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Abstract
The elusive physical nature of Horndeski gravity is elucidated in a new approach
depicting this class of theories as a dissipative effective fluid. Requiring the constitutive
equations of the latter to be those of a Newtonian fluid restricts the theory to only two
disconnected subclasses of “viable” Horndeski gravity. Therefore, a stress-energy
tensor of the Horndeski effective fluid, linear in the first derivatives of the fluid’s 4-
velocity, is a sufficient condition for gravitational waves to propagate at light speed. All
other Horndeski theories correspond to exotic non-Newtonian effective fluids. The two
linear Horndeski classes are studied in the framework of first-order thermodynamics
of viscous fluids, which further constrains the functional form of the theory.
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1 Introduction

Einstein’s General Relativity (GR) cannot be the ultimate theory of gravity for several
reasons. Any attempt to reconcile it with quantum mechanics introduces deviations
fromGR.Moreover, the need to explain the current acceleration of the universewithout
a completelyadhocdark energy has led tomodifications ofGRon cosmological scales.
The most popular class of theories for this purpose is probably f (R) gravity [1], a
subclass of scalar-tensor gravity [2]. In the last decade, scalar-tensor gravity has been
generalized by rediscovering Horndeski theory [3] (see Ref. [4] for a recent review),
leading to a flurry of activity. Horndeski gravity is one of themost general scalar-tensor
theories with second order field equations, which avoids the notorious Ostrogradsky
instability [5, 6]. The action is commonly written as [4]

S [gab, φ] =
∫

d4x
√−g (L2 + L3 + L4 + L5) + S(m), (1)

where gab is the spacetimemetricwith determinant g,φ is the scalar degree of freedom,
S(m) is the matter action,1

L2 = G2 (φ, X) , L3 = −G3 (φ, X) �φ ,

L4 = G4 (φ, X) R + G4X (φ, X)
[
(�φ)2 − (∇a∇bφ)2

]
,

L5 = G5 (φ, X)Gab∇a∇bφ

− G5X

6

[
(�φ)3 − 3�φ (∇a∇bφ)2 + 2 (∇a∇bφ)3

]
. (2)

X ≡ − 1
2 ∇cφ∇cφ, the Gi (i = 2, 3, 4, 5) are regular functions of φ and X , while

Giφ ≡ ∂Gi/∂φ and GiX ≡ ∂Gi/∂X , (∇a∇bφ)2 ≡ ∇a∇bφ∇a∇bφ and (∇a∇bφ)3 ≡
∇a∇cφ∇c∇dφ∇d∇aφ.

The multi-messenger event GW170817/GRB170817A from a neutron star binary
merger [8, 9] restricts Horndeski gravity to the so-called “viable” class characterized

1 Following the notation of Ref. [7], we use units in which the speed of light c = 1 and 8πG = 1, where
G is Newton’s constant, the metric signature is −+++, and R denotes the Ricci scalar.
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by G5 = G4X = 0, in which the speed of gravitational waves equals c. This class also
avoids instabilities and admits an Einstein frame description [4, 10–13].

The field equations of viable Horndeski gravity are

G4 Gab − ∇a∇bG4 +
[
�G4 − G2

2
− 1

2
∇cφ∇cG3

]
gab

+1

2
[G3X �φ − G2X ]∇aφ∇bφ + ∇(aφ∇b)G3 = T (m)

ab , (3)

G4,φR + G2,φ + G2X�φ + ∇cφ∇cG2X

−G3X (�φ)2 − ∇cφ∇cG3X�φ − G3X∇cφ�∇cφ

+G3X Rab∇aφ∇bφ − �G3 − G3,φ�φ = 0, (4)

where Gab is the Einstein tensor and T (m)
ab ≡ − 1√−g

δS(m)

δgab
. Equation (3) can always

be written as the effective Einstein equation Gab = Tab + T (m)
ab /G4, where Tab =

T (2)
ab + T (3)

ab + T (4)
ab is the effective stress-energy tensor containing all the deviations

from GR,

T (2)
ab = 1

2G4
(G2X∇aφ∇bφ + G2 gab) , (5)

T (3)
ab = 1

2G4

(
G3X∇cX∇cφ − 2XG3φ

)
gab

− 1

2G4

(
2G3φ + G3X�φ

) ∇aφ∇bφ − G3X

G4
∇(a X∇b)φ , (6)

T (4)
ab = G4φ

G4
(∇a∇bφ − gab�φ) + G4φφ

G4
(∇aφ∇bφ + 2X gab) . (7)

For clarity of illustration, we temporarily restrict ourselves to this subclass of Horn-
deski gravity in vacuo, but will later extend our results to the most general Horndeski
theory with matter.

Because of the many free functions and terms appearing in the Horndeski action,
it is difficult to grasp the physical meaning of Horndeski gravity and many works
remain formal. One would like to understand better Horndeski gravity from the phys-
ical point of view. How can one understand, and classify, the physical deviations from
Einstein gravity appearing in these theories? Here we propose a new approach to
this class of theories: by regarding its field equations as effective Einstein equations,
the gravitational terms other than the Einstein tensor, when moved to the right-hand
side, assume the form of a dissipative effective fluid [14] (a result familiar in less
general scalar-tensor theories [15]). This effective fluid approach provides a way to
classify Horndeski gravity based on the nature of this fluid: the requirement that it is a
Newtonian fluid (i.e., with the viscous stresses depending only on the first derivatives
of the fluid’s 4-velocity) restricts the scope to two subclasses of viable Horndeski
gravity, while more general theories correspond to exotic non-Newtonian effective
fluids. Here “(non-)Newtonian” refers to standard fluid-dynamical terminology: we
always consider relativistic (effective) fluids. This classification grasps one of the
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most basic characteristics of a fluid in the usual, non-relativistic and three-dimensional
fluid mechanics. Ordinary fluid behaviour is Newtonian, while more exotic (although
still common in nature) non-Newtonian fluids are definitely more complicated. In the
absence of other physical ways to classify the nature of Horndeski theories (apart from
the well-known distinction between theories in which gravitational waves propagate
at light speed and those in which they do not), the behaviour of the effective equiva-
lent fluid serves this purpose. Alternative characterizations of Horndeski theories of
gravity from the physical point of view are not contemplated in the (now vast) relevant
literature.

We show below that the general Horndeski theory contains only two (“linear
Horndeski”) classes with an effective fluid stress-energy tensor linear in the four-
velocity gradient. They are subclasses of the viable Horndeski class identified by
G3 = G4φ ln X and G3 = 0, respectively. This result is applied in the context
of Eckart’s (or first-order) thermodynamics of relativistic viscous fluids. Out-of-
equilibrium contributions to the effective Tab are linear in the gradients of the
temperature, chemical potential, and four-velocity. It is possible to constrain the func-
tional form of G2, which is directly related to the equilibrium pressure of the effective
fluid.

The idea behind the thermodynamical analogy with a first-order viscous fluid
loosely originates in Jacobson’s idea of modified gravity as a non-equilibrium state
in a “thermodynamics of gravitational theories” based on a thermal derivation of the
Einstein equations [16, 17], in which classical gravity appears as an emergent phe-
nomenon instead of being fundamental. Thus, GR is associated with an equilibrium
state of gravity while any dynamical modified theory (in this case, Horndeski’s) is
interpreted as an excited, or non-equilibrium, state.2 The alternative gravity-viscous
fluid analogy was developed in previous works [18–21]. Here we derive the heat cur-
rent density, the “temperature of modified gravity” associated with the effective fluid
(i.e., the effective temperature of the excited state), and its viscosity coefficients by
studying a first-order effective viscous fluid with vanishing chemical potential in the
Eckart frame.While the first linearHorndeski class is characterized by a unique expres-
sion of the temperature, the temperature associated with the second linear Horndeski
class depends on the function G2 (φ, X), or, alternatively, on how the shear viscosity
depends on the effective equilibrium pressure. Tables 1 and 2 summarize our results.

2 Horndeski effective fluids

The stress-energy tensor of an imperfect fluid has the well-known form

T ab = ρuaub + qaub + qbua + �ab

= ρuaub + Phab + qaub + qbua + πab , (8)

2 However, apart from its spirit, the first-order thermodynamics of scalar-tensor gravity is completely
different from Jacobson’s thermodynamics of spacetime.

123



Fluid nature constrains Horndeski gravity Page 5 of 25 84

where ua is the fluid 4-velocity (uaua = −1), hab ≡ gab + uaub (hab is the
projector onto the 3-space orthogonal to uc), ρ = T abuaub is the energy den-
sity, P = 1

3 T
abhab is the isotropic pressure, qa = −T cduchda is the heat flux

density, �ab = hachbdT cd = Phab + πab is the stress tensor, and its trace-
less part πab describes the anisotropic stresses. Viscous pressure and anisotropic
stresses are assumed to obey constitutive laws relating them with the expansion scalar
� ≡ ∇cuc and the traceless shear tensor σ ab ≡ 1

2

(
hac∇cub + hbc∇cua

) − 1
3� hab.

In particular, using the decomposition ∇a = hac∇c − uauc∇c, one has ∇bua =
σab+�

3 hab+ωab−u̇aub,whereωab ≡ ∇[bua] is the vorticity tensor, and u̇a ≡ uc∇cua

is the 4-acceleration of the fluid.
For both non-relativistic and relativistic Newtonian fluids, these constitutive rela-

tions are linear in the 4-velocity gradient [22],

πab = −2η σ ab , P = P̄ − ζ � , (9)

where P̄ is the inviscid pressure while η and ζ are the shear and bulk viscosity coef-
ficients, respectively. Therefore, the imperfect fluid stress-energy tensor has the form

T ab = ρuaub + (
P̄ − ζ�

)
hab + qaub + qbua − 2ησ ab . (10)

In general, the request of linearity in the first derivatives of the fluid four-velocity
endows also the energy density with a viscous contribution. Thus, one could contem-
plate the additional “constitutive relation”

ρ = ρ̄ − ξ �, (11)

where ρ̄ is the inviscid density and ξ is a new viscosity (transport) coefficient. The
physical interpretation of this new term should be sought for in a resistance to com-
pression and expansion. In principle, this extra viscosity coefficient could be related
with the bulk viscosity coefficient.

Our goal consists of characterizing Horndeski theories based on the physical nature
(Newtonian or non-Newtonian) of their effective fluid equivalent and on their thermo-
dynamics.

The Horndeski effective fluid 4-velocity is [20]

ua ≡ ∇aφ√
2X

, (12)

where we assume that the scalar field gradient is timelike, ∇aφ∇aφ < 0. This iden-
tification allows us to rewrite the derivatives of φ and X in terms of the kinematic
quantities associated with the effective fluid:

∇aφ = √
2X ua , ∇a X = −Ẋ ua − 2X u̇a , (13)

∇a∇bφ = √
2X ∇aub − Ẋ√

2X
uaub − √

2Xu̇aub , (14)
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where Ẋ ≡ uc∇cX . Then, the effective stress-energy tensor associated with viable
Horndeski gravity is

Tab =
[
2XG2X − G2 − 2XG3φ

2G4
+

√
2X

(
G4φ − XG3X

)
G4

�

]
uaub

+
[
G2 + 4XG4φφ − 2XG3φ

2G4
−

(
G4φ − XG3X

)
√
2X G4

Ẋ − 2
√
2X G4φ�

3G4

]
hab

− 2
√
2X

(
G4φ − XG3X

)
G4

u̇(aub) +
√
2X G4φ

G4
σab , (15)

and the associated effective fluid quantities are

ρ = 1

2G4

(
2XG2X − G2 − 2XG3φ

) +
√
2X

G4

(
G4φ − XG3X

)
�, (16)

P = 1

2G4

(
G2 − 2XG3φ + 4XG4φφ

) −
(
G4φ − XG3X

)
G4

√
2X

Ẋ − 2G4φ

3G4

√
2X �,

(17)

η = −G4φ

2G4

√
2X , qa = −

√
2X

G4

(
G4φ − XG3X

)
u̇a . (18)

One immediately notices that the stress-energy tensor is characterized by anisotropic
stresses proportional to the shear tensor σab and by heat flux density proportional to
the fluid’s four-acceleration. From the above expressions we cannot obtain all the con-
stitutive relations of the effective fluid associated with viable Horndeski. In Eq. (17),
Ẋ is not a kinematic quantity, however the scalar field equation of motion allows us
to express it in terms of kinematic quantities.

There are only two possibilities to satisfy the requirement that the total pressure
depend linearly on ∇bua (i.e., that the effective fluid is Newtonian):

1. The total pressure does not depend on Ẋ , equivalent to

G4φ − XG3X = 0 ⇒ G3 = G4φ ln X . (19)

2. The scalar Ẋ depends only on the scalar field and its kinetic term and is linear in
the expansion scalar,

Ẋ = F1 (φ, X) + F2 (φ, X) �, (20)

where the functions F1 and F2 contribute to the isotropic perfect pressure and to the
viscous pressure, respectively. F1,2 canbedeterminedusing the scalar field equation
of motion. Equivalently, one can work with �φ and assume �φ = F̃1(φ, X) +
F̃2(φ, X)�. In either case, �φ or Ẋ is a function of (φ, X) linear in �. We work
with Ẋ without loss of generality.
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While the first case directly prescribes the form of G3, in the second case one has
to write Ẋ in terms of the kinematic quantities to enforce the linearity in ∇aub. To do
this, we use the field equations

Rab = Tab − T

2
gab , R = − T , (21)

where T = gabT ab is the trace of the effective stress-energy tensor. The scalar field
equation of motion written in terms of the kinematics quantities is

− 4

3
X�2G3X + 4Xσ 2G3X − 4u̇2X (G3X + XG3XX ) − 2Ẋ�(G3X + XG3XX )

+ �
√
2X

G4

[
3G2

4φ − 2XG4φG3X − X2G2
3X + G4

(
G2X − 2G3φ + 2XG3φX

)]

+ Ẋ√
2XG4

{
3G2

4φ − 6XG4φG3X + 3X2G2
3X

+G4
[
G2X + 2XG2XX − 2

(
G3φ + XG3φX

)]}

+ 1

G4

[
G2

(−2G4φ + XG3X
) + G4G2φ + X2G3X

(
6G4φφ + G2X − 4G3φ

)]

+ X

G4

[
G4φ

(−6G4φφ + G2X + 2G3φ
) + 2G4

(−G2φX + G3φφ

)] = 0 , (22)

which can be seen as a linear equation for Ẋ admitting the algebraic solution

Ẋ = A(φ, X) + B(φ, X)� + C(φ, X)�2 + D(φ, X) σ 2 + E(φ, X) u̇2

H(φ, X) + I (φ, X)�
, (23)

where

A(φ, X) = √
2X

[
G2

(
2G4φ − XG3X

) − G4G2φ

−X2G3X
(
6G4φφ + G2X − 4G3φ

)]

− √
2X X

[
G4φ

(−6G4φφ + G2X + 2G3φ
)

+2G4
(−G2φX + G3φφ

)]
, (24)

B(φ, X) = 2X
[
3G2

4φ − 2XG4φG3X − X2G2
3X

+G4
(
G2X − 2G3φ + 2XG3φX

)]
, (25)

C(φ, X) = 4

3

√
2X XG4G3X , (26)

D(φ, X) = −4
√
2X XG4G3X , (27)

E(φ, X) = 4
√
2X XG4(G3X + XG3XX ) , (28)

H(φ, X) = 3G2
4φ − 6XG4φG3X + 3X2G2

3X + G4[G2X + 2XG2XX

123
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− 2(G3φ + XG3φX )] , (29)

I (φ, X) = −2
√
2XG4(G3X + XG3XX ) , (30)

and with σ 2 ≡ 1
2 σabσ

ab, u̇2 ≡ u̇a u̇a . Equation (23) shows how the exotic non-
Newtonian nature of the effective Horndeski fluid is encoded in Ẋ and, therefore, in
the fluid total pressure. The first constitutive relation (9) is automatically satisfied.

Substituting Eq. (20) into Eq. (23) yields the system

F1 H = A , (31)

F1 I + F2 H = B , (32)

(F2 I − C)�2 − D σ 2 − E u̇2 = 0 . (33)

The first two equations give unenlightening expressions of F1 = A/H and F2 =
(BH − AI )/H2, while the third one is a non-linear second order differential equation
for φ. In general, the latter (which is not derived from an action principle) is incompati-
ble with the field equation for φ (which is also of second order) and cannot be imposed.
For the same reason we do not take into account the case Ẋ = 0, which corresponds
to requiring ∇aφ∇bφ∇a∇bφ = 0. The only way to implement self-consistently the
requirement of a Newtonian effective fluid is to restrict the theory to G3X = 0. Then,
G3 = G3(φ) and L3 = −G3(φ)�φ can be absorbed into G2 integrating by parts,
effectively leading to −G3(φ)�φ = 2X G3φ plus a total divergence in the action.
Then, the φ-equation of motion in terms of kinematic quantities yields

F1(φ, X) =
√
2X

[
2G2G4φ + XG4φ

(
6G4φφ − G2X

)]
3G2

4φ + G4 (G2X + 2XG2XX )

−
√
2X G4

(
G2φ − 2XG2φX

)
3G2

4φ + G4 (G2X + 2XG2XX )
, (34)

F2(φ, X) = −
2X

(
3G2

4φ + G4G2X

)

3G2
4φ + G4 (G2X + 2XG2XX )

. (35)

Only in this case Eq. (20) is not an extra equation but coincides with the equation of
motion of φ.

To recap, requiring that the effective fluid be linear in the gradient of its 4-velocity
selects only two possible classes of Horndeski gravity. Either

L = G4(φ)R + G2(φ, X) − G4φ ln X �φ , (36)

which corresponds to an effective fluid with

ρ = 1

2G4
(2XG2X − G2 − 2XG4φφ ln X) , (37)
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P̄ = 1

2G4

[
G2 + 2XG4φφ (2 − ln X)

]
, (38)

η = −1

2

√
2X

G4φ

G4
, ζ = 2

3

√
2X

G4φ

G4
, (39)

ξ = 0 , qa = 0 , (40)

or else

L = G4(φ)R + G2(φ, X) , (41)

which is instead characterized by

ρ = 1

2G4
(2XG2X − G2) , (42)

P̄ = − G2
4φ (G2 − 2XG2X )

2G4

[
3G2

4φ + G4 (G2X + 2XG2XX )
]

+
(
G2 + 4XG4φφ

)
(G2X + 2XG2XX )

2
[
3G2

4φ + G4 (G2X + 2XG2XX )
]

+ G4φ
(
G2φ − 2XG2φX

)
3G2

4φ + G4 (G2X + 2XG2XX )
, (43)

η = −1

2

√
2X

G4φ

G4
, ξ = −√

2X
G4φ

G4
, (44)

ζ = −
√
2X G4φ

[
3G2

4φ + G4 (G2X − 4XG2XX )
]

3G4

[
3G2

4φ + G4 (G2X + 2XG2XX )
] , (45)

qa = −√
2X

G4φ

G4
u̇a . (46)

Both models reduce to GR ifG4 = 1. They are two disconnected classes of Horndeski
gravity in the sense that they are closed, and cannot change into each other, under
disformal transformations.

In any situation different from these two cases, Horndeski gravity can be recast as
an effective fluid characterized by the linear constitutive equations

ρ = ρ̄ − ξ� , πμν = −2η σμν , qμ = ξ u̇μ (47)

and by the non-Newtonian constitutive equation for the pressure which, using
Eqs. (23)–(30) in Eq. (17), can be parametrized as

P = P̄1 − ζ1 � − ζ2 �2 − ζ3 σ 2 − ζ4 u̇2

P̄2 − ζ5 �
. (48)
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For small velocity gradients ∇aub the above constitutive equation reduces, to first
order, the effective viable Horndeski fluid to one with Newtonian behavior.

Some additional comments are useful to conclude this part.
Only the first Horndeski class can admit a non-dynamical scalar field, i.e., an

extended cuscuton model [23] (corresponding to the subclass G3 = G4φ ln X which
implies f3 = 0 in Ref. [24]).

In the second Horndeski class, the denominators of Eqs. (43) and (45) vanish for
theories with Lagrangian density

L = G4R + f1(φ) + f2(φ)
√
2X − 3G2

4φ

G4
X , (49)

which automatically excludes a non-dynamical scalar field, i.e., the extended cuscu-
ton model (corresponding to the subclass G3 = 0, which implies f3 = −2 f4φ in
Ref. [24]) and, in particular, pathological ω = −3/2 Brans–Dicke gravity which
corresponds to f1 = f2 = 0 and G4 = φ, as well as cuscuton gravity [25]. In this
case we cannot use the scalar field equation of motion to rewrite Ẋ (or �φ) in terms
of kinematic quantities because the corresponding multiplicative factor in Eq. (22)
vanishes identically. Therefore, one cannot write Eq. (20).

The full action of the extended cuscuton model can be obtained by requiring the
coefficients (29) and (30) to vanish. Moreover, the condition G3X + X G3XX = 0
corresponds to the special case in which the viscous contribution to the pressure is a
finite sum of terms at most quadratic in the 4-velocity gradient.

For the second linear Horndeski class it is possible to find the relation between the
bulk viscosity and the energy density transport coefficient ξ

ζ = ξ

3

[
3G2

4φ + G4 (G2X − 4XG2XX )

3G2
4φ + G4 (G2X + 2XG2XX )

]
. (50)

“First generation” scalar-tensor gravity corresponds to ζ = ξ/3 and G4 = φ.

2.1 General Horndeski gravity in vacuo

We now briefly extend the previous analysis to general Horndeski gravity, including
G4(φ, X) and G5(φ, X). The classes of theories selected by imposing the Newtonian
nature of the effective fluid are again given by Eqs. (36) and (41). The linearity in
∇aub implies G5 = G4X = 0 and then the above discussion holds. All we have to do
is considering the energy density and total pressure for general Horndeski gravity and
impose that all the non-linear terms vanish. The energy density is given by

G4 ρ = 2

3
X

√
2X �σ 2 (G5X + XG5XX ) − 2

27
X

√
2X �3 (G5X + XG5XX )

− 2

3
X

√
2X σa

cσ abσbc (G5X + XG5XX )
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+ X
√
2X Racbdu

aubσ cdG5X + 2

3
X�2 (

G4X + 2XG4XX − G5φ − XG5φX
)

+ 2Xσ 2
(
G5φ + XG5φX − G4X − 2

√
2X ηG5X − 2XG4XX

)

− 1

2

(
G2 − 2XG2X + 2XG3φ

) + ρ

[
X

(
2G4X − G5φ

) − X

3

√
2X G5X �

]

+ √
2X �

(
G4φ + 2XG4φX − XG3X

)
. (51)

Thefirst term in the second line of the above equation ismultiplied by Racbduaubσ cd =
u̇a u̇b σab− 2

3 �σ 2−uaσ bc∇aσbc+σab∇bu̇a+uaσ bc∇cσab. Since the latter represents
a non-linear contribution in ∇aub that cannot be cancelled by any other term, it is
immediate to see that G5X must vanish. Then, one can set G5 = 0 because G5(φ)

can be absorbed, upon integration by parts, in the other functions G2,G3, and G4
according to

G2 → G2 − 2X2G5φφφ, G3 → G3 − 3XG5φφ, G4 → G4 − XG5φ. (52)

The result is the Lagrangian density

L5 = G5Gab∇a∇bφ � −G5φGab∇aφ∇bφ − G5φRab∇aφ∇bφ − XG5φR

= G5φ(∇a�φ − ∇b∇a∇bφ)∇aφ − XG5φR

� −G5φφ(−2X�φ − ∇a∇bφ∇aφ∇bφ) − G5φ

[
�φ2 − (∇a∇bφ)2

]
− XG5φR

� 3X G5φφ �φ − 2X2G5φφφ − G5φ

[
�φ2 − (∇a∇bφ)2

]
− XG5φR, (53)

where � denotes equality up to a total divergence. The effective energy density then
becomes

ρ = 2X�2 (G4X + 2XG4XX )

3 (G4 − 2XG4X )
− 2Xσ 2 (G4X + 2XG4XX )

G4 − 2XG4X

+
√
2X �

(−XG3X + G4φ + 2XG4φX
)

G4 − 2XG4X
− G2 − 2XG2X + 2XG3φ

2G4 − 4XG4X
(54)

where, in order to suppress the quadratic terms in ∇aub in the first line, it is necessary
that

G4X + 2XG4XX = 0, (55)

which implies that

G4 (φ, X) = G0 (φ) + G1 (φ)
√
2X . (56)
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Using now Eq. (21), the perfect fluid contribution to the effective isotropic pressure
becomes

P̄ = − 2X�2G4X

9 (G4 − 2XG4X )
+ 2Xσ 2G4X

3 (G4 − 2XG4X )
− 4u̇2X (G4X + 2XG4XX )

3 (G4 − 2XG4X )

+ Ẋ
(−XG3X + G4φ + 2XG4φX

)
√
2X (−G4 + 2XG4X )

+ �

[
ζ − 2Ẋ (G4X + 2XG4XX )

3 (G4 − 2XG4X )
+ 2

√
2X

(−G4φ + 2XG4φX
)

3 (G4 − 2XG4X )

]

+ ρ
2XG4X

3 (G4 − 2XG4X )
+ G2 − 2XG3φ + 4XG4φφ

2G4 − 4XG4X
(57)

that, together with Eq. (55), requires G4X (φ, X) = 0 to eliminate the quadratic terms
in the first line. This is necessary because, even if we assume Ẋ quadratic in ∇aub
to cancel the quadratic terms, �Ẋ in the second line reintroduces a cubic term. The
theory then reduces to viable Horndeski, and the previous discussion remains valid.

2.2 Horndeski gravity withmatter

Finally, let us include matter in this picture. The Newtonian behavior of the effective
fluid requires again Eqs. (36) and (41), with the only difference that the inviscid
pressure (43) acquires the additional contribution

P̄ → P̄ − G2
4φ T (m)

G4

[
3G2

4φ + G4 (G2X + 2XG2XX )
] , (58)

proportional to the trace of the matter energy-momentum tensor T (m) = gabT (m)
ab .

The reason is that the presence of matter changes the field equations for gab to

Rab = Tab − T

2
gab + 1

G4

(
T (m)
ab − T (m)

2
gab

)
, (59)

R = −T − T (m)

G4
, (60)

turning the function A(φ, X) of Eq. (23) into

A → A + √
2X G4φ T (m) − √

2X
(
T (m) + 2T (m)

ab uaub
)
X G3X . (61)
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3 Analogy with first-order general-relativistic viscous fluids

Before proceeding, let us recall the basic description of real dissipative fluids that
will be applied to the Horndeski effective fluid later in this section. Dissipative fluids
are out-of-equilibrium systems. The most general stress-energy tensor describing an
out-of-equilibrium system has the form [26–28]

T ab = (ε + A) uaub + (p + B) hab + 2q(aub) + πab , (62)

whereA and B represent the out-of-equilibrium corrections to ε and p, which are the
equilibrium energy density and pressure, respectively.A and B vanish at equilibrium.
In the first-order formulation of viscous fluids [27, 29, 30], all the quantities in Eq. (62)
depend on the fluid 4-velocity ua , the temperature T , and the chemical potential μ. In
particular, the deviations from equilibrium are parametrized by the gradients of ua , T ,
andμ. Here wework in the Eckart (or particle) frame. In the effective fluid description,
we decompose the spacetime according to the effective fluid 4-velocity, therefore
the fluid motion is described using the fluid’s proper time. If we consider vanishing
chemical potential μ = 0, we can parametrize the out-of-equilibrium quantities as

A = χ1
ua∇aT

T + χ2 �, (63)

B = χ3
ua∇aT

T + χ4 �, (64)

qa = λ

(
hab∇bT

T + u̇a
)

, (65)

πab = −2η σ ab , (66)

where the transport coefficients χi , λ, and η depend on the temperature T . Since the
chemical potential vanishes identically, the equilibrium energy density and pressure
depend only on the temperature, ε = ε(T ) and p = p(T ). We parametrize λ as
λ = −KT , whereK = K(T ) is the thermal conductivity [15, 19, 22] of the effective
fluid.

The second law of thermodynamics then yields [31]

dp

dT = ε + p

T , (67)

which can also be written as

ε(T ) = −p(T ) + T p′(T ) , (68)

where a prime denotes differentiation with respect to the temperature (see Appendix
A).

Let us apply now the thermodynamical fluid description to the Horndeski effective
fluids classes (36) and (41) in the framework of first-order general-relativistic vis-
cous fluids. This procedure allows one to discuss the “temperature of gravity” and its
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transport coefficients. Before discussing the individual Horndeski classes, let us make
some considerations valid in both cases.

In general, T = T (φ, X) and

∇aT =
(√

2X Tφ − TX Ẋ
)
ua − 2X TX u̇a , (69)

therefore Eqs. (63)–(65) turn into

A = χ1
−√

2X Tφ + TX Ẋ

T + χ2 �, (70)

B = χ3
−√

2X Tφ + TX Ẋ

T
+ χ4 �, (71)

qa = λ

(
−2X

TX

T + 1

)
u̇a . (72)

In both classes we have

η = −
√
2X

2

G4φ

G4
, (73)

and the shear viscosity η(T ) depends on the temperature. Its derivative with respect
to X is

η′(T ) TX = − 1

2
√
2X

G4φ

G4
, (74)

implying that TX is always non-vanishing unless G4φ = 0. We rewrite this equation
as

2X TX = η(T )

η′(T )
, (75)

where 2X TX still depends on the temperature. Equation (67) implies

pφ = Tφ

T (ε + p) , pX = TX

T (ε + p) . (76)

If p = −ε identically, the above relations imply constant equilibrium pressure and
energy density, p = −ε = −�.

In both cases, we note a further constraint on the linear Horndeski classes: the
functional form of G2 is determined up to an unknown function of F = F(

√
2X G4φ

G4
)

(see Eqs. (84) and (107)). While in the first class we obtain T = α
√
2X G4φ

G4
and

then F = F (T ) ≡ p(T ) (the equilibrium pressure), in the second one we can
parameterize the dependence of F using the shear viscosity in Eq. (73), with the result
that F(T ) = p(T ) − 4η2(T ).
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3.1 Class I: G3 = G4� ln X

Comparing Eqs. (66), (70)–(72) with the quantities associated to the class (36), one
obtains

χ1 = χ2 = χ3 = 0 , 3χ4 = 4η , (77)

χ4 = −2

3

√
2X

G4φ

G4
, η = −1

2

√
2X

G4φ

G4
, (78)

ε = 1

2G4
, (2XG2X − G2 − 2XG4φφ ln X) , (79)

p = 1

2G4

[
G2 + 2XG4φφ (2 − ln X)

]
, (80)

and

λ

(
−2X

TX

T + 1

)
= 0 . (81)

This equation is satisfied when the bracket is equal to zero or when λ ≡ KT = 0. In
the first case, the solution of the differential equation is

T (φ, X) = √
2X C(φ) (82)

and, we can find the integrating function C(φ) by imposing η = η(T ),

T (φ, X) = α
√
2X

G4φ

G4
, (83)

where α is a constant.3 Then the Horndeski function G2 has the form

G2 (φ, X) = 2G4 F

(√
2X

G4φ

G4

)
− 2X G4φφ(2 − ln X) , (84)

where F = F(T ) ≡ p(T ). The equilibrium energy density ε(T ) is automatically
given by Eq. (68).

The situation G4φ = 0 corresponds to T = 0 and p(0) = −ε(0) = −�. The
Horndeski Lagrangian density collapses into R − 2�, where � is the cosmological
constant.

In particular, a linear relation between pressure and temperature

p(T ) = −γ + β T = −γ + α β
√
2X

G4φ

G4
, (85)

3 In order for the effective temperature to be positive-definite, G4 must be monotonic and α G4φ > 0. If
an effective Newton constant decreasing in time is assumed, then G4φ > 0, α > 0, and η < 0. Negative
viscosity is characteristic of non-isolated systems, that exchange energy with their surroundings.

123



84 Page 16 of 25 M. Miranda et al.

identifies the extended cuscuton model with f1 = −2γ G4, f2 = 2 α β G4φ , and
f3 = 0 (following the notation of Ref. [24]), where α, β, and γ are constants. The
energy density turns into

ε(T ) = γ + β T = γ + α β
√
2X

G4φ

G4
. (86)

Assuming a linear barotropic equation of state p = w ε, where w is the constant
equation of state parameter, we obtain the energy density

ε(T ) = γ T w+1
w (87)

and

G2 = 2w γ G4

(
α
√
2X

G4φ

G4

)w+1
w − 2X G4φφ(2 − ln X). (88)

If (T − 2X TX ) 	= 0, Eq. (81) is satisfied only for λ = 0. This is compatible only with
constant pressure and energy density, p = −ε = −�, which corresponds to the form
of G2

G2(φ, X) = −2�G4 − 2X G4φφ(2 − ln X) . (89)

The Horndeski Lagrangian coincides with a particular extended cuscuton model given
by f1 = −2�G4 , f2 = 0, and f3 = 0 (see again the notation of [24]). Therefore,
we have a non-dynamical imperfect fluid that mimics the cosmological constant and
whose inviscid/equilibriumcontributions satisfy the familiar linear barotropic equation
p = −ε.

3.2 Class II: G3 = 0

For the second class, we obtain the system

χ1 = 0 , χ2χ3 + χ3λ + χ2λ = 0 , 3χ4 = 4η , (90)

χ2 = √
2X

G4φ

G4
, χ4 = −2

3

√
2X

G4φ

G4
, (91)

χ3 = − 1√
2X

G4φ

G4

T
TX

, (92)

λ = −√
2X

G4φ

G4

T
T − 2X TX

, (93)

η = −1

2

√
2X

G4φ

G4
, (94)

ε = 2X G2X − G2

2G4
, (95)
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p = G2 + 4X G4φφ

2G4
− G4φ

G4

Tφ

TX
. (96)

In this case Eq. (83) cannot be a solution for the temperature, i.e., T cannot be pro-
portional to η, otherwise we would have T − 2X TX = 0 and vanishing heat flux.

Using Eq. (94), we write the partial derivatives of T in terms of η(T ),

TX = 1

2X

η(T )

η′(T )
, (97)

Tφ = 2√
2X

η2(T )

η′(T )
− 1

2

√
2X

η′(T )

G4φφ

G4
, (98)

which yields

Tφ

TX
= −2X

G4φ

G4
+ 2X

G4φφ

G4φ
. (99)

Then the pressure reads

p = G2

2G4
+ 2X

G2
4φ

G2
4

, (100)

or

G2 = 2G4 p(T ) − 2X
G2

4φ

G4
= 2G4

[
p(T ) − 4η2(T )

]
. (101)

Substituting this expression of G2 in the equilibrium energy density (95), one finds

ε(T ) = −p(T ) + 2X TX p′(T ) − 2X
G2

4φ

G2
4

= −p(T ) + 2X TX p′(T ) − 4η2(T ) . (102)

We can rewrite ε + p in the above equation using Eq. (67) to obtain

(T − 2X TX ) p′ = −4η2 (103)

while, substituting p′ = (ε + p)/T and Eqs. (95) and (100) in Eq. (102) yields the
temperature

T = C(φ) exp

⎡
⎣

∫ X

1

4G2
4φ + G4 G2Z

2Z
(
2G2

4φ + G4 G2Z

) dZ

⎤
⎦ , (104)
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where C(φ) is a generic integration function of the scalar field4 and the integration
is performed with respect to Z , an auxiliary variable of the kinetic scalar. Finally, the
correspondence λ = −KT gives

(T − 2X TX )K = −2η , and p′ = 2ηK . (105)

The relations (76) and (99) yield

pφ

pX
= Tφ

TX
, (106)

providing the system

G2 = 2G4 F(η) , (107)

p(η) = F(η) + 4 η2 , (108)

ε(η) = −F(η) + η
dF(η)

dη
, (109)

where, to avoid non-dynamical scalar fields, one must have F(η) 	= α + β η − 3η2

with α and β constant (see Eq. (49)).
Imposing Eq. (67) on ε(η) and on p(η) is equivalent to

4η2 + η
dF

dη
= T

(
8η + dF

dη

)
η′ , (110)

which is rewritten as

4η2 + η
dT
dη

Q′ = T
(
8η + dT

dη
Q′

)
η′ (111)

where Q(T ) = F(η(T )). If η is a monotonic function of the temperature, Eq. (111)
turns into

4η2 + η

η′ Q
′ = T

(
8η η′ + Q′) . (112)

If we consider a linear barotropic equation of state p = w ε, Eq. (68) gives

ε = γ T
w+1
w , (113)

where the effective temperature is positive defined and γ > 0 and w are constant,
while Eqs. (108) and (109) yield the differential equation

F(η) + 4η2 = w

(
η
dF(η)

dη
− F(η)

)
. (114)

4 C(φ) can be determined a posteriori by imposing η = η(T ).
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In terrms of the new variable x = η2, this equation reads

2wx
dF(x)

dx
− (1 + w)F(x) − 4x = 0, (115)

which is recognized as an Euler–Cauchy differential equation with solutions

F1(x) = 4x

w − 1
+ c1 x

w+1
2w , w 	= 1 , (116)

F2(x) = 2x log(x) + c2 x , w = 1 , (117)

where c1,2 are integration constants. In correspondence of F1,2 we have the following
expressions for the temperature

T1 = γ − w
w+1

(
4x

w − 1
+ c1

x
w+1
2w

w

) w
w+1

, (118)

T2 =
[
γ −1 x (4 + c2 + 2 ln x)

]1/2
, (119)

respectively. Let us consider now the power-law form

T = (α η)β , (120)

where α < 0 and β 	= 0, 1, are constant.5 Equation (110) then yields

F(x) = c1 − 2(β − 2)x

β − 1
, (121)

where c1 is an integration constant, and x = η2. The equilibrium energy density and
pressure become, respectively,

ε = −c1 − 2(β − 2)

β − 1
x , (122)

p = c1 + 2β

β − 1
x . (123)

From the above expressions, for ε to be positive, it must be c1 ≤ 0 and β < 1 or
β ≥ 2.

Our last example consists of the linear relation

T = α η + β , (124)

5 In this case, α < 0, η < 0, and G4 is strictly monotonic.
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which implies

F(η) = −4α

3β
η3 − 4η2 + c1 , (125)

p(η) = −4αη3

3β
+ c1 , (126)

ε(η) = −8αη3

3β
− 4η2 − c1 , (127)

where c1 is constant. In this case, T and G2 become constant as η → 0 and the energy
density is positive-definite for c1 < 0.

4 Conclusion

It is hard to overemphasize the importance of Horndeski gravity in the current research
on gravitational theory. However, due to their complexity, physical insight in this class
of theories still lags behind formal developments, and the effectivefluid approachoffers
a new physical view. We provide a physical interpretation of the Horndeski effective
fluid as a relativistic non-Newtonian fluid. The linearity of the effective fluid stress-
energy tensor in the 4-velocity gradient selects two disconnected classes of viable
Horndeski, which guarantees that gravitational waves propagate at the speed of light
(see Table 1). In any other Horndeski theory, it is impossible to recast the energy-
momentum tensor in the form (10) with viscosity coefficients linear in ∇aub as in
the usual constitutive equations. The interpretation of such theories is that their effec-
tive fluid equivalent is an exotic non-Newtonian fluid. This physical characterization
of Horndeski theories of gravity based on the associated effective fluid has escaped
attention thus far. Moreover, other alternative theories of gravity may admit a similar
classification. This correspondence opens up a new research direction, which consists
of looking for specific Horndeski theories that implement particular non-Newtonian
rheologies of real fluids in their associated effective fluid. In conjunction with observa-
tions, such a search could potentially restrict the wide spectrum of Horndeski theories.

In general, the analogy between fluids and gravity can represent a pragmatic tool
to understand current theoretical and observational problems. Finally, interest in the
classes corresponding to Newtonian fluids is motivated by the possibility of repre-
senting the limit of a more complete theory for small 4-velocity gradients, similar
to the way that classical theories are low-energy limits of effective field theories. In
particular, in the context of late-time cosmology where the scalar field can be thought
of as a low-energy field, this interpretation offers an additional tool for discriminating
classes of Horndeski gravity. We have applied our result to first-order viscous fluids
and discussed their thermodynamics, which provides a further constraint on the linear
Horndeski classes (see Table 2). In our analysis, theories in which the extra scalar
degree of freedom (in addition to the usual two spin-2 modes of GR) does not prop-
agate still occupy a special place in the classification of Horndeski theories based on
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Table 1 Overview of viable Horndeski effective fluids

the Newtonian versus non-Newtonian character of the effective equivalent fluid. In
this light, they perhaps deserve reconsideration.
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Table 2 Analogy between linear Horndeski effective fluids and first-order viscous fluids
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Appendix A: Thermodynamic equation for energy density and pres-
sure at equilibrium

From the second law of thermodynamics for particles in equilibrium at μ = 0, it
follows that

ε(T ) + p(T ) = T p′(T ), (A1)

where S = S(V , T ) is the entropy of the system (a function of its volume and tem-
perature),U = εV is the total equilibrium energy, and a prime denotes differentiation
with respect to the temperature. Then we have

dS = 1

T ( dU + p dV )

= 1

T [ d(εV ) + p dV ]
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= 1

T [V dε + (ε + p)dV ] , (A2)

∂S

∂V
= 1

T (ε + p) ,
∂S

∂T = V

T ε′ . (A3)

The entropy differential dS is exact and, therefore, closed, ∂2 S
∂T ∂V = ∂2 S

∂V ∂T , giving

∂

∂T

[
1

T (ε + p)

]
= ∂

∂V

(
V

T ε′
)

,

− 1

T 2 (ε + p) + 1

T (ε′ + p′) = 1

T ε′ ,

and finally

p′ = 1

T (ε + p) . (A4)
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