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Abstract
In this short note we study unimodular gravity inWeyl-De Donder formalism.We find
corresponding Hamiltonian and study consequence of the unimodular constraint on
the conjugate covariant momenta. We also find covariant Hamiltonian for Henneaux-
Teitelboim unimodular action and study corresponding equations of motion.
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1 Introduction and summary

Unimodular gravity was firstly introduced by A. Einstein in his paper [1] published
in 1916. In this work the unimodular constraint

√−g = 1 was used as gauge fixing
condition of general diffeomorphism in order to simplify calculations. Then it was
shown in [2, 3] that imposing this condition before the variation of Einstein-Hilbert
action leads to the traceless equations of motion. As we review below these equations
of motion are classically equivalent to the general relativity equations of motion with
crucial difference that the cosmological constant appears as integration constant rather
than true cosmological constant. This fact brings new hope how to solve cosmolog-
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ical constant problem which was however questioned in [4], 1 where it was argued
that quantum corrections make the cosmological constant ultraviolet sensitive in uni-
modular gravity as well. On the other hand it is important to stress that no definitive
conclusions have been reached yet regarding this problem and unimodular gravity is
still very intensively studied, for some works devoted to unimodular gravity, see for
example [7–24].

One of the most interesting aspects of unimodular gravity is the number of physical
degrees of freedom. Naively, unimodular constraint

√−g = 1 reduces the number
of independent components of metric to nine which could suggest that the number
of physical degrees of freedom is less than in general relativity. On the other hand
unimodular gravity is invariant under restricted diffeomorphism. Taking these two
aspects together we find that the number of local physical degrees of freedom is
the same as in ordinary general relativity. This fact was proved with the help of the
Hamiltonian analysis of unimodular gravity performed in [16–19, 25, 26]. On the other
hand as was shown in these papers standard analysis of unimodular gravity based on
D + 1 splitting of target space-time is rather non-trivial and shown complexity of the
canonical analysis of systems with constraints. 2

Then one could ask the question how unimodular gravity could be described in
covariant canonical formalism that is known as Weyl-De Donder theory [29, 30]. The
key point of this formulation is that we treat all partial derivatives as equivalent when
we define conjugate momenta. For example, if we have scalar field φ with Lagrangian
density in D + 1 dimensional space-time equal to L = − 1

2η
ab∂aφ∂bφ − V (φ), we

define the conjugate momentum as 3

πa = ∂L
∂∂aφ

= −ηab∂bφ .

Then covariant canonical Hamiltonian density is defined as

H = πa∂aφ − L = −1

2
πaη

abπb + V (φ) .

Clearly such a form of Hamiltonian density preserves diffeomorphism invariance of
the theory. This approach is known as multisymplectic field theory, see for example
[31–33], for review, see [34] and for recent interesting application of this formalism
in string theory, see [35, 36].

It is clear that such covariant canonical formalism is especially suitable for mani-
festly covariant theories as for example general relativity. In fact, covariant canonical
formalism of general relativity was found long time ago by P. Hořava [37]. This analy-

1 For review of unimodular gravity, see for example [5, 6].
2 There is an interesting question how degrees of freedom could be counted in covariant canonical formal-
ism. As far as we know this problem has not been analysed yet in covariant canonical formalism. We mean
that due to the manifest covariance of this formulation the number of degrees of freedom could be counted
as in the Lagrangian treatment that can be as powerful as covariant one, see for example [27, 28]. We hope
to study this problem in near future.
3 We define ηab = diag(−1, 1, . . . , 1), a, b = 0, 1, . . . , D.
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sis was recently generalized to the case of F(R) gravity in [38] and further elaborated
in [39].

In this paper we apply this formalism for unimodular theory of gravity in D + 1
dimensions. This is non-trivial task due to the well known complexity of canonical
analysis of unimodular gravity in non-covariant formalism. Further, it is also very
interesting to study this system since it contains primary unimodular constraint and
it is non-trivial task how to deal with such systems in covariant canonical formalism.
In more details, we include this primary constraint to the action with corresponding
Lagrange multiplier. Then we derive corresponding equations of motion. Using these
equations of motion we find that the unimodular constraint implies another constraint
on the canonical conjugatemomenta. Thenwe show that this constraint is equivalent to
the vanishing of the trace of the Christoffel symbols which is characteristic property of
unimodular theory of gravity [10]. This is nice and non-trivial result. On the other hand
the Lagrange multiplier corresponding to the primary constraint cannot be determined
as in non-covariant canonical formalism by imposing condition of the preservation
of the secondary constraint due to the fact that the equations of motion for conjugate
momenta are in the form of the divergence of these momenta. For that reason we
determine this constraint in the same way as in the Lagrangian formalism when we
calculate the trace of the equations of motion. As a result we obtain equations of
motion that are traceless and that do not depend on the cosmological constant which
is in agreement with the Lagrangian formulation of unimodular gravity.

As the second step in our analysis we find covariant canonical formulation of
Henneaux-Teitelboim formulation of unimodular gravity [25]. In this case we again
identify covariant Hamiltonian together with set of primary constraints. Then we con-
sider canonical form of the action and determine corresponding equations of motion.
Solving these equations of motion we find that Lagrange multiplier is integration con-
stant. In this casewe reproduce results well known fromLagrangian analysis. However
wemean that this is nice and interesting application of the covariant canonical analysis
to the constraint systems.

Let us outline our results and suggest possible extension of this work. We found
covariant Hamiltonian formalism for unimodular gravity. First of all we determined
covariant Hamiltonian for general relativity action in D + 1 dimensions where we
again introduced variable f ab = √−ggab. At this place we would like to stress an
importance of this result since it was not apriori known whether f ab is suitable for
formulation of gravity in space-time of dimension different from 4. Then we imposed
unimodular constraint using Lagrange multiplier method and then we studied corre-
sponding equations of motion. We found that the consistency of the theory demands
that the trace of conjugate momenta is zero. Then we showed that this is character-
istic property of unimodular gravity when we pass to Lagrangian formalism. Final
we found covariant Hamiltonian for Henneaux-Teltelboim formulation of unimodular
gravity. We identified primary constraints of the theory and then we studied equations
of motion that follow from canonical form of the action.We showed that they precisely
reproduce Lagrangian equations of motion that is nice consistency check of the covari-
ant canonical formalism. We mean that the analysis presented in this paper suggests
that covariant Hamiltonian formalism is very close to Lagrangian formalism and in
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some situations the covariant Hamiltonian formalism is more suitable than Lagrangian
one, as for example study of thermodynamics properties of horizon [40].

It is also clear that there are more systems that could be analysed with the help of
covariant canonical formalism. One possibility is to study Weyl invariant gravity in
this formalism. Another possibility would be to perform analysis of theories of gravity
with higher derivatives where the classical canonical analysis is very complicated, see
for example [41]. We hope to return to these problems in future.

This paper is organized as follows. In the next Sect. 2 we review properties of
unimodular gravity.Then in Sect. 3 we proceed to the covariant canonical formula-
tion of this theory. Finally in Sect. 4 we perform covariant canonical formulation of
Henneaux-Teltelboim unimodular gravity.

2 Brief review of unimodular gravity

In this section we review basic facts about unimodular gravity. For recent very nice
and more detailed review, see for example [5, 6]. Unimodular gravity is theory with
the constraint

√−g = 1. Clearly such a condition has a consequence on allowed
differomorphism transformation. In fact, let us consider general transformation of
coordinates

x ′a = xa + ξa(x) (1)

that implies inverse relation

xa = x ′a − ξa(x) ≈ x ′a − ξa(x ′) + O(ξ2) , (2)

where a, b, c = 0, 1, . . . , D. Under these transformation the metric gab transform as

g′
ab(x) = gab(x) − ∂cgab(x)ξ

c(x) − gac(x)∂bξ
c(x) − ∂aξ

c(x)gcb(x) (3)

that implies following variation of metric

δgab(x) = g′
ab(x) − gab(x) = −gac∂bx

c − ∂aξ
cgcb − ∂cgabξ

c

so that the variation of the square root of the determinant of metric is equal to

δ
√− det g = −(2∂aξ

a − ∂cgabg
baξ c)

√− det g . (4)

In case of unimodular gravity this variation should vanish and hence we obtain fol-
lowing condition on ξa in the form

∇aξ
a = ∂aξ

a + 1

2
gac∂dgcaξ

d = 0 . (5)
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The most straightforward way how to find an action for unimodular gravity is to
consider standard Einstein-Hilbert action with an unimodular constraint added

S = 1

16π

∫
dD+1x[√−g(R − 2�̄) + �(

√−g − 1)] + Smatt , (6)

where � is Lagrange multiplier whose variation ensures unimodular condition and
where �̄ is constant.

Performing variation of the action (6) with respect to gab we obtain following
equations of motion

1

16π
(Rab − 1

2
gab(R − 2�̄ + �)) = Tab , (7)

where Tab is matter stress energy tensor defined as

Tab = − 1√−g

δSmatt

δgab
. (8)

The crucial point is that � is Lagrange multiplier that should be determined as a
consequence of the equations ofmotion. To do thiswe perform the trace of the equation
(7) to express � as

� = (1 − D)

1 + D
R − 32π

D + 1
T + 2�̄ , T ≡ gabTab . (9)

Inserting this result into (7) we obtain

Rab − 1

D + 1
gabR = 16π(Tab − 1

D + 1
gabT ) . (10)

These equations of motion are trace-free and alsomost importantly they do not contain
any information about cosmological constant �̄.

It is important to stress that even equations of motion of general relativity without
unimodular constraint imposed split into 9 trace-free equations of motion and one
additional one. To see this consider general relativity equations of motion

Rab − 1

2
gab(R − 2�̄) = 16πTab . (11)

Taking the trace of this equation we can express R as

R = 2

1 − D
(16πT − (D + 1)�̄) . (12)

Note that with the help of this equation we can rewrite (11) into trace-free form

Rab − 1

D + 1
Rgab = 16π(Tab − 1

D + 1
Tgab) . (13)
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However we should again stress that (12) determines R as function of trace of matter
stress energy tensor and true cosmological constant term in Einstein-Hilbert action
while in case of unimodular gravity we express �-which is Lagrange multiplier and
not constant, as function of R, T and �̄, as follows from equation (9).

In order to check equivalence between unimodular gravity and ordinary general
relativity we should be able to reproduce equation (12) in case of unimodular gravity
as well. We can do this by following procedure. Consider equations of motion (10)
and rewrite them into the form

Rab − 1

2
gabR = 16π(Tab − 1

D + 1
gabT ) + 1 − D

2(D + 1)
Rgab . (14)

Now we apply covariant derivative on both sides of the equations above and using the
fact that the covariant derivative of Einstein tensor Gab = Rab − 1

2gabR is zero we
get

1

D + 1
∇b(16πT − 1 − D

2
R) = 16π∇aTab . (15)

If we consider ordinary form of matter we obtain that divergence of stress energy
tensor is zero as a consequence of matter equations of motion. Then the right side of
the equation above is zero and the left side can be easily integrated with the result

R = 2

1 − D
(16πT + 	) , (16)

where	 now appears as true integration constant rather than the cosmological constant
that was imposed in the theory by hand. In other words (16) is the last equation
of motion of unimodular gravity and we fully recovered equivalence with general
relativity however keeping in mind that we should still have to impose the condition√−g = 1 in the course of calculations.

Having performedbasic reviewof unimodular gravityweproceed in the next section
to its formulation in the covariant Hamiltonian formalism.

3 Covariant Hamiltonian formalism ForD + 1 dimensional
unimodular gravity

In this section we find covariant Hamiltonian formalism for unimodular gravity in
D + 1 formalism.

As usual in the covariant formalism we split the Einstein-Hilbert action into bulk
and boundary terms. Since this procedure is well known, see for example [37, 40] and
also recent generalization to the case of F(R) gravity [38] we write immediately final
result

L = Lbulk + Lsur f ,

Lbulk = 1

16π

√−g[
h
dk


k
ghg

gd − 

f
f k


k
ghg

gh]
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+ 1

16π
�̄

√−g + 1

16π
λ(

√−g − 1)

≡ Lquad + 1

16π
�̄

√−g + 1

16π
λ(

√−g − 1) ,

Lsur f = 1

16π
∂ j [√−g(gik
 j

ik − gi j
k
ik)] , (17)

where 
a
bc are Christoffel symbols


a
bc = 1

2
gad(∂bgdc + ∂cgdb − ∂cgab) , (18)

andwhere �̄ is cosmological constant.Note that the presenceof the termwithLagrange
multiplier allows us to treat all components of metric as independent.

Now we are ready to proceed to the covariant Hamiltonian formulation of this the-
ory. The main idea of this formalism is to treat all derivatives of dynamical variables
on the equal footing [29, 31, 37] which is sharp contrast with the standard canonical
formalism where the time coordinate has exceptional meaning. This is very attractive
idea especially in the context of generally covariant theories since sometimes it is very
difficult to perform D + 1 splitting of targe-space time and corresponding dynam-
ical fields. In case of covariant canonical formalism of gravity we define conjugate
momenta Mcmn to gmn in the following way

Mcmn = ∂Lbulk

∂∂cgmn
. (19)

Note that the momenta are defined by bulk part of the Lagrangian density only as
follows from the fact that equations of motion are derived by variation of the action
when we fix metric and its derivative on the boundary, for careful discussion see [40].

Then from (17) we obtain

Mcmn = 1

32π

√−g[gmk
c
kdg

dn + gnk
c
kdg

dm

−gmn
c
ghg

gh − 

f
f k(g

kmgcn + gkngcm) + gmngck
 f
f k] (20)

using

δ
k
gh

δ∂cgmn
= 1

4
(gksδcg(δ

m
s δnh + δns δ

m
h )

+gksδch(δ
m
s δng + δns δ

m
g ) − gksδcs (δ

m
g δnh + δngδ

m
h )) (21)

Then we could formulate covariant Hamiltonian formalism using canonical variales
gab and Mcab. However it turns out that the situation is much simpler when we intro-
duce an alternative set of variables [37, 40] that are defined as

f ab = √−ggab . (22)
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Then it is easy to see that the conjugate momenta are defined by chain rule

Nc
ab = ∂Lquad

∂∂c f ab
= ∂Lquad

∂(∂dgmn)

∂(∂dgmn)

∂(∂c fab)
. (23)

From (22) we see that f ab and gmn are related by point transformations so that

∂dgmn = ∂gmn

∂ f ab
∂d f

ab . (24)

Then we have

∂(∂dgmn)

∂(∂c f ab)
= ∂gmn

∂ f ab
δcd (25)

and finally

Nc
ab = ∂Lquad

∂(∂cgmn)
(−gmk B

kl
abgln) , (26)

where

Bkl
ab = δgkl

δ f ab
= (− f )−

1
D−1

(
1

2
(δkaδ

l
b + δlaδ

k
b) − 1

D − 1
f kl fab

)
, (27)

where we used the fact that

− det f ≡ − f = (−g)
D+1
2 (−g)−1 (28)

and consequently

√−g = (− f )
1

D−1 , gab = (− f )−
1

D−1 f ab . (29)

Then using previous form of Mcmn we obtain

Nc
ab = ∂Lquad

∂(∂cgmn)
(−gmk B

kl
abgln)

= − 1

32π
[2
c

ab − 

f
f aδ

c
b − 


f
f bδ

c
a] . (30)

Note that this relation does not depend on the number of space-time dimensions. Then
in order to find corresponding Hamiltonian we should find inverse relation between

a
bc and Na

bc. Let us presume that it has the form


c
ab = ANc

ab + B(Nd
daδ

c
b + Nd

bdδ
c
a) . (31)
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Inserting (30) into (31) we obtain

Nc
ab = − 1

32π
(2ANc

ab + 2B(Nd
daδ

c
b + Nd

bdδ
c
a) −

−(A + B(D + 2))N f
f aδ

c
b − (A + B(D + 2))N f

f bδ
c
a) (32)

using 

f
f a = (A + B(D + 2))N f

f a . Comparing left and right side we obtain that A
and B are equal to

A = −16π , B = −A
D

. (33)

Then it is easy to find kinetic term of covariant Hamiltonian for D + 1 dimensional
unimodular gravity in the form

Hkin = ∂c f
abNc

ab − Lquad = 16π

[
Nb
cd f

daNc
ab − 1

D
Nr
ra f

abNs
sb

]
, (34)

where we used the fact that

∂c f
ab = ∂c

√−ggab + √−g∂cg
ab = 
d

dc f
ab − 
a

cd f
db − 
b

dc f
da (35)

together with the condition ∇cgab = 0 that implies

∂c
√−g = 
d

dc
√−g , ∂cg

ab = −(
a
cdg

db + 
b
cdg

da) . (36)

The final formof the covariantHamiltonian for unimodular gravity contains termswith
the unimodular constraint and true cosmological constant �̄. Then the phase-space
form of the action has the form

S =
∫

dD+1x(Nc
ab∂c fab − Hkin − 1

16π
(− f )

1
D−1 �̄ − 1

16π
λ((− f )

1
D−1 − 1)) ,

(37)

where λ is Lagrange multiplier corresponding to unimodular constraint. From the
action abovewe determine corresponding equations ofmotion by performing variation
with respect to f ab, Nc

ab and λ

δS =
∫

dD+1x(δNc
ab∂c fab + Nc

ab∂cδ fab

−δHkin

δNc
ab

δNc
ab − δHkin

δ f ab
δ f ab

− 1

16π(D − 1)
(λ + �̄)(− f )

1
D−1 δ f ab fab − δλ((− f )

1
D−1 − 1)) = 0 (38)
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that implies following equations of motion

∂c f
ab = δH

δNc
ab

, (− f )
1

D−1 − 1 = 0 ,

−∂cN
c
ab = δH

δ f ab
+ λ

16π(D − 1)
(− f )

1
D−1 fab + �̄

16π(D − 1)
(− f )

1
D−1 fab, (39)

or explicitly

∂c f
ab = 16π [Na

cd f
db + Nb

cd f
da − 1

D
( f bd Ns

sdδ
a
c + f ad Ns

sdδ
b
c )] ,

−∂cN
c
ab = 16π

2
(Nd

caN
c
bd + Nd

cbN
c
ad)

−16π

D
Nr
raN

s
sb + λ

16π(D − 1)
(− f )

1
D−1 fab + �̄

16π(D − 1)
(− f )

1
D−1 fab ,

(− f )
1

D−1 − 1 = 0 . (40)

Taking the trace of the second equation we can determine λ as

λ = 16π(D − 1)

(D + 1)
(−∂cN

c
ab f

ab − 16πNd
ca f

abNc
bd + 16π

D
Nr
ra f

abNs
sb) − �̄, (41)

where we have took into account the equation on the fourth line in (40). Then the
equations of motion for Nc

ab have the form

− ∂cN
c
ab = 16π

2
(Nd

caN
c
bd + Nd

cbN
c
ad) − 16π

D
Nr
raN

s
sb

+ 1

(D + 1)
(−∂ j N

j
ik f

ik − 16πNd
ci f

ik Nc
kd + 16π

D
Nr
ri f

ik Ns
sk) fab. (42)

Clearly this equation is traceless and all dependence on the cosmological constant �̄
disappears which is an essence of unimodular gravity.

On the other hand one let us try to calculate the trace of the first equation that gives

∂c f
ab fab = 16π [Na

cd f
db + Nb

cd f
da − 1

D
( f bd Ns

sdδ
a
c + f ad Ns

sdδ
b
c )] fba (43)

that can be simplified into the form

∂c f = 32π [D − 1

D
]Ns

sc .

Now taking into account unimodular constraint we immediately get the condition

Ns
sc = 0 (44)
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that can be interpreted as secondary constraint. On the other hand the condition (44)
seems to be too strong so that we should discuss it in more details.

We begin with the recapitulation that unimodular gravity in the covariant Hamil-
tonian formalism is described by canonical conjugate variables f ab, Nc

ab that are
restricted by unimodular condition together with (44). In order to find proper interpre-
tation of the constraint (44) it is instructive to derive general relativity variables from
f ab, Nc

ab. As the first step let us consider linear combination of Nc
ab that we denote as


c
ab and which is given by following prescription


c
ab = −16πNc

ab + 16π

D
(Nd

daδ
c
b + Nd

bdδ
c
a) . (45)

This can be always done and we should again stress that 
c
ab is not related to f ab at

all. Clearly
c
ab = 
c

ba . Then we define covariant derivative where
c
ab are coefficients

of connection. Let us further define gab and its inverse gab in the following way

gab = f ab(− f )
1

1−D , gab = fab(− f )
1

D−1 . (46)

Let us then define covariant derivative of gab as

∇cg
ab = ∂cg

ab + 
a
cdg

db + 
b
cdg

da , (47)

that, using (45), takes the form

∇cg
ab = (− f )

1
1−D ×

×[∂c f ab − 16πNa
cd f

db − 16πNb
cd f

da + 16π

D
f bd Nr

drδ
a
c + 16π

D
Nr
dr f

daδbc ] = 0 ,

(48)

where we used the first equation in (40) that also implies ∂c f mn fmn = 32π D−1
D Ns

sc.
Now thanks to the equation ∇cgab = 0 we can express 
a

bc in the form of Christoffel
symbols


a
bc = 1

2
gad(∂bgdc + ∂cgdb − ∂dgbc) . (49)

On the other hand let us return to the relation between 
a
bc and Na

bc that takes the
form



f
f a = −32π

D
N f

f a (50)

so that condition that Ns
sa = 0 implies


s
sa = 0 . (51)
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On the other hand from (49) we obtain



f
f c = 1

2
g f d∂cgd f = ∂c det g = 0 (52)

so that condition Ns
sc = 0 is equivalent to unimodular condition 4. It is important to

stress that the fact that unimodular constraint implies
s
sa = 0 has not been appreciated

too much with exception of recent interesting paper [10] where it was stressed that the
equivalence between general relativity and unimodular gravity is non-trivial. Rather, it
was argued there that the natural geometry for unimodular relativity is equiprojective
geometry [42]. We also see that the condition Ns

sa = 0 emerges naturally in the
covariant canonical formalism of unimodular gravity.

4 Covariant form of unimodular gravity

In this section we perform covariant canonical formalism for Henneaux-Teitelboim
formulation of unimodular gravity that has the form

S = 1

16π

∫
dD+1x

√−g[R + λ(
√−g − ∂aτ

a)] , (53)

where τ a is vector density and λ is Lagrange multiplier. Now the equations of motion
for λ implies

√−g − ∂aτ
a = 0 (54)

while equation of motion for τ a leads to

∂aλ = 0 . (55)

It is clear that the covariant Hamiltonian formulation of this theory is almost the same
as in previous case with difference that there is momentum conjugate to τ a . Writting
∂aτ

a = ∂bτ
aδba we obtain momentum conjugate to τ a to be equal to

pba = δL
δ∂bτ a

= − 1

16π
λδba (56)

however this can be interpreted as primary constraints of the theory

Gb
a ≡ pba + 1

16π
λδba . (57)

4 At first sight there is a discrepancy between number of constraints Ns
sa = 0 where we have n these

constraints and the single constraint det g = 1. As we argued above on-shell the condition Ns
sa = 0 is

equivalent to the condition 
s
sa = ∂a det g = 0. We see that we need exactly n such equations in order to

ensure that det g = const.
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In fact, the bare Hamiltonian is defined as

HB = pba∂bτ
a + ∂c f

abNc
ab − L

= 16π [Nb
cd f

daNc
ab − 1

D
Nr
ra f

abNs
sb] − 1

16π
λ(− f )

1
D−1 (58)

and we see that the dependence on momenta pν
μ is missing. For that reason we should

consider Hamiltonian with primary constraints included

HT = 16π [Nb
cd f

daNc
ab − 1

D
Nr
ra f

abNs
sb]

− 1

16π
λ(− f )

1
D−1 + 
a

b (p
b
a + 1

16π
λδba) (59)

and consider corresponding equations of motion that arise from the variation of the
canonical form of the action

S =
∫

dD+1x(∂c f
abNc

ab + pab∂aτ
b − 16π [Nb

cd f
daNc

ab − 1

D
Nr
ra f

abNs
sb]

+ 1

16π
λ(− f )

1
D−1 + 
a

b (p
b
a + 1

16π
λδba)) (60)

so that the equations of motion have the form

∂c f
ab = 16π [Na

cd f
db + Nb

cd f
da − 1

D
( f bd Ns

sdδ
a
c + f ad Ns

sdδ
b
c )] ,

−∂cN
c
ab = 16π

2
(Nd

caN
c
bd + Nd

cbN
c
ad) − 16π

D
Nr
raN

s
sb + λ

(D − 1)
(− f )

1
D−1 fab ,

(− f )
1

D−1 + 
a
a = 0 , ∂bτ

a + 
a
b = 0 , ∂a p

a
b = 0 , pba + 1

16π
λδba = 0 .

(61)

If we combine the first and the second equation on the third line we find

(− f )
1

D−1 = ∂aτ
a (62)

that has exactly the same form as equation (54). We further perform partial derivative
of the fourth equation on the third line and we obtain

∂b p
b
a = − 1

16π
∂aλ (63)

that using the third equation on the same line implies that

∂aλ = 0 . (64)
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This equation also shows that λ is constant and it can be interpreted as integration con-
stant. Then it can be argued in the sameway as in the previous section that the equations
(61) are equivalent to the Lagrangian equations of Henneaux-Teitelboim gravity. In
other words, covariant Hamiltonian description of Henneaux-Teiltelboim gravity is
equivalent to corresponding Lagrangian description which is nice consistency check.
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