + d4RR
2
μν

+ d5RR
2
μναβ + d6R

3
μν + d7R

μνRαβ Rανμβ + d8R
μνRμαβγ R

αβγ
ν

+d9Rμν
αβ Rαβ

γσ Rγ σ
μν + d10Rμ

α
ν
β Rα

γ
β

σ Rγ
μ

σ
ν
]
.

(3)

As we will be investigating extremal black holes near their horizon, we expect r ∼
m ∼ q, where m = M/4π and q = Q/4π and the charge and mass of the black
hole are Q and M respectively. The ci perturbations are dimension-4 in the sense that
they are of order 1/q4, which is clear from the c7 term (as each F is proportional to
q/r2 ∼ 1/q). Due to r ∼ q and the form of the metric, each derivative adds a factor
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of 1/q, which causes any curvature objects (which include double derivatives of the
metric) to be ∼ 1/q2. The original terms in the Lagrangian are therefore clearly of
lower (second) order, being proportional to 1/q2, and thus are less suppressed. The
remaining dimension-6 operatorswould include, for example, other combinations such
as R2FμνFμν , but are also highly suppressed. The ci and di coefficients are expected
to include suppression due to the scale of the mass of the abstract heavy field that
would give rise to these Lagrangian terms [3, 14, 15].

The perturbed field equations are given by

Gμν = 2κ2

√−g

(
δ
(√−gLEM

) + ∑
i δ

(√−gLci

)
δgμν

)
= κ2 (

Tμν
EM + �Tμν

)
, (4)

where the first term on the right side is the classical electromagnetism Tμν and where
we have defined the new term in the stress-energy tensor caused by all the EFT oper-
ators. The field equations for some of the terms considered here are presented in [3,
7]. The remaining modifications are presented in “Appendix B”.

The linearly altered equations of motion cause a linear change in the Reissner–
Nördstrom (RN) metric, which in the notation of the remaining sections of this paper
can be written as gμν = ḡμν + ∑

δgμν . Importantly, all terms in �Tμν should be
calculated using the zeroth order (unperturbed) quantities, as they are already being
multiplied by ci and hence are already of the highest possible order. Unperturbed
quantities will always be denoted with a bar (F̄μν , for example) when the distinction
is necessary, but one should always be aware that any quantity already multiplied by
ci should be calculated to zeroth order only [3].

2.2 PerturbedMaxwell equations

Similarly to the work described in the previous section, we must also consider the
changes the perturbation may induce in the Maxwell equations [3]. This is especially
true for the ci terms which we analyse in this paper, as some include F in their
expression in the Lagrangian. By explicitly perturbing the Euler-Lagrange equations
for the EM vector field we arrive at the new Maxwell equations

∇μF
μν = ∇̄μ

(∑
i

ci J
μν
i

)
, (5)

where Jμν
i is some resulting quantity from each of the coefficients in the Lagrangian,

as shown in [3]. We also note the right side of the relation is explicitly linear in ci .
Therefore, the same precaution discussed previously must be taken when determining
the quantities to lowest order. As expected, when we set ci = 0 we obtain the classical
equations, which is a good test of the method employed in this derivation. None of
the di coefficients introduce any changes to this expression, due to the absence of any
EM dependence in their Lagrangian term.
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This new relation indicates that we could also have some changes to our Maxwell
tensor, which would be manifested as changes in the electric and magnetic fields of
the system. However, as all perturbations to the Lagrangian should be evaluated to
zeroth order (as they are already being multiplied by ci ), we expect all new quantities
to preserve the same spherical symmetry initially obeyed by the unperturbed back-
ground. This motivates us to expect simple changes to our EM fields, with only the
radial component of the electric field (already present in the unperturbed background)
being altered, while all other EM field components remain unaltered (non-existent).
By definition, the change in the Maxwell tensor must also obey the antisymmetric
properties of its original counterpart. Considering all this, we define the perturbed
quantity as Fμν = F̄μν + ci f

μν
i , where f tri = − f r ti ≡ �Ei (r). Our new Maxwell

equations then become

∇μF
μν = ∇μ F̄

μν + ci ∇̄μ f μν
i = ciδ

μ
μβ F̄

βν + ci ∇̄μ f μν
i , (6)

where we have used the antisymmetry of the Maxwell tensor and the symmetry of
the Christoffel symbols. Finally, we have denoted the perturbation to the covariant
derivative as the original operator plus an additional alteration to theChristoffel symbol
δ, which is caused by the linear modifications to the metric.

3 Perturbedmetric and extremal relation

In this section, we describe the process of determining the perturbations to the time
component of the metric and the shift in the electric field, which are central to the
result of that paper, while never being explicitly presented in that publication. Most
of these calculations, along with many others in the remaining sections of this paper,
were performed in the Mathematica software using code developed especially for
this work. This code was first checked with known results from classic GR, such
as the Schwarzschild metric, to confirm the correct implementation of all differential
geometry quantities, alongwith the field equations themselves. Thus, the results of this
section also serve as an additional confirmation of the foundations of our code, as the
methods employed here are far from trivial and any issues would become immediately
obvious from the resulting equations.

3.1 Metric and electric field perturbations

3.1.1 Perturbations for ci coefficients

As we assume a static spherically symmetric background, we may use the ansatz

ds2 = − (
Ā + ciδAci

)
dt2 + 1

B̄ + ciδBci

dr2 + r2dθ2 + r2 sin2 θdφ2, (7)
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where we write the classic components of the RNmetric as Ā = B̄ = 1− κ2m
r + κ2q2

2r2
.

The spherical symmetry of the system allows us to solve the field equations for a
general stress-energy tensor and determine the values of these functions in the metric
using the integrals [16]

B = 1− κ2m

r
− κ2

r

∫ ∞

r
dr r2T 0

0 A = B exp

(
κ2

∫ ∞

r
dr

r

B

(
T 0
0 − T 1

1

))
.

(8)
For the radial component of the metric this is

B = 1 − κ2m

r
+ κ2q2

2r2
− ciκ2

r

∫ ∞

r
dr δT 0

0 = B̄ − ciκ2

r

∫ ∞

r
dr δT 0

0 (9)

and similarly for the time component

A = B exp

(
κ2

∫ ∞

r
dr

r

B̄

(
1 − ciδB

B̄

)
ci

(
δT 0

0 − δT 1
1

))
=

= B exp

(
ciκ

2
∫ ∞

r
dr

r

B̄

(
δT 0

0 − δT 1
1

))
=

= B

(
1 + ciκ

2
∫ ∞

r
dr

r

B̄

(
δT 0

0 − δT 1
1

))
=

= B + ciκ
2 B̄

∫ ∞

r
dr

r

B̄

(
δT 0

0 − δT 1
1

)
+ O(c2),

(10)

where we have only kept terms which are linear in ci , in line with our perturbative
treatment of that coefficient. We have also used the fact that we must be able to write
the stress-energy tensor as we did for the RN spacetime plus a linear perturbation,
which we define as δTμν . The zeroth order part of this tensor obeys T̄ 1

1 = T̄ 0
0 and will

necessarily integrate to give the original components of the metric.
It’s important to note that the perturbation to the classical EM stress-energy tensor

is not uniquely ci�Tμν . There is an additional contribution from the undetermined
perturbation to the Maxwell tensor and from the perturbed metric, which is used to
raise and lower indices in order for us to be consistent with the version of the Maxwell
tensor we use. We choose this to be Fμν in order to align our approach with the one
in [3]. This yields the full EM stress-energy tensor

(TEM )μν = Fμγ Fνγ − 1

4
FαβFαβδμ

ν

= (
F̄μγ + ci f

μγ

i

) (
F̄αβ + ci f

αβ
i

)
gναgγβ

− 1

4

(
F̄ρσ + ci f

ρσ
i

) (
F̄αβ + ci f

αβ
i

)
gαρgβσ δμ

ν ,

(11)
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where the metric gμν will also include a perturbation which we define below. Thus,
we define the full stress-energy tensor as

Tμ
ν = (T̄EM )μν + ciδT

μ
ν , (12)

where we have now completely separated the zeroth and first-order contributions.
Interestingly, we find that the two components of the stress-energy tensor differ by

a term proportional to Ā, which implies that they are exactly the same when evaluated
at the old horizon radii. This will be an important point when considering the new
horizon radii. Evaluating the 4 components of the Maxwell equations, we find that
only one is not automatically satisfied. Additionally, it is fully first order, as all zeroth
order components necessarily cancel out, allowing us to solve for the electric field
shift. Namely, for the c6 coefficient this gives

�Ec6 = −15κ2q3

r6
+ 8κ2qm

r5
, (13)

which obeys several conditions that we should expect for our electric field shift.
Namely, it goes to 0 when we move infinitely away or when the charge goes to 0.
These are both sensible, as we should feel no effect of the black hole when infinitely
far away and as our Lagrangian perturbation is proportional to the Maxwell tensor,
which disappears when we remove all the charge from the system. However, we find
that this and all of the remaining ci electric field shifts have no effect on the speed
of gravitational waves on this background and are hence disregarded from this point
forward.

With all other unknowns found, we plug the resulting function of r into the integrals
above and find the perturbations to the metric, which match those in [3]. These show
an interesting effect of the perturbation, as the time and the radial components are no
longer the same, matching each other only at the original event horizon radii R±.

3.2 Perturbations for di coefficients

The same methodology can be applied to the dimension-6 perturbations of the action,
with the modified field equations for some of these determined in [7]. However, that
paper considered the spacetime around an uncharged black hole, which leads to the
zeroth order equation R̄μν = 0, causing any terms that are at least quadratic in R̄μν to
vanish. The same is not true for our considerations, as we are no longer in a vacuum.
Hence, all of these perturbations are unique to q �= 0, with some only arising for
non-vacuum backgrounds.

The absence of any EM dependence on the perturbations considered here means
that we don’t need to consider changes to the electric field as before. Following the
same steps as above, we first obtain the A− B relation for each coefficient, which may
then be applied to δT 0

0 . Plugging this into the integrals in Eq.8, we extract the radial
metric component and consequently its time counterpart. The results for all of these are
presented in “Appendix A”. All of these results match the ones in [7] when q = 0, due
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to the simple relation between RN and Schwarzschild black holes. However, while the
uncharged results can be obtained simply from the above, the opposite is not possible.

3.3 Perturbations to extremal relation

The perturbed metric components could lead to different radii for the event horizons,
as we must now impose new conditions A(rH ) = B(rH ) = 0, which must be satisfied
simultaneously, therefore leading to 2 equations to solve for rH . We know that to
zeroth order Ā(r) = B̄(r), while δA(r) and δB(r) clearly aren’t the same function
in general. However, as both of these perturbations are already multiplied by ci , we
may evaluate them both at the classical horizon radii R±. Careful evaluation shows
that these then become exactly the same function, meaning that we only have a single
independent equation to solve for our single unknown rH . We therefore compute the
unperturbed metric component at the linearly perturbed horizon radius

Ā(R± + c�r±) = 1 − κ2m

R± + c�r±
+ κ2q2

2(R± + c�r±)2

= 1 − κ2m

R±
+ κ2q2

2R2±
+ cκ2�r±

(
m

R2±
− q2

R3±

)

= 0 + cκ2

R3±
�r±

(
mR± − q2

)
,

(14)

which, together with the result for y(r) evaluated at the zeroth order horizon radius,
allows us to solve for the perturbation to this radius as

r± = R± +
∑
i

ci
R3±

κ2
(
q2 − mR±

)δAi (R±). (15)

By imposing r+ = r− we obtain the modified m/q relation for extremality. Plugging
in all the different coefficients and combining all of these linearly, we construct the
new extremal relation

κ√
2

m

|q| = 1 − 1

5q2

(
2c2 + 8c3 + 2c5

κ2 + 2c6
κ2 + 8c7

κ4 − 2c8
κ2 − c9

κ2

− 100d2
63κ2q2

− 680d5
63κ2q2

− 10d6
3κ2q2

+ 10d7
3κ2q2

− 100d8
63κ2q2

+ 160d9
21κ2q2

+ 10d10
21κ2q2

)
.

(16)

The dimension-4 part precisely matches the expression in [3], apart from a total factor
of 2 by which our result differs on all ci perturbations. We should note that the result
in the original paper was merely used to impose a condition on the sign of the entire
linear combination of coefficients within the parentheses, which is not altered by
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having an extra general factor of 2. Nevertheless, the similarity between both results is
a good check that we have followed the right procedure. Although only R3 operators
are considered for the di coefficients in our EFT, these new terms provide additional
insight into the argument in [3]. The same constraint can now be written as

2c2 + 8c3 + 2c5
κ2 + 2c6

κ2 + 8c7
κ4 − 2c8

κ2 − c9
κ2 − 100d2

63κ2q2
− 680d5

63κ2q2
− 10d6

3κ2q2

+ 10d7
3κ2q2

− 100d8
63κ2q2

+ 160d9
21κ2q2

+ 10d10
21κ2q2

≥ 0.
(17)

Apart from the dimension-6 modifications to the relation being suppressed by the
energy scale of the EFT via the di coefficients, the additional factor of κ2q2 increases
their relevance, as this is expected to be a small value for the very lightly charged black
holes one would expect from charge neutrality arguments. This extremal relation is
the one we should impose when analysing our final results for the gravitational wave
speeds, as this is the new condition for the creation of a charged black hole with a
naked singularity in the altered theory of gravity.

4 Scalar field and gravitational wave speed

The main idea of this investigation is to investigate the propagation speed of gravita-
tional waves on a perturbed RN black hole background. When looking for pathologies
in this result, we’ll be particularly interested in its comparison with the speed of light
c (=1 in the units we have initially imposed) [7]. Any slower propagation, labelled
as subluminal, is perfectly acceptable from a causality point of view, as it should by
no means break the universal limit [14]. However, if we find it to have the opposite
behaviour (superluminal), then wemust conduct further analysis in order to determine
if there are any inconsistencies with the expected physical principles of causality, as
there still might not be any fundamental issues with our result [15].

Throughout the remaining sections of this paper, we will be interested in extracting
the propagation speed of different fields in our background metric. The first issue is
defining what we mean by this speed. In order to analyse causality considerations, we
must consider the speed at which information propagates, as that is what any observer
would detect. For this, we are interested in the initial bit of information, which is
therefore at the front of the wave. Its propagation speed is determined by the front
velocity, as described in [17]. Explicitly, this is the large k (or high frequency) limit
of the phase velocity, being calculated as v f = limk→∞ ω

k . Here ω is the frequency
of the wave and k describes its wavevector. Other descriptions of speed, such as phase
and group velocity, can and have been observed and measured experimentally to be
superluminal, while still causing no contradiction with the pillars of causality [17].
However, if we find a superluminal front velocity, which describes the propagation of
new information, we face acausalities and incompatibilities with fundamental physical
principles [14, 15]. We may therefore use this to uncover issues with the physical
systems we are analysing or to possibly impose constraints on the coefficients of our
effective field theory of gravity.
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4.1 Determining speeds from the effective metric

When determining the propagation speed of fields in this investigation we follow the
WKB approximation [18], implying that the wavelengths we consider should be short,
such that they are no longer than the scale over which our geometry (the black hole)
changes. Thus, we may take the highest powers of ω and k to dominate, as these will
be much greater than any lower powers. Nevertheless, in order to obey the energy
scale of the low-energy EFT, we should also keep these wavelengths from becoming
arbitrarily short, keeping it in between these two regimes, aswill become relevantwhen
discussing the resolvability of these effects later on [15]. By modelling the wave-like
behaviour via Fourier expansions in terms of plane waves evolving as exp(iωt − ikr),
wemay treat time derivatives as factors of iω and radial derivatives as factors of ik. The
previous logic then demands that we investigate the highest orders of these derivatives
(and their combinations), with others being negligible for our equations. This so-called
characteristic analysis [14] will be applied throughout this section, where as long as
we can guarantee that all plane wave behaviour (among others we include, such as
angular behaviour in spherical harmonics) may be factored out, we can analyse our
equations in a much simpler manner.

It is useful to define the notion of an effective metric [7] via the equation

�Zϕ +U (r)ϕ ≡ Zμν∇μ∇νϕ +U (r)ϕ = 0, (18)

where the covariant derivative is defined in terms of Zμν and the potential is written
as U (r). The effective metric Zμν is defined as

Zμν = diag(−Zt (r), Z
−1
r (r), Z�(r)r2, Z�(r)r2 sin2 θ), (19)

with its inverse Zμν defined as it would for a regular matrix. This defining equation is
written in an analogous manner to a wave equation for a massless scalar field, with the
flat spacetime� = −∂2t +∇2 replacedwith the�Z operator, whichwas defined above.
Similarly to how a simple wave equation allows us to read off the propagation speed
as v2∇2ϕ = ∂2t ϕ, this method simplifies the analysis we aim to conduct. Expanding
this equation, we obtain

ϕ′′ + 1

2
ϕ′

(
(Zt Zr )

′

Zt Zt
+ 2Z ′

�

Z�

+ 4

r

)
− ϕ̈

Zt Zr
+ 1

Z�Zrr2
∇2

�ϕ + U (r)

Zr
ϕ = 0, (20)

where we have denoted time derivatives as ϕ̇, radial derivatives as ϕ′ and the angular
Laplacian operator as ∇2

�. We may simplify this by assuming a simple spherically
symmetric wave form for our arbitrary scalar field [7]. We use the ansatz ϕ(t, r , θ) =
φ(r)
r e−iωt Yl(θ), wherewehave exploited the spherical symmetry of the systemwith the

use of the spherical harmonics Yl(θ) and ignored the remaining angular dependence,
as it may be removed with a simple rotation. These harmonics have a convenient
defining equation given by

∇2
�Yl(θ) = −l(l + 1)Yl(θ) = −JYl(θ), (21)
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which simplifies the angular Laplacian term acting on ϕ. We will also ignore any
potential terms in our investigation, as these should be negligible when determining
kinematic properties in the high-frequency limit [7, 14]. This simplifies the equation
to give

φ′′ +φ′
(

(Zt Zr )
′

2Zt Zr
+ Z ′

�

Z�

)
+

(
ω2

Zt Zr
− J

Z�Zrr2
− (Zt Zr )

′

2r Zt Zr
− Z ′

�

r Z�

)
φ = 0, (22)

allowing us to extract the effective metric components for any given second-order
differential equation.

To determine the speed from the effective metric, we may use a similar technique
to the one applied in classical GR, using an ansatz eikρ xρ

and hence writing the highest
order derivative terms in (18) as

Zμν∂μ∂νe
ikρ xρ = (

Zμνkμkν

)
eikρ xρ = (

Zμνgνσ kμk
σ
)
eikρ xρ = 0. (23)

By analysing both μ = 0 and μ = i , with i labelling spatial components, we obtain
the dispersion relation

Ztνgνσ kt k
σ + Ziνgνσ ki k

σ = Ztt gtt kt k
t + Zii gii ki k

i = −Ztt gttω
2 + Zii gii k

2 = 0,
(24)

where we have assumed both metrics are diagonal, as is the case for all the cases
studied in this investigation. The speed in the xi direction is thus

c2i = ω2

k2i
= Zii gii

Z tt gtt
, (25)

where there is no implied sum over i . As will become clear in the next section, this
ensures that free massless scalar fields with Zμν = gμν propagate luminally, thus
setting a good comparison for causality discussions for the propagation of gravitational
waves. Inserting the usual notation for the components of the EFT-perturbed RN
background metric we obtain the radial speed

c2r = Zrr grr
Z tt gtt

= Zt Zr

AB
(26)

and using a similar logic, this time with angular propagation, we may also obtain the
angular speed, given by

c2� = Z θθgθθ

Ztt gtt
= Zt

AZ�

= Bc2r
Zr Z�

, (27)

wherewe used the previous expression for the radial speed in order to be able to directly
extract this result from our equations of motion from the coefficient on the J term.
Hence, any second-order equation of motion can be analysed under this interpretation
and speeds may be directly extracted.
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4.2 Freemassless scalar fields

In the remaining parts of this section, we’ll be interested in calculating the speed of
gravitational waves when propagating on the perturbed RN background. In order to
accurately compare their propagation speed to that of light, it will be useful to first
discuss a free massless scalar field moving on the same background metric, which we
expect to propagate luminally [7]. The Lagrangian for a free massless scalar field is

L = 1

2

√−ggμν∂μφ∂νφ, (28)

which leads to the equation of motion�φ = gμν∇μ∇νφ = 0. By analysing this equa-
tion using the methods introduced in the previous section, we immediately recognise
Zμν = gμν , leading us to the conclusion that this field would propagate luminally,
as expected. This will serve as a gauge for what we define as luminal propagation,
creating a fixed causality scale to which we can compare our gravitational wave speed
[15].

4.3 Gravitational waves in perturbed RN background

The propagation of gravitational waves over non-vacuum backgrounds is more com-
plex than the simpler Schwarzschild case. When dealing with these non-trivial cases,
we often must exploit symmetries of the system using convenient gauge transforma-
tions to simplify our analysis. In this section, we investigate wave-like perturbations
over our background, which we shall treat linearly as we have done before. We con-
sider a metric of the form gμν = gμν + εhμν , where g represents the background and
the ε parameter is kept to first order in all calculations. By calculating all the necessary
quantities with the added perturbation, including differential objects such as R, we
may construct the perturbed Einstein tensor Gμν . In the Reissner–Nördstrom case,
where Tμν �= 0, we must take care to consider the same version of Fμν by raising
and lowering quantities with the perturbed metric, as we have done in Sect. 2. By
calculating all components of the field equations Gμν = κ2Tμν , we find that they are
automatically satisfied to zeroth order in ε, which is expected and once again confirms
the accuracy of our code. We are therefore left with a set of differential equations
which are fully O(ε) and hence we may solve for hμν .

The spherically symmetric background motivates the imposition of spherically
symmetric perturbations, as this symmetry shouldn’t be broken by these waves. As
discussed in [7], a convenient gauge for this type of system is the Regge–Wheeler
gauge [19], which separates the odd and even parity components of the waves and
reduces the number of apparent degrees of freedom, thus aiding in the decoupling of
our equations. In this investigation, we investigate the odd parity perturbations, which
are relatively simpler and in general are expected to yield the same result as their even
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counterparts. We therefore consider perturbations of the form

hμν =

⎛
⎜⎜⎝

0 0 0 h0(r)
0 0 0 h1(r)
0 0 0 0

h0(r) h1(r) 0 0

⎞
⎟⎟⎠ e−iωt sin θY ′

l (θ), (29)

where Y ′
l (θ) denotes the derivative of the spherical harmonics and hence the angular

part guarantees the odd parity [19].
When considering waves travelling on the already perturbed background caused by

the modified Lagrangian which we introduced in Sect. 2, we must consider 2 separate
types of perturbations to the classical RN metric. One of these are the wave perturba-
tions and the other is made up of all the contributions from the different ci coefficients.
We write this as

gμν = ḡμν +
∑
i

ci (δgμν)i + εhμν, (30)

where all coefficients ci and ε are treated to first order. Because of this, each ci perturba-
tion may be considered independently, which will greatly decrease the computational
and mathematical complexity of our investigation. Nevertheless, ciε terms are kept in
all calculations, as they are linear in both coefficients and will capture the effects of
the perturbed Lagrangian on the gravitational wave propagation. Due to the unbroken
spherical symmetry of the system, we still apply the Regge–Wheeler gauge [19] and
continue to analyse the odd parity perturbations. Thus, we may reuse much of the
methodology applied in the classical case, with slight modifications due to the effects
of each ci .

Throughout these computations, we keep the ci parts of the metric and the electric
field shift abstract as δA, δB and �E in the same way as when we were initially
solving for them. Additionally, we take care to define the new doubly perturbed raised
Maxwell tensor Fμν from the lowered ci perturbed version, which we raise with the
new doubly perturbed metric. This ensures that we start from the fundamental metric-
independent form of the EM tensor before raising it with the new metric which has
been affected by gravitational waves. Symbolically this is

Fμν = (gci+ε)
μγ (gci+ε)

νλ(gci )αγ (gci )βλ(Fci )
αβ, (31)

where we have denoted doubly perturbed metrics with ci + ε subscripts.
The same procedure can be followed for all different ci and di perturbations, with

some introducing new complexities into our calculations. For example, terms in the
d2 stress-energy tensor [3], such as �2Rμν , will generate derivatives of the metric of
up to sixth-order, along with changes to the equations we use to relate h1 and h0 in
the classical case, which we are no longer able to directly solve [7]. This equation
contains sixth-order terms in k and ω, but we can reduce this by recognising that the
zeroth order equation of motion was of the form h′′ = f (h, h′). As these higher-order
terms are already O(c), we may use the unperturbed equations to simplify them [14],
given that any other terms would be of O(c2). The zeroth order equations of motion
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have already been determined when analysing gravitational waves propagating on a
classical RN background, similarly to what was done in [7]. Thus, any term that wasn’t
present in this analysis must necessarily beO(c) and thus may be simplified using the
unperturbed equations [14]. Therefore, we are able to lower the order of derivatives
on terms such as h(3) by writing h(3) = (h′′)′ and then plugging in our relation from
the classical analysis, where we now include potential terms, as they will now have
derivatives acting on them. Fourth derivative terms are obtained from differentiating
the previous expression for h(3) and substituting any arising third derivatives using the
same expression, with analogous procedures being used for higher-order derivatives.
We may then extract the relevant speeds from the resulting second-order differential
equations.

5 Discussion of results and conclusion

5.1 Gravitational wave speed results

5.1.1 Radial speeds

After careful calculation of the equations of motion of the gravitational wave perturba-
tions for all the EFT coefficients, we are able to extract the effectivemetric components
and determine the new radial and angular speeds of the waves [7]. Interestingly, all
of the ci radial speeds come out to be exactly luminal, meaning that the dimension-4
operators introduce no effects on the radial propagation of these perturbations. This
result is by no means trivial, as both the radial and time derivative coefficients seem
to be completely unrelated at first, while still cancelling out exactly when combined
and analysed to first order in the effective metric components, with no need to insert
the explicit expression for δA or δB in any case. This differs from the Schwarzschild
case, where the dimension-4 operators can immediately be ruled out with geometrical
arguments in 4D spacetime. This result is also independent of the mass–charge rela-
tion and of position, meaning we are unable to draw the expected conclusions about
the stability of extremal black holes, which don’t seem to be forbidden by causality
arguments applied to gravitational wave propagation.

Furthermore, this imposes no constraints on the ci coefficients from causality argu-
ments. In the literature, not only have constraints been determined from weak gravity
considerations [3, 20], but also from causality itself for a vacuum [8]. However, it
should be noted that the latter example was calculated for a different background than
the one analysed here, and therefore the Lagrangian perturbation coefficients aren’t
necessarily equal to their equivalents in a Reissner–Nördstrom black hole background.
The lack of effect of these perturbations on the wave speed is already an interesting
result, but it is even more non-trivial than expected, as the results for all coefficients
were completely independent of the form of the metric components X and Y , which
were left abstract at all times. This could be caused by the even parity of the electric
field, which could perhaps lead to no coupling on the odd parity waves, while still
affecting the even parity modes in profound ways.
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Similarly, most of the di terms introduce no speed modifications. However, the
coefficients d9 and d10 introduce perturbations to the radial speed, as expected from
the result on a Schwarzschild background [7]. The new speed is

c2r = 1 + 24d9κ2 Ā
(−2 Ā′ − r2 Ā(3) + 2r Ā′′)

)
r3

+ 3d10κ2 Ā
(
12 Ā − 12 − 8r Ā′ + 2r2 Ā′′ + r4 Ā(4)

)
r4

,

(32)

or explicitly

c2r = 1 + 48(2d9 + d10)
κ4

(
5q2 − 3mr

)
(r − R+) (r − R−)

r8
, (33)

whichmatches the Schwarzschild resultwhen settingq = 0, as expected.Additionally,
this value is exactly luminal at both of the new horizons, as seen from the proportional-
ity to (r−R±), extending the result from [7], while also being at amin/max (depending
on the sign of 2d9 + d10) point at the outer horizon. The change from subluminal to
superluminal (or vice-versa) outside the outer horizon, as seen in Fig. 1, implies that
there is no constraint on the sign of 2d9 +d10 that could guarantee subluminality at all
exterior points, unlike in the Schwarzschild case. The precise luminality at the horizon
also draws a close parallel with the work in [7], where it is argued that this should
be expected from the so-called “Horizon Theorem". Its validity for the non-vacuum
spacetime of RN black holes provides further support to the arguments presented in
that publication.

Given this result, the speed of radial propagation of waves in this and other back-
grounds should still be investigated further in future research, as investigating even
modes and/or the additional dimension-6 terms could lead tomore general conclusions
about these kinds of modified theories of gravity.

5.1.2 Angular speeds

As no radial speed alterations were found for the dimension-4 terms, we choose to
investigate the angular speed of the gravitational waves, for which we obtain

c2� = 1 + 2κ2q2

r4
(c5 + 2c6), (34)

which not only deviates from luminality but also displays interesting features. Glob-
ally, this deviation follows a 1/r4 dependence, meaning that it quickly decays as we
move infinitely away from the black hole. Additionally, it is proportional to q2, which
indicates that it is completely independent of the sign of the charge of the black hole,
while also being non-existent for a Schwarzschild black hole (q = 0). Therefore, there
is something about the presence of the charge and its consequent radial electric field
that causes an effect on the angular speed of waves around the spherically symmetric
black hole. Although these perturbations are expected to be very small due to the
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Fig. 1 Deviation from luminality of gravitational wave speed near the horizon radius rH , which is unique
under the extremal mass–charge relation. Units have been chosen to simplify the interpretation of effects
and we have taken 2d9 + d10 > 0

assumed magnitude of the ci coefficients in our EFT, we could still impose them to be
negative to ensure all waves propagate subluminally. This causality argument could
then imply an additional constraint

c5 + 2c6 ≤ 0, (35)

which, when combined with the one from [3], would provide new insights into accept-
able effective field theories of gravity. The physical meaning of this superluminality
could be further studied by determining its path difference to luminal motion after a
fixed time interval [15]. However, as we are dealing with a low-energy EFT, we should
assume longwavelengths for our particles relative to the energy scale of the theory, thus
being much longer than these path differences, which areO(ci ). These coefficients are
highly suppressive in the low-energy EFT and thus the path difference would be far
smaller than the wavelength of low-energy particles, making it effectively unresolv-
able [15]. Therefore, we don’t take these results to point to pathological breaches of
causality and such constraints should only be interpreted with this in mind. The same
can be argued for the d9 result, which should be taken with the same considerations.

5.2 Conclusion

This investigation aimed to determine the stability of charged black holes with an
extremal mass–charge relation, which exposes their unprotected central singularities
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to observers at infinity, in a low-energy effective field theory of gravity. Themain objec-
tive was to use causality arguments applied to the propagation speed of gravitational
waves, which would then be analysed at the extremal limit at a radius right outside the
horizon to possibly uncover evidence that the non-existence of these physical objects
follows directly from quantum gravity, modelled here via all non-zero dimension-4
operators and R3-type dimension-6 operators, hypothesised as the effect on classic
fields from undetermined heavy fields added to the classical General Relativity action.
In order to achieve this, we first calculated the new perturbed metric, horizon radii and
the consequent extremal relation, which involved determining the new stress-energy
tensor and Maxwell equations. For those that could be compared, we found the same
results as in the literature. Interestingly, our extremal relation perturbation differed
from the cited result by a global factor of 2, which wouldn’t affect the main conclu-
sion of the original paper but is nevertheless an unexpected deviation. Using the same
method, we obtained the new metric for the dimension-6 perturbations, which served
as an extension of the same result for Schwarzschild backgrounds conducted in [7].
This is especially interesting for all terms which were automatically nullified by the
vacuum considered in that work, which are present for our work.

The radial speeds for gravitational waves in the new perturbed background all
came out to be precisely luminal for the dimension-4 terms in the Lagrangian, while
the dimension-6 terms led to deviations from luminality. All of these results were
completely independent of the form of the metric perturbations, which were kept
abstract throughout the calculation of the equations ofmotion for thewaves, depending
only on the relation between the radial and time components of the metric. Not only
do these results not lead to any instabilities of the extremal black holes, but they
also impose no constraints on the sign of the perturbation coefficients. Comparatively,
weak gravity arguments have already been used to determine conditions for some
of the same coefficients [3], with causality investigations on vacuum backgrounds
having found similar relations for analogous coefficients [8]. This work therefore
inserts additional terms into this existing constraint. Additionally, the determination
of the angular speeds led to other interesting results, with deviations from luminality
obtained for 2 of the 9 dimension-4 perturbations. These alterations were found to only
exist for charged black holes and could serve as evidence for additional constraints
on complete theories of gravity, which could be corroborated by researching the same
theory on different backgrounds. Importantly, such conclusions should only be taken
into consideration along with the resolvability of such superluminal behaviours in
low-energy EFTs [15].

There are many possible extensions for this investigation. These include:

• Repeating the investigation using the even parity perturbations in the Regge–
Wheeler gauge. Although these lead to more complex calculations, the even parity
of the electric field could lead to there only being significant coupling to even
parity waves, which could lead to more profound results.

• Analysing an EFT with all remaining dimension-6 operators for Reissner–
Nördstrom, including whose effects are not present in Schwarzschild backgrounds
[7].
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• Following the same procedure described in this paper for Kerr (rotating and
uncharged) or Kerr-Newmann [21] (rotating and charged) black hole backgrounds.
These may be obtained from Schwarzschild and RN respectively via specific coor-
dinate transformations [22, 23], which could heavily simplify the calculations for
this background by analogywith the work already conducted in published research
[3, 7] and in this investigation.

• Analysing O(c2) contributions to the speed and looking for inconsistencies as
we approach the new extremal limit. Although these would be highly suppressed
by the scale of the EFT, it could be that the linear treatment employed in this
investigation removed non-trivial complex behaviour which would be related to
the instability of extremal black holes.

• If any valid complex behaviour is found in the speed, investigating possible quan-
tum protection mechanisms through which black holes could avoid becoming
extremal. These may include, for example, the emission of charged Hawking radi-
ation [24, 25].
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AMetric perturbations

The non-zero metric perturbations for the di coefficients are shown below.

δAd2 = 118κ8q6

9r10
− 53κ8mq4

2r9
+ 4κ8m2q2

r8
+ 48κ6q4

7r8
+ 24κ6mq2

r7
− 24κ4q2

r6
(36)

δAd4 = 3κ8mq4

r9
− 2κ8q6

r10
− 2κ6q4

r8
(37)

δAd5 = −238κ8q6

9r10
+ 87κ8mq4

r9
− 660κ8m2q2

7r8
− 28κ6q4

r8
+ 36κ8m3

r7
+ 48κ6mq2

r7

−24κ6m2

r6
(38)

δAd6 = 57κ8mq4

2r9
− 179κ8q6

12r10
− 27κ6q4

r8
(39)
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δAd7 = 20κ6q4

r8
+ 10κ8m2q2

r8
+ 137κ8q6

12r10
− 55κ8mq4

2r9
− 8κ6mq2

r7
(40)

δAd8 = −115κ8q6

18r10
+ 39κ8mq4

2r9
− 151κ8m2q2

7r8
− 3κ6q4

r8
+ 9κ8m3

r7
+ 8κ6mq2

r7
− 6κ6m2

r6

(41)

δAd9 = 93κ8mq4

7r9
− 28κ8q6

3r10
− 108κ8m2q2

7r8
+ 30κ6q4

r8
+ 10κ8m3

r7
− 192κ6mq2

7r7
(42)

δAd10 = 53κ8q6

12r10
− 507κ8mq4

28r9
+ 156κ8m2q2

7r8
+ 21κ6q4

2r8
− 17κ8m3

2r7
− 138κ6mq2

7r7

+9κ6m2

r6
(43)

δBd2 = −242κ8q6

9r10
+ 203κ8mq4

2r9
− 92κ8m2q2

r8
− 680κ6q4

7r8
+ 168κ6mq2

r7
− 72κ4q2

r6
(44)

δBd4 = 7κ8q6

r10
− 15κ8mq4

r9
+ 16κ6q4

r8
(45)

δBd5 = 896κ8q6

9r10
− 357κ8mq4

r9
+ 2616κ8m2q2

7r8
+ 224κ6q4

r8
− 132κ8m3

r7

−336κ6mq2

r7
+ 144κ6m2

r6
(46)

δBd6 = 3κ8mq4

2r9
− 17κ8q6

12r10
(47)

δBd7 = −43κ8q6

12r10
+ 21κ8mq4

2r9
− 6κ8m2q2

r8
− 10κ6q4

r8
+ 8κ6mq2

r7
(48)

δBd8 = 316κ8q6

9r10
− 239κ8mq4

2r9
+ 780κ8m2q2

7r8
+ 80κ6q4

r8
− 33κ8m3

r7
− 104κ6mq2

r7

+36κ6m2

r6
(49)

δBd9 = 431κ8q6

3r10
− 471κ8mq4

r9
+ 2766κ8m2q2

7r8
+ 336κ6q4

r8
− 98κ8m3

r7

−384κ6mq2

r7
+ 108κ6m2

r6
(50)

δBd10 = 13κ8q6

6r10
− 27κ8mq4

4r9
+ 57κ8m2q2

14r8
+ 6κ6q4

r8
+ κ8m3

2r7
− 6κ6mq2

r7
(51)

B Field equations

The modified stress-energy tensor terms not shown in present literature and derived
for this work are given below. Note that any term in these equations that is proportional
to the Ricci Scalar R has been ignored as to zeroth order in RN backgrounds R̄ = 0.
This effectively nullifies any modification caused by d1 and d3.

�Tμν = d2
[
Rαβ�Rαβ − 2Rμ

γ �Rνγ − 2Rν
γ �Rμγ

+2∇γ ∇μ�Rνγ + 2∇γ ∇ν�Rμγ + 2gμν∇γ ∇α�Rγα − 2�2Rμν
]
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+d4
[
−2R2

αβ R
μν − 2gμν�R2

αβ + 2∇μ∇νR2
αβ

]

+d6
[
gμνR3

αβ − 6Rνγ Rμβ Rβγ + 3∇γ ∇μ
(
RβνRγ

β

)
+ 3∇γ ∇ν

(
RβμRγ

β

)

+3gμν∇γ ∇α

(
Rβγ Rα

β

)
− 3�

(
RβμRν

β

)]

+d7
[
gμνRσγ Rαβ Rαγσβ − 4Rσγ Rλ

γ σ
μRν

λ − 4Rσγ Rλ
γ σ

νRμ
λ

+2∇γ ∇α

(
gαμRβσ Rγ

βσ
ν + gανRβσ Rγ

βσ
μ + gμνRβσ Rγ

βσ
α

−gαγ Rσβ Rμ
βσ

ν
) + RσαRνβ Rμ

ασβ + RσαRμβ Rν
ασβ

+2∇γ ∇β

(
RμνRβγ

) − ∇γ ∇β

(
RγμRβν

) − ∇γ ∇β

(
Rγ νRβμ

)]
(52)
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