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Abstract
We present a covariant study of static space-times, as such and as solutions of gravity
theories. By expressing the relevant tensors through the velocity and the accelera-
tion vectors that characterise static space-times, the field equations provide a natural
non-redundant set of scalar equations. The same vectors suggest the form of a Fara-
day tensor, that is studied in itself and in (non)-linear electrodynamics. In spherical
symmetry, we evaluate the explicit expressions of the Ricci, the Weyl, the Cotton and
the Bach tensors. Simple restrictions on the coefficients yield well known and new
solutions in Einstein, f (R), Cotton and Conformal gravity, with or without charges,
in vacuo or with fluid source.
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1 Introduction

The field equations of gravitational theories are covariant, and equate a geometric
tensor (e.g. Einstein, Cotton, Bach tensor) to a tensor describing matter. Solutions are
usually found in coordinates that exploit the symmetries. However, there are advan-
tages in keeping the coordinate-free tensor description as far as possible. Besides the
formal elegance, it naturally addresses scalar identities. We do so in this study of static
space-times, beginning with local geometry and then discussing gravity.

A covariant characterization of a static space-time involves an equation for a time-
like velocity uk with a closed space-like acceleration u̇k = u j∇ j uk . The two defining
vectors are the natural start for the expansion of the relevant tensors. In absence of
symmetries they are complemented by two others. This is basically the spirit of the
1+1+2 formalism introduced by Clarkson and Barrett [15, 16]. Here the second vector
is fixed by the context. Carloni used the formalism to specify the stress tensor, and
the Ricci tensor ensuing from the Einstein equation, in spherically symmetric metrics
[14]. In this work the two unspecified orthogonal vectors are not explicitly required,
as the Ricci tensor is constructed via the integrability conditions and linked to the
electric part of the Weyl tensor.

With the vectors u j , u̇ j and an orthogonal space-like pair, we consider the
antisymmetric tensor (η = u̇k u̇k)

Fjk = E
1√
η
(u j u̇k − u̇ j uk) + B(y j zk − yk z j )
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and obtain the conditions on E and B to yield a Faraday tensor. The terms correspond
to the electric and magnetic fields. In the Einstein theory, the equations of linear
and non-linear electrodynamics constrain the Ricci tensor to a simple structure, with
coefficients R and R�. The weak energy condition imposes a non-negative spatial
curvature scalar, R� ≥ 0, while the scalar curvature R is zero if and only if the
electrodynamics is linear.

After the general setting, we turn to the much studied spherically symmetric static
space-times, with line element

ds2 = −B(r)dt2 + dr2

B(r)
+ r2(dθ2 + sin2 θ dφ2).

The early solutions in General Relativity, named after Schwarzschild, de Sitter, Reiss-
ner and Nordstrøm, belong to this class. In the years many others were found as black
hole (BH) or compact star solutions, that fit in the present covariant description.

Beginning with geometry, we obtain the relevant static spherical tensors (Ricci,
Weyl, Cotton, Bach) as combinations of ui u j , gi j and u̇i u̇ j . Remarkably, also the
energy–momentum tensor of linear and non-linear electrodynamics is a combination
of the same elementary tensors, with the magnetic term B being forced to be the field
of a magnetic monopole. By constraining the tensor coefficients to simple forms, we
obtain scalar equations that recover the early metrics and others.

By the equality inherent gravity theories mentioned in the beginning, the geometric
Ricci, Cotton and Bach tensors fix the form of the energy–momentum tensor respec-
tively in Einstein, Cotton and Conformal gravity. A similar construction is made in
f (R) theory, where the Ricci tensor and the Hessian provide the form of the mat-
ter tensor. In these four theories, it has the form of energy–momentum tensor of an
anisotropic fluid or of linear or nonlinear electrodynamics.
The identification of the geometric and physical coefficients of the tensors in the left
and right sides of the field equations, provides scalar equations. The functions B(r)

found on geometric grounds specify as solutions of field equations.
In a century of gravity theories, many static spherical solutions were found. This is

a very short and partial recount.
In 1968 James Bardeen (son of John B. of BCS theory) obtained the first singularity-
free BH solution of the Einstein equation [2, 4]:

B(r) = 1 − 2Mr2

(r2 + g2)3/2

Ayon-Beato and Garcia reinterpreted it as a magnetic monopole solution in Einstein-
non-linear electrodynamics [1].
In 2003 Kiselev published a new exact solution of the Einstein equation for
quintessential matter surrounding a BH [32]

B(r) = 1 − 2M

r
− K

r1+3w
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It raised a debate, until Visser showed in 2020 that the Kiselev BH is neither a perfect
fluid nor a quintessence [57]. Generalisations of Kiselev space-times were recently
used in the framework of gravitational lensing [49].
In 1996 Hayward [27] discovered a line element describing the local formation of a
BH out of vacuum, its Bardeen-like static quiescence and final evaporation.

Bronnikov [9] showed that Einstein gravity coupled to nonlinear electrodynamics
has nontrivial spherical solutions with global regular metric if and only if the elec-
tric charge is zero and the Lagrangian L (F) has a finite limit as F → ∞. In the
same context, Dymnikowa [20] studied the existence of regular spherically symmetric
electrically charged solutions. The effects of torsion were considered by Cotton [18].

Gravastars (gravitational vacuum stars) were introduced in 2001 [46] as an alterna-
tive to BH that avoid the problems associated with horizons and singularities. Models
in nonlinear electrodynamics were constructed by Lobo and Arellano [37].

Among a great variety of spherical metrics in Einstein gravity, we quote the Yukawa
BH [45], the Van der Waals BH [50], the global monopole [5], the Rindler–Grumiller
metric [23], the logotropic BH [13], quantum corrections to Reissner–Nordstrøm BH
[58]. The study of non-linear electrodynamics coupled to f (R) gravity was started by
Hollenstein and Lobo [29, 52].

In 1989 Mannheim and Kazanas [39] obtained an exact vacuum solution of Con-
formal gravity, and applied it to describe the rotation curve of galaxies without dark
matter

B(r) = −1

r
β(2 − 3βγ ) + (1 − 3βγ ) + γ r − κr2

Topological black holes in conformal gravity were studied by Klemm [31].
Based on the conformal action, but with variation in the connection, a theory named

Cotton gravity was recently proposed by Harada [25]. We showed that the field equa-
tion can be recast as Einstein equations, with the freedom of a Codazzi tensor. As
such, they are second order in the derivatives of the metric tensor [44].

This is the ouline of the paper. In Sect. 2 we discuss static space-times in general,
the Ricci and the Weyl tensors. It is partly based on our study of the larger family of
doubly-warped space-times [43]. Useful equations are collected in “Appendix 1”.

In Sect. 3 we introduce the Faraday tensor and prove necessary and sufficient
conditions on the scalarsE andB (the proof is in “Appendix 2”). The general discussion
of Einstein gravity coupled to linear (LE) and non-linear electrodynamics (NLE) is in
Sect. 4. An interesting form of the Ricci tensor is obtained, with conclusions about the
curvature space-time and space scalars R and R�. Section 5 discusses the anisotropic
fluid source, concluding that the energy density is proportional to R� ≥ 0.
In Sect. 6 we discuss spherical symmetry, where the full form of the Ricci, Weyl,
Cotton and Bach tensors are obtained, as combinations of the basic tensors g jk , u j uk

and u̇ j u̇k with coefficients that are linear or atmost quadratic in B(r), B ′(r) and B ′′(r).
Simple conditions yield the early static metrics. In Sect. 7 we consider the Einstein
gravity, where the metrics are solutions of field equations. Pure dust or perfect fluid
solutions are not possible, unless p = −μ. We then discuss LE and NLE, with some
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identities that allow for reconstructing the LagrangianL (F) from B(r) (actually from
a coefficient of the Ricci tensor).

NLE coupled to f (R) gravity is presented in Sect. 8, with immediate recognition
of the known property that fR(r) is constrained to be linear in r . This allows the
integration of one field equation in presence of point charges. Since only the solution
appears in previous papers, we offer its deduction in “Appendix 3”.

In Cotton gravity (Sect. 9), after a brief presentation of our interpretation as an
Einstein equation, we show that the vacuum solution by Harada is also a solution
of the Einstein theory with an anisotropic energy–momentum. We then present two
solutions: with perfect fluid and LE. Finally, in Sect. 10 we turn to Conformal gravity.
We recall the vacuum solution by Mannheim and Kazanas, and present a solution in
LE. We end with the conclusions.

In this paper the static four-dimensional Lorentzian spacetimes have signature
(−,+ + +). A dot denotes the action of uk∇k .

2 Static space-times

The velocity is eigenvector of the Ricci tensor, the Electric tensor
evaluates the Weyl tensor, the form of the Ricci tensor is obtained.

There are various characterisations of static spacetimes:
• The existence of a time-like vector field uk (named velocity) that is normalized,
ukuk = −1, with gradient

∇ j uk = −u j u̇k (1)

such that the ‘acceleration’ u̇k = u j∇ j uk is a closed vector field [54]:

∇ j u̇k = ∇k u̇ j (2)

The acceleration is spacelike (uku̇k = 0) with normalization η = u̇ pu̇ p > 0.
Contraction of (2) with u j shows that ük = u j∇k u̇ j = −u̇ j∇ku j = u̇ j uk u̇ j = ηuk .
• The existence of coordinates (t, x) where the metric tensor has the static form

ds2 = −B(x)dt2 + g�
μν(x)dxμdxν

In this frame: uk = (−√
B, 0), u̇k = (0, ∂μ log

√
B).

•The existence of a time-like hypersurface orthogonalKillingvector:∇i ξ j+∇ jξi = 0.
The vector is ξ j = u j

√
B, and u̇ j = ∇ j log

√
B.

Proposition 2.1 The velocity is an eigenvector of the Ricci tensor,

R jkuk = −(∇pu̇ p)u j (3)
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and it is Riemann compatible:

(ui R jklm + u j Rkilm + uk Ri jlm)um = 0. (4)

Proof R jklmum = (∇ j∇k − ∇k∇ j )ul = (u j u̇k − u̇ j uk)u̇l + u j∇k u̇l − uk∇ j u̇l .
Contraction with g jl gives property (3). Multiplication by ui and cyclic sum gives
compatibility. �	

As expected, the “time derivative” of geometric invariants is zero:

Proposition 2.2 Let η = u̇k u̇k and R = g jk R jk ,

η̇ = 0, Ṙ = 0, uk∇k(∇pu̇ p) = 0 (5)

Proof 1) η̇ = uk∇k(u̇ pu̇ p) = 2ü pu p = 2ηu pu̇ p = 0. 2) uk∇k∇pu̇ p = uk Rkp
p

mu̇m+
uk∇p∇k u̇ p = uk Rkpu̇ p + ∇p(ü p) − (∇puk)(∇k u̇ p) = ∇p(ηu p) + u pu̇k∇pu̇k =
η̇ + 1

2 η̇ = 0. 3) Eq. (3) and ∇ j R j
k = 1

2∇k R give Ṙ = −2u j∇ j (∇pu̇ p) = 0. �	
Being Riemann compatible, the velocity is also “Weyl compatible" (Theorem 2.1

in [42]): (ui C jklm + u j Ckilm + ukCi jlm)um = 0. The Weyl tensor is

C jklm=R jklm+1

2
(g jm Rkl−gkm R jl+gkl R jm − g jl Rkm)− R

6
(g jm gkl−gkm g jl).

The contraction Ekl = u j C jklmum is the Electric tensor; it is symmetric, traceless and
E jkuk = 0. Weyl compatibility is equivalent to the relation

C jklmum = uk E jl − u j Ekl

The explicit evaluation of the Electric tensor gives an identity with the Ricci tensor:

Ekl = −1

2
Rkl + 1

2
(∇pu̇ p)(gkl + 2uluk) + 1

6
R(gkl + ukul) + u j R jklmum (6)

where u j R jklmum = −u̇k u̇l − ∇k u̇l − ηukul (see Prop. 2.1).

Proposition 2.3 (Weyl tensor) In a four-dimensional static spacetime the Weyl tensor
is solely determined by the electric tensor:

C jklm = (gkl + 2ukul)E jm − (g jl + 2u j ul)Ekm

+ (g jm + 2u j um)Ekl − (gkm + 2ukum)E jl (7)

and C jklmC jklm = 8Ekl Ekl .

Proof In n = 4 the following identity by Lovelock holds [38]: 0 = gir C jklm +
g jr Ckilm + gkr Ci jlm + gimC jkrl + g jmCkirl + gkmCi jrl + gilC jkmr + g jlCkimr +
gklCi jmr . The contraction with ui ur and Weyl compatibility give the Weyl tensor. �	
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At each point we choose a basis of vectors formed by ui and three orthonormal
space-like vectors 1√

η
u̇i , yi , zi :

gi j = −ui u j + u̇i u̇ j

η
+ yi y j + zi z j (8)

Lemma 2.4 In a n = 4 static space-time:

∇k y j = −Yku̇ j − �k z j (9)

∇k z j = −Zku̇ j + �k y j (10)

∇k u̇ j = −ηuku j + 1
2η u̇ j∇kη + η(y j Yk + z j Zk) (11)

where Yk = 1
η

y p∇k u̇ p, Zk = 1
η

zm∇k u̇m and �k = y p∇k z p. It is also:

ukYk = 0, uk Zk = 0, yk Zk = zkYk

η(ykYk + zk Zk) = −η + ∇ pu̇ p − u̇ p∇pη

2η
(12)

Proof The gradient of (8) is: 0 = uk(ui u̇ j +u̇i u j )+ 1
η
(u̇i∇k u̇ j +u̇ j∇k u̇i )−u̇i u̇ j

∇kη

η2
+

yi∇k y j + y j∇k yi + zi∇k z j + z j∇k zi . The contractions with yi or zi give the first
two relations. While contracting with u̇i note that u̇i∇k yi = −yi∇k u̇i = −ηYk , and
u̇i∇k zi = −ηZk .
Similarly: ukYk = 1

η
y j ü j = y j u j = 0 and u j Z j = 0, and yk Zk = zkYk . Finally,

(12) results from the contraction g jk of (11). �	
With this choice of basis vectors, the Ricci tensor (6) is:

Rkl = ukul

[
R

3
+ 2∇pu̇ p

]
+ gkl

[
R

3
+ ∇pu̇ p

]
− 2u̇k u̇l − 2Ekl

− 1

η
u̇l∇kη − 2η(Yk yl + Zk zl). (13)

In static space-times the curvature scalar R and the space curvature scalar R� are
related by the identity (see [43] Eq. 34):

R = R� − 2∇pu̇ p. (14)

3 The Faraday tensor in static space-times

The conditions for a Faraday tensor and the conserved current are given.

The antisymmetric tensors ui u̇ j − u j u̇i and yi z j − y j zi are “time independent”:
uk∇k(ui u̇ j − u j u̇i ) = 0 and uk∇k(yi z j − y j zi ) = 0. The other antisymmetric
combinations of the basis vectors do not share this property.

123
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Therefore, we consider the following antisymmetric tensor

Fjk = E√
η
(u j u̇k − u̇ j uk) + B(y j zk − yk z j ) (15)

where E and B are scalar fields with Ė = Ḃ = 0. Since η̇ = 0, it is Ḟjk = 0.
Fjk is a Faraday tensor if:

∇ j Fkl + ∇k Fl j + ∇l Fjk = 0. (16)

Theorem 3.1 (The Faraday tensor) In a static space-time, the tensor (15) with Ė =
Ḃ = 0 is Faraday if and only if

∇k
E√
η

= κu̇k, (17)

u̇k∇kB = B

[
η − ∇k u̇k + u̇k∇kη

2η

]
. (18)

Then it is κ̇ = 0.

Proof See “Appendix 2”. �	
The vector field Jk = ∇ j F j

k is a conserved current ∇k J k = 0.

Proposition 3.2 (The current)

J k = Juk + (
zk ym − yk zm) (

∇mB − B
∇mη

2η

)
(19)

J = −ηκ + E
√

η − E√
η
∇ j u̇

j (20)

Proof Equation (92) gives Jk = −ηκuk + E√
η
(ük −uk∇i u̇i )+ (y j∇ j B−Bu̇ j Y j )zk −

(z j∇ j B − Bu̇ j Z j )yk + B(Y j z j − Z j y j )u̇k . The last term is zero and ük = ηuk . It
is also u̇ j Y j = 1

η
ymu̇ j∇ j u̇m = 1

η
ymu̇ j∇mu̇ j = 1

2η ym∇mη, and u̇ j Zk = 1
2η zm∇mη.

The current is obtained, and is orthogonal to u̇k . �	

4 Linear/non-linear electrodynamics in static Einstein gravity

The equations of the Einstein—LE and NLE theory are discussed.

The Einstein equations of gravity coupled to an electromagnetic field descend from
the action (see [1])

S = 1

2

∫
d4x

√−g [R − 4L (F)]

123
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where L is a scalar function of the squared Faraday tensor F = 1
4 Fjk F jk . In linear

electrodynamics L (F) = F .
The vanishing of the variations of the action in the metric tensor and in the vector
potential (Fjk = ∇ j Ak − ∇k A j ) respectively give:

R jk − 1
2g jk R = 2LF (F)Fjm Fk

m − 2g jkL (F) (21)

∇ j (LF (F)F jk) = 0 (22)

where LF = dL /d F . The right-hand-side of Eq. (21) is the energy–momentum
tensor T nlin

jk of non-linear electrodynamics.

In the static setting with Fjk given by (15), it is F = 1
2 (B

2 − E
2) and

T nlin
jk = 2(E2 + B

2)

[
u j uk − u̇ j u̇k

η

]
LF (F) + 2g jk[B2LF (F) − L (F)]. (23)

Note the disappearance of the space-like vectors y j and z j .
In the linear case the tensor is traceless:

T lin
jk = 2(E2 + B

2)

[
u j uk + 1

2
g jk − u̇ j u̇k

η

]
. (24)

The contractions of the Einstein equation (21) with u j and g jk give two interesting
relations between the geometry and the scalars of electrodynamics:

E
2LF (F) + L (F) = 1

2∇pu̇ p + 1
4 R (25)

FLF (F) − L (F) = − 1
8 R (26)

These are immediate consequences:

Proposition 4.1 (1) R = 0 if and only if L (F) = cF (we take c = 1).
(2) In linear electrodynamics: B

2 + E
2 = ∇pu̇ p.

The sum of (25) and (26) is: (B2 + E
2)LF = ∇pu̇ p + 1

4 R. The Einstein equation
of non-linear electrodynamics becomes a geometric prescription for the Ricci tensor,
which acquires a form much simpler than the general one in static space-times (13):

R jk =
(

R� − 1

2
R

) [
u j uk + 1

2
g jk − u̇ j u̇k

η

]
+ 1

4
g jk R (27)

uk and u̇k are eigenvectors of the Ricci tensor with eigenvalue−(∇pu̇ p), while yk and
zk are eigenvectors with eigenvalue R

2 + ∇pu̇ p (in the linear case: R = 0).
The second field equation (22) describes the current. It is equivalent to the following

three equations

∇ j

[
u̇ j√

η
ELF

]
= √

η [ELF ] (28)

123
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∇ j [y j
BLF ] = −(z j� j )[BLF ] (29)

∇ j [z j
BLF ] = (y j� j )[BLF ] (30)

Proof The expression (15) of the Faraday tensor is placed in (22):

0 = ∇ j

[
E√
η
LF

(
u j u̇k − uku̇ j

)]
+ ∇ j

[
BLF (y j zk − yk z j )

]

= u̇ku j∇ j

[
E√
η
LF

]
− uku̇ j∇ j

[
E√
η
LF

]
+

[
E√
η
LF

] (
ük − uk∇ j u̇

j
)

+ zk y j∇ j [BLF ] − yk z j∇ j [BLF ] + [BLF ]
(

zk∇ j y j + y j∇ j zk

−yk∇ j z
j − z j∇ j yk

)
= −uku̇ j∇ j

[
E√
η
LF

]
+ uk

[
E√
η
LF

] (
η − ∇ j u̇

j
)

+ zk y j∇ j [BLF ] − yk z j∇ j [BLF ]

+ [BLF ]
(

zk∇ j y j − y j Z j u̇k + y j� j yk − yk∇ j z
j + z j Y j u̇k + z j� j zk

)

The coefficient of u̇k is proportional to (z j Y j − y j Z j ) = 0. The vector equation gives
three conditions for the coefficients of the components along uk , zk and yk . �	

An extension with L (F, ∗F), where the invariant scalar ∗F is built with the dual
Faraday tensor, is studied by Bokulić et al. [7].

5 Anisotropic perfect fluid in static Einstein gravity

Absence of convective term. Positive energy means positive space-curvature scalar.

The Einstein equation for a static anisotropic fluid with velocity ui is:

R jk − 1

2
g jk R = (p + μ)u j uk + pg jk + 
 jk

where 
 jk is the stress-tensor (traceless and 
 jkuk = 0), p is the effective pressure
and μ is the energy density. A convective term (u j qk + ukq j ) is forbidden in static
space-times as it would violate Eq. (3).
By the general property R jkuk = (−∇pu̇ p)u j the contraction of the Einstein equation
with uk gives ∇pu̇ p + R

2 = μ. Now use (14) and obtain the simple relation:

μ = 1

2
R� (31)

The trace and the previous equation give the pressure:

3p = 1

2
R� − R (32)
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Remark 5.1 In general, in a static space-time the Einstein equations relate the positive
energy constraint to the space curvature scalar:

Ti j u
i u j = R jku j uk + 1

2 R = ∇pu̇ p + 1
2 R = 1

2 R� ≥ 0

In spherical symmetry (see “Appendix 1”): R� = 2( 1−B
r2

+ B′
r ). The condition becomes

d

dr

B(r) − 1

r
≥ 0 (33)

6 Spherical symmetry

Expressions of the Ricci, Weyl, Cotton and Bach tensors in terms of
u j uk , g jk and u̇ j u̇k .

Natural constraints give notorious metrics.
The magnetic part of the Faraday tensor is a monopole.

The majority of static spherical metrics discussed in the literature depend on a
single scale function B(r) > 0:

ds2 = −B(r)dt2 + dr2

B(r)
+ r2(dθ2 + sin2 θ dφ2). (34)

In coordinates (t, r , θ, φ), the acceleration is the radial vector u̇k = (0, B′
2B , 0, 0),

where a prime is a derivative in r .
If X(r) is a scalar function, its gradient is parallel to u̇ j :

∇ j X = u̇ j u̇k

η
∇k X = u̇ j

2B

B ′ X ′ (35)

The following scalars are obtained from expressions valid for the broader class of
spherical doubly-warped space-times (see “Appendix 1” or equations 51, 40 and 53
in [43]):

η = 1

4

B ′2

B
,

u̇ p∇pη

η
= B ′′ − B ′2

2B
, ∇pu̇ p = B ′′

2
+ B ′

r
. (36)

A key quantity is the following:

Proposition 6.1

∇ j u̇k =
[
−η + B ′

2r

]
u j uk + B ′

2r
g jk +

[
B ′′

2
− B ′

2r
− η

]
u̇ j u̇k

η
. (37)
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Proof In spherical coordinates, with y j = (0, 0, r , 0) and z j = (0, 0, 0, r sin θ) one
evaluates

Y j = 2B

r B ′ y j , Z j = 2B

r B ′ z j

Then Y j yk + Z j zk = 2B
r B′ (g jk + u j uk − u̇ j u̇k

η
). The static expression (11) becomes

∇ j u̇k = −ηu j uk + u̇ j u̇k

2η2
u̇ p∇pη + η

2B

r B ′

(
g jk + u j uk − u̇ j u̇k

η

)

= u j uk

[
−η + B ′

2r

]
+ g jk

B ′

2r
+ u̇ j u̇k

η

[
1

2η
u̇ p∇pη − B ′

2r

]

With insertions of the scalars (36), the result is obtained. �	
We now obtain the covariant expressions of the Ricci, the Weyl, the Cotton and the

Bach tensors. They will appear as combinations of the tensors u j uk , g jk and u̇ j u̇k ,
with coefficients that are scalar functions of r .

Proposition 6.2 (The Ricci tensor)

R jk = g jk
R(r)

4
+

[
u j uk + 1

2
g jk − u̇ j u̇k

η

]
A(r)

A(r) = 1 − B

r2
+ B ′′

2
(38)

Proof Insert the expression for Yk yl + Zk zl evaluated in Prop. 6.1 in Eq. (13):

Rkl = ukul
[ R
3 + 2∇pu̇ p] + gkl

[ R
3 + ∇pu̇ p] − 2u̇k u̇l − 2Ekl

− u̇k u̇l
η

u̇ p∇pη

η
− 2 B′2

4B
2B
r B′ (gkl + ukul − u̇k u̇l

η
)

= ukul

[
R
3 + 2∇pu̇ p − B′

r

]
+ gkl

[
R
3 + ∇pu̇ p − B′

r

]

− u̇k u̇l
η

[
2η + u̇l∇lη

η
− B′

r

]
− 2Ekl

The spherical scalars η, u̇ p∇pη and ∇pu̇ p are given in Eq. (36). The electric tensor
and the curvature scalar are obtained from equations (86) and (90) in “Appendix 1”:

Ekl = E(r)

[
u̇k u̇l

η
− ukul + gkl

3

]
(39)

E(r) = 1

2

[
1 − B

r2
+ B ′

r
− B ′′

2

]

R(r) = 2
1 − B

r2
− 4

B ′

r
− B ′′ (40)

The Ricci tensor is then written as a sum with a trace-less term. �	
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Proposition 6.3 (TheWeyl tensor) With the expression of the electric tensor, the static
Weyl tensor (7) becomes:

C jklm = E(r)
[
(gkl + 2ukul)

u̇ j u̇m

η
− (g jl + 2u j ul)

u̇k u̇m

η
+ (g jm + 2u j um)

u̇k u̇l

η

− (gkm + 2ukum)
u̇ j u̇l

η
− ukul g jm + u j ul gkm − u j um gkl + ukum g jl

− 2

3
(gkl g jm − g jl gkm)

]
. (41)

The Riemann tensor can then be obtained.

Proposition 6.4 The Cotton tensor (Cotton [17]) The Cotton tensor C jkl = ∇ j Rkl −
∇k R jl − 1

6 (gkl∇ j R − g jl∇k R) is proportional to ∇mC jkl
m. Here it is

C jkl = B ′

2η

(
A′ + A

r

) [
u̇ j (ukul + 1

3
gkl) − (u j ul + 1

3
g jl)u̇k

]
. (42)

Proof The evaluation is rather long. Let us specify some building steps. With (37) we
obtain:

∇ j
u̇k u̇l

η
= −u j (uku̇l + ul u̇k) + B ′

2rη

(
h jk u̇l + h jl u̇k − 2

η
u̇ j u̇k u̇l

)
(43)

Next, with the spherical static Ricci tensor (38):

∇ j (Rkl − R

6
gkl) = −A(r)

B ′

2rη
(h jk u̇l + h jl u̇k − 2

η
u̇ j u̇k u̇l)

+ B ′

2η
u̇ j

[(
ukul + 1

2
gkl − u̇k u̇l

η

)
A′ + gkl

R′(r)

12

]
.

The subtraction with j, k exchanged gives

C jkl = B ′

2η

[
(u̇ j ukul − u̇ku j ul)

(
A′ + A

r

)
+ (u̇ j gkl − u̇k g jl)

(
A′

2
+ R′

12
+ A

r

)]
.

With the identity R′ = −8 A
r − 2A′ the Cotton tensor gains the useful form (42). �	

Proposition 6.5 The Bach tensor (Bach [3]) With the Weyl tensor C jkl
m, the Bach

tensor is the only algebraically independent one that is invariant for a conformal
transformation g′

i j (x) = e2φ(x)gi j (x) in n = 4 [56]:

Bkl = 2∇ j∇mC jklm + R jmC jklm = −∇ j C jkl + R jmC jklm
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where C jkl is the Cotton tensor. It is symmetric, traceless and divergence-free. In the
metric (34) we find:

Bkl = B1ukul + 1

4
(B1 − B2)gkl + B2

u̇k u̇l

η
(44)

B1 + B2 = −2B

r

(
A′ + A

r

)
− 2B

3

(
A′ + A

r

)′
(45)

B1 − B2 = −8

3
AE − 4

3

(
A′ + A

r

) (
B ′ + B

r

)
− 4B

3

(
A′ + A

r

)′
(46)

Proof With Eq. (7) and using Eklul = 0, it is:

R jmC jklm = A(r)

[
−(gkl + 2ukul)E jm

u̇ j u̇m

η
+ u̇l Ekmu̇m

η
+ u̇k E jl u̇ j

η

]

Now use E jk u̇k = 2
3 E(r)u̇l . Then:

R jmC jklm = −4

3
A(r)E(r)

[
ukul + 1

2
gkl − u̇k u̇l

η

]
(47)

The divergence of the Cotton tensor is

∇ j C jkl = B ′

2η

d

dr

[
B ′

2η

(
A′ + A

r

)]
u̇ j

[
u̇ j

(
ukul + 1

3
gkl

)
−

(
u j ul + 1

3
g jl

)
u̇k

]

+ B ′

2η

(
A′ + A

r

)
∇ j

[
u̇ j

(
ukul + 1

3
gkl

)
−

(
u j ul + 1

3
g jl

)
u̇k

]

= 1

3

(
A′ + A

r

) [
2B ′

(
ukul + 1

2
gkl − u̇k u̇l

η

)
+ B

r

(
5ukul + gkl + u̇k u̇l

η

)]

+ B

(
A′ + A

r

)′ [
ukul + 1

3
gkl − 1

3

u̇k u̇l

η

]
. (48)

It turns out that Bkl is a traceless linear combination of ukul , gkl and u̇k u̇l . The
expressions B1 ± B2 result from the scalars B jku j uk and B jk u̇ j u̇k evaluated with
(47) and (48). �	

Now we pin down some space-times that solve special geometric constraints.

Proposition 6.6 A spherically symmetric static space-time
(a) has zero scalar curvature (R = 0) if 21−B

r2
− 4 B′

r − B ′′ = 0 i.e.

B(r) = b−2

r2
+ b−1

r
+ 1 (49)
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The Ricci tensor (38) is traceless, with A(r) = 2b−2/r4. (b) is conformally flat
(C jklm = 0) if E(r) = 0 i.e.

B(r) = 1 + b1r + b2r2 (50)

(c) is harmonic (∇mC jklm = 0) if

B(r) = b−1

r
+ 1 + b1r + b2r2 (51)

Proof: Equation (42) gives A′+ A/r = 0 i.e. A = −b1/r . Then: B ′′+21−B
r2

+ 2b1
r = 0,

with the above solution. �
(d) is bi − harmonic (∇ j C jkl = 0) if it is harmonic (51), or if

B(r) = κr2 (52)

with arbitrary constant (note that it is not a special case of harmonic).
Proof: The expression (48) for ∇ j C jkl is zero if the components gkl and u̇k u̇l vanish
(the component ukul vanishes because of the trace condition). The difference gives:

(
A′ + A

r

) [
− B ′

3
+ 2

3

B

r

]
= 0

The first factor vanishes for harmonic space-times, the other gives B = κr2, that also
solves the other constraint and sets A(r) = 1/r2, E(r) = 1/(2r2). �
(e) is Einstein if A(r) = 0 i.e.

B(r) = b−1

r
+ 1 + b2r2 (53)

(f) is Constant Curvature if A(r) = 0 and C jklm = 0.

B(r) = 1 + b2r2 (54)

The Riemann tensor has the form R jklm = R
12 (g jl gkm − g jm gkl) with R = −12b2.

(g) has zero Bach tensor (Bkl = 0) if

B(r) = −β(2 − 3b1β)

r
+ (1 − 3b1β) + b1r + b2r2 (55)

Proof: the Bach tensor (44) is zero if B1 ± B2 = 0. With B �= 0 the sum gives
3
(

A′ + A
r

) + r
(

A′ + A
r

)′ = 0 i.e [r2(Ar)′]′ = 0, A(r) = a−2
r2

+ a−1
r . Then B(r) =

b−1
r + b0 + b1r + b2r2 with 1 − b0 = a−2 and b1 = −a−1.

This expression in Eq. (46) gives: a−2(1+b0) = 3a−1b−1 and a−2b1 = −a−1(1−
b0). The first one is the constraint 1 − b20 = −3b1b−1, the other equation is trivial.
A possible parameterization of B(r) is (55). �
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Proposition 6.7 (The Faraday tensor) In a static spherical-symmetric space-time the
magnetic coefficient B(r) of the Faraday tensor (15) is

B(r) = qm

r2
(56)

where qm is a magnetic charge. The current is time-like and independent of B:

J k =
(

−ηκ + E
√

η − E√
η
∇ j u̇

j
)

uk (57)

Proof The Eq. (17) for E/
√

η is satisfied by any function of r . The Eq. (18) for B

becomes

1

2
B

′ = −B
1

r
.

with solution (56). The expression of the current (19) simplifies as directional
derivatives other than u̇k∇k are zero for scalars that only depend on r . �	
The geometric cases presented in Prop. 6.6 correspond to well known static spherically
symmetric solutions of gravitational theories.
We consider the Einstein, the Cotton, the f (R) and the Conformal Gravity theories.

7 Static solutions in Einstein gravity

The imperfect fluid cannot be perfect. Early solutions. Properties of LE and NLE

The Einstein tensor G jk = R jk − R
2 g jk for the static spherical metric (34) is

G jk = 2

3
A(r)u j uk +

[
B ′′

3
+ B ′

r
− 1 − B

3r2

]
g jk − A(r)

[
u̇ j u̇k

η
− u j uk + g jk

3

]
.

(58)

Its tensor structure and the Einstein equation G jk = Tjk dictate that of the energy–
momentum density Tjk . In the picture of a fluid it is:

Tjk = (p + μ)u j uk + pg jk + (pr − p⊥)

[
u̇ j u̇k

η
− u j uk + g jk

3

]
(59)

The structure of the stress tensor is fully specified. The energy density μ, the effective
pressure p = 1

3 (pr + 2p⊥), the radial and transverse pressures pr , p⊥ are functions
r :

μ = −pr = 1 − B

r2
− B ′

r
, p⊥ = B ′′

2
+ B ′

r
(60)
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Pressure isotropy (pr = p⊥) imposes A(r) = B′′
2 + 1−B

r2
= 0, i.e. the space-time

is Einstein with fluid equation of state μ = −p, and

B(r) = 1 + b−1

r
+ b2r2 (61)

The field equation with a dust source, G jk = μu j uk does not admit a static solution
(34) (the source term must contain a pressure anisotropy to compensate the equality).

Remark 7.1 There has been a discussion whether a static spacetime with spherical
metric (34) may host a perfect fluid. Faraoni et al. [21] and Visser [57] showed the
inconsistency of the Kiselev metric with a perfect fluid source. A definite negative
answer has been given by Lake and Bisson [6, 35]. Here, again, we have shown that
it does not occur unless p = −μ.

For the static anisotropic fluid tensor (59), the equation ∇ j T j
k = 0 is:

0 = (p + μ)u̇k + ∇k p+(pr − p⊥)

[
∇ j

u̇ j u̇k

η
− u̇k

3

]
+

[
u̇ j u̇k

η
− g jk

3

]
∇ j (pr − p⊥)

= (μ + p⊥)u̇k + ∇k p⊥ + (pr − p⊥)∇ j
u̇ j u̇k

η
+ u̇k

η
u̇ j∇ j (pr − p⊥)

A gradient is evaluated in (43):∇ j
u̇ j u̇k

η
= u̇k + B′

rη
u̇k . In spherical symmetry:∇k p⊥ =

1
η

u̇k u̇ j∇ j p⊥. The derivative of the radial pressure is obtained:

0 = p′
r + B ′

2B
(μ + pr ) + 2

r
(pr − p⊥) (62)

7.1 Some static solutions of the Einstein equations

Simple conditions provide the classical static solutions
• Schwarzschild space-time.
R jk = 0 gives the famous vacuum spherical solution (61), with b2 = 0:

B(r) = 1 − 2M

r

• Schwarzschild - de Sitter (SdS) space-time. The equation G jk +�g jk = 0 is solved
by (61) with free parameter b−1. The coefficient of g jk fixes b2 = − 1

3�.
• Reissner-Nordstrøm space-time [19].
If R = 0 the Einstein equation Rkl = Tkl implies the energy–momentum tensor

Tjk = b−2
r4

[
u j uk − 1

2g jk − u̇ j u̇k
η

]
. In comoving coordinates the non-zero Faraday

component

Ftr = E√
η

u0u̇r = E
( − √

B
)1
2

B ′

B
= −

√
b−2

r2
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corresponds to the radial electric field of a point charge qe = √
b−2.

The metric function is (Reissner 1916, Nordström 1913):

B(r) = 1 − 2M

r
+ q2

e

r2
(63)

• Reissner-Nordstrøm-(anti) de Sitter space-time [36].
It is a variant of the previous metric where a cosmological term −�g jk is added to
the traceless T em

jk . The scale function is:

B(r) = 1 − 2M

r
+ q2

e

r2
− 1

3
�r2

7.2 Linear and non-linear electrodynamics in Einstein gravity

WhileB(r) is fixed and equal to qm/r2 by the Faraday conditon in spherical symmetry,
E(r) is model dependent. In linear (LF = 1) or non-linear electrodynamics:

Proposition 7.2 E(r) solves the implicit equation (see [10, 24])

E(r) = qe

r2LF (F)
(64)

Proof In spherical symmetry the Eq. (28) for E is

B ′

2

d

dr
log

[
E√
η
LF

]
= B ′2

4B
− B ′′

2
− B ′

r

Then d
dr log[ E√

η
LF ] = d

dr log
√

B
B′r2 . The integration yields a constant qe. �	

In linear electrodynamics Eq. (64) is solved by a Coulomb field

E
lin(r) = qe

r2
(65)

and the electromagnetic energy–momentum density tensor is

T lin
jk = 2

q2
e + q2

m

r4

[
u j uk + 1

2
g jk − u̇ j u̇k

η

]
. (66)

This result recovers a generalization of Birkhoff’s theorem, stating that a spherical
symmetric solution of the Einstein–Maxwell equations is necessarily a piece of the
Reissner–Nordstrøm geometry with monopole charges (see [47], p. 844).

The expression T nlin
jk in the Einstein equation (21) with the Einstein tensor (58)

gives Eq. (26) and

2(B2 + E
2)LF (F) = A(r) (67)
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The case R = 0 i.e. LF = 1 (linear electrodynamics) is the Reissner-Nördstrom
solution with “dyonic charge”, i.e. b−2 = q2

m + q2
e .

Equation (67) has been exploited to infer theLagrangianL from themetric function
B(r) (through A(r)), or the opposite, in two situations:E = 0 orB = 0. The feasibility
of the correspondence has been investigated by Bronnikov [11].
• Purely magnetic (E = 0). Then 4FLF (F) = A(r) with F = q2

m/(2r4).
Ayón-Beato and Garcia [1] started with the metric of the Bardeen black-hole, and
deduced the Lagrangian:

B(r) = 1 − 2mr2

(r2 + q2
m)3/2

→ L (F) = 3m

q3
m

[ √
2q2

m F

1 + √
2q2

m F

]5/2

Kruglov [34] obtained the Lagrangian of the Hayward black-hole [27]:

B(r) = 1 − 2mr2

r3 + q3
m

→ L (F) = 3

23/4
(2q2

m F)3/2

(1 + (2q2
m F)3/4)2

• Purely electric (qm = 0). Then A(r) = −4FLF (F) with F = −E
2/2.

With the aid of Eq. (64) Halilsoy et al. [24] obtained the metric from the Lagrangian:

L (F) = a

b
√
2 − √−4F

→ A(r) = 2bqe

r2
−

√
|a|qe√

2

2qe

r

The function A(r) has the same form as the Mannheim–Kazanas solution (55) Prop.
6.6. The same metric function B(r) is also a vacuum solution of Conformal Gravity.
An interesting application has been the forecast of the shadow of the black hole in
M87 [33].

8 Linear and non-linear electrodynamics in f(R) gravity

The equations and the charged solution by Hollenstein and Lobo

f (R) gravity is an extension of Einstein gravity, where a function f (R) replaces R
in the Einstein-Hilbert action. The equations in spherical symmetry are studied by
Capozziello et al. in [12]. With coupling to non-linear electrodynamics, the equations
of motion, with fR = d f /d R are [29]:

R jk fR(R) − 1

2
g jk f (R) + [g jk� − ∇ j∇k] fR(R) = T nlin

jk (68)

∇ j (F jkLF (F)) = 0 (69)
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The second one is the same as in the Einstein theory. The equations are studied in the
static metric (34). For any function g(r): ∇k g = u̇k

2B
B′ g′ (Eq. (35)), and

∇ j∇k g = (∇ j u̇k)
(2B

B ′ g′) + u̇ j u̇k
2B

B ′
d

dr

(2B

B ′ g′)

= u j uk

[
B

r
− B ′

2

]
g′ + g jk

B

r
g′ + u̇ j u̇k

η

[
Bg′′ + 1

2
B ′g′ − Bg′

r

]

where ∇ j u̇k is (37). In particular: �g = 2 B
r g′ + B ′g′ + Bg′′.

Given the expressions of the Ricci tensor (38) and of T nlin
jk (23), the first field equation

corresponds to three scalar equations:

− 1

2
f + fR

[
R

4
+ 1

2
A(r)

]
+ � fR − B

r
f ′
R = 2[B2LF − L ] (70)

fR A(r) +
[

B ′

2
− B

r

]
f ′
R = 2(E2 + B

2)LF (71)

fR A(r) +
[

B ′

2
− B

r

]
f ′
R + B f ′′

R = 2(E2 + B
2)LF (72)

The difference of equations (71) and (72) is f ′′
R = 0. Thus, we reobtain a simple

general result by Hollenstein and Lobo [29]:

Proposition 8.1 In f (R)-nonlinear electrodynamics with static metric (34), it is
fR(R(r)) = cr + d, where c and d are constants.

The case c = 0, d = 1 is Einstein’s gravity ( f = R).
The result greatly simplifies Eqs. (70) and (71). With 1

4 R + 1
2 A = 1−B

r2
− B′

r and

� fR = 2 B
r c + B ′c, they become:

1

2
f (R) = (cr + d)

[
1 − B

r2
− B ′

r

]
+ c

[
B

r
+ B ′

]
− 2[B2LF − L ] (73)

(cr + d)

[
1 − B

r2
+ B ′′

2

]
+ c

[
B ′

2
− B

r

]
= 2(E2 + B

2)LF (74)

The spherical symmetry always forces B = qm/r2. To go further, we consider linear
electrodynamicsLF = 1, E = qe/r2. Equation (74) can now be solved and is Eq. 34
in [29] (since it is without explanation, we offer a derivation in “Appendix 3”).

B(r) = 1 + cK

2d2 − K

3dr
−

[
1 + cK

d2 + 4
q2

e + q2
m

d
(

c

d
)2

] [
c

d
r − (

c

d
)2r2 log

cr + d

r

]

+ q2
e + q2

m

d

[
1

r2
− (

c

d
)
4

3r
+ 2(

c

d
)2

]
+ K0r2. (75)

The solution B(r) has to produce in (73) a function f (R), and be compatible with
fR(R) = cr + d.
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The thermodynamics of a f (R) = R −2α
√

R black hole with metric (34) are studied
in [48], in power law electrodynamics.

9 Static solutions in Cotton gravity

Cotton gravity is Einstein gravity with a free Codazzi tensor.
Two new solutions: perfect fluid and LE.

Cotton gravity was introduced by Harada [25], as an extension of Einstein’s gravity.
In the Harada equation, the Einstein tensor is replaced by the Cotton tensor, and the
energy–momentum tensor is replaced by gradients of it:

C jkl = ∇ j Tkl − ∇k Tjl − 1

3
(gkl∇ j T − g jl∇k T ) (76)

where T = T k
k . As we showed in [44] the Harada equation is equivalent to the

Einstein equation with an energy momentum modified by an arbitrary Codazzi tensor

R jk − 1
2g jk R = Tjk + C jk − g jkC

k
k

∇iC jk = ∇ jCik (77)

9.1 The Harada solution

Harada found a static spherical solution of his equation with C jkl = 0. It is (51) in
Prop. 6.6:

B(r) = 1 − 2M

r
− �

3
r2 + γ r (78)

It generalizes the Schwarzschild solution by a cosmological term, and corresponds to
solving the Einstein equation with the energy momentum

Tjk = −�g jk + γ

r

[
−2

3
u j uk + 4

3
g jk +

(
u̇ j u̇k

η
− u j uk + g jk

3

)]

Therefore, the Harada vacuum solution is a solution of the Einstein equation for an
exotic anisotropic fluid, with velocity uk , energy density μ = −pr = − 2γ

r + � and
transverse pressure p⊥ = γ

r − �.
The same function B(r) appears as solution of a model for gravity at large distances
studied by Grumiller [23], with an analogous energy–momentum tensor.

Harada numerically solved the equations for Cotton-gravity to describe the rotation
curves of galaxies [26], where a linear term γ r provides the observed gravitational
potential without the need of dark matter.
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9.2 Perfect fluid solution

While in Einstein gravity there are no perfect fluid solutions with the static spherical
metric (34), this is no longer true in Cotton gravity because of the freedom of choosing
the Codazzi tensor.
The following one, with constants K and κ ,

C jk = K√
B(r)

u j uk + κg jk (79)

is a Codazzi tensor in the metric (34) (see [44]). By choosing B(r) = b−1
r + 1 +

b2r2 (as (53), i.e. A(r) = 0), the Ricci tensor is Einstein, R jk = −3b2g jk . The
energy–momentum tensor

Tjk = R jk − 1
2 Rg jk − C jk + g jkC

k
k

= − K√
B(r)

(u j uk + g jk) − [ R
4 + 4κ

]
g jk

is perfect fluid, and the Harada equation (76) is solved by the metric (34) with the
function B(r). The perfect fluid has constant energy density μ = 4κ + R/4, while
p + μ = − K√

B(r)
is a function of r because of the Codazzi term.

• If C jk = 0 we recover GR with the cosmological law p = −μ.
• If K = 0, κ = − R

16 we get the empty solution p = μ = 0. Thus in Cotton gravity
the same metric (SdS or SadS) is compatible with different energy–momentum
tensors.

• The electric function is E(r) = − 3
2

b−1
r3

. If b−1 = 0 then C jklm = 0. B(r) =
1+b2r2 gives themetric of a constant curvature space-time R jklm = 1

12 R(g jl gkm−
g jm gkl) in presence of a perfect fluid in Cotton gravity.

Remark 9.1 Apparently, the statement that (79) is a Codazzi tensor in a constant cur-
vature space-time comes at odds with the theorem by Ferus [22] stating that the
only Codazzi tensors is such spacetimes are ∇ j∇kϕ + 1

12 Rϕg jk , where ϕ is an
arbitrary scalar field. Actually, it can be shown that the tensor is in this class with
ϕ(r) = K

√
B(r). The term κg jk is the trivial Codazzi tensor.

9.3 Linear electrodynamics

We obtain a new solution for Cotton gravity in presence of the linear tensor of
electrodynamics.

Proposition 9.2 The metric function B(r) solving the Cotton gravity equation in linear
electrodynamics is:

B(r) =
[
1 − 2M

r
− �

3
r2 + γ r

]
+ q2

e + q2
m

r2
(80)

It is the sum of the solution of C jkl = 0 (in square brackets) and a dyonic charge term.
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Proof The traceless energy–momentum tensor T lin
jk in Eq. (24), is entered in theCotton

gravity equation: C jkl = ∇ j T lin
kl − ∇k T lin

jl :

C jkl =
[

K ′ + K

r

]
(uku̇ j − u j u̇k)ul +

[
K ′

2
+ K

r

]
(u̇ j gkl − u̇k g jl) (81)

where for brevity K = 2[ q2
m

r4
+ E

2(r)]. The static spherical Cotton tensor is (42).

The contraction with gkl gives 0 = K ′
2 + 2K

r , with solution

E(r) = qe

r2

The contraction with ukul is A′ + A
r = 3

4 K ′ with solution A(r) = − γ
r + 2 q2

e +q2
m

r4
,

with a constant γ . The corresponding metric function is obtained. �	

10 Static solutions in conformal gravity

The field equations, the Mannheim-Kazanas and LE solutions.

The action of conformal gravity is S = −αG
∫

d4x
√

(−g)C jklmC jklm + Smatter

In n = 4 the Weyl term, that accounts for geometry, is invariant for the conformal
transformation1 g′

jk(x) = e2φ(x)g jk(x).
The variation in the metric tensor, neglecting boundary terms, is:

δS = 2αG

∫
d4x

√
(−g)Bkl δgkl − 1

2

∫
d4x

√
(−g) Tkl δgkl

whereBkl = 2∇ j∇mC jklm + R jmC jklm = −∇ j C jkl + R jmC jklm is the Bach tensor
and Tkl is the energy–momentum density tensor. The field equation of Conformal
gravity is:

4αG Bkl = Tkl (82)

The property ∇ j T j
k = 0 is mantained by the identity ∇ jB j

k = 0.
Equation (44) for the static spherical Bach tensor fixes the form of the energy–

momentum tensor as an anisotropic fluid (59):

4αG

[
B1u j uk + B1 − B2

4
g jk + B2

u̇ j u̇k

η

]

= (μ + p⊥)u j uk + p⊥g jk + (pr − p⊥)
u̇ j u̇k

η

with μ = αG(3B1 + B2), pr = αG(B1 + 3B2) and p⊥ = αG(B1 − B2).

1 It is C ′
jklm = e2φC jklm , C ′ jklm = e−6φC jklm and

√−g′ = e4φ
√−g.
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Since the Bach tensor is traceless, it is T k
k = 0, i.e. in static conformal gravity the

fluid always satisfies

pr + 2p⊥ = μ (83)

The continuity equation for the energy momentum is Eq. (62).
Let us view some special cases:

10.1 Vacuum solution

Mannheim and Kazanas [39] obtained the vacuum spherical static solution for confor-
mal gravity,B jk = 0. It is the metric function B(r) in Eq. (55) Prop. 6.6. The solution
arose much interest for the description of the rotation curves of galaxies, where the
linear term γ r accounts for the plateau without need of dark matter [28, 30, 39, 41].
Constraints on the value of the constant γ were obtained by Sultana et al. [55], using
data for perihelion shift.

Bach showed that every static spherically symmetric space-time that is conformally
related to the Schwarzschild-de Sitter (SdS) metric solvesB jk = 0 [40]. The converse
was later proved by Buchdahl (see [28]). In some papers it is actually proven that (55)
is conformally equivalent to the SdS metric.

10.2 Perfect fluid

The anisotropic term is zero if B2 = 0, and pr = p⊥ = μ/3.
The condition on B2 is a fourth order non-linear differential equation for B(r).

10.3 The anisotropic EoS� = − pr

This occurs for B1 + B2 = 0. The trace-less energy momentum tensor takes the same
form of T lin

jk of linear electrodynamics, Eq. (24):

Tkl = μ

[
ukul + 1

2
gkl − u̇k u̇l

η

]

For this reason, the case is by far the most studied in the literature. Remarkably,
Riegert [51] proved that Birkhoff’s theorem holds in conformal gravity and implies
that a spherical symmetric solution of the Bach-Maxwell equations is necessarily
static, with B(r) given below.

Equation (45) gives: 0 = 1
r

(
A′ + A

r

) + 1
3

(
A′ + A

r

)′
, with solution A(r) = 1

r2
(1−

b0) − 1
r b1. The equation has solution

B(r) = b−1

r
+ b0 + b1r + b2r2
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It follows that E(r) = 1
2r2

(1− b20) − 3
2

b−1
r3

. This, in Eq. (46) gives 2B1 = − 4
3r4

[(1−
b20) + 3b1b−1]. The energy density is μ = p⊥ = −pr = 2αG B1:

μ(r) = −αG
8

3r4
[(1 − b20) + 3b1b−1]

The dependence r−4 agrees with the monopole field in linear electrodynamics. In this
picture:

2(q2
e + q2

m) = −αG
8

3
[(1 − b20) + 3b1b−1]

The parameter b2 is free while b±1 and b0 are constrained. The metric function B can
be cast as follows [40]

B(r) = −1

r

[
β(2 − 3βγ ) + q2

e + q2
m

4γαG

]
+ (1 − 3βγ ) + γ r − κr2

Let’s look at two subcases:

10.3.1 The harmonic solution (∇mCjklm = 0)

The function B(r) by Harada Eq. (78) solves C jkl = 0. It implies A(r) = −γ /r
and E(r) = 3 M/r3, i.e. b0 = 1, b1 = γ and b−1 = −2 M . Therefore: the Harada
metric (78) solves the field equation of conformal gravity in presence of electric and
magnetic monopoles, with charge q2

e + q2
m = 8Mγ αG .

10.3.2 The bi-harmonic solution (∇j∇mCjklm = 0)

Besides the harmonic solution, the function B(r) = κr2, see (52), cancels the term
∇ j C jkl . With b0 = 0, b1 = b−1 = 0, B(r) = κr2 solves the field equation of
conformal gravity coupled to monopole charges q2

e + q2
m = − 4

3αG , independent of κ ,
with αG < 0.

Some equations of state pr = pr (μ) have been numerically studied by Brihaye
and Verbin [8].

11 Conclusions

The initial effort of writing tensors with the vectors u j , u̇ j that define static space-
times, and two other orthogonal vectors, is rewarded by the simplicity of the study of
the field equations in gravitation theories. In spherical symmetry the first two vectors
suffice, the others being projected away with entrance of the metric tensor. In the
field equations, a geometric tensor equals a matter tensor; the tensor form of the
first determines that of the latter, and the equality of the coefficients are scalar field
equations.

123



100 Page 26 of 31 C. A. Mantica, L. G. Molinari

With this plan we obtain a list of solutions in Einstein, Cotton, f (R) and conformal
gravity, with results on the Faraday tensor and (non)linear—electrodynamics, and new
solutions in Cotton gravity.

New and old results are here obtained in the natural and simple covariant formalism.
This strategy may be applied to other extended theories, as Gauss–Bonnet gravity.
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Appendix 1

We report some useful formulas valid for static spherical space-times. They result
from the equations for doubly-warped spherical space-times with a(t) = 1 presented
in Ref. [43]. In this paper b2 = B, f 21 = 1/B, f 22 = r2 and n = 4.

ds2 = −b2(r)dt2 + f 21 (r)dr2 + f 22 (r)d�2
n−2 (84)

The Ricci tensor is Eq. 49 in [43]. Here ξ = 0. It is the sum of a perfect fluid term and
a traceless tensor:

Rkl = R + n∇pu̇ p

n − 1
ukul + R + ∇pu̇ p

n − 1
gkl + �(r)

[
u̇k u̇l

η
− ukul + gkl

n − 1

]

�(r) = ∇pu̇ p − (n − 1)

(
η + u̇ p∇pη

2η

)
− (n − 2)E(r). (85)

While in general ul is an eigenvector,with spherical symmetry also u̇l is an eigenvector.
The electric tensor (Eqs. 48 and 44 in [43]) is

Ekl = E(r)

[
u̇k u̇l

η
− ukul + gkl

n − 1

]

E(r) = n − 3

n − 2

1

f 21

[
f 21
f 22

+ f ′′
2

f2
− f ′

2
2

f 22
− f ′

1 f ′
2

f1 f2
+ b′ f ′

1

b f1
+ b′ f ′

2

b f2
− b′′

b

]
(86)

∇pu̇ p = 1

b f 21

[
b′′ − b′ d

dr
log( f1 f2) + (n − 1)b′ f ′

2

f2

]
(87)
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u̇ p∇pη

2η
= 1

f1

d

dr

b′

f1b
(88)

The scalar �(r) is evaluated with the aid of Eq. 51 in [43]:

�(r) = − 1

f 21

[
b′′

b
− b′ f ′

1

b f1
− b′ f ′

2

b f2

]
− n − 3

f 21

[
f 21
f 22

+ f ′′
2

f2
− f ′

2
2

f 22
− f ′

1 f ′
2

f1 f2

]
. (89)

The curvature scalar of space-time and of the space submanifold are:

R = R� − 2∇pu̇ p (90)

R� = (n − 2)(n − 3)

f 22
− n − 2

f 21

[
2

f ′′
2

f2
− 2

f ′
1 f ′

2

f1 f2
+ (n − 3)

f ′2
2

f 22

]
(91)

Appendix 2: Proof of Theorem 3.1

With (15) and Lemma 2.4:

∇i Fjk =
(
∇i

E√
η

)
(u j u̇k −u̇ j uk) + (∇i B)(y j zk − yk z j ) + E√

η
(u j∇i u̇k −uk∇ j u̇i )

+ B(−Yi u̇ j zk − Zi y j u̇k + Yi z j u̇k + Zi u̇ j yk) (92)

The cyclic sum is:

(∇i
E√
η
)(u j u̇k − u̇ j uk) + (∇ j

E√
η
)(uku̇i − u̇kui ) + (∇k

E√
η
)(ui u̇ j − u̇i u j )

+ (∇i B)(y j zk − yk z j ) + (∇ j B)(yk zi − yi zk) + (∇kB)(yi z j − y j zi )

+ E√
η
(u j∇i u̇k − uk∇i u̇ j + uk∇ j u̇i − ui∇ j u̇k + ui∇k u̇ j − u j∇k u̇i )

+ BYi (z j u̇k − zk u̇ j ) − BZi (y j u̇k − yk u̇ j ) + BY j (zk u̇i − zi u̇k)

− BZ j (yku̇i − yi u̇k) + BYk(zi u̇ j − z j u̇i ) − BZk(yi u̇ j − y j u̇i )

The third line is zero because the acceleration is closed. For the cyclic sum to be zero,
all contractions with vectors must be zero, and give conditions. Contraction with ui

gives: (∇ j
E√
η
)u̇k − (∇k

E√
η
)u̇ j = 0 with solution

∇ j

(
E√
η

)
= κu̇ j

With this result the ciclic condition simplifies:

(∇i B)(y j zk − yk z j ) + (∇ j B)(yk zi − yi zk) + (∇kB)(yi z j − y j zi )
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+ BYi (z j u̇k − zk u̇ j ) − BZi (y j u̇k − yku̇ j ) + BY j (zk u̇i − zi u̇k)

− BZ j (yk u̇i − yi u̇k) + BYk(zi u̇ j − z j u̇i ) − BZk(yi u̇ j − y j u̇i ) = 0.

Contraction with yi :

(yi∇i B)(y j zk − yk z j ) − (∇ j B)zk + (∇kB)z j

+ Byi Yi (z j u̇k − zk u̇ j ) − Byi Zi (y j u̇k − yku̇ j ) + B(Z j u̇k − Zku̇ j ) = 0.

A further contraction with z j gives: ∇kB = (yi∇i B)yk + (z j∇ j B)zk − B(y j Y j +
z j Z j )u̇k i.e. u̇k∇kB = −ηB(yr Yr + zr Zr ). The right-hand-side is evaluated in
Lemma 2.4 and gives the second condition.

Using the form of ∇ j B, the cyclic condition becomes

− (yr Yr + zr Zr )[u̇i (y j zk − yk z j ) + u̇ j (yk zi − yi zk) + u̇k(yi z j − y j zi )]
+ Yi (z j u̇k − zk u̇ j ) − Zi (y j u̇k − yk u̇ j ) + Y j (zk u̇i − zi u̇k) − Z j (yk u̇i − yi u̇k)

+ Yk(zi u̇ j − z j u̇i ) − Zk(yi u̇ j − y j u̇i ) = 0.

The contractions with u̇i , yi or zi or with the metric tensor are trivial. Indeed it is
satisfied by the generic expansions Yi = ayi + bzi + cu̇i and Zi = a′yi + b′zi + c′u̇i .

κ̇ = uk∇k(
1
η

u̇ j∇ j
E√
η
). Use η̇ = 0, ü j = ηu j and u j∇ j

E√
η

= 0. Then κ̇ =
1
η

u̇ j uk∇k∇ j
E√
η

= 1
η

u̇ j uk∇ j∇k
E√
η
. Now:

uk∇ j∇k
E√
η

= ∇ j

(
uk∇k

E√
η

)
− (∇ j u

k)∇k
E√
η

= ∇ j (κuku̇k) + u j u̇
k(κu̇k) = u jηκ

Then: κ̇ = u̇ j u j κ = 0.

Appendix 3: Solution of Eq. (74) with point charges

After multiplication of (74) by 2r2, the equation takes the form P B ′′ + Q B ′ + T B =
S with P(r) = cr3 + dr2, Q(r) = cr2, T (r) = −4cr − 2d. The circumstance
P ′′ − Q′ + T = 0 makes the equation integrable (see [59] Eq. 67.5). Indeed it can be
written as

[(cr3 + dr2)B]′′ − [B(5cr2 + 4rd)]′ = 4r2
q2

e + q2
m

r4
− 2(cr + d)

An integration gives a constant K :

B ′ − 2

r
B = − cr + 2d

r(cr + d)
+ 1

r2(cr + d)

[
K + 4

∫ r

dr ′ q2
e + q2

m

r ′2

]
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Define B(r) = r2H(r). The equation now is:

d H

dr
= − cr + 2d

r3(cr + d)
+ 1

r4(cr + d)

[
K − 4

q2
e + q2

m

r

]

= − 1

r3
+ K

dr4
− d2 + cK

d

1

r3(cr + d)
− 4

q2
e + q2

m

r5(cr + d)

Note that: 1
r3(cr+d)

= 1
d [ 1

r3
− c

d
1
r2

+ ( c
d )2 1r ] − ( c

d )3 1
cr+d , and similar with power 5.

The integral gives another constant K0:

H(r) = 1

2r2
− K

3dr3
− d2 + cK

d2

[
− 1

2r2
+ c

d

1

r
− (

c

d
)2 log

cr + d

r

]
+ K0

− 4
q2

e + q2
m

d

[
− 1

4r4
+

( c

d

) 1

3r3
−

( c

d

)2 1

2r2
+

( c

d

)3 1

r
−

( c

d

)4
log

cr + d

r

]

Multiplication by r2 gives the solution B(r) in (75). It coincides with Eq. 34 in [29].
With zero charge it is Eq. 22 in [53].
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