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Abstract
We investigate the influence of the higher order curvature terms on the static configu-
ration of a charged dust distribution in EGB gravity. The EGB field equations for such
a fluid are generated in higher dimensions. The governing equation can be written as
an Abel differential equation of the second kind, or a second order linear differential
equation. Exact solutions are found to these equations in terms of special functions,
series and polynomials. The Abel differential equation of the second kind is reducible
to a canonical differential equation; three new families of solutions are found by con-
straining the coefficients of the canonical equation. The charged dust model is shown
to be physically well behaved in a region at the centre, and dust spheres can be gen-
erated. The higher order curvature terms influence the dynamics of charged dust and
the gravitational behaviour which is distinct from general relativity.
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1 Introduction

Dust is considered to be the simplest form of matter composed of pressureless, radia-
tion and is abundant in galaxies, clusters and superclusters in a cosmological context.
This formofmatter has beenwidely studied in a variety of contexts such as scalar fields,
rotational and irrotational distributions, forms of spatial symmetry, null geodesics, the
modelling of gravitational collapse and black hole formation [1–5]. It has also been
shown that stars are encompassed by these radiating pressureless particles whichmake
up the atmosphere of the star. In a pioneering work, Vaidya [6] described the space-
time outside a spherically symmetric star emitting or absorbing null dust. Wang and
Wu [7] generalised the Vaidya solution for a type II fluid. The gravitational collapse
of spherically symmetric dust distributions can result in black holes or naked singu-
larities depending on initial conditions. Of this nature, the Lemaître–Tolman–Bondi
(LTB) metric is among one of the earliest solutions to the Einstein field equations that
describe a spherically symmetric dust distribution undergoing collapse in a neutral
setting [8–10]. In a similar treatment, Papapetrou [11] showed that the end result of
the gravitational collapse of null dust in a Vaidya spacetime is a naked singularity.
This Vaidya–Papapetrou model was then extended by [12] to investigate outgoing
causal geodesics. Furthermore, the presence of the electromagnetic field has a signif-
icant effect on the gravitational behaviour of astrophysical objects. In particular, the
gravitational collapse of a compact object such as a neutron star can be counteracted
by the repulsive nature of the Coulombic force along with the pressure gradient. It
has been noted that charge is one of the characterising features of a black hole along
with its mass and angular momentum according to the ‘no hair’ theorem proposed by
Misner et al. [13]. Significant treatments in this direction include the charged Vaidya
solution which was used to study the thermodynamics of black holes [14] and evap-
orating black holes [15]. Breithaupt et al. [16] demonstrated that the rigid motion of
a rotating disc of dust with constant charge results in a Kerr–Newman black hole in
the ultra-relativistic limit. Therefore it remains important to study the simple form of
dust matter in the presence of an electromagnetic field.

The dynamics of charged dust gravitating systems have been of great interest in
general relativity and have been studied in the context of static distributions, rotat-
ing systems, and various astrophysical scenarios which include gravitational collapse
and black hole physics. The earliest treatments in this direction can be attributed to
Majumdar [17] and Papapetrou [18]. Following the result of Weyl [19], Majumdar
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demonstrated a functional relationship between the gravitational potential and the
electrostatic potential, and a similar approach was considered by Papapetrou. In a
nonstatic spherically spacetime, the general solution to the Einstein–Maxwell field
equations was presented in implicit form by Vickers [20]. Raychaudhuri [21] con-
sidered the rigid motion of charged dust without specifying symmetry. Tikekar [22]
obtained physically viable models for a spherically symmetric static sphere of charged
dust in equilibrium. More recently, Hansraj et al. [23] presented exact solutions for
static charged distributions and identified cases of the Finch-Skea geometry and the
Schwarzchild metric. Brassel et al. [24] modelled the dynamics of a spherically sym-
metric radiating star with three concentric regions for which pressureless null radiation
was considered and the geometry described by the Vaidya spacetime. Several families
of solutions for various realistic equations of state were also obtained in this work.
Other treatments of charged dust have been discussed extensively in [25–29]. In the
context of black holes,Oppenheimer andSnyder [30] generated the first analyticmodel
of black hole formation for a homogeneous dust cloud. Additionally, the final fate of
gravitational collapse of a dust fluid with spherical symmetry has been considered in
a number of works by Christodoulou [31], Newman [32] and Banerjee et al. [33].

In the context of modified gravity, fewer treatments of charged null dust models
are known. It is important to investigate the effects of higher order corrections, higher
dimensions and other possible modifications of the theories, on pressureless models.
The gravitational collapse of null dust in f (R) gravity was analysed in detail by Ghosh
and Maharaj [34] in higher dimensions. It was found that a naked singularity forms
in the situation where a null dust is injected into an initially higher dimensional (anti)
de-Sitter spacetime. A charged spherically symmetric model in modified f (G, T )

gravity under the class I embedding condition was obtained by Maurya et al. [35].
An anisotropic compact stellar system in the presence of charged dust was studied by
Mustafa et al. [36] in the framework of Rastall gravity in the phantom field regime.
Generalised static solutions of an equilibrium state were found and as a result, strange
stellar body configurations were identified in the physical features of the solution.

It is important to determine the gravitational dust dynamics in the presence of an
electromagnetic field in the framework of Einstein–Gauss–Bonnet (EGB) gravity. Lit-
tle information about such structures in a static spacetime are known in this framework
of gravity. EGB gravity is one of the more promising theories of gravity which belongs
to a special case (order two) of Lovelock gravity. In this theory, higher order curvature
terms arise and appear as corrections to Einstein gravity. Moreover the field equations
are second order and quasilinear which is a remarkable feature as similar properties
are found in general relativity. As such numerous results have been conducted in this
framework of gravity in a variety of astrophysical scenarios. For example, Kobayashi
generalised the Vaidya type radiating solution in EGB gravity [37]. Maharaj et al. [38]
obtained exact solutions for a static spherically symmetric distribution in five dimen-
sions. Moreover, Brassel et al. [39] investigated the gravitational collapse of a null
radiation shell in five dimensions which was then generalized to arbitrary dimensions
in [40]. Some other pioneering results on black hole solutions, radiating stars, static
systems and charged distributions in EGB gravity include those by [41–44]. Further-
more, seminal works on the nature of a neutral dust fluid distribution include those
considered by Maeda [45] who modelled the gravitational collapse of a spherically
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symmetric neutral dust cloud in higher dimensions. Jhingan and Ghosh [46] presented
an exact model of the gravitational collapse of an inhomogeneous dust distribution
which represents a generalization of the LTB spacetimes to five dimensional EGB
gravity. Ghosh and Maharaj [47] obtained exact nonstatic null dust solutions in the
novel four dimensional limit of EGB gravity. Similar works in this direction were
conducted by [48–51]. In addition, Brassel et al. [52] analysed the process of gravi-
tational collapse of a null dust radiation shell in five dimensional EGB gravity in the
presence of an electromagnetic field. It was found that the nature of collapse differs
significantly to its uncharged counterpart. Hansraj [53] was the first to study static
charged dust distributions in EGB gravity with spherical symmetry and obtained a
number of exact solutions in closed form in dimensions N = 5 and N = 6. Brassel et
al. [54] studied the formation of singularities in the context of the Cosmic Censorship
Conjecture (CCC) for a charged radiating Boulware–Deser spacetime in five dimen-
sions; the EGB analogue of the Vaidya spacetime with charge. In light of the above it
is worthwhile to investigate the dynamics of charged dust in higher dimensional EGB
gravity.

In this paper we consider the matter distribution to be a pressureless fluid in the
presence of an electromagnetic field.We generate the EGBfield equations for a spheri-
cally symmetric static spacetime in arbitrary dimensions. For such a fluid distribution,
the pressure is zero and the governing equation that arises is an Abel differential
equation of the second kind in one of the gravitational potentials. It is also a second
order linear differential equation in the second potential. We demonstrate solutions to
the governing equation by first treating it as a second order linear differential equa-
tion. Furthermore we show that the Abel differential equation can be transformed to
a simpler canonical form which is still first order and nonlinear in nature. We gener-
ate several new classes of solutions to this equation by imposing restrictions on the
canonical differential equation.

2 EGB gravity andMaxwell’s equations

The electromagnetic energy tensor E in N dimensions is represented by

Eab = 1

AN−2

(
FacFb

c − 1

4
gabFcd F

cd
)

, (1)

which is comprised of the Faraday tensor F and the metric tensor g. The quantity
AN−2 represents the surface area of the unit (N − 2)-sphere and is defined by

AN−2 = 2π
N−1
2

�
( N−1

2

) , (2)

where �(. . .) is the gamma function. Maxwell’s equations govern the electromagnetic
field and these governing equations are expressed in a covariant manner as

Fab;c + Fbc;a + Fca;b = 0, (3a)
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Fab;b = AN−2 J
a, (3b)

where J represents the current for a non-conducting fluid and is represented by

Ja = σua, (4)

where σ is the proper charge density and ua is a unit and timelike N -velocity (uaua =
−1).

In the case of a dust distribution, the energy momentum tensor is given by

Tab = ρuaub, (5)

where ρ is the energy density. Thus the total energy momentum tensor for a charged
dust matter distribution T is then defined by

Tab = Tab + Eab. (6)

The EGB field equations for a charged dust distribution are given by

Gab − α

2
Hab = κNTab. (7)

where G is the Einstein tensor, α is the Gauss–Bonnet constant and κN is the Einstein
coupling constant denoted by

κN = 2 (N − 2) π
N−1
2 G

c4 (N − 3) �
( N−1

2

) . (8)

The Einstein coupling constant, κN and the surface area term AN−2 appear as a ratio
in the field equations as κN

AN−2
= N−2

N−3 from (2) to (8). In EGB gravity, curvature terms
that are quadratic in nature appear as corrections to Einstein gravity in the form of the
EGB tensor H which is represented by

Hab = gabLGB − 4RRab + 8RacR
c
b + 8Rcd Racbd − 4Ra

cdeRbcde. (9)

The Gauss–Bonnet term LGB is expressed by

LGB = R2 + Rabcd R
abcd − 4Rcd R

cd , (10)

which consists of a linear combination of the quadratic curvature terms. The field
equations to be solved are (3) and (7).
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3 Static charged dust

The spherically symmetric static metric in N dimensions is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2d
2
N−2, (11)

where ν(r) and λ(r) are arbitrary functions of r that represent the metric potentials.
The metric for the unit (N − 2)-sphere is written as

d
2
N−2 =

N−2∑
i=1

⎛
⎝
⎡
⎣i−1∏

j=1

sin2(θ j )

⎤
⎦ (dθi )

2

⎞
⎠ . (12)

We choose the electromagnetic potential to be of the form

Aa = (�(r), 0, 0, . . . , 0) , (13)

and the nonzero Faraday tensor components are calculated as

F01 = −F10 = e−2(ν+λ)�′(r) = e−(ν+λ)E(r), (14)

where E(r) is the electrostatic field intensity. The total charge within the hypersphere
is given by

l(r) = AN−2

∫ r

σeλr N−2dr̃ . (15)

For the charged spherically symmetric dust distribution we can obtain the EGB
field equations in N dimensions. These are expressed as

κN

(
ρ + E2

2AN−2

)
= (N − 2)

r4e4λ

[
r3e2λλ′ + (N − 3) r2e4λ

2
− (N − 3) r2e2λ

2

+α̂
(
e2λ − 1

)(
2rλ′ + (N − 5)

(
e2λ − 1

)
2

)]
, (16a)

κN

2AN−2
E2 = − (N − 2)

r4e4λ

[
r3e2λν′ + (N − 3) r2e2λ

2
− (N − 3) r2e4λ

2

+α̂
(
e2λ − 1

)(
2rν′ − (N − 5)

(
e2λ − 1

)
2

)]
, (16b)

κN

2AN−2
E2 = 1

r2e2λ

[
(N − 3) (N − 4)

2
+ r2

(
ν′′ + ν′2 − ν′λ′)

+ (N − 3) r
(
ν′ − λ′)+ 2α̂

(
ν′′ + ν′2 − ν′λ′) ]
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+ 1

r2e4λ

[
6α̂ν′λ′ − 2α̂

(
ν′′ + ν′2)− (N − 3) (N − 4) e4λ

2

]

+2α̂ (N − 5)

r3e4λ

[(
e2λ − 1

) (
ν′ − λ′)]

− α̂ (N − 5) (N − 6)
(
e2λ − 1

)2
2r4e4λ

, (16c)

σ = e−λ
(
r (N−2)E

)′
r (N−2)AN−2

, (16d)

in terms of canonical coordinates and α̂ = α (N − 3) (N − 4). Note that primes repre-
sent differentiation with respect to the spacetime coordinate r . System (16) describes
the gravitational behaviour of a charged dust distribution in higher dimensional EGB
gravity. Note that we can eliminate E2 from (16b) and (16c) leading to an integrability
condition involving only the potentials ν and λ.

The conservation equations T ab;b = 0 lead to the result

ρν′ = E

AN−2r (N−2)

(
r (N−2)E

)′
, (17)

also called the continuity equation. Equation (17) can also be obtained directly from
the field equations (16). The continuity equation (17) is useful in generating exact
solutions.

We now make use of a change of coordinates in order to simplify system (16). We
let

e2ν(r) = y2(x), e−2λ(r) = Z(x), x = r2, (18)

which was first implemented by Durgapal and Bannerji [55] in general relativity for a
neutron star. In terms of the new variables the line element (11) becomes

ds2 = −y2(x)dt2 + 1

4x Z(x)
dx2 + xd
2

N−2. (19)

Then the charged dust EGB field equations (16) can be written in terms of the new
variables y and Z . We obtain the matter quantities

κNρ = (N − 2)

[
(N − 3) (1 − Z) − 2x Ż

2x

+ α̂ (1 − Z)

2x2
(−4x Ż + (N − 5) (1 − Z)

)]

− (N − 2)

2 (N − 3)
E2, (20a)

σ 2 =
Z
[
2x

(N−1)
2 Ė + (N − 2) x

(N−3)
2 E

]2
(AN−2)2 x (N−2)

, (20b)
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(N − 2)

(N − 3)
E2 = 2

y

[
2x Z ÿ + x Ż ẏ + (N − 2) ẏ Z

]

+ (N − 3)

[
Ż + (N − 4) (Z − 1)

2x

]

+α̂

[
4Ż ẏ (1 − 3Z)

y
+ 8Z (1 − Z) ÿ

y

+4 (N − 4) Z (1 − Z) ẏ

xy
+ 2 (N − 5) Ż (1 − Z)

x

− (N − 5) (N − 6) (1 − Z)2

2x2

]

− (N − 2)

[
2Z ẏ

y
+ (N − 3) (Z − 1)

2x

+α̂ (1 − Z)

(
4Z ẏ

xy
− (N − 5) (1 − Z)

2x2

)]
, (20c)

where dots represent differentiation with respect to x , subject to the integrability
condition

4x2Z
[
x + 2α̂ (1 − Z)

]
ÿ +

[
2x3 Ż + 4α̂x2 Ż − 12α̂x2Z Ż

−8α̂ (N − 3) x Z2 + 4 (N − 2) x2Z + 8α̂ (N − 3) x Z
]
ẏ

+
[
(N − 3) x2 Ż + (N − 3)2 x (Z − 1) + 2α̂ (N − 5) x (1 − Z) Ż

−α̂ (N − 4) (N − 5) Z2 + 2α̂ (N − 4) (N − 5) Z − α̂ (N − 4) (N − 5)
]
y = 0.

(21)

For gravitating charged dust, Eq. (21) must be solved to obtain forms for y and Z . It
is a nonlinear differential equation, however it may be viewed as a second order linear
differential equation in y if Z is specified. Thenρ, E andσ follow from the system (20).
It is interesting to observe that the dynamical behaviour of charged gravitating dust is
influenced by the Gauss–Bonnet coupling constant α and the spacetime dimension N .
When α = 0 then we obtain N dimensional general relativity. The EGB case N = 5
is special leading to the simpler integrability condition

2x Z [x + 4α (1 − Z)] ÿ +
[
x2 Ż + 4αx (1 − 3Z) Ż − 16αZ2 + 6x Z + 16αZ

]
ẏ

+ [x Ż + 2 (Z − 1)
]
y = 0, (22)

where α̂ = 2α, with dynamics that is clearly different for N ≥ 6 in (21).
We find exact solutions to (21) by generating an Abel differential equation and a

second order linear differential equation.
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3.1 Abel differential equation: y = ã

The first case we consider are a class models for which the metric potential y is given
by

y = ã, (23)

where ã is some constant. The assumption (23) affects the spacetime geometry and
ensures that the timelike congruences are acceleration-free. In EGB gravity stellar
solutions have been found using the condition (23), and the resulting model has been
discussed by Chilambwe et al. [56]. In the present investigation we show that dust dis-
tributions are also possible in EGB gravity. Here the Gauss–Bonnet contributons from
the curvature nullifies the effect of the electric field to generate dust. We observe that
static dust models also rise in f (R) gravity models and they display stable behaviour
[57]. Equation (21) then becomes

x
[
(N − 3) x + 2α̂ (N − 5) (1 − Z)

]
Ż − α̂ (N − 4) (N − 5) Z2

+
[
(N − 3)2 x + 2α̂ (N − 4) (N − 5)

]
Z

− (N − 3)2 x − α̂ (N − 4) (N − 5) = 0, (24)

which is an Abel differential equation of the second kind in Z . Equations of this type
are difficult to solve. We observe that it is a first order differential equation which can
be written as

S(x, Z)dZ + M(x, Z)dx = 0,

where

S(x, Z) = x
[
(N − 3) x + 2α̂ (N − 5) (1 − Z)

]
,

M(x, Z) = −α̂ (N − 4) (N − 5) Z2 − (N − 3)2 x − α̂ (N − 4) (N − 5)

+
[
(N − 3)2 x + 2α̂ (N − 4) (N − 5)

]
Z .

It can be observed that ∂M(x,Z)
∂Z �= ∂S(x,Z)

∂x . We now require an integrating factorR(x)
such that R(x)S(x, Z)dZ + R(x)M(x, Z)dx = 0 is an exact differential equation.
This implies that

∂ (R(x)M(x, Z))

∂Z
= ∂ (R(x)S(x, Z))

∂x
.

The above equation simplifies to

dR(x)

dx
= (N − 5)

x
R(x).
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Integrating the above yields R(x) = xN−5. We now multiply (24) by this form of
R(x) to generate the general solution

α̂ (N − 5) x (N−4) (Z − 1)2 − (N − 3) xN−3 (Z − 1) + C = 0, (25)

where C is an integration constant. Observe that for this class of models, E2 ∼ 1
x3

(N = 5) and E2 ∼ 1
xN−2 (N > 5). In both cases, upon substitution of E2 in (20b), we

obtain for the proper charge density, σ = 0, and as a result there is no current J. We
do not pursue this case further.

3.2 Linear equation: Z = k

We choose the potential Z to be of the form

Z = k, (26)

where k is an arbitrary constant. Then (21) becomes

4kx2
[
x + 2α̂ (1 − k)

]
ÿ + 4kx

[
2α̂ (N − 3) (1 − k) + (N − 2) x

]
ẏ

+
[
α̂ (N − 4) (N − 5)

(
−k2 + 2k − 1

)
+ (N − 3)2 x (k − 1)

]
y = 0. (27)

This equation is a second order linear differential equation in the variable y. It has a
solution in terms of hypergeometric functions. The explicit form of y can easily be
found in terms of these special functions using the software package Maple. Some
examples with specific forms of y are studied in Hansraj [53]. In general the form
of the solution in terms of hypergeometric functions is complicated and not useful in
applications. It is therefore necessary to consider solutions in which Ż �= 0.

In the general relativistic limit, α̂ = 0, equation (27) takes the form

4kx2 ÿ + 4 (N − 2) kx ẏ +
[
(N − 3)2 (k − 1)

]
y = 0. (28)

This equation is of Euler–Cauchy typewhich can easily be solved to obtain the solution

y = A1x
(1−

√
k)(N−3)

2
√
k + A2x

− (1+
√
k)(N−3)

2
√
k . (29)

In the above, A1 and A2 represent integration constants. Equation (29) represents
charged dust models in N dimensions in the general relativistic case. When N = 4,
we then obtain

y = A1x
(1−

√
k)

2
√
k + A2x

− (1+
√
k)

2
√
k , (30)

which regains the result presented in Hansraj et al. [23]. We have therefore shown that
the EGB dust models do regain known dust models in the N = 4 general relativity
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limit α̂ = 0. When α̂ �= 0 the potentials are expressed in terms of hypergeometric
functions as mentioned above.

3.3 Linear equation: Z = 1+ b̃x

To find solutions when Ż �= 0, we can try

Z = ã + b̃x, (31)

where ã and b̃ are arbitrary constants. Then Eq. (21) leads to solutions in terms of
special functions, namely Heun functions. This can be easily verifiedwith the software
package Maple. Again the resulting analytic form of the solution is complicated and
cannot easily be applied to study the physical features of the model. If we restrict the
values of the parameters ã and b̃ then substantial simplification is possible.

The choice ã = 1 gives

Z = 1 + b̃x, (32)

which leads to the differential equation

4x
(
1+b̃x

) [
1−2α̂b̃

]
ÿ+
[
4 (N−2)

(
1−2α̂b̃

)
+2 (2N−3) b̃

(
1 − 2α̂b̃

)
x
]
ẏ

+ (N − 2) b̃
[
(N − 3) − α̂ (N − 5) b̃

]
y = 0. (33)

This equation has a solution in terms of hypergeometric functions. We can also show
that (33) has solution in terms of simple power series and polynomials.

As x = 0 is a regular singular point of (33) we can show that (33) has the general
solution represented by

y = Ay1 + By2, (34)

where A and B are constants. The functions y1 and y2 are given by

y1 = c0 +
∞∑
n=1

(−1)n

4n
(
1 − 2α̂b̃

)n
n! (n − 1 + N − 2)!

×
[
2b̃
(
1 − 2α̂b̃

)
(n − 1) [2 (n − 2) + 2N − 3]

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

) ]
! c0xn, (35)

and

y2 = Q̃y1 ln x +
∞∑
n=0

dnx
n+3−N . (36)
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The relevant details on the calculations for y1 and y2 are contained in Appendix A.
Hence exact solutions in terms of simple power series exist.

We demonstrate that polynomial solutions are possible. For this to be true theremust
be a fixed natural number n = m such that the last bracketed term in (35) vanishes.
This gives the condition

[−4α̂ (m − 1) (2 (m − 2) + 2N − 3) − α̂ (N − 2) (N − 5)
]
b̃2

+ [2 (2 (m − 2) + 2N − 3) (m − 1) + (N − 2) (N − 3)] b̃ = 0, (37)

which is quadratic in b̃. This gives the root

b̃ = [2 (m − 1) (2 (m − 2) + 2N − 3) + (N − 2) (N − 3)]

α̂ [4 (m − 1) (2 (m − 2) + 2N − 3) + (N − 2) (N − 5)]
. (38)

For this value of b̃ we obtain

y1 = c0 +
m−1∑
n=1

cnx
n, (39)

for the first solution which is a polynomial of degree (m−1). The elementary function
(39), written in terms of a polynomial, will be helpful when discussing the physical
features of the model (as we show in Sect. 6).

4 Canonical form

We can integrate (21) by writing it in canonical form. An equivalent form of (21) is
given by

[
2x3 ẏ + (N − 3) x2y + 4α̂x2 ẏ − 12α̂x2 ẏ Z + 2α̂ (N − 5) xy (1 − Z)

]
Ż

−α̂
[
8 (N − 3) x ẏ + 8x2 ÿ + (N − 4) (N − 5) y

]
Z2

+
[
4x3 ÿ + 4 (N − 2) x2 ẏ + 8α̂ (N − 3) x ẏ

+8α̂x2 ÿ + (N − 3)2 xy + 2α̂ (N − 4) (N − 5) y
]
Z

− (N − 3)2 xy − α̂ (N − 4) (N − 5) y = 0. (40)

This equation is a first order nonlinear ordinary differential equation in Z and is further
identified as an Abel differential equation of the second kind. It can be simplified by
applying a transformation given in Polyanin and Zaitsev [58]. We introduce the new
variable

u =
(
Z −

[[
2α̂ (N − 5) + (N − 3) x

]
y + 2x

(
x + 2α̂

)
ẏ
]

2α̂ [6x ẏ + (N − 5) y]

)
U , (41)
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where

U = exp

(
−
∫ [− (N − 4) (N − 5) y − 8 (N − 3) x ẏ − 8x2 ÿ

]
2x [6x ẏ + (N − 5) y]

dx

)
, (42)

and N ≥ 5. Note that the transformation (41) holds when α̂ �= 0 and 6x ẏ +
(N − 5) y �= 0.

Equation (40) then reduces to

uu̇ = uF + G , (43)

where u = u(x) and we have introduced the new functions F and G which depend
on the potential y and its derivatives. These are given by

F = − x
[
y − 2

(
x + 2α̂

)
ẏ
]
[(N − 1) ẏ + 2x ÿ]U

α̂ [6x ẏ + (N − 5) y]2
, (44)

G =
(

− α̂ (N − 4) (N − 5) y + (N − 3)2 xy

2α̂x [6x ẏ + (N − 5) y]

+
[
y
(
2α̂ (N − 5) + (N − 3) x

)+ 2x ẏ
(
x + 2α̂

)]2
8α̂2x [6x ẏ + (N − 5) y]3

× [− (N − 4) (N − 5) y − 8x ((N − 3) ẏ + x ÿ)]

+
[
y
(
2α̂ (N − 5) + (N − 3) x

)+ 2x ẏ
(
x + 2α̂

) ]
4α̂2x [6x ẏ + (N − 5) y]2

×
[
y
(
2α̂ (N − 4) (N − 5) + (N − 3)2 x

)+ 4x
(
[(N − 2) x

+2α̂ (N − 3)
]
ẏ + x ÿ

[
x + 2α̂

])])
U 2. (45)

In order to find a solution for u = u(x), we must integrate (43). Equation (43) is in
canonical form and is simpler than (40), but it remains anAbelian differential equation.
Integration is a nontrivial task since F and G both depend on the metric function y
and its derivatives in a complex manner. However we can demonstrate solutions by
restricting the functionsF andG in specific caseswhere a solution for u(x) is possible.
These cases are provided below.

4.1 Case I: G = 0

In this case we place the constraint

G = 0. (46)
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With condition (46), the canonical form (43) reduces to

u̇ = F , (47)

which is a separable equation that can be integrated to obtain the potential

Z =
(∫

− x
[
y − 2

(
x + 2α̂

)
ẏ
]
[(N − 1) ẏ + 2x ÿ]U

α̂ [6x ẏ + (N − 5) y]2
dx + C

)
1

U

+
[
(N − 3) x + 2α̂ (N − 5)

]
y + 2x

(
x + 2α̂

)
ẏ

2α̂ [6x ẏ + (N − 5) y]
. (48)

Therefore the metric potential Z is given explicitly and a form for y has to be chosen
that satisfies the constraint (46).

4.2 Case II:F = 0

We let

F = 0, (49)

which is equivalent to the constraint equation

[
y − 2

(
x + 2α̂

)
ẏ
]
[(N − 1) ẏ + 2x ÿ] = 0. (50)

The above equation admits two solutions given by

y = C̃
√
x + 2α̂, (51)

and

y = −2C1x− N−3
2

N − 3
+ C2, (52)

where C̃ , C1 and C2 represent integration constants.
With condition (49), the canonical form (43) reduces to

uu̇ = G , (53)

which is a separable differential equation. Integrating we have the potential

Z = ±
[
2
∫ (

− α̂ (N − 4) (N − 5) y + (N − 3)2 xy

2α̂x [6x ẏ + (N − 5) y]

+
[
y
(
2α̂ (N − 5) + (N − 3) x

)+ 2x ẏ
(
x + 2α̂

)]2
8α̂2x [6x ẏ + (N − 5) y]3
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× [− (N − 4) (N − 5) y − 8x ((N − 3) ẏ + x ÿ)]

+
[
y
(
2α̂ (N − 5) + (N − 3) x

)+ 2x ẏ
(
x + 2α̂

) ]
4α̂2x [6x ẏ + (N − 5) y]2

×
[
y
(
2α̂ (N − 4) (N − 5) + (N − 3)2 x

)+ 4x
(
[(N − 2) x

+2α̂ (N − 3)
]
ẏ + x ÿ

[
x + 2α̂

])])
U 2 dx + 2C

] 1
2 1

U

+
[[
2α̂ (N − 5) + (N − 3) x

]
y + 2x

(
x + 2α̂

)
ẏ
]

2α̂ [6x ẏ + (N − 5) y]
. (54)

The integration in (54) can be performed explicitly. Firstly for the form in (51) we
obtain the metric function

Z = ±
[
2

[ (
x + 2α̂

)1/3 (
(N − 2) x + 2α̂ (N − 5)

)2/3
(N − 1) xN−2

×
(
AppellF1

[
N − 2,−1

3
,−2

3
, N − 1,− x

2α̂
,− (N − 2) x

2α̂ (N − 5)

])]

×
[
4α̂2

[
2 + x

2α̂

]1/3 [
2 + (N − 2) x

2α̂ (N − 5)

]2/3]−1

+ 2C

] 1
2

×
(
x

N−4
2
(
(N − 2) x + 2α̂ (N − 5)

)5/6
(
x + 2α̂

)1/3
)−1

+ 1 + x

2α̂
. (55)

As a result, the potential Z is defined in terms of special functions, namely Appell
functions and elementary functions of x . Secondly for the form (52) we find the metric
function

Z = ±
[
2

[
− 256α̂

(N − 3)
C13 (N − 1) (N − 2)2 x4 − 256α̂ (N − 2) (N − 5) C12C2x

N+5
2

+64α̂2C12C2 (N − 5)2 x
N+3
2 + C23(N − 3)3(N − 5)2x

3N+1
2

−32α̂C1C22 (N − 3) (N − 5)2 xN+1
] [

8α̂2

(N − 3)
C2 (N − 5)2 x

5
2

×
(
4C1 (N − 2) x

3
2 + (N − 3) (N − 5) C2x

N
2

) ]−1

+ 2C

] 1
2

× x− N−4
2√

4 (N − 2) C1x
N−3
2 + C2 (N − 3) (N − 5)

+
8α̂

(N−3)C1x
3
2 + C2x

N
2
(
(N − 3) x + 2α̂ (N − 5)

)
2 α̂

(N−3)

(
4C1 (N − 2) x

3
2 + (N − 3) (N − 5) C2x

N
2

) . (56)
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In this class of models we obtain two analytic forms for the function y in terms of
elementary functions of x . The condition (50) is satisfied and as result two functional
forms for the potential Z have been found.

4.3 Case III:F = KG

We now consider a case where the functions G andF are proportional to each other.
This yields the following constraint

F = KG , (57)

where K is some constant. With condition (57), the canonical form (43) becomes

uu̇ = G (K u + 1) , (58)

which is a separable equation. We can integrate to obtain an equation containing the
potential Z :

1

K

(
Z −

[[
2α̂ (N − 5) + (N − 3) x

]
y + 2x

(
x + 2α̂

)
ẏ
]

2α̂ [6x ẏ + (N − 5) y]

)
U

− 1

K 2 ln

(
1 + K

(
Z −

[[
2α̂ (N − 5) + (N − 3) x

]
y + 2x

(
x + 2α̂

)
ẏ
]

2α̂ [6x ẏ + (N − 5) y]

)
U

)

=
∫ (

− α̂ (N − 4) (N − 5) y + (N − 3)2 xy

2α̂x [6x ẏ + (N − 5) y]

+
[
y
(
2α̂ (N − 5) + (N − 3) x

)+ 2x ẏ
(
x + 2α̂

)]2
8α̂2x [6x ẏ + (N − 5) y]3

× [− (N − 4) (N − 5) y − 8x ((N − 3) ẏ + x ÿ)]

+
[
y
(
2α̂ (N − 5) + (N − 3) x

)+ 2x ẏ
(
x + 2α̂

) ]
4α̂2x [6x ẏ + (N − 5) y]2

×
[
y
(
2α̂ (N − 4) (N − 5) + (N − 3)2 x

)+ 4x
(
[(N − 2) x

+2α̂ (N − 3)
]
ẏ + x ÿ

[
x + 2α̂

])])
U 2 dx + C . (59)

Therefore the potential Z has an implicit form and a functional form for y has to be
chosen that satisfies the constraint (57).

5 Exceptional cases

We now consider the case when the canonical form cannot be applied, that is, when
α = 0 (the Einstein limit) and 6x ẏ+(N −5)y = 0. Note that the term 6x ẏ+(N −5)y
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appears in the denominator in (41) and therefore cannot be zero for the transformation
to hold.

We first consider α = 0, which is the Einstein case. Then the governing equation
(40) reduces to the form

[
2x2 ẏ + (N − 3) xy

]
Ż

+
[
4x2 ÿ + 4 (N − 2) x ẏ + (N − 3)2 y

]
Z − (N − 3)2 y = 0, (60)

which is a first order linear differential equation in the variable Z if y is known. Several
solutions to this equation were illustrated in four dimensions by Hansraj et al. [23].
We can show that the particular form y = √

x in Eq. (60) yields the solution

Z = (N − 3)2

(N − 2)2
+ C x2−N , (61)

where C is an integration constant.
Secondly the case 6x ẏ + (N − 5)y = 0 yields

y = Cx
5−N
6 , (62)

where C is an integration constant. Then (40) becomes

[
6 (N − 2) x2 + 12α̂ (N − 5) x

]
Ż + α̂ (N − 2) (N − 5) Z2

+
[
(N + 1) (N − 5) x + 2α̂ (N − 5) (4N − 17) + 3

(
N 2 − 4N + 7

)
x
]
Z

−9 (N − 3)2 x − 9α̂ (N − 4) (N − 5) = 0. (63)

Equation (63) is a Riccati equation which is difficult to solve in general.
For the particular spacetime dimension N = 5, expression (63) is a first order linear

differential equation. It has the solution

Z = C̃1

x2
+ 1, (64)

where C̃1 is an integration constant.When N �= 5 linearity is lost andwe have aRiccati
equation in Z . The solution is then given in terms of hypergeometric functions as can
be verified using the software package Maple. We do not pursue this case further as
special functions complicate a physical analysis.

6 Physical features

The simpler form of the exact solutions obtained, in the particular series solution,
allows us to consider the physical viability of the models generated. For physical

123



116 Page 18 of 37 S. Naicker et al.

accessibility, we let B = 0 and A = 1 in (34). Equation (35) implies the form

y = y1 = c0
[
1 + c̃x + d̃x2 + O(x3)

]
, (65)

and

1

y
= 1

c0

[
1 − c̃x +

(
c̃2 − d̃

)
x2 + O(x3)

]
, (66)

where the constants c̃ and d̃ are presented in Appendix B.
The forms Z = 1 + b̃x and y in (65) will allow physically viable solutions for the

density and electromagnetic field variables in (20). These are expressed by

κNρ = B0 − 1

2
B1x − 1

2
B2x

2 + O(x3), (67a)

κN

(
E2

AN−2

)
= B1x + B2x

2 + O(x3), (67b)

σ 2 = 4

(AN−2)2

(
D0 + D1x + D2x

2 + O(x3)
)

, (67c)

where the coefficients B0, B1, B2, D0, D1 and D2 are provided in Appendix B.
We can observe that the energy density (67a), the electromagnetic field (67b) and

the charge density (67c) are expressed explicitly in terms of a series in x , and they
are given to second order in x . We observe that ρ, E2 and σ 2 are finite at the centre.
These quantities are regular and well behaved away from the centre. Varela et al. [59]
indicate that the electric field E(x) should vanish at the centre to assure regularity of
the proper charge density. This desirable feature of the vanishing of the electric field
at the centre is satisfied in our model.

Charged dust spheres have been generated in general relativity. The dust sphere
extends to a finite radius and at this point the interior is matched to the exterior
Reissner-Nordström metric. A physically acceptable model of a charged dust sphere,
satisfying the Einstein field equations and the boundary conditions, is given by Tikekar
[22]. We demonstrate in this section that charged dust spheres arise in EGB gravity
with interiors described by the exact solutions of this paper. At the matching surface,
the exterior spacetime is the Boulware–Deser–Wiltshire metric.

The matching conditions across a comoving surface � are important for modelling
relativistic stars as this will provide insights on the evolution and stellar structure of
these astrophysical bodies. In EGB gravity, the boundary conditions on � have been
recently derived in [60] extending the earlier work of Davis [61]. These are provided
by

(
ds2−
)

�
=
(
ds2+
)

�
, (68a)

[Kab − Khab]
± + 2α

[
3Jab − Jhab + 2 P̂abcd K

bc
]± = 0, (68b)
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where Kab is the extrinsic curvature. In the above we have

P̂abcd = R̂abcd + 2R̂b[chd]a − 2R̂a[chd]b + R̂ha[chd]b, (69)

where the caret “ˆ” indicates quantities associated with the induced metric and Pabcd
is the divergence-free part of the Riemann tensor. The tensor Jab is defined by

Jab = 1

3

(
2KKacK

c
b + Kcd K

cd Kab

−2KacK
cd Kdb − K 2Kab

)
, (70)

and J is its trace. As shown in [60] the equations in system (68) are satisfied if the
following conditions

(
ds2−
)

�
=
(
ds2+
)

�
, (71a)(

K−
ab

)
�

= (K+
ab

)
�

, (71b)

are valid. Note that (71) represent the matching conditions in general relativity. Con-
sequently the Israel-Darmois conditions (71) imply that the Davis conditions (68) are
satisfied.

We now consider a charged dust static distribution contained within a finite radius
R for a particular solution found in this paper and utilize the boundary conditions
for a dust matter distribution in EGB gravity. The higher dimensional interior static
spacetime in terms of the variables y, Z and x is provided by

ds2− = −y2(x)dt2 + 1

4x Z(x)
dx2 + xd
2

N−2. (72)

For the exterior spacetime, we make use of the N -dimensional Boulware–Deser–
Wiltshire exterior static metric. The Boulware–Deser–Wiltshire metric represents the
charged counterpart of the Boulware–Deser metric was first studied byWiltshire [62].
When α → 0, the Reissner-Nordström spacetime is regained. Note that the Reissner-
Nordström metric cannot be used to model the exterior spacetime in EGB gravity as it
does not satisfy the EGBfield equations (16). Brassel et al. [60] have demonstrated that
the exterior spacetime has to be the Boulware–Deser–Wiltshire metric in a detailed
study of the matching surface in EGB gravity. The Boulware–Deser–Wiltshire metric
has the form

ds2+ = −F(r)dt2 + 1

F(r)
dr2 + r2d
2

N−2, (73)

where

F(r) = 1 + r2

2α̂

(
1 −

√
1 + 4α (N − 4)

(
2M

rN−1 − Q2

(N − 3) r2N−4

)⎞⎠ . (74)
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In the above, M is the gravitational mass of the hypersphere and Q represents the
charge contribution.

We match the particular interior charged dust solution given by (52) and (56) to
the Boulware–Deser–Wiltshire metric (74) at the boundary r = R. This gives the
following expressions

1 + R2

2α̂

⎛
⎝1 −

√
1 + 4α (N − 4)

(
2M

RN−1 − Q2

(N − 3)R2N−4

)⎞⎠

=
[
−2C1R−(N−3)

N − 3
+ C2

]2
, (75a)

1

4R2

⎛
⎝1 + R2

2α̂

⎛
⎝1 −

√
1 + 4α (N − 4)

(
2M

RN−1 − Q2

(N − 3)R2N−4

)⎞
⎠
⎞
⎠

=
[
2

[
− 256α̂

(N − 3)
C13 (N−1) (N − 2)2 R8−256α̂ (N−2) (N−5) C12C2RN+5

+64α̂2C12C2 (N − 5)2RN+3 + C23(N − 3)3(N − 5)2R3N+1

−32α̂C1C22 (N − 3) (N − 5)2 R2(N+1)
] [

8α̂2

(N − 3)
C2 (N − 5)2 R5

×
(
4C1 (N − 2)R3 + (N − 3) (N − 5) C2RN

) ]−1

+ 2C

] 1
2

× R−(N−4)√
4 (N − 2) C1RN−3 + C2 (N − 3) (N − 5)

+
8α̂

(N−3)C1R3 + C2RN
(
(N − 3)R + 2α̂ (N − 5)

)
2 α̂

(N−3)

(
4C1 (N − 2)R3 + (N − 3) (N − 5) C2RN

) . (75b)

The free parameters in (75a)–(75b) are α̂, C , C1, C2 and R. As these are algebraic
equations there are sufficient free parameters for a real solution; this is a system of
two equations in five unknowns. We observe that the dimension N appears explicitly
in the boundary conditions and these are affected by Gauss–Bonnet coupling constant
α̂. Hence the first boundary condition (68a) is satisfied since (75a)–(75b) hold. The
second boundary condition (68b) is identically satisfied since the matter distribution
is dust and the pressure is zero.

The total gravitational mass M at a finite radiusR for the dust sphere then reduces
to

M =
[
(N − 3)

2

(
RN−3

(
1 − Z(R2)

)
+ Q2

(N − 3)2 RN−3

+ α̂RN−5
(
1 − Z(R2)

)2 ) ]
. (76)
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The term α̂RN−5
(
1 − Z(R2)

)2
arises from the higher order curvature corrections in

EGB gravity. The mass M is also clearly affected by the dimension N . The charge
density at r = R is expressed by

σ =
√
Z(R2)

[
RN−2E ′(R2) + (N − 2)RN−3E(R2)

]
(AN−2)R(N−2)

. (77)

The total charge Q within a radius R of the hypersphere is given by

Q =
∫ R

0

[
r N−2E ′(r2) + (N − 2) r N−3E(r2)

]
dr , (78)

as measured by an external observer at infinity. In order to perform the integration in
(78) we require the explicit expression for the electric field intensity E . This electric
field intensity can be obtained by using (20c) and substituting for the potentials y, Z
from (52) and (56) respectively. We observe that the electric field intensity depends on
the potentials y, Z and its derivatives. The expression for the gravitational potential Z
in (56) is given in a closed form but the integration in (78) is nontrivial. If necessary
the integration can be performed numerically. The total charge Q remains finite. There
is some simplification when N = 5. The charge Q is influenced by both the spacetime
dimension N and the Gauss–Bonnet coupling constant α̂.

7 Feasible regions and graphical plots

Adetailed analysis of the physical features of particular charged dustmodels is difficult
for two reasons. Firstly the solutions in terms of special functions, such as hypergeo-
metric and Appell functions in addition to elementary functions, arise in several cases
which complicates a physical analysis. Secondly feasible regions for the existence of
the metric functions y and Z may not be found which makes the existence of physi-
cally reasonable models questionable. To overcome these issues we follow the novel
approach of Hansraj [53] to generate feasible spatial potential regions and plot the
thermodynamical variables for various spacetime dimensions N .

We observe that the energy density can be written as κNρ = (N−2)
xy

[
2Z ẏ − Ż y

]
[x + β (1 − Z)] where β = 2α̂. If we assume x + β (1 − Z) > 0 the positivity of ρ

requires

ẏ

y
≥ Ż

2Z
. (79)

In addition positivity of E2 provides the condition

ẏ

y
≤

(1 − Z)
[
(N − 3) + β(N−5)(1−Z)

2x

]
4Z [x + β (1 − Z)]

. (80)
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We observe that (79) and (80) implies

Ż

2Z
≤

(1 − Z)
[
(N − 3) + β(N−5)(1−Z)

x

]
4Z [x + β (1 − Z)]

. (81)

The above can be rewritten as

2 [x + β (1 − Z)] x Ż − β

2
(N − 5) Z2 + [(N − 3) x + β (N − 5)] Z

−β

2
(N − 5) − (N − 3) x ≤ 0. (82)

In the case of equality (82) is an Abel differential equation of the second kind in Z
which can be integrated to obtain the solution

Z = x + β ±
√
x2 + (β2 + 2βC

)
x− (N−5)

2

β
. (83)

This solution regains the result obtained in [53] when N = 5. For ρ > 0 and E2 ≥ 0,
the potential Z must satisfy

1 + x

β

(
1 −

√
1 + β2 + 2βC

x
(N−1)

2

)
≤ Z ≤ 1 + x

β

(
1 +

√
1 + β2 + 2βC

x
(N−1)

2

)
. (84)

The above shows that the potential Z is constrained between the negative and posi-
tive branches of the N dimensional Boulware–Deser spacetime for uncharged fluids.
Furthermore, the case Z = 1 + x

β
represents the higher dimensional Schwarzschild

interior metric.
We first consider the case when Z < 1 + x

β
. Then (84) becomes

1 + x

β

(
1 −

√
1 + β2 + 2βC

x
(N−1)

2

)
< Z < 1 + x

β
. (85)

This implies that for potentials found below the Schwarzschild interior metric, the
lower bound is the negative branch of the N dimensional Boulware–Deser spacetime.
Therefore the potentials that lie in this region yield physically acceptable charged
dust models. We demonstrate these feasible regions of Z for (85) for the particular
dimensions N = 5, 6, 7, in Figs. 1, 2 and 3 forC = 0 and β = 1. Then the caseC = 2
and β = 1, the feasible regions are illustrated in Figs. 4, 5, and 6. Similarly we present
the feasible regions for C = −2 and β = 1 in Figs. 7, 8 and 9. The parameter values
for C and β are chosen to coincide with the analysis in Hansraj [53]. Note that in the
figures we have used the graphical illustrations

Dotted line..............: Higher dimensional Boulware–Deser + spacetime.
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Fig. 1 5D Spatial region with C = 0 (β = 1)

Solid line —————: Higher dimensional Schwarzschild spacetime.
Dashed lines − − − − −: Higher dimensional Boulware–Deser − spacetime.

to describe the relevant spacetimes.
Next we consider the case when Z > 1+ x

β
, then the positivity of the energy density

results in the condition positivity of the energy density requires

ẏ

y
≤ Ż

2Z
, (86)

and E2 ≥ 0 gives

Ż

2Z
≤

(1 − Z)
[
(N − 3) + β(N−5)(1−Z)

x

]
4Z [x + β (1 − Z)]

. (87)

As in the above and due to Z > 1 + x
β
, we then obtain the constraint

1 + x

β
< Z < 1 + x

β

(
1 +

√
1 + β2 + 2βC

x
(N−1)

2

)
. (88)

The potential Z must now lie between the Schwarzschild interior metric and the
positive branch of the Boulware–Deser spacetime to achieve physically viable charged
dust models. The upper bound for the metric potentials is then the higher dimensional
positive branch of theBoulware–Desermetric.We illustrate the feasible spatial regions
for (88) with N = 5, 6, 7 in Figs. 10, 11 and 12 for C = 0 and β = 1. The case C = 2
and β = 1, the feasible regions are illustrated in Figs. 13, 14 and 15. Similarly we
present the feasible regions for C = −2 and β = 1 in Figs. 16, 17 and 18. Again the
values for C and β are selected to be consistent with the analysis in Hansraj [53].

We now consider the graphical behaviour of ρ, E2 and σ 2. Again the earlier analysis
of Hansraj [53] proves to be valuable in the investigation. Following [53] we choose
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Fig. 2 6D Spatial region with C = 0 (β = 1)

Fig. 3 7D Spatial region with C = 0 (β = 1)

Fig. 4 5D Spatial region with C = 2 (β = 1)
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Fig. 5 6D Spatial region with C = 2 (β = 1)

Fig. 6 7D Spatial region with C = 2 (β = 1)

Fig. 7 5D Spatial region with C = −2 (β = 1)
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Fig. 8 6D Spatial region with C = −2 (β = 1)

Fig. 9 7D Spatial region with C = −2 (β = 1)

Fig. 10 5D Spatial region with C = 0 (β = 1)
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Fig. 11 6D Spatial region with C = 0 (β = 1)

Fig. 12 7D Spatial region with C = 0 (β = 1)

Fig. 13 5D Spatial region with C = 2 (β = 1)
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Fig. 14 6D Spatial region with C = 2 (β = 1)

Fig. 15 7D Spatial region with C = 2 (β = 1)

Fig. 16 5D Spatial region with C = −2 (β = 1)

123



Charged dust in Einstein–Gauss–Bonnet models Page 29 of 37 116

Fig. 17 6D Spatial region with C = −2 (β = 1)

Fig. 18 7D Spatial region with C = −2 (β = 1)

the potential Z = x+β±
√
x2+(β2+2βC)x− (N−5)

2

β
and y = 1

x4
. In our case Z depends

on the spacetime dimension N . We plot the energy density, electric field and charge
density for these potentials for various dimensions N = 5, 6, 7, 8. We consider the
parameter values C = 1 and α = 1/4. These behaviours are illustrated in Figs. 19, 20
and 21. We observe that the energy density is well defined and positive. It is initially a
maximum and decreases gradually, eventually approaching a stable finite value. The
energy density is a steeper profile as the dimension N increases. The electric field
intensity E2 is plotted in Fig. 20 for various dimensions. It is positive and well defined
through out the fluid distribution. It is initially amaximumvalue and begins decreasing
thereafter. A similar behaviour is observed for the charge density σ 2 plotted in Fig. 21.

8 Discussion

We investigated the dynamics of a dustmatter distribution in the presence of an electro-
magnetic field in a higher dimensional EGB gravity setting. The EGB field equations
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Fig. 19 Energy density plot for various dimensions N

Fig. 20 Electric field plot for various dimensions N

Fig. 21 Charge density plot for various dimensions N
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were generated for such a fluid distribution. The governing equation is an Abel dif-
ferential equation of the second kind in the gravitational potential Z , a nonlinear first
order differential equation. The master equation may also be considered as a second
order linear differential equation in the metric potential y. The Gauss Bonnet constant
α, the dimension N and the charge E have a significant impact on the gravitational
behaviour of charged dust. In particular when α = 0, we regain N dimensional general
relativity, here the governing equation for charged dust is a linear differential equation
in Z . We found exact solutions to the EGB field equations with the restrictions: y = ã
and Z = 1 + b̃x . In the latter case a series solution was demonstrated which con-
tains polynomials for a specific value of b̃. In general, solutions that are found can be
given in terms of special functions and elementary functions. The governing dynami-
cal equation can be transformed to the canonical form uu̇ = uF + G . We show that
three classes of solutions are possible in this canonical case. We analysed the physical
features close to the centre. The density, electric field and the proper charge density
are finite at the centre and regular in a region containing the centre. This suggests that
the model is well behaved. We have also shown the existence of charged dust spheres
in EGB gravity in analogue to the dust spheres in general relativity. Our treatment
shows that a systematic study of charged dust is possible in EGB gravity. There are
some immediate extensions that can follow this treatment. Firstly we have focussed
on spherical symmetry in our treatment in this paper. Following earlier treatments in
general relativity we can consider other spacetimes geometries in EGB gravity such as
axially symmetric models. New physical features will definitely arise if the spacetime
geometry is not spherical. Furthermore it will be interesting to study charged dust
in the general class of Lovelock gravity theories which extend EGB. The Lovelock
tensor will be different from EGB gravity and we will obtain new and novel features
arising from the additional curvature corrections.
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Appendix A: Series solution with themethod of Frobenius

We can solve the differential equation (33) by assuming a series solution of the form

y = xr
∞∑
n=0

cnx
n . (A1)

The method of Frobenius yields solutions since x = 0 is a regular singular point and
r is some integer.

Then (33) becomes

4
(
1 − 2α̂b̃

)
r (r + N − 3) c0x

r−1

+
∞∑
n=1

[
4
(
1 − 2α̂b̃

)
(n + r) (n + r − 1 + N − 2) cn

+
(
2b̃
(
1 − 2α̂b̃

)
(n + r − 1) (2 (n + r − 2) + 2N − 3)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5)

)
b̃
)
cn−1

]
xn+r−1 = 0. (A2)

The indicial equation for (A2) has the form

r [r + (N − 3)] = 0, (A3)

which has distinct roots r1 = 0 and r2 = 3 − N . When r1 = 0, then (A2) gives the
difference equation

4
(
1 − 2α̂b̃

)
n (n − 1 + N − 2) cn

+
(
2b̃
(
1 − 2α̂b̃

)
(n − 1) (2 (n − 2) + 2N − 3)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5)

)
b̃
)
cn−1 = 0. (A4)

This has the solution

cn = (−1)n

4n
(
1 − 2α̂b̃

)n
n! (n − 1 + N − 2)!

×
[
2b̃
(
1 − 2α̂b̃

)
(n − 1) [2 (n − 2) + 2N − 3]

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

) ]
! c0. (A5)
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Hence the first solution, corresponding to the root r1 = 0, has the form

y1 =
∞∑
n=0

cnx
n, (A6)

where cn is given by (A5).
The difference in the roots r1−r2 = N −3 is an integer. Hence the second solution

to (33) is of the form

y2 = Q̃y1 ln x + x3−N
∞∑
n=0

dnx
n, (A7)

where Q̃ is a constant. The coefficients dn are obtainable as a solution from a difference
equation.

Appendix B: Definition of constants

The constants that appear in Sect. 6 are given by

c̃ = −
b̃
(
(N − 3) − α̂ (N − 5) b̃

)

4
(
1 − 2α̂b̃

) , (B1)

d̃ =
b̃
(
(N − 3) − α̂ (N − 5) b̃

)

32
(
1 − 2α̂b̃

)2
(N − 1)

[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)]
. (B2)

B0 = −1

2
(N − 1) (N − 2) + 1

2
α̂ (N − 1) (N − 2) , (B3)

B1 = 2

⎛
⎝−

3b̃
(
(N − 3) − α̂ (N − 5) b̃

)

4
(
1 − 2α̂b̃

) −
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)]

×
(N − 5) b̃

(
(N − 3) − α̂ (N − 5) b̃

)

16
(
1 − 2α̂b̃

)2
(N − 1)

⎞
⎟⎠
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+α̂

⎛
⎝−

4 (N − 5) b̃
(
(N − 3) − α̂ (N − 5) b̃

)

4
(
1 − 2α̂b̃

) −
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

) ] b̃
(
(N − 3) − α̂ (N − 5) b̃

)

2
(
1 − 2α̂b̃

)2
(N − 1)

⎞
⎟⎠ ,

(B4)

B2 = 2

⎛
⎜⎝3b̃

(
(N − 3) − α̂ (N − 5) b̃

)

16
(
1 − 2α̂b̃

)2
(N − 1)

[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)]
−

b̃2
(
(N − 3) − α̂ (N − 5) b̃

)2

16
(
1 − 2α̂b̃

)2

−
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)
+ (N − 2) b̃

(
(N − 3) − α̂ (N − 5) b̃

)]

×
(N − 5) b̃2

(
(N − 3) − α̂ (N − 5) b̃

)2

64
(
1 − 2α̂b̃

)3
(N − 1)

⎞
⎟⎠

+α̂

⎛
⎜⎝ (N − 7) b̃

(
(N − 3) − α̂ (N − 5) b̃

)

4
(
1 − 2α̂b̃

)2
(N − 1)

[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)]

−
(N − 5) b̃2

(
(N − 3) − α̂ (N − 5) b̃

)2

4
(
1 − 2α̂b̃

)2

−
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)
+ (N − 2) b̃

(
(N − 3) − α̂ (N − 5) b̃

)]

×
b̃2
(
(N − 3) − α̂ (N − 5) b̃

)2

8
(
1 − 2α̂b̃

)3
(N − 1)

⎞
⎟⎠ , (B5)

D0 = (N − 3) (N − 1)2 B1

4 (N − 2)
, (B6)

D1 = (N − 3) (N − 1)

2 (N − 2)

[
(N + 1) B2 − (N − 1) B1

2

]
, (B7)

D2 = (N − 3)

(N − 2)

[
(N + 1)2 B2

2

4B1
+ (N − 1) (N + 3)

2

(
B3 − (N − 2) B2

4 (N − 3) B1

)
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+ (N − 1) (N + 1) B2

2

]
, (B8)

with

B3 = 2

⎛
⎜⎝− (1 − 2N ) b̃2

(
(N − 3) − α̂ (N − 5) b̃

)2

64
(
1 − 2α̂b̃

)3
(N − 1)

×
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)
+ (N − 2) b̃

(
(N − 3) − α̂ (N − 5) b̃

)]

+
⎛
⎜⎝ b̃2

(
(N − 3) − α̂ (N − 5) b̃

)2

16
(
1 − 2α̂b̃

)2 −
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)] b̃ ((N − 3) − α̂ (N − 5) b̃
)

32
(
1 − 2α̂b̃

)2
(N − 1)

⎞
⎟⎠

×
⎛
⎝−

b̃
(
(N − 3) − α̂ (N − 5) b̃

)

4
(
1 − 2α̂b̃

) −
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)]

×
(N − 5) b̃

(
(N − 3) − α̂ (N − 5) b̃

)

16
(
1 − 2α̂b̃

)2
(N − 1)

⎞
⎟⎠
⎞
⎟⎠

+α̂

⎛
⎜⎝−

3b̃2
(
(N − 3) − α̂ (N − 5) b̃

)2

8
(
1 − 2α̂b̃

)3
(N − 1)

[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)]

−
⎛
⎜⎝ b̃2

(
(N − 3) − α̂ (N − 5) b̃

)2

16
(
1 − 2α̂b̃

)2 −
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)] b̃ ((N − 3) − α̂ (N − 5) b̃
)

32
(
1 − 2α̂b̃

)2
(N − 1)

⎞
⎟⎠

×
⎛
⎝−

3b̃
(
(N − 3) − α̂ (N − 5) b̃

)
(
1 − 2α̂b̃

) +
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)
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+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)] b̃N ((N − 3) − α̂ (N − 5) b̃
)

4
(
1 − 2α̂b̃

)2
(N − 1)

⎞
⎟⎠

+
b̃
(
(N − 3) − α̂ (N − 5) b̃

)
(
1 − 2α̂b̃

) −
[
2b̃ (2N − 3)

(
1 − 2α̂b̃

)

+ (N − 2) b̃
(
(N − 3) − α̂ (N − 5) b̃

)] b̃ ((N − 3) − α̂ (N − 5) b̃
)

4
(
1 − 2α̂b̃

)2
(N − 1)

⎞
⎟⎠ .

(B9)
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