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Abstract
Quantum atmosphere effective radii for the emission of spin-0, 1/2, 1, and 2 mass-
less fields from Schwarzschild, Tangherlini, non-commutative geometry inspired, and
polymeric black holes are calculated. The power observed from the black hole at spatial
infinity taking greybody factors into account is compared to an equal-power black-
body radiator of the same temperature but different effective radius. A large range of
different radii are obtained for different spin fields and black holes. The equal-power
black-body effective radius is not, in general, a good proxy for the location of the
quantum atmosphere.
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1 Introduction

The Hawking radiation from evaporating black holes is thought to originate from
quantum excitations near the horizon [1]. Giddings [2] has argued that the radiation
originates from an effective radius rA outside the horizon radius rH call the quantum
atmosphere: rA − rH ∼ rH. It is of interest to test the validity of Giddings’ claim.

The quantum atmosphere is the location where most of the Hawking radiation
comes from.A fewdifferent arguments have been given for the location of the quantum
atmosphere. The thermal wavelength of typical Hawking radiation is much larger than
the horizon size. Heuristic arguments using a gravitational version of the Schwinger
effect for particle production by tidal forces outside the horizon have been made [3,
4]. Another reasoning uses the (1 + 1)-dimensional renormalized stress-energy ten-
sor [2, 3, 5]. In addition, the radius can be given by an effective black-body emission
surface [2, 6]. In this paper, we examine the later of these definitions.

Ref. [3, 5] have corroborated Giddings’ conclusion by obtaining rA − rH ≈ rH for
the Schwarzschild black hole using gravitational Schwinger effect arguments and a
more precise calculation using the stress-energy tensor. While the different arguments
agree that the location of the quantum atmosphere is some distance from the horizon,
they do not all give a common estimate for the numerical value.

It is of interest to examine if Giddings’ arguments are applicable to other types
of black holes. Hod [6] showed that the quantum atmosphere radius for a massless
scalar field from a Tangherlini black hole emitting radiation in the bulk is a decreasing
function of the number of space dimensions; Hod finds rA−rH � rH for high number
of extra dimensions. The Reissner-Nordström black hole has also been considered in
Ref. [4]. These metrics give contradicting conclusions to Ref. [2, 3, 5].

In this paper, we calculate exact greybody factors numerically for all spin fields.
The results are used to calculate the double-differential frequency spectrum which
is then integrated over all frequencies to obtain the power. By equating the power
to that of a black body, we determine an effective emission surface of the quantum
atmosphere. The potentials seen by different spin fields are different so we could
expect the quantum atmosphere to depend on the emitted field’s spin. We find that
the apparent radius should not be used, in general, as a proxy for the location of the
quantum atmosphere. For example, rA can not be used as a definition for the location
of the quantum atmosphere for gravitons for most black hole metrics we consider.

2 Effective radius calculation

The effective potential barrier around a black hole is commonly encoded in a set
of transmission coefficients, greybody factors, that depend on the properties of the
black hole, the properties of the emitted radiation, frequency and modes of the emitted
radiation. A physical observable that can be formed from the transmission coeffi-
cients is the absorption cross section which is a sum of the transmission coefficients
over all radiation modes divided by the frequency squared. Weighting the absorp-
tion cross section by a temperature-dependent statistical factor corresponding to the
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spin-statistics of the emitted radiation gives the radiation flux or power per unit fre-
quency. By integrating over all energies, the total radiated power or luminosity is
obtained. In the absence of absorption—step-function transmission coefficients—the
Stefan-Boltzmann law is obtained. For black holes, one can convert the temperature
dependence into a dependence on the horizon radius, and in principle a dependence
on the black hole parameters. The power thus allows a determination of the effects of
the transmission coefficients integrated over all frequencies. By comparing the power
generated by a black hole with the equivalent power from a black body seen at spatial
infinity, one obtains and effective area for the black hole, or in the case of spherically
symmetric black holes, an effective radius. The method of equal-power infers the size
of the radiating body.

The calculated power emitted from a black hole seen by an observe at spatial infinity
is compared to the equivalent power PB from an idealize black-body radiator in flat
space using the generalized Stefan-Boltzmann relation (see for example Ref. [7])

PB = σ An+2(rA)T n+4
B , (1)

where TB is the black-body temperature, An+2(rA) is the surface area of a (n + 4)-
dimensional emitting body, and σ is the appropriate Stefan-Boltzmann constant for
bosons or fermions in n extra dimensions. We use units of G = c = � = kB = 1.
Although Eq. (1) is written in the general form to allow comparison with higher-
dimensional black holes, it reduces to the more familiar form of the Stefan-Boltzmann
law when n = 0.

For a black hole, once the greybody factors �s,�(ω) for massless spin field s emit-
ted with spheroidal harmonic mode � with frequency ω have been calculated, the
absorption cross section in four spacetime dimensions is obtained:

σs(ω) = π

ω2

∑

�≥s

(2� + 1)�s,�(ω) . (2)

The (2� + 1) factor is the degeneracy of the axial quantum number or angular
momentum m modes.

The total power in four spacetime dimensions is then given by

P = 1

2π2

∫ ∞

0

ω3σs(ω)

exp(ω/T ) − (−1)2s
dω , (3)

where T is the Hawking temperature as measured at spatial infinity.
Wedefine the effective radius rA of the black hole quantumatmospheres by equating

the Hawking radiation power from the black hole Eq. (3) with the corresponding
Stefan-Boltzmann radiation power of a flat space perfect black-body emitter Eq. (1):

P(rH, T ) = PB(rA, TB) . (4)
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This equation determines the effective radius assuming equal temperature: T = TB.
One could likewise determine the effective temperature of the filtered radiation by
assuming equal radii [8].

Using An+2 ∝ Rn+2, we obtain the effective radius using

rA
rH

=
[
P(rH, T )

PB(rH, T )

] 1
n+2

, (5)

where P depends on the emittedfield’s spin and PB is different for bosons and fermions.
The dimensionless radii rA/rH characterizes the black hole quantum atmospheres.

As in Ref. [6], it is beneficial to characterize the effective quantum atmosphere
using

r̄A = rA − rH
rH

. (6)

Values of r̄A � 1 validate Giddings’ argument and negative values imply the quantum
atmosphere is behind the horizon.

3 Black holes thermodynamics

In this section, we write down the black-body power for the different metrics consider.
The formula contain only a single polarization for each spin field. We make no claim
about the validity of the two quantum inspired black hole metrics considered here.
They are partly chosen for their different black-body features and the ease of greybody
calculation.

3.1 Schwarzschild-Tangherlini black holes

For the Schwarzschild-Tangherlini [9] black hole radiating into the bulk, the higher
dimensional (n + 4) black-body power is [6, 7]

PB = σ An+2(R)T n+4 , (7)

where the higher-dimensional Stefan-Boltzmann constant is

σ = (n + 3)�((n + 3)/2)ζ(n + 4)

2π(n+3)/2+1
, (8)

and � is the gamma function and ζ is the Riemann zeta function. The higher-
dimensional surface area of the emitting body of radius R is

An+2(R) = 2π(n+3)/2

�((n + 3)/2)
Rn+2 . (9)
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We will also need the black hole temperature

T = n + 1

4πrH
, (10)

where

rH = 1√
πM∗

(
M

M∗

)1/(n+1) [
8�((n + 3)/2)

n + 2

]1/(n+1)

. (11)

The above equations reduce to the familiar Stefan-Boltzmann law and Schwarzschild
black hole when n = 0, and M∗ = √

�c/G is the Planck mass.

3.2 Non-commutative geometry inspired black holes

Non-commutative geometry inspired black holes are interesting in that the form of
the black-body area of the Schwarzschild-Tangherlini remains unchanged but the
temperature dependence is different [10, 11]. The temperature is given by

T = n + 1

4πrH

⎡

⎢⎢⎣1 − 2

n + 1

(
rH

2
√

θ

)n+3 e−rH/(4θ)

γ

(
n+3
2 ,

r2H
4θ

)

⎤

⎥⎥⎦ , (12)

where γ is the upper incomplete gamma function. The horizon radius is obtained by
solving

M

M∗
= n + 2

8γ
(
n+3
2 , r2

4θ

) (
√

πM∗rH)n+1 . (13)

The minimum length parameter
√

θ is take to be a free parameter and could be
well above the Planck length. As θ → 0, the radius and temperature approach the
Tangherlini values. The metric gives one, two, or no horizon. For a single horizon the
temperature vanishes and a black hole remnant is expected to form. The temperature
has a maximum but vanishes at the remnant radius. The non-commutative black hole
is similar to the Tangherlini black hole for large masses.

To model the effects of an effective ultra-violet cut-off in the frequency ω of the
emitted quanta an additional factor [12] of exp(−θω2/2) should multiply Eq. (3).
Although we have included this factor, it has a small effect.

3.3 Polymeric black holes

In loop quantum gravity, semi-classical corrections due to the effects of quantum
gravity have been derived to give a so-called polymer Schwarzschild black hole [13,
14]. The model has two free parameters ε and a0. The parameter a0 = 8π Amin is
related to the minimum area of loop quantum gravity and is expected to be of the
Planck scale.
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A positive deformation parameter ε represents the typical scale of the geometry
fluctuations in the Hamiltonian constraints of the theory as they get renormalized
from the Planck scale to the astrophysical scales. It’s thought that ε � 1, and values
of ε � 0.8 will have little effect on what follows. For large ε, deviations from the
Schwarzschild metric are apparent for astronomical size black holes.

The horizon area is not the usual form but is given by

A = 4π(2m)2

[
1 +

(√
a0

2m

)4
]

. (14)

The temperature is given by

T = 1

4π(2m)
(1 − P(ε)2)

[
1 +

(√
a0

2m

)4
]−1

, (15)

where the polymerization function is

P(ε) =
√
1 + ε2 − 1√
1 + ε2 + 1

. (16)

The total integrated power given by the Stefan-Boltzmann law is

P = σ

256π3m
−2(1 − P(ε)2)4

[
1 +

(√
a0

2m

)4
]−3

, (17)

where σ = π2/120 for bosons and σ = 7π2/960 for fermions. In the above equations
m is a parameter that is related to the ADM mass M by M = m(1 + P)2.

4 Results

Wecalculate the quantum atmosphere effective radius for spin-0, 1/2, 1, and 2massless
fields from two quantum inspired black holes. Our calculations are numerical and
follow the procedures used in Ref [15] which are based on the general potentials in
Ref [16] and the path-ordered matrix exponentials in Ref [17]. The procedure enables
previously rather difficult calculations.

4.1 Schwarzschild black hole

We consider the Schwarzschild black holes as a warm-up. Table 1shows dimensionless
effective radii for all spin fields from a Schwarzschild black hole. Our numerical
calculations reproduce the results of Page [18] for spin-1, 1/2, 2, and Elster [19] for
scalars. In terms of the quantum atmosphere, the case of spin-1 was first discussed in
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Table 1 Dimensionless radii r̄A
for massless fields of spin s from
a Schwarzschild black hole

s 0 1/2 1 2

r̄A 1.68 1.13 0.27 −0.57

Table 2 Dimensionless radii r̄A
for a massless scalar field from a
(n + 4)-dimensional Tangherlini
black hole radiating in the bulk

n 1 2 3 4 5 6 7

r̄A 0.99 0.71 0.59 0.50 0.44 0.39 0.33

Table 3 Dimensionless radii r̄A
for massless fields of spin s from
a (n + 4)-dimensional
Tangherlini black hole radiating
on the brane

n

s 1 2 3 4 5 6 7

0 3.44 4.98 5.83 5.86 5.21 4.16 2.78

1/2 3.44 5.10 5.90 5.84 5.13 4.04 2.71

1 2.68 4.70 5.82 5.99 5.39 4.32 2.95

2 0.96 2.67 3.89 4.37 4.14 3.43 2.34

Ref. [2] and the spin-0 in Ref. [6]. The case of spin-2 shows a breakdown of Gidding’s
principle (Ref. [2] restricted the discussion to s ≤ 1).

For the Schwarzschild black hole, the black-body power is well known to have a
P ∼ M−2 dependence.We find that including graybody factors, thismass dependence
is maintained, i.e. � does not introduce any additional M dependence.

4.2 Tangherlini black hole

To help validate our procedure, we reproduce a previous result in Ref. [6]. Table 2
shows dimensionless effective radii for scalars from a Tangherlini black hole radiating
in the bulk. We have taken M = M∗ = 1. To obtain these results, we have calculated
the emission on the brane and used the bulk-to-brane emission ratios obtained in
Ref. [20]. Our results agree with Ref. [6] to within the numerical accuracy of the
calculations.

We are now equipped to calculate something new. Table 3 shows dimensionless
effective radii for all spin fields from a Tangherlini black hole radiating on the brane.
Looking at the large values of r̄A for brane emission, we reach a different conclusion
from bulk emission, and support Giddings’ argument much better.

4.3 Non-commutative geometry inspired black hole

The non-commutative geometry inspired black hole we consider has a minimum
horizon radius at a finite mass (a black hole remnant), and a temperature that has
a maximum before the temperature vanishes. Thus the power does not follow the
M−2 dependence near the end of the black hole’s lifetime and r̄A depends on the
black hole mass. For high M

√
θ , we reproduce the Schwarzschild results. For the
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Table 4 Dimensionless radii r̄A
for massless fields of spin s from
a (n + 4)-dimensional
non-commutative geometry
inspired black hole radiating on
the brane with the maximum
temperature and

√
θ = 1

n

s 0 1 2 3 4 5 6 7

0 1.70 −0.98 5.85 7.35 7.93 7.62 6.60 5.21

1/2 1.03 −0.98 6.03 7.51 7.99 7.57 6.47 5.04

1 0.12 −0.99 5.33 7.22 8.04 7.83 6.83 5.42

2 −0.68 −0.99 2.75 4.50 5.55 5.77 5.25 4.28

Table 5 Dimensionless radii r̄A
for massless fields of spin s from
a polymeric black hole with the
maximum temperature, and
ε = 0.01 and a0 = 1

s 0 1/2 1 2

r̄A 1.57 0.62 −0.22 −0.90

black-body case, below about M
√

θ < 6, the power dependence deviates from a pure
M−2 dependence and vanishes as M → 1.9/

√
θ . The black hole power falls faster

than the black-body power with M except for the spin-0 field.
Table 4 shows dimensionless effective radii for all spin fields from a non-

commutative geometry inspired black hole in higher dimensions radiating on the brane
at the maximum temperature; we have taken

√
θ = 1.

4.4 Polymeric black hole

The polymeric black hole also has a maximum temperature but the temperature van-
ishes at zero mass. Combined with the non-trivial area dependence, the power does
not follow a M−2 dependence and r̄A depends on the mass of the black hole. We have
taken ε = 0.01 and a0 = 1. For this value of ε, P = 2.5×10−5 and gives a negligible
contribution to the power, and causes m ≈ M . For high 2M/

√
a0, we reproduce the

Schwarzschild results. For the black-body case, below about 2M/
√
a0 < 2, the power

dependence deviates from a pureM−2 dependence and vanishes asM → 0. The black
hole power falls faster than the black-body power with M except for the spin-0 field.

Table 5 shows dimensionless effective radii for all spin fields from a polymeric
black hole at the maximum temperature.

5 Discussion

We have calculated the quantum atmosphere for all massless spin fields for the first
time. Two quantum gravity inspired metrics posing different black-body power for-
mula have been compared with exact numerical calculations of the total power from
the black hole including greybody factors.

Giddings’ argument of r̄A ∼ 1 clearly depends on the spin of the emitted radiation,
decreasing by a factor of about six when going from scalars to vectors, and in general
does not apply to gravitons.
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Hod’s [6] result r̄A < 1 for higher-dimensional black holes is reproduced, but if the
radiation is confined to our brane, the conclusion is very different. Values of r̄A ∼ 5
for most spins and extra dimensions are obtained. The higher-dimensional form of the
black-body formula plays a significant role beyond just the greybody factors.

We have examined two quantum gravity inspired black holes in the regime were
quantum effects are important and the radiation will have its maximum intensity. The
quantum atmosphere for scalar fields in four space-time dimensions appears similar
regardless of the quantum inspired metric and is similar to Schwarzschild black holes.

The power in the spin-0 field always has a quantum atmosphere radius of about 1.7
times the horizon radius in four space-time dimensions. We can see that, in general,
the effective radius of an equivalent black-body radiator is not a good proxy for the
quantum atmosphere. On the other hand, the effective radius r̄A could be considered
an intuitive measure of greybody effects on the total power received by an observer.

The greybody factors themselves are of little interest until they are used to cal-
culate physical observables. It is common to calculate the absorption cross section
and compare the high-frequency limit against the geometric cross section and the
low-frequency limit against the surface area. These limits allow an easily quantifi-
able measure of the greybody effects of different metrics. Perhaps a more measurable
observable, someday, will be the total particle fluxes and energy spectra measured by
a distant observer. First measurements of these quantities are likely to be integrated
over the detecting instrument’s acceptance and resolution to obtain single numbers for
the number of particles per unit time and energy per unit time (or power), before full
spectra are measured. Expressing these measurements in terms of an effective black-
body radius could prove to be a useful mnemonic for elucidating quantum gravity
effects.
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