Skip to main content

Advertisement

Log in

On the energy of gravitational waves

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The energy of gravitational waves is a fundamental problem in gravity theory. The existing descriptions for the energy of gravitational waves, such as the well-known Isaacson energy-momentum tensor, suffer from several defects. Due to the equivalence principle, the gravitational energy-momentum can only be defined quasilocally, being associated with a closed spacelike 2-surface bounding a region. We propose a new approach to derive the energy of gravitational waves directly from the quasilocal gravitational energy. Such an approach is natural and consistent with the quasilocality of gravitational energy-momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abbott, B.P., et al.: LIGO scientific, virgo. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  2. Bondi, H.: Nature 179, 1072 (1957)

    Article  ADS  Google Scholar 

  3. Isaacson, R.A.: Phys. Rev. 166, 1263 (1968)

    Article  ADS  Google Scholar 

  4. Isaacson, R.A.: Phys. Rev. 166, 1272 (1968)

    Article  ADS  Google Scholar 

  5. Mukhanov, V.F., Abramo, L.R.W., Brandenberger, R.H.: Phys. Rev. Lett. 78, 1624 (1997). arXiv:gr-qc/9609026

    Article  ADS  Google Scholar 

  6. Abramo, L.R.W., Brandenberger, R.H., Mukhanov, V.F.: Phys. Rev. D 56, 3248 (1997). arXiv:gr-qc/9704037

    Article  ADS  Google Scholar 

  7. Belinfante, F.J.: Physica 6, 887 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  8. Belinfante, F.J.: Physica 7, 449 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  9. Rosenfeld, L.: Mém. Acad. Roy. Belg. 18 (1940)

  10. Einstein, A.: Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 844 (1915)

  11. Papapetrou, A.: Proc. Roy. Irish Acad. A 52, 11 (1948)

    MathSciNet  Google Scholar 

  12. Bergmann, P.G., Thomson, R.: Phys. Rev. 89, 400 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  13. Goldberg, J.N.: Phys. Rev. 111, 315 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  14. Møller, C.: Ann. Phys. 4, 347 (1958)

    Article  ADS  Google Scholar 

  15. Landau, L.D., Lifschits, E.M.: The Classical Theory of Fields, Course of Theoretical Physics, vol. 2. Pergamon Press, Oxford (1975)

  16. Rosen, N., Virbhadra, K.S.: Gen. Relativ. Gravit. 25, 429 (1993)

    Article  ADS  Google Scholar 

  17. Virbhadra, K.S.: Pramana 45, 215 (1995). arXiv:gr-qc/9509034

    Article  ADS  Google Scholar 

  18. Penrose, R.: Proc. R. Soc. Lond. A 381, 53 (1982)

    Article  ADS  Google Scholar 

  19. Chang, C.-C., Nester, J.M., Chen, C.-M.: Phys. Rev. Lett. 83, 1897 (1999). arXiv:gr-qc/9809040

    Article  ADS  MathSciNet  Google Scholar 

  20. Katz, J., Ori, A.: Class. Quantum Gravity 7, 787 (1990)

    Article  ADS  Google Scholar 

  21. Jezierski, J., Kijowski, J.: Gen. Relativ. Gravit. 22, 1283 (1990)

    Article  ADS  Google Scholar 

  22. Dougan, A.J., Mason, L.J.: Phys. Rev. Lett. 67, 2119 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bergqvist, G.: Class. Quantum Gravity 9, 1917 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  24. Brown, J.D., York, J.W., Jr.: Phys. Rev. D 47, 1407 (1993). arXiv:gr-qc/9209012

    Article  ADS  MathSciNet  Google Scholar 

  25. Hayward, S.A.: Phys. Rev. D 49, 831 (1994). arXiv:gr-qc/9303030

    Article  ADS  MathSciNet  Google Scholar 

  26. Chen, C.-M., Nester, J.M., Tung, R.-S.: Phys. Lett. A 203, 5 (1995). arXiv:gr-qc/9411048

    Article  ADS  MathSciNet  Google Scholar 

  27. Chen, C.-M., Nester, J.M.: Class. Quant. Grav. 16, 1279 (1999). arXiv:gr-qc/9809020

    Article  ADS  Google Scholar 

  28. Chen, C.-M., Nester, J.M.: Grav. Cosmol. 6, 257 (2000). arXiv:gr-qc/0001088

    ADS  Google Scholar 

  29. Liu, C.-C.M., Yau, S.-T.: Phys. Rev. Lett. 90, 231102 (2003). arXiv:gr-qc/0303019

    Article  ADS  MathSciNet  Google Scholar 

  30. Wang, M.-T., Yau, S.-T.: Phys. Rev. Lett. 102, 021101 (2009). arXiv:0804.1174 [gr-qc]

    Article  ADS  Google Scholar 

  31. Wang, M.-T., Yau, S.-T.: Commun. Math. Phys. 288, 919 (2009)

    Article  ADS  Google Scholar 

  32. Szabados, L.B.: Living Rev. Rel. 12, 4 (2009)

    Article  Google Scholar 

  33. Arnowitt, R.L., Deser, S., Misner, C.W.: Phys. Rev. 122, 997 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Proc. R. Soc. Lond. A 269, 21 (1962)

    Article  ADS  Google Scholar 

  35. Shi, Y., Tam, L.-F.: J. Differ. Geom. 62, 79 (2002)

    Article  Google Scholar 

  36. Murchadha, N.Ó., Szabados, L.B., Tod, K.P.: Phys. Rev. Lett. 92, 259001 (2004). arXiv:gr-qc/0311006 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Gourgoulhon, 3+1 Formalism in General Relativity, Vol. 846 (2012)

  38. H. Stephani, Relativity: An introduction to special and general relativity (2004)

  39. Pirani, F.A.E.: Phys. Rev. 105, 1089 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Z. Petrov, Uchenye Zapiski Kazanskogo Gosudarstvennogo Universiteta im. V. I. Ulyanovicha-Lenina [Scientific Proceedings of Kazan State University 114, 55 (1954)

  41. Sachs, R.K.: Proc. R. Soc. Lond. A 264, 309 (1961)

    Article  ADS  Google Scholar 

  42. Newman, E., Penrose, R.: J. Math. Phys. 3, 566 (1962)

    Article  ADS  Google Scholar 

  43. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact solutions of Einstein’s field equations, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  44. Szekeres, P.: J. Math. Phys. 6, 1387 (1965)

    Article  ADS  Google Scholar 

  45. Ishibashi, A., Wald, R.M.: Class. Quant. Grav. 21, 2981 (2004). arXiv:hep-th/0402184

    Article  ADS  Google Scholar 

  46. Bishop, N.T., Rezzolla, L.: Living Rev. Rel. 19, 2 (2016). arXiv:1606.02532 [gr-qc]

    Article  Google Scholar 

  47. Chen, P.-N., Wang, M.-T., Yau, S.-T.: Commun. Math. Phys. 357, 731 (2018). arXiv:1510.00904 [math.DG]

    Article  ADS  Google Scholar 

  48. Senovilla, J.M.M.: Class. Quant. Grav. 17, 2799 (2000). arXiv:gr-qc/9906087

    Article  ADS  Google Scholar 

  49. Liu, J.-L., Yu, C.: J. Geom. Phys. 120, 330 (2017). arXiv:1604.05302 [math.DG]

    Article  ADS  MathSciNet  Google Scholar 

  50. Chen, C.-M., Nester, J.M., Tung, R.-S.: Phys. Rev. D 72, 104020 (2005). arXiv:gr-qc/0508026

    Article  ADS  Google Scholar 

  51. Katz, J., Bičák, J., Lynden-Bell, D.: Phys. Rev. 55, 5957 (1997). arXiv:gr-qc/0504041 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  52. R.-G. Cai, X.-Y. Yang, and L. Zhao, (2021), arXiv:2109.06865 [astro-ph.CO]

  53. Chen, P.-N., Wang, M.-T., Yau, S.-T.: Commun. Anal. Geom. 28, 1489 (2020). arXiv:1603.02975 [math.DG]

    Article  Google Scholar 

Download references

Acknowledgements

Prof. Padmanabhan significantly contributed to a broad spectrum of topics related to astrophysics, cosmology, and classical and quantum aspects of gravitation. It was a pity that Paddy passed away due to cardiac arrest. It was a loss of our community. As one of his friends, RGC would like to contribute this work to the Topical Collection (TC) “In Memory of Prof. T. Padmanabhan”. We thank Misao Sasaki and Shing-Tung Yau for helpful communications. This work is supported in part by the National Natural Science Foundation of China Grants Nos. 11690022, 11821505, 11991052, 11947302 and by the Strategic Priority Research Program of the CAS Grant No. XDPB15, and by the Key Research Program of Frontier Sciences of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Yu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: T.C.: In Memory of Professor T Padmanabhan.

Appendices

Appendix A: Canonical form of Weyl tensor

Table 1 Canonical form of Weyl tensor for different Petrov types

Appendix B:Tetrad transformations

The Lorentz transformation with six parameters acting on a null tetrad \(\{m^{a},\bar{m}^{a},l^{a},k^{a}\}\) can be classified to three types:

(i) \(l'=l, \quad k'=k+a\bar{m}+\bar{a}m+a\bar{a}l, \quad m'=m+al\)

(ii) \(k'=k, \quad l'=l+b\bar{m}+\bar{b}m+b\bar{b}k, \quad m'=m+bk\)

(iii) \(k'=Ak, \quad l'=A^{-1}l, \quad m'=\mathrm {e}^{\mathrm {i}\theta }m\)

where a and b are complex parameters, \(A>0\) and \(\theta \) are real parameters.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, RG., Yang, XY. & Zhao, L. On the energy of gravitational waves. Gen Relativ Gravit 54, 89 (2022). https://doi.org/10.1007/s10714-022-02972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02972-x

Keywords

Navigation