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Abstract
We inspect the basic ideas underlying Roger Penrose’s Conformal Cyclic Cosmology
from the perspective of modern quantum information. We show that the assumed loss
of degrees of freedom in black holes is not compatible with the quantum notion of
entropy. We propose a unitary version of Conformal Cyclic Cosmology, in which
quantum information is globally preserved during the entire evolution of our universe,
and across the crossover surface to the subsequent aeon. Our analysis suggests that
entanglement with specific quantum gravitational degrees of freedom might be at the
origin of the second law of thermodynamics and the quantum-to-classical transition
at mesoscopic scales.
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1 Introduction

Within general relativity the universe is modelled by a spacetime manifold equipped
with aLorentzianmetric solving theEinstein field equationswith suitablematter fields.
The observational data support the standard model of cosmology (�CDM) with cold
dark matter and a positive cosmological constant �, on top of the ordinary baryonic
matter. The universe manifold should admit a global time function, hence it must
be stably causal. Typically, one assumes a stronger property of global hyperbolicity,
which guarantees the well-posedness of the Cauchy problem [1].

The existence of a cosmic time facilitates an evolutionary viewpoint on the universe.
In this picture the universe beginswith the BigBang, a state characterised by an infinite
matter density and temperature, and then expands causing the matter to dilute and
cool down. The observed large-scale structure is commonly assumed to result from
the initial density inhomogeneities. In the remote future, the cosmological constant
will prevail over the matter content, resulting in an exponential expansion. This “dark
era” is expected to be dominated by the Hawking radiation from evaporating black
holes.

Despite the unquestionable success of the �CDM model in explaining the cosmo-
logical data, it suffers from several problems calling for resolution. The most pressing
one is connected with the unknown nature of dark matter and dark energy (or the cos-
mological constant). Another riddle, known as the horizon problem [2], is the observed
high-degree homogeneity of the cosmic microwave background from causally discon-
nected regions of the universe. A farther mystery—the flatness problem is associated
with the fact that the present matter–energy density in the universe is close to a critical
value ρc needed for a spatially-flat universe. The Friedmann equations imply that the
ratio of the actual density to the critical oneρ/ρc increases in cosmic time and hence the
matter density must have been much closer to the critical value, |ρ0/ρc − 1| ∼ 10−27,
in the electroweak epoch some 10−11 sec after the Big Bang [3].

On the mathematical side, the Big Bang is a naked singularity, which marks the
past geodesic incompleteness of the universe [4, 5]. Under suitable assumptions about
isotropy one can, via a conformal transformation, include it as spacetime boundaryB−
and prove thewell-posedness of the Cauchy problem for a variety ofmatter models [6–
10]. At the other end, Helmut Friedrich has shown [11–17] that conformal initial data
can also be specified on the future conformal boundary I +, which is a spacelike
3-hypersurface in asymptotically de Sitter spacetimes. However, the admissible initial
data on B− is much more constrained than that on I + [17, 18]. This fact could be
seen as yet another instance of cosmic fine-tuning and related to the global growth of
entropy in the universe, aka the arrow of time.While the growth of entropy is consistent
with the general picture of a thermalising expanding universe, its microscopic origins
remain fundamentally unapprehended.

In 2005 Roger Penrose put forward an “outrageous” proposal to resolve some
of the cosmic riddles [19]. His Conformal Cyclic Cosmology (CCC) bases upon an
imaginative identificationof theBigBanghypersurfaceB− with the conformal infinity
I + of a previous aeon [20]. This new cosmic paradigm is still in its infancy, with
quite a few conceptual and technical issues waiting to be resolved [21]. Nevertheless,
Penrose and co-authors have already been able to confront the predictions of CCCwith
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the WMAP and Planck CMB data [22–26]. While suggestive and certainly intriguing,
the claimed evidence in favour of CCC has so far been treated with reservation [27–29]
(see [26] for a rebuttal).

The purpose of this note is to confront the CCC, alongwith its auxiliary hypotheses,
with modern understanding of quantum information. We start in Sect. 2 with a brief
outline of CCC, focused on the entropic aspects. Then, in Sect. 3, we pass on to the
setting of quantum information and its implications for CCC. We begin with a recol-
lection on the basic notions of mixed quantum states, purification and von Neumann
entropy. We then argue that the information loss of degrees of freedom, as described
by Penrose in [20], leads to the increase of global entropy. This is consistent with the
Second Law of thermodynamics, but undermines the idea of ‘entropy renormalisation’
needed to match the degrees of freedom on the crossover hypersurface between the
aeons.

Toovercome this problemwepropose, inSect. 4, a unitary variant ofCCC. It is based
upon two independent hypotheses: H1 asserts that gravitational clumping induces the
activation of quantum gravitational degrees of freedom, while H2 assumes that the
quantum information trapped in the black hole region is eventually restored in the
correlations between modes of Hawking radiation. We then describe the scenario in
whichquantum information is preservedduring the entire evolutionof the universe, and
throughout the crossover surface. We study the flow of information between different
sectors—matter, Hawking radiation and gravity—following our recent works on black
hole evaporation [30, 31].

Then, we discuss the motivation behind the two hypotheses and their implications.
In Sect. 4.2 we focus on gravitational entropy, which we interpret as the quantum von
Neumann entropy. Our analysis suggests that the origin of the Second Law might
be attributed to the entanglement of ordinary matter with the quantum degrees of
freedom of the gravitational field. Intriguingly, this mechanism might explain the
lack of quantum superposition in macroscopic objects. Next, in Sect. 4.3, we pass
on to hypothesis H2, which was put forward in 1980 by Don Page [32]. We discuss
the issues related to the problems of information cloning on time-slices, violation
of entanglement monogamy and superluminal signalling. We argue that whereas the
unitary evaporation involving quantum gravitational degrees of freedom must entail a
new type of nonlocality—possibly beyond-quantum [33, 34]—, it need not imply the
possibility of causal loops.

Finally, in Sect. 5, we summarise our study and point towards some of the challenges
for the unitary Conformal Cyclic Cosmology.

2 Thermodynamic entropy and information in CCC

Within CCC the universe manifold consists of a, possibly infinite, sequence of aeons
separated by spacelike crossover hypersurfaces—see Fig. 1. Each aeon is equipped
with a Lorentzian metric, which solves the Einstein equations with some matter fields
and a positive cosmological constant �. The physical metric ǧ in one aeon is deter-
mined, through the formula ǧ = �̂−4ĝ, by the physical metric ĝ in the previous aeon
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Fig. 1 The spacetime diagram of CCC. An aeon (shaded blue region) is a spacetime (M̂, ĝ), with past and
future conformal boundaries—the Big Bang, B̂−, and the future conformal infinity, Î+, respectively. The
CCC proposal consists in identifying the Î+ with the Big Bang of a subsequent aeon, B̌−, as a single
crossover hypersurface, C := Î+ ≡ B̌−. The matching is achieved through a conformal rescaling of the
metric in some neighbourhood of C (gray shaded region), g = �̂−2 ĝ = �̌−2 ǧ, with �̂ → ∞ and �̌ → 0
towardsC . Penrose’s Reciprocal Hypothesis [20, 21] assumes the relation �̂�̌ = −1, so that the metric ǧ is
completely determined by ĝ and �̂. Within CCC, the aeons are causally connected so that the information
carried by massless particles can flow through the crossover hypersurface

and a conformal factor �̂. The latter is a key new element, which facilitates a smooth
transition through the crossover hypersurface.

Here we shall focus on the entropic aspects of Penrose’s model and the Second
Law, which was actually the key motivation for the introduction of CCC [19]. For a
detailed exposition about the mathematical structure of CCC the Reader is invited to
consult [18, 20, 35–40]. The discussion on possible empirical evidence in favour of
CCC can be found in [22–26].

The Second Law of thermodynamics is often regarded as one of the most funda-
mental and universal laws of physics. It says that the entropy of an isolated system
cannot decrease in time, which is clearly visible in the perceived phenomena. On the
other hand, because of its general universality, the precise formulation of the Second
Law depends on the physical context and the definition of the entropy itself. The stan-
dard Boltzmann thermodynamic entropy, SB(ρ) = kB log V , is proportional to the
logarithm of the volume V containing the state ρ in the phase space of the system,
associated with the chosen coarse-graining.

If we assume the universal validity of the Second Law and apply it to the universe
as a whole we come to the conclusion that the Big Bang must have been a state with a
very low entropy. In dynamical terms, it means that the initial state of the universemust
have been very special in contrast to the final state, which is expected to be typical.
However, this picture seemingly contradicts the empirical data from the CMB, which
is homogeneous and isotropic to an accuracy of the order of 10−5. In other words, the
matter in the universe was rather close to a thermal equilibrium already during the last
scattering epoch some 360’000 years after the Big Bang.
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This puzzle can be resolved—according to Penrose [41]—if one takes into account
the gravitational degrees of freedom. Although there is no standard notion of entropy
of a general gravitational field (see, however, [42]), it is commonly accepted that
one can associate entropy with a black hole. The Bekenstein–Hawking formula gives
SBH = 4π m2/m2

Pl for a Schwarzschild black hole of mass m, with the Planck mass
mPl ≈ 2.12 · 10−8 kg. Now, as a matter of fact, the amount of entropy presently
associated with supermassive black holes outweighs that of ordinary matter by a
factor 1015 (see e.g. [43]). Consequently, the total entropy, Smatter+SBH, at the present
moment is indeed much larger than during the last scattering epoch.

Penrose argues [20, 41] that the growth of entropy can in general be associated
with gravitational clumping. This is because the gravitational attraction activates the
gravitational degrees of freedom, which are otherwise idle. Hence, a uniform distri-
bution of matter has a low value value of Sgrav, while a bunch of compact objects in
empty space has a high value of Sgrav. In this picture, the black holes can be though
of as states of ‘gravitational thermal equilibrium’, as they maximise the gravitational
entropy. On the other hand, with the Big Bang one should associate an extremely low
value, as it was almost perfectly homogeneous and isotropic.

More precisely, Penrose proposed to associate the gravitational entropy with the
Weyl tensor [41], arguing that the latter corresponds to genuine gravitational degrees
of freedom, in contrast to the Ricci tensor, which is determined by the matter content
via Einstein equations. This lays at the foundation of hisWeyl Curvature Hypothesis,
which says that the Weyl tensor must vanish on the Big Bang hypersurface B−.
More recently, there were several attempts to define the gravitational entropy, with the
guiding principle that it should reproduce the Bekenstein–Hawking formula for the
Schwarzschild spacetime [42, 44–48]. The most popular proposal [42] is based on the
Bel–Robinson tensor,which is determinedby theWeyl tensor, andproduces reasonable
results for cosmic solutions toEinstein equations. It increases as the structure formation
occurs and harmonises with the Weyl Curvature Hypothesis.

These considerations provide a justification, at the macroscopic level, for the global
growth of entropy in our universe, an hence for the cosmic arrowof time [41].However,
it seems to clashwith the basic idea behind CCC,which requires a low value of entropy
at the beginning of each new aeon. Penrose argues (see [20, Chapter 3.4]) that in order
to resolve this conundrum one needs to assume that information is irreversibly lost
during the black hole evaporation.More precisely, Penrose posits that a “loss of degrees
of freedom” occurs, which would induce a dimension drop in the global phase space
of the universe. This would inflict a ‘renormalisation of entropy’ to a much smaller
value, i.e. a subtraction of a large constant value, which would facilitate the matching
of active degrees of freedom on the crossover hypersurface C . Penrose emphasises
that such a phenomenon should not be interpreted as a violation of the Second Law
of thermodynamics, because it has a global effect on the phase space and not on the
specific phase trajectory followed by our universe. Consequently, the loss of degrees
of freedom would not affect the evolution in the phase space of any local system.

To complete the picture it should be mentioned that Penrose postulates that (quan-
tum) information is actually routinely lost in the quantummeasurement process. In his
model [49, 50], the standard time-reversible unitary evolution of a quantum system
is intertwined with random irreversible projections. Penrose assumes that the latter
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are a natural phenomenon caused by the spontaneous collapse of the superposition of
spacetime metrics.

It is clear that the incarnation of Penrose’s CCC, as outlined in [20], requires a
rather radical departure from the standard quantum theory. In the next section we will
show that such a theoretical scheme would not be compatible with the quantum notion
of entropy based on entanglement.

3 Quantum information and entropy

In quantum mechanics an isolated system is described through a pure state |ψ〉 in a
suitable Hilbert space H. It represents the maximal available knowledge about the
system. IfH has a finite dimension, i.e.H � C

N for some N , then N is the number of
(quantum) degrees of freedom. IfH is infinite-dimensional, then one typically defines
N to be the number of active modes in the system [51]. For sake of simplicity, we
shall work with finite-dimensional Hilbert spaces.

If the quantum system at hand is not perfectly isolated, then one should describe it
in terms of a density operator ρ, which is a positive semi-definite operator onH with
TrH ρ = 1. Such a density operator is called a mixed state if it cannot be written as a
projection on a single pure state, i.e. there is no |ψ〉 ∈ H such that ρ = |ψ〉〈ψ |. Every
mixed state admits a (non-unique) ensemble decomposition, ρ = ∑

i pi |ψi 〉〈ψi |, in
terms of some basis states |ψi 〉 ∈ H and probabilities pi summing up to 1, pi ≥ 0,∑

i pi = 1.
Everymixed state can be purified by extending the Hilbert spaceH into a larger one

H⊗H′. A purification of ρ is a pure state |�〉 ∈ H⊗H′ such that ρ = TrH′ |�〉〈�|,
where TrH′ is the partial trace over the auxiliary Hilbert spaceH′. If ρ is decomposed
as ρ = ∑

i pi |ψi 〉〈ψi | then its purification |�〉 ∈ H ⊗ H′ has the form

|�〉 =
∑

i

√
pi |ψi 〉H|φi 〉H′ , (3.1)

for some orthonormal system {|φi 〉}.
Mixed states correspond to the situation when we do not (or cannot, for some rea-

son) have the full knowledge about a given quantum system. The purification theorem
tells us that subjective uncertainty arises because the system is entangled with some
environment, which we ignore in our description. The studied system S and its envi-
ronment E together form a closed quantum system, the state of which is a vector in
the product Hilbert space

|�〉S+E =
∑

i

ai |ψi 〉S|φi 〉E , with ai ∈ C,
∑

i

|ai |2 = 1. (3.2)

The system’s state is then obtained by tracing out the environmental degrees of free-
dom,

ρS = TrE |�〉〈�|S+E =
∑

i

|ai |2|ψi 〉〈ψi |S . (3.3)

123



Conformal cyclic cosmology, gravitational entropy and… Page 7 of 22 26

Note that the full state (3.2) contains more information than (3.3), because the latter
ignores the complex phases, arg ai , between the quantum degrees of freedom of the
system and the environment.

A measure of the subjective uncertainty in a given quantum state is provided by the
von Neumann entropy

S(ρ) := −Tr ρ log ρ. (3.4)

It equals to 0 if ρ is a pure state, what harmonises with the fact that pure states
correspond to the maximal knowledge about the system. For a mixed state of the form
(3.3) we have

S(ρS) = −
∑

i

|ai |2 log |ai |2. (3.5)

The latter is the information-theoreticShannon entropywith the index i playing the role
of a randomvariable. Formula (3.5) can also be given a thermodynamical interpretation
(we set kB = 1 from now on) as the Gibbs entropy: The states |ψi 〉S are themicrostates
of the system and |ai |2 are their corresponding probabilities. Let us stress, however,
that because the decomposition of a density operator ρ into statistical ensembles is
not unique, a different decomposition would lead to a different set of microstates
with different probabilities. Nevertheless, the von Neumann entropy does not depend
upon the chosen ensemble decomposition and is a well-defined functional on density
operators. Finally, the connection with the thermodynamical Boltzmann formulation
arises if one assumes that the microstates belong to a coarse-grained region V of the
system’s phase space and they are all equally probable, i.e. |ai |2 = 1/V for all i .

The Boltzmann entropy of two independent systems is additive, while if the systems
are correlated a general subadditivity relation holds,SA+B ≤ SA+SB . In the quantum
case, the subadditivity can achieve an extreme form, with the total entropy vanishing
and the individual entropies being maximal. The archetypical example is a two-qubit
maximally entangled Bell state, |ψ〉A+B = 1√

2

(|0〉A|0〉B+|1〉A|1〉B
)
, which is pure—

hence SA+B = 0, while ρA = ρB = 1
21 are maximally mixed states, hence SA =

SB = log 2. Consequently, the von Neumann entropy of the total system can be
smaller than the individual entropy of any of its subsystems, which is impossible in
the classical setting [52].

In summary, with a quantum system S embedded in an environment E one can
associate the entropy,

S(ρS) = −Tr ρS log ρS, where ρS = TrE |�〉〈�|S+E , (3.6)

determined by the global pure state |�〉S+E . The non-zero entropy of the system arises
because of its correlations with the environment.

Such a perspective provides an explanation of the local Second Law of ther-
modynamics at the microscopic level: Indeed, suppose that the system is initially
prepared in a pure state, |� i 〉S+E = |ψ i 〉S|φi 〉E . Then, it will interact with the envi-
ronment and get entangled with its degrees of freedom, |� f 〉S+E = US+E |� i 〉S+E =
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∑
n an|ψn〉S|φn〉E . If the dimension of HE is large then a typical unitary evolution

US+E would quickly drive the effective state of the system towards the maxi-
mally mixed state, ρ

f
S ≈ 1

dimHS
1 (see e.g. [53]). The latter is a finite-dimensional

counterpart of the thermal state [54], which maximises the von Neumann entropy,
Smax = log(dimHS).

Let us stress that the unitary evolution, however complicated, is in principle
reversible. If one had access to the environmental degrees of freedom one could disten-
tangle the system from its environment and prepare it in a pure state uncorrelated with
the state of the environment. Consequently, the von Neumann entropy of the system
would drop to 0. But the price to pay (in terms of resources) would be to interact with
the environment E with the help of a suitable quantum apparatus A, which gets entan-
gled with E . Consequently, the initial state |� i 〉S+E+A = (∑

j a j |ψ j 〉S|φ j 〉E
)|ξ 〉A

evolves unitarily into |� f 〉S+E+A = |ψ f 〉S
( ∑

k bk |φk〉E |ξk〉A
)
. Hence, the von Neu-

mann entropy of the system and its environment grows during the process of the
system’s state preparation. On the other hand, quantum entropy of the total system
S+ E + A vanishes throughout the process, because the evolution is globally unitary.

Now, if we apply the notion of von Neumann entropy to the universe as a whole we
are forced into the conclusion that the total entropy vanishes and remains idle during
the cosmic evolution. This is because the universe is a closed quantum system, and
therefore it should be described by a pure state, which evolves unitarily.

This picture would change if we assumed that unitarity is violated in some physical
processes, as postulated by Penrose [20, 49, 50]. In terms of quantum information the
information lossmeans that an initial pure state evolves into a statistical mixture [55].
Such an effect is predicted by the quantum field theory in curved spacetimes to occur
during the black hole evaporation [56, 57]. The objective loss of information in a
closed quantum system would increase its von Neumann entropy, as its state evolves
from a definite pure state into a statistical mixture. Consequently, if one assumes that
evaporating black holes process all the infallen quantum information into a thermal
state of Hawking radiation, then the global von Neumann entropy of the universe
would grow.

Let us analyse the latter situation more carefully. LetHM be the Hilbert space asso-
ciated with all matter which would eventually end up in a black hole. The remaining
matter is encompassed by HA, while HH accommodates the modes of the Hawking
radiation. Suppose that the black hole wipes out all the incoming quantum information
and dies out by emitting purely thermal Hawking radiation. This corresponds to a map

 on the space of density operators onHM ⊗ HH , which takes any state of the form
|ψ〉〈ψ |M ⊗ |0〉〈0|H to |0〉〈0|M ⊗ φH , where |0〉 denotes the vacuum and φH is the
global thermal state of the Hawking radiation. By the no-hair theorem [58] the latter
would depend only upon the black holes’ initial masses, charges and angularmomenta.
The map 
 must be linear, for otherwise it would induce troubles with superluminal
communication [59, 60]. This implies that 


(
ρM ⊗ |0〉〈0|H

) = |0〉〈0|M ⊗ φH , for
any mixed state ρM of the matter.

Initially, the universe is in a global pure state

ρi
U = |�〉〈�|U , with |�〉U =

∑

k

ak |ξk〉A|ψk〉M |0〉H ,
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which encodes the fact that thematterM can be correlated with thematter A. Then, the
black holes form and evaporate, while the auxiliary matter undergoes some quantum
evolution. Eventually, the universe evolves into the state

ρ
f
U =

∑

k,�

a′
ka

′
� |ξ ′

k〉〈ξ ′
�|A ⊗ 


(|ψ ′
k〉〈ψ ′

�|M ⊗ |0〉〈0|H
)

= |ξ ′′〉〈ξ ′′|A ⊗ |0〉〈0|M ⊗ φH , (3.7)

with |ξ ′′〉A = ∑
k a

′
k |ξ ′

k〉.
The matter A, which did not take part in the gravitational collapse, ends up in a

pure state completely decorrelated from the Hawking radiation. If one focuses solely
on the matter A, then one would conclude that its von Neumann entropy has actually
dropped to zero.1 Indeed, we have

S(
TrM+H ρi

U

) =
∑

k

|ak |2 log |ak |2 � S(
TrM+H ρ

f
U

) = S(|ξ ′′〉〈ξ ′′|A
) = 0.

However, the total von Neumann entropy of the universe includes also that of the
Hawking radiation:

S(ρ
f
U ) = S(|ξ ′′〉〈ξ ′′|A

) + S(
ρH

) = S(
ρH

)
≫ S(

ρi
U

) = 0.

In the scenario with purely thermal Hawking radiation S(
ρH

)
can be computed as

the thermodynamic entropy of a radiating black body. It turns out to be larger by a
factor ∼1.5 than the Bekenstein–Hawking entropy of the initial black holes [62–64].
Notably, S(

ρH
)
is very much larger than the initial entropy quantifying correlations

between matter in sectors M and A. This is because SBH increases faster with mass
than the entropy of any known matter [65].

The punch line is that the information loss, understood as an evolution of a pure
state into a statistical mixture, induces the growth of the von Neumann entropy, hence
it is justified to connect it with the global Second Law of thermodynamics. Clearly,
the same argument applies if one assumes, as suggested by Penrose [20, 49, 50], that
information is irreversibly lost during the quantum measurement process.

However, this is in direct opposition to Penrose’s assertion that information loss
induces an effective decrease of global entropy. Indeed, the “loss of degrees of free-
dom” of a quantum system would mean that the system’s state ρ, initially defined
on a Hilbert space H = H′ ⊗ H′′, is projected onto a state ρ′ on a subspace H′ of
smaller dimension. But a typical state (pure or mixed) on H would exhibit correla-
tions (classical or quantum) between the sectors H′ and H′′, which are also lost and
hence contribute to the lack of knowledge encoded in the final state ρ′. Formally, this is
implemented by taking the partial trace over the lost degrees of freedom, ρ′ = TrH′′ ρ,
with the result that S(ρ′) > S(ρ). On the contrary, the purification theorem shows
that the effective decrease of entropy is associated with the increase of the number

1 In more realistic astrophysical situations the Hawking radiation cannot be purely thermal [61] and one
should expect some residual correlations between sectors A and H . However, such correlations would bring
far less entropy than the Hawking radiation itself.
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of degrees of freedom. Indeed, any mixed state ρ on a Hilbert space with a positive
von Neumann entropy can be reinterpreted as resulting from a pure state on a larger
Hilbert space.

4 Gravity and quantum information

In the previous section we exhibited a major conceptual problem of compatibility
between the ‘renormalisation of entropy’ required by CCC and the actual implications
of quantum information loss. We shall now propose a modified—unitary—scenario
of CCC, which overcomes this issue while keeping in line with the key ideas involved
in CCC.

Our proposal is based on two hypotheses:

H1 Gravitational clumping induces the activation of quantum gravitational degrees
of freedom.

H2 During the black hole evaporation all quantum information associated with the
black hole region is eventually transferred to the Hawking radiation.

The two hypotheses are logically independent. The former is an extension of the
scheme presented by the author in collaborationwith ErikAurell and Paweł Horodecki
in [30, 31].As itwill turn out, it also offers a newviewpoint on the quantum-to-classical
transition problem. On the other hand, H2 was put forward by Don Page over 40 years
ago [32, 66] and developed within various quantum gravity scenarios (see e.g. [67–69]
and references therein). We shall first present the general scheme of unitary CCC and
then discuss the details and implications of H1 and H2 independently.

4.1 Unitary conformal cyclic cosmology

As previously, we describe the universe in terms of a pure state in an appropriate
Hilbert space. We divide the latter into four sectors,H = HM ⊗HG ⊗HH ⊗HA. The
first one, HM , involves all matter (including radiation and dark matter), which will
eventually end up in a black hole. The second one,HG , accommodates the (quantum)
gravitational degrees of freedom activated by the clumping ofmatterM . The third one,
HH , encompasses the Hawking radiation. Finally,HA, is needed to take into account
the carriers of quantum information, which evade the trapping horizons. These include
free matter (again, including radiation and dark matter) outside of the black holes,
together with its gravitational degrees of freedom, as well as the gravitational waves.

Let us nowfix a time-slicing of the universe and inspect themain stages of the global
unitary evolution—see Fig. 2. At the Big Bang hypersurface the gravitational degrees
of freedom are inactive and there is no Hawking radiation, hence the primordial matter
must be in a pure state

|�(t0 � 0)〉U =
∑

i

ai |ψi 〉M |0〉G |0〉H |χi 〉A, (4.1)
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Fig. 2 The spacetime diagram of a static evaporating black hole. The green region M depicts matter
undergoing the gravitational collapse, the blue region A shows the auxiliary systems, while the red region
H stands for the Hawking radiation. (The latter is widened for sake of readability, as the Hawking radiation
is emitted strictly at the horizon.) The dotted line is the trapping horizon and the curvy one is the singularity.
The unitary evolution of quantum information is analysed in a chosen time-slicing marked by the gray
curves. In the picture we have incorporated Penrose’s “mass fade-out” hypothesis, which implies that the
matter in sector Awould eventually become conformal.Within the cosmological contextI+ would become
a spacelike hypersurface (see [70, Fig. 1]), and matter A and M originate at the Big Bang, which is also a
spacelike hypersurface

whichmay involve entanglement betweenmatter in sectorsM and A. Asmatter begins
to clump, the gravitational degrees of freedom get activated and correlated with other
degrees of freedom,

|�(t1)〉U =
∑

i, j

a′
i

(
bi j |ψ ′

j 〉M |φ j 〉G
)
|0〉H |χ ′

i 〉A. (4.2)

The latter state has the form of “entangled entanglement”, which means that the entan-
glement between any two subsystems from the tripartite system M + G + A is a
property, which itself is entangled with the third subsystem [71, 72].

Later on, black holes form and start evaporating through quanta of Hawking radi-
ation. The latter will be entangled with both the matter under trapping horizons and
the gravitational degrees of freedom,

|�(t2)〉U =
∑

i, j,k

a′′
i

(
ci jk |ψ ′′

j 〉M |φ′
k〉G |ξk〉H

)
|χ ′′

i 〉A.

On the strength of Hypothesis H2, as the evaporation proceeds the quantum infor-
mation encoded in sectors M and G is gradually transferred into the global state of
the Hawking radiation. Eventually, nearI +, there will only be Hawking radiation on
top of the information-carriers in sector A, which did not take part in the gravitational
collapse,
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|�(t3 � ∞)〉U =
∑

i

a′′′
i |0〉M |0〉G |ξ ′

i 〉H |χ ′′′
i 〉A. (4.3)

The final state of the unitary evaporation (4.3) is very different from the state (3.7)
predicted by the semi-classical analysis [57]. The state of the Hawking radiation in
(4.3) is pure and involves multi-mode entanglement, which encodes all quantum infor-
mation previously carried by matter M . Furthermore, the initial correlations between
primordial matter in sectors A and M are not lost, but are eventually transferred into
correlations between the residual matter (and gravitational waves) and the Hawking
radiation.

Now, the final state of one aeon (4.3) could be glued with the initial state of the
subsequent one (4.1), provided that the quantum information encoded in the Hawking
radiation is somehow“rewritten” onto the primordialmatter. This is conceivablewithin
the schemeofCCC, asmatter fields and gravitationalwaveswould distort the crossover
hypersurface [20]. Such an effect due to gravitational radiation from the previous aeon
is at the basis of the empirical predictions of CCC [73, 74]. We note, however, that
the (classical) equations of motion for the matter fields can be prolonged through the
crossover hypersurface only if they involve massless particles.2 Penrose suggests [20]
that in asymptotically de Sitter spacetimes the rest mass could “fade away”, as a
consequence of the �-dependence of the Casimir operator associated with the group
of symmetries of de Sitter spacetime. This is an independent problemwithin CCC [21,
37], which is beyond the scope of the present note.

At the level of quantum information, the extension through C can be implemented
by a simple SWAP unitary operation. Concretely, if we decompose the Hilbert space
into sectors in subsequent aeons,

H = HM̂ ⊗ HĜ ⊗ HĤ ⊗ H Â = HM̌ ⊗ HǦ ⊗ HȞ ⊗ H Ǎ,

and match the relevant (effective) dimensions,

dimHĤ + dimH Â = dimHM̌ + dimH Ǎ,

then

|�(ť = 0)〉Ǔ = USWAP

(
|�(t̂ = ∞)〉Û

)
=

∑

i

â′′′
i |ψ̌i 〉M̌ |0〉Ǧ |0〉Ȟ |χ̌i 〉 Ǎ. (4.4)

Such a SWAP gate is instantaneous, but one can smoothen it and incorporate within
the cosmic evolution. Namely, let τ ∈ R be the conformal time parameter, with τC =
ť0 = t̂∞, and let HSWAP be the Hermitian generator of USWAP, i.e. USWAP = eiHSWAP .

2 Curiously, such an extension through the crossover hypersurface is also possible if the particle’s mass is
fine-tuned to the cosmological constant, m = √

2�/3, as shown in [17].
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Let us pick two smooth functions f , g such that

f (τ ) =
{
1, for τ ≤ τC − 2ε,

0, for τ ≥ τC − ε,
g(τ ) =

⎧
⎪⎨

⎪⎩

0, for τ ≤ τC − ε,

1, for τ = τC ,

0, for τ ≥ τC + ε,

with some ε > 0, which can be chosen arbitrarily small. Then, we can write the global
unitary evolution as

U (τ ) = exp
{
iτ

(
f (τ )Ĥ + g(τ )HSWAP + (1 − f (τ − 3ε))Ȟ

)}
. (4.5)

The generators of the cosmic evolution in subsequent aeons, Ĥ and Ȟ , need not
commute neither with each other nor with HSWAP, but formula (4.5) is sound because
the functions f , g and 1 − f ( · − 3ε) do not overlap.

In summary, under hypotheses H1 andH2, one can construct a global unitary evolu-
tionof the universe’s state and continue it smoothly through the crossover hypersurface.
The quantum information in the universe is globally preserved, though it flows between
the matter and gravitational sectors during the cosmic evolution. One can quantify this
flow by computing the von Neumann entropy associated with the sector G,

SG(t) = S(
TrM+H+A |�(t)〉〈�(t)|U

) = S(
TrG |�(t)〉〈�(t)|U

)
. (4.6)

At the Big Bang Eq. (4.1) yields SG(t0 = 0) = 0. Then, SG grows monotonically
as gravitational clumping proceeds. Once the black holes have formed SG reaches
its peak value equal to the total Bekenstein–Hawking entropy. Then, SG decreases
as quantum information is transferred into the correlations between the modes of
Hawking radiation. Eventually, we have SG(t3 = ∞) = 0 and a smooth transition to
the subsequent aeon takes place. Hence, SG essentially follows the Page curve [66].

Recall that the sector A also includes some gravitational degrees of freedom asso-
ciated with the clumping of matter in A and the gravitational radiation. The former
can be safely assumed to be much smaller than SG once the black holes have formed.
The latter is of a different nature than the one associated with the “Coulomb-like”
gravitational sources and would require separate attention (cf. [42]).

4.2 Gravitational clumping and decoherence

Let us now discuss the motivation and some consequences of hypothesis H1. In [30]
we argued that the Bekenstein–Hawking entropy can be interpreted as von Neumann
entropymeasuring the entanglement ofmatterwith the (quantum)gravitational degrees
of freedom. The price to pay is that the gravitational collapse activates a huge number
of new degrees of freedom

dimHG ≈ e4π(m/mPl)
2
. (4.7)
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For a solar mass black hole this number is immense, dimHG ≈ 1010
70
.

Hypothesis H1 assumes that the activation of quantum gravitational degrees of
freedom is universally associated with the gravitational entropy rather than with the
black hole horizons. As mentioned before, there is no generally accepted notion of
gravitational entropy, but it is commonly assumed that such an entropy should be
associated with the Weyl degrees of freedom and increase in course of gravitational
clumping [42].

It is instructive to analyse a static point-like quantum system of massm. Its gravita-
tional field is then described by the Schwarzschild metric [75], hence the prescription
of [42] yields the formula dimHG = e4π(m/mPl)

2
, in coherence with (4.7). As it

turns out, for m � 1
10mPl, we have dimHG ≈ 1, which essentially means that the

quantum gravitational degrees of freedom are inactive. On the other hand, this num-
ber grows very rapidly with the mass of the system. Already for m = mPl we have
dimHG = e4π > 280’000.

This observation suggests that quantum systems with a mass of the order of the
Planck mass would rapidly decohere because of the activation of a large number of
new quantum degrees of freedom. This is consistent with the current limits on the
quantum behaviour of macroscopic objects [76–78]. It would provide an explanation
of the quantum-to-classical transition in terms of an effective decoherence caused
by entanglement with the “gravitational environment”. Interestingly, such a scenario
leads to empirical predictions, which are qualitatively equivalent to the ones involving
objective information loss [49, 50]. Indeed, an experiment showing that the state of
a quantum system has freely evolved from a coherent superposition into a statistical
mixture would admit two completely equivalent explanations—in terms of objective
collapse or entanglement with unknown degrees of freedom.

It should also be mentioned that such a mechanism would normally induce heating
of the quantum system at hand—which effect sets rather stringent bounds on the
collapsemodels [78–80]—,unless the involved gravitational degrees of freedomdonot
carry energy. Notably, this harmonises with the assumption that gravitational degrees
of freedom shall be associated with theWeyl tensor, which does not affect the energy–
momentum conservation [42]. In terms of quantum information it means that the
selfadjoint generator, Hcollapse, of the unitary transformation governing the transition
must exhibit substantial degeneration3. That is,

Hcollapse|ψE 〉S|φi 〉G = E |ψE 〉S|φi 〉G,

for an energy level E and a family of orthonormal vectors {|φi 〉}i , with i � dimHG .
Clearly, this is but a qualitative picture as quantum objects considered to be point-

like, as e.g. the electron, have masses several orders of magnitude below the Planck
mass. Developing a more precise mechanism would require a careful study of the
gravitational entropy associated with extended massive objects. This will be discussed
in a forthcoming work.

For sake of establishing the unitary CCC model it is sufficient to assume that the
quantum gravitational degrees of freedom are only activated during the gravitational

3 We thank Paweł Horodecki for drawing our attention to this fact.
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collapse. It should, however, be stressed that in this picture the gravitational entropy
is not associated with the existence of a horizon, but rather with the gravitational
clumping. Consequently, the development of a cosmological horizon, induced by the
positive cosmological constant, does not lead to the activation of any new degrees of
freedom. This is coherent with the argumentation provided by Penrose [20], but it
clashes with the proposal for gravitational entropy, put forward in [42], based on a
formal analogy with the classical laws of thermodynamics.

4.3 Unitary evaporation of black holes

The case for unitary evaporation of black holes has been thoroughly discussed in the
literature—see [67–69] and references therein. Any such scenario would be at odds
with the basic principles of quantum field theory, as discussed at the end of Sect. 4.1
(cf. also [55] and [67]). Furthermore, the unitary evaporation seems to conflict with
the basics theorems of quantummechanics [67], such as no-cloning and entanglement
monogamy [81], which in turn puts threat on the relativistic causal structure [82]. We
shall argue, however, that while unitary evaporation does violate the principles of local
quantum mechanics (as laid out e.g. in [83]), it does not necessarily induce troubles
with causality.

Let us inspect a pure quantum state imprinted on a test mass freely falling into a
Schwarzschild black hole—seeFig. 3.Assumefirst that the state is completely shielded
from its environment, also the gravitational one. As the test mass follows a timelike
geodesic, it will reach the central singularity in finite proper time. The state is protected
as long as its carrier exists and is not lost, hence it must eventually be ‘swapped-out’
into the correlations between the modes of Hawking radiation (cf. [82]). Clearly,
this would constitute an instance of (instantaneous) superluminal signalling, as the
quantum information is transmitted into a spacelike-separated location.Note, however,
that it does not lead to causal paradoxes, provided that the state is sent outside of the
past causal cone of its worldline. Indeed, in such a scenario the information is only
transmitted superluminally from inside of the horizon, so that no two observers could
effectuate a causal loop.

If, however, one now adopts a different slicing (dashed lines in Fig. 3), then the
quantum state is not swapped, but cloned—the same quantum information exists in
two different locations on one time-slice. Such an effect cannot be implemented with
any quantum channel [84, 85] hence, in particular, with any unitary operation. At the
same time, even if cloning does take place, it still does not facilitate the completion
of a causal loop. This is because any local observer able to read out the information
from the Hawking radiation cannot influence the causal past of the original quantum
information carrier.

Clearly, the assumption of the state’s perfect shielding is unrealistic. One would
rather expect that the quantum information infalling into the black hole gets “scram-
bled”, that is thoroughly mixed with other degrees of freedom [86]. On the other hand,
such scrambling must be associated with a physical interaction. Let us focus solely on
the gravitational interaction, since in the presented scenario the gravitational degrees
of freedom are expected to dominate during the collapse. While one expects strong
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Fig. 3 The spacetime diagram of a static evaporating black hole. A test mass, which carries a shielded
quantum state, markedwith awhite dot, follows a time-like geodesic γ , which ends at the central singularity.
Upon the encounter with the singularity, the quantum state is transferred nonlocally to the correlations
between the modes of Hawking radiation (red dot). Using a time-slicing with solid gray lines, such an
effect would be described by a SWAP gate. On the other hand, in a different slicing, marked with dashed
dark lines, the same process appears as information cloning. Yet, this does not facilitate causal loops, if we
assume that the region to which quantum information is transferred out from the black hole (red dot) lays
outside of the causal past of the initial state’s worldline, J−(γ )

tidal forces operating near the singularity, the gravitational interaction at the horizon
of an astrophysical black hole is rather weak. Indeed, the (Newtonian) acceleration
experienced by a test mass at the trapping horizon of a Schwarzschild black hole,

aBH = GM

r2S
= c4

4GM
,

is of the order of 10−9 m/s2 for a solar-mass black hole. Hence, one can safely assume
that the infalling quantum states are, for the most part, indeed protected from the
gravitational mixing. The gravitational scrambling effectively starts only near the
singularity and not the horizon. Consequently, the picture arising from Fig. 3 remains
qualitatively valid.

It is clear from Fig. 3 that the description of the dynamics involving the quantum
information scrambling and transfer into the Hawking radiation depends on the chosen
time-slicing of spacetime. The same is true for the scenario involving information
loss: In one slicing the information is lost gradually, while in another one it vanishes
abruptly in the last burst of Hawking radiation—see [20, Fig. 3.15]. However, the
choice of the slicing is a passive operation. It is completely irrelevant for physics,
both outside and inside the trapping horizon. In particular, an observer decoding the
quantum information from Hawking modes has no operational means to determine
whether it was swapped out, cloned or transferred from the gravitational registers.

Other arguments—most notably the black hole complementarity principle [87]—,
not involving explicitly the gravitational degrees of freedom, have been invoked to
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assure the consistency of the unitary evaporation scenario [67]. The presented scheme
has an additional advantage of avoiding theAMPS (firewall) paradox [88]. The latter is
a statement that for a sufficiently old black hole the outgoing Hawking modes must be
(nearly maximally) entangled both with their ingoing partners and the early Hawking
radiation, which would violate the fundamental property of quantum mechanics – the
entanglementmonogamy [81]. In the presented scenario themonogamy is not violated,
because the early Hawking radiation is entangled with the gravitational degrees of
freedom.

An important conclusion from this discussion is that the unitary evaporation
mediated through the quantum gravitational sector must involve some new type of
nonlocality, which goes beyond the standard quantum theory. This is the price to pay
for avoiding the AMPS paradox [88]. More directly, it is well-known that quantum
entanglement cannot increase through LOCC (local operations and classical commu-
nication) [81]. But Hawking modes need to get entangled ‘at a distance’ without any
local interaction. We emphasise, however, that the violation of the LOCC principle
does not necessarily imply the operational violation of relativistic causality. In fact,
there exist probabilistic theories exhibiting a beyond-quantum form of nonlocality,
while not allowing for any superluminal transfer of information [33]. In this context,
a new information-theoretic framework was recently proposed [34], in which correla-
tions can change at a distance and the monogamy of correlations is violated, and yet
it is impossible to form a causal loop in spacetime.

5 Summary

The Conformal Cyclic Cosmology put forward by Roger Penrose offers a valuable
alternative to the much more popular inflationary models. It is founded on rigorous
mathematical results concerning the conformal extensions of spacetime manifolds
and yields concrete testable predictions. Distinctively, CCC assumes that quantum
gravity effects do not play any significant role in the very early universe, while they
are eventually important in the description of black holes. This is because Penrose
associates the gravitational degrees of freedomwith theWeyl (and notRicci) curvature,
which is expected to vanish at the Big Bang and diverge at the black hole singularities.

The central notion in CCC and the main motivation behind it is that of gravita-
tional entropy, which extends the concept of Bekenstein–Hawking black hole entropy.
Conceptualised by Penrose at an intuitive level [20, 41, 89], it recently acquired a
more concrete shape within the general-relativistic framework [42, 44–48]. In order
to match the available degrees of freedom at the crossover hypersurface between the
aeons, Penrose assumes that information is inevitably lost during the black hole evap-
oration and argues that such a phenomenon would effectively ‘renormalise’ the total
entropy in the dark epoch of an aeon to a much smaller value.

However, the notion of entropy adopted by Penrose is inherently classical and
does not take into account the quantum nature of phenomena. When analysed at the
quantum level, the information loss would induce an increase of entropy. This is
a universal conclusion basing on the standard von Neumann notion of entropy in
quantum systems. It could be applied in the context of evaporating black holes, in
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which the quantum nature of gravity is expected to play a significant role. But it can
equally well be employed in the study of objective collapse models, as the one put
forward by Penrose [49, 50]. The bottom line is clear: Whenever a pure quantum state
evolves into a statistical mixture, its von Neumann entropy grows.

Undoubtedly, Penrose’s proposal for an objectivewave function collapse ofmassive
quantum systems requires a major departure from the standard quantum theory. One
might thus expect that such a new theory would involve completely new notions
of information and entropy. However, the latter would have to be consistent with the
quantum notions when themass of the system is small. In the same vein as the quantum
information becomes effectively classical if coherence is negligible and von Neumann
entropy reproduces Boltzmann’s formula for large systems in thermal equilibrium.

The scenario for gravitation-induced decoherence proposed in this article is in fact
not so different from the original vision put forward by Penrose. If one assumes that
the quantum gravitational degrees of freedom are not accessible to any local observer,
then the entanglement with these effectively amounts to a loss of information. Such
an assumption seems plausible as gravitational clumping occurs spontaneously and
one needs to invest energy (and entropy) to reverse it. Consequently, one could still
claim that some information is hopelessly concealed in massive objects.

The difference becomes important only in the late stages of the universe, when
the information is eventually revealed from the black holes in quantum correla-
tions between the Hawking modes. Nevertheless, the thermal spectrum of individual
Hawking modes is perfectly consistent with the Bekenstein–Hawking formula [31].
Ultimately, it is the global state of Hawking radiation, which determines, for the most
part, the initial state of the subsequent aeon. Yet, themacroscopic effect of deformation
of the crossover hypersurface—which is basis of CCC’s empirical predictions—would
still be dominated by the gravitational waves from black hole mergers in the previous
aeon. This is because the latter carry much more energy than the Hawking radiation,
whether in a thermal or pure state.

Both in the original and in the present version ofCCC it is unclearwhat happenswith
the information concealed inmassive particles, which evaded the gravitational collapse
or were emitted as Hawking quanta. Within the presented scheme, the ‘mass fadeout’
effect which, to our best knowledge, does not so far have a dynamical implementation
(see, however, [37]) would have to be unitary.

Another pressing problem is that of dark matter. In Penrose’s original proposal, a
primordial form of dark matter emerges upon the transition to the next aeon from a
“phantom” (i.e. non-dynamical) field related to the conformal factor �̂ utilised for
the rescaling [20, 90]. From the unitary point of view, the phantom field would then
have to constitute yet another sector of the total Hilbert space, which would remain
completely shielded until the beginning of a new aeon. More generally, it is presently
not clear how to uniquely fix the conformal rescaling factor given the matter content
in one aeon [21].

All these pertinent questions call for a further theoretical study of the ‘Unitary
Conformal Cyclic Cosmology’.
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