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Abstract
Consider a one-parameter family of smooth Riemannian metrics on a two-sphere,S .
By choosing a one-parameter family of smooth lapse and shift, these Riemannian two-
spheres can always be assembled into smooth Riemannian three-space, with metric
hi j on a three-manifold � foliated by a one-parameter family of two-spheres Sρ . It
is shown first that we can always choose the shift such that the Sρ surfaces form
a smooth inverse mean curvature foliation of �. An integrodifferential expression,
referring only to the area of the level sets and the lapse function, is also derived
that can be used to quantify the Geroch mass. If the constructed Riemannian three-
space happens to be asymptotically flat and the ρ-integral of the integrodifferential
expression is non-negative, then not only the positive mass theorem but, if one of the
Sρ level sets is a minimal surface, the Penrose inequality also holds. Notably, neither
of the above results requires the scalar curvature of the constructed three-metric to be
non-negative.
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1 Introduction

General relativity is a metric theory of gravity that makes it highly non-trivial to
assign, in a sensible way, mass, energy, linear and angular momenta to bounded spatial
regions.Yet, since the early seventies, it is also part of the common suppositions that the
proper analytic characterization of highly energetic processeswill be intractable unless
suitable quasi-local, and possibly quasi-conserved, quantities can be found [5, 9, 24].
The first important step towards the realization of these objectiveswasmade byGeroch
[9] whose proposal greatly inspired most of the later developments. Geroch’s quasi-
local argument, in proving the positivemass theorem, assumed both the existence of an
inverse mean curvature foliation and that the inspected timeslice is maximal [9]. Since
then, considerable progress had been made in proving the global existence of inverse
mean curvature foliations [2, 3, 11, 12]. This is essential in getting a proof not merely
of a quasi-local version of the positive mass theorem but also that of its close relative;
the Penrose inequality [8, 9, 13–21, 33].1 One of the most important steps forward
was the proof of the Riemannian Penrose inequality by Huisken and Ilmanen [11,
12] (see also [2, 3]) which, under suitable conditions, also yields a quasi-local proof
of the positive energy theorem.2 In proving the the Riemannian Penrose inequality,
the scalar curvature of the Riemannian three-metric on the involved timeslices was
assumed to be non-negative [11, 12]. Thereby, it is an interesting question on its own
right if smooth inverse mean curvature foliations do exist whenever the non-negativity
of the scalar curvature of the Riemannian three-metric is not guaranteed.

The main purpose of the present paper is to introduce a new method that enables us
to construct a wide variety of Riemannian three-spaces. Each admits a smooth inverse
mean curvature foliation and such that the scalar curvature is not required to be non-
negative. The original motivation for applying inverse mean curvature foliations was
to prove that the Geroch mass is non-decreasing. The proposed new method provides
an alternative construction of inverse mean curvature foliations. It is also generic as
no field equations are used anywhere in the construction. To make this transparent, we
start by revisiting generic variations of the Geroch mass. Note that in the conventional
treatment of this variation, the shift of the flow, “as unimportant”, was left out of the
corresponding arguments. Nevertheless, as in our proposal, the shift vector acquires
an important role, on good grounds, with the involvement of a non-trivial shift-vector
field, which provides an additional motivation of recalling the argument of Geroch
[9], in sect. 3.

1 For a more detailed account on the related references see,e.g. [20, 21, 33].
2 It is important to be emphasized here that the positive energy theorem was proven originally in the late
seventies by applying completely different techniques by Schoen, Yau and Witten [29–32, 35].
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The basic ingredient of the proposed construction is a smooth one-parameter family
of Riemannian two-metrics γ̂AB on a topological two-sphereS , parameterized by ρ.
In the simplest case, these two spheres can be assembled into a smooth three-manifold
� foliated by a one-parameter family of topological two-spheres. Accordingly, � is
expected (at least locally) to be aproduct spaceR×S . (Formoreprecise specifications,
see sect. 2.) At this kinematical level, in addition to the Riemannian two-metrics γ̂AB

on the Sρ level sets, we only have a flow that is lacing the Sρ level sets into a
three-manifold�. The smoothRiemannian three-spaces, withmetric hi j , on this three-
manifold are constructed by choosing suitable lapse and shift on�. The shift is chosen
by solving an elliptic equation, (5.26), for one of its scalar potentials. This guarantees
immediately—regardless of choice made for the other potential or the lapse—that the
Sρ level sets form a smooth inverse mean curvature foliation of �. Assuming that
such a foliation has been fixed on �, a new integrodifferential expression, referring
only to the area of the level sets and the lapse function, is also derived that can be used
to quantify the Geroch mass. It is also shown that the quasi-local mass introduced
by Bartnik [1] in quasi-spherical foliations can be viewed as a special case of the
Geroch mass. Besides, whenever the constructed Riemannian three-space happens
to be asymptotically flat, and the ρ-integral of the aforementioned integrodifferential
expression is non-negative, then the positivemass theorem holds. If, besides, one of the
Sρ level sets is a minimal surface in �, then the Penrose inequality is also guaranteed
to be satisfied.

The proposed construction is distinguished from any of the former ones in that no a
priori restriction is imposed on the scalar curvature of the constructed three-geometry.
In particular, the constructed three-geometries will automatically accommodate non-
maximal timeslices, which are out of the validity range of all the former discussions
in [2, 3, 11, 12].

This paper is structured as follows: Section 2 is to recall the basic notions and nota-
tions. In sect. 3, a careful inspection of generic variations of the Geroch mass—with
the involvement of a non-trivial shift—is carried out. Subsection 3.1 is to determine
those conditions which guarantee monotonous behavior of the Geroch mass, whereas
subsection 3.2 is to discuss the alternative ways of getting control on its ρ-dependence.
Section 4 indicates that the proposed construction will indeed yield an inverse mean
curvature foliation. The new method allowing the construction of a wide variety of
Riemannian three-spaces is presented in detail in sect. 5. It starts by dynamical deter-
mination of the shift, in subsection 5.1, and then proposes various choices for the lapse,
in subsection 5.2. Asymptotically flat configurations are investigated in subsection 5.3.
The paper is closed in sect. 6 by our final remarks.

2 Preliminaries

Consider a smooth, three-dimensional manifold� endowedwith a Riemannianmetric
hi j . Assume that � is (almost everywhere) smoothly foliated by topological two-
spheres. More precisely, we shall assume that there exists a (smooth) Morse function
ρ : � → R on � that possesses only isolated non-degenerate critical points [22, 23].
The connected components of the ρ = const level surfaces of this Morse function—

123



55 Page 4 of 23 I. Rácz

which will also be signified bySρ—are assumed to be topological two-spheres apart
from level sets through the critical points. At a critical point of a Morse function
ρ : � → R the gradient ∂iρ vanishes. A critical point is non-degenerate if the
Hessian of ρ : � → R is non-singular at that point, whereas the index of a critical
point is the number of the negative eigenvalues of the Hessian. Note that the extreme
index non-degenerate critical points, i.e. with index zero or three, are distinguished as
(locally) theSρ two-spheres shrink to a point while approaching those critical points,
which signify (local) minimum or a maximum of ρ : � → R, respectively. Thereby,
we shall refer to them as origins. Immediate trivial examples for three-manifolds
fitting to the above requirements are the cylinders, disks, or three-spheres which are
diffeomorphic to R × S

2, R3 or S3, with no, one or two origins, respectively.3 It is
worth emphasizing that generic (non-simple) three-manifolds, that are foliated (almost
everywhere) by topological two-spheres, can always be given as the disjoint union of
disks and cylinders that are glued together via ρ = const slices through index one or
two non-degenerate critical points of a Morse function ρ : � → R. 4 For this reason,
and to keep the arguments of the present paper simple enough, unless stated otherwise,
we shall assume that � is simple, i.e.

Condition � is either a cylinder, a disk, or a three-sphere, respectively.

Even though a Morse function ρM : � → R is chosen we may still be interested
in relabeling the ρM = const level surfaces by introducing a new radial coordinate
ρ = ρ(ρM ). If the function ρ = ρ(ρM ) is strictly increasing, the orientation of the
foliation, fixedby theMorse function, is preservedby the newlydefined radial function.
To allow the use of area-radial coordinates (for its definition, see subsection 5.2), the
new radial function ρ : � → R will only be assumed to be smooth apart from critical
points. Hereafter, unless stated otherwise, the ρ = const or Sρ level surfaces will
always refer to one of these generic types of radial coordinates, i.e. we shall assume
that a generic radial function ρ : � → R has been fixed. The transverse one-form
field ∂iρ is well-defined apart from critical points. With the help of the Riemannian
metric hi j on�—apart from these isolated critical points—a unit form field and a unit
vector field can be defined via the relations n̂i = ∂iρ/(hkl∂kρ ∂lρ)1/2 and n̂i = hi j n̂ j ,
respectively. Both of these fields are normal to the ρ = const level surfaces. Using
them the operator γ̂ i

j = δ i
j − n̂i n̂ j , projecting fields to the tangent space of the level

surfaces, gets also to be determined.
The intrinsic and extrinsic geometry of theSρ level surfaces can then be represented

by the induced Riemannian two-metric γ̂ i j and the extrinsic curvature ̂Ki j , defined
via the relations,

γ̂ i j = γ̂ k
i γ̂

l
j hkl and ̂Ki j = γ̂ l

i Dl n̂ j = 1
2 Ln̂ γ̂i j , (2.1)

3 The case of a cylinder, R × S
2, is self-explanatory. ‘Disks’, diffeomorphic to R

3, can also be seen to be
simple by referring to the Morse functions ρ = ±∑3

i=1(xi )
2 with an index zero or three critical points,

according to the choice made in the determination of ρ for the “+” or “−” sign, at the origin of R3. The
three-sphere, diffeomorphic to S3, is also simple with respect to the height function ρ(x1, x2, x3, x4) �→ x4,
where S3 = {(x1, x2, x3, x4) ∈ R

4 | ∑4
i=1(xi )

2 = R2}which possesses a pair of critical points with index
three and zero at the ‘north and south poles’, represented by the points (0, 0, 0,R) and (0, 0, 0, −R) in
R
4, respectively.

4 These are isolated pointlike pinches on the edges of ‘disks’.
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respectively. Here Di is the covariant derivative operator associated with hi j and Ln̂

denotes the Lie derivative with respect to the unit norm vector field n̂i . A ρ = const
level surface is referred to be mean-convex if its mean curvature, ̂Kl

l = γ̂ i j
̂Ki j =

Di n̂i , is positive everywhere onSρ .
Given a foliation Sρ a vector field ρi on � is called to be a flow, with respect

to Sρ , if the integral curves of ρi—apart from the origins—intersect each level sets
precisely once, and also if ρi is scaled such that ρi∂iρ = 1 where ∂iρ is well-defined
and non-vanishing. Note that such a flow is smooth, apart form the critical points, on
�. It can always be chosen without referring to some backgroundmetric structure, and
it is not unique as if a flow exists then infinitely many others do also exist. Whenever a
Riemannian metric hi j is given, the flow ρi can uniquely be characterized by its lapse,
̂N = (̂ni∂iρ)−1—which measures the normal separation of the surfaces Sρ—, and
by its shift, ̂Ni = γ̂ i

jρ
j , via the relation

ρi = ̂N n̂i + ̂Ni . (2.2)

Notably, if the area of the foliating level sets is increasing awell-defined quasi-local
orientation of the Sρ level sets emerges. We may simply regard a flow ρi outward
pointing if the area of the level sets is increasing with respect to it [27, 28]. This
happens, for instance, if the integral of the product ̂N ̂Kl

l is greater than zero. To
see this makes sense recall that the variation of the area Aρ of the ρ = const level
surfaces, with respect to the flow ρi , reads as

LρAρ =
∫

Sρ

Lρ ε̂ =
∫

Sρ

{

̂N ̂Kl
l + ̂Di ̂N

i
}

ε̂ =
∫

Sρ

̂N ̂Kl
l ε̂ , (2.3)

where, besides (2.2), the relations Ln̂ ε̂ = ̂Kl
l ε̂ and L

̂N ε̂ = 1
2 γ̂ i jL

̂N γ̂i j ε̂ =
̂Di ̂Ni ε̂, along with the vanishing of the integral of the total divergence ̂Di ̂Ni , were
applied.

Note that ̂N does not vanish on � unless the Riemannian metric

hi j = γ̂ i j + ̂N−2( ρi − ̂Ni )( ρ j − ̂N j ) (2.4)

gets to be singular. Since n̂i is a flow itself with ̂N ≡ 1 and it is natural to require that
the (quasi-local) orientations by n̂i and ρi coincide, hereafter, we shall assume that ̂N
is positive throughout �. Combining the foregoing we get that if the integral of ̂N ̂Kl

l

is greater than zero, the area is, indeed, increasing with respect to ρi and, in turn, that
the flow ρi may be referred outward pointing. The above argument can also be used to
verify that for mean-convex surfaces the area is “piece-wise strictly increasing” as not
only the total area but the area of any local surface element is increasing with respect
to outward pointing flows.
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3 Variation of the Gerochmass

In proceeding the variation of the (quasi-local) Geroch mass 5 [9]

MG = A
1/2
ρ

64π3/2

∫

Sρ

[

2 ̂R − (̂Kl
l)
2
]

ε̂ , (3.5)

will play central role. It is straightforward to see that the generic variation of the
Geroch mass can be given as

LρMG = A
1/2
ρ

64π3/2

[

LρW + 1
2 Lρ(logAρ) · W

]

, (3.6)

where W = W (ρ) stands for the pure integral term in (3.5),

W =
∫

Sρ

[

2 ̂R − (̂Kl
l)
2
]

ε̂ . (3.7)

If the non-decreasing of the Geroch mass was guaranteed and for some ρ = ρ∗
value the integral MG(ρ∗) was zero or positive then MG ≥ 0 would automatically
hold to the exterior of Sρ∗ in �.

As an important special case, it is worth mentioning that MG vanishes at regular
origins. A point p ∈ � was considered to be an origin if it was an isolated non-
degenerate index zero or three critical point of the Morse function ρ : � → R.
Replacing the Morse radial function by the area-radial coordinate—for the precise
definition of the latter see subsection 5.2—and using coordinates, (ρ, x A), adapted to
the foliation and the flow, in a neighborhood of p the notion of regular origin can be
introduced as follows. An origin at p is considered to be regular if there exist smooth
bounded fields ̂N (2), ̂N A

(1) and γ̂
(4)
AB such that in a neighborhood of p on� the relations

N̂ = 1 + (ρ − ρ∗)2 N̂ (2) , ̂N A = (ρ − ρ∗) ̂N A
(1) ,

γ̂ AB = (ρ − ρ∗)2 ◦
γ AB + (ρ − ρ∗)4 γ̂

(4)
AB (3.8)

hold, where
◦
γ AB stands for the unit two-sphere metric. On the one hand, these con-

ditions exclude the occurrence of a conical singularity at p, whereas, on the other
hand, they also guarantee that the integrand in (3.7) tends to zero while ρ → ρ∗. This,
along with the fact that near p, up to leading order, Aρ is proportional to (ρ − ρ∗)2,

5 In most of the cases (3.5) is referred to as the (Riemannian) Hawking mass in spite of the fact that the
Geroch and Hawking quasi-local mass differ conceptually (see, e.g. [33]). For instance, the Hawking mass
is known to depend, beside on the geometry of two-surface Sρ within �, also on the way � is embedded
into an ambient space. As opposed to this the Geroch mass depends only on the geometry ofSρ within �.
In particular the Gerochmass is always smaller than or equal to the Hawkingmass, and they are known to be
equal only if for the extrinsic curvature Ki j of �, defined with respect to an ambient space, the contraction

γ̂ i j Ki j vanishes onSρ [33]. Based on these observations it is preferable to distinguish these two concepts
and hereafter we shall refer to (3.5) as the Geroch mass.
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implies then that the Geroch mass vanishes in the ρ → ρ∗ limit, i.e. at regular origins.
Hereafter we shall assume that if an origin occurs on �, it is also regular.

3.1 The variation ofW(�)

We proceed by deriving the generic variations of W (ρ). In doing so the key equation
we shall apply relates the scalar curvatures of hi j and γ̂i j via

(3)
R = ̂R −

{

2Ln̂(̂Kl
l) + (̂Kl

l)
2 + ̂Kkl ̂K

kl + 2 ̂N−1
̂Dl

̂Dl ̂N
}

. (3.9)

Note that this equation can be deduced from the Gauss-Codazzi relations (see, e.g.
(A.1) in [25]); thereby, it holds on � without referring to any field equations.

By varying W (ρ) with respect to an arbitrary flow we get

LρW = −
∫

Sρ

Lρ

[

(

̂Kl
l
)2

ε̂
]

= −
∫

Sρ

{

̂N Ln̂

[

(

̂Kl
l
)2

ε̂
]

+ L
̂N

[

(

̂Kl
l
)2

ε̂
]}

= −
∫

Sρ

(

̂N ̂Kl
l
)

[

2Ln̂ (̂Kl
l) + (̂Kl

l)
2
]

ε̂ −
∫

Sρ

̂Di
[(

̂Kl
l
)2

̂Ni ]ε̂

= −
∫

Sρ

(

̂N ̂Kl
l
)

[

( ̂R −(3)
R ) − ̂Kkl ̂K

kl − 2 ̂N−1
̂Dl

̂Dl ̂N
]

ε̂ , (3.10)

where on the first line (2.2) and theGauss-Bonnet theorem, on the second line again the
relations Ln̂ ε̂ = (̂Kl

l) ε̂ and L
̂N ε̂ = (̂Di ̂Ni ) ε̂, whereas on the third line (3.9) and

the vanishing of the integral of ̂Di
[(

̂Kl
l
)2

̂Ni
]

were used. Applying then the Leibniz
rule we get that

̂N−1
̂Dl

̂Dl ̂N = ̂Dl(
̂N−1

̂Dl ̂N
) + ̂N−2 γ̂ kl (̂Dk ̂N )(̂Dl ̂N ) , (3.11)

and—by introducing the trace-free part of ̂Ki j as
◦
̂Ki j = ̂Ki j − 1

2 γ̂i j (̂Kl
l)—we also

get that

̂Kkl ̂K
kl =

◦
̂Kkl

◦
̂K
kl + 1

2 (̂Kl
l)
2 . (3.12)

In virtue of these simple observations (3.10) reads as

LρW = − 1
2

∫

Sρ

(

̂N ̂Kl
l
)

[

2 ̂R − (̂Kl
l)
2
]

ε̂

+
∫

Sρ

(

̂N ̂Kl
l
)

[

(3)
R +

◦
̂Kkl

◦
̂Kkl + 2 ̂N−2 γ̂ kl (̂Dk ̂N )(̂Dl ̂N )

]

ε̂ , (3.13)

where the vanishing of the integral of the total divergence ̂Dl(̂N−1
̂Dl ̂N )was also used.
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Note that if in (3.13) the factor ̂N ̂Kl
l could be replaced by its average

̂N ̂Kl
l =

∫

Sρ
̂N ̂Kl

l ε̂
∫

Sρ
ε̂

(3.14)

the variation ofW would simplify considerably. Recall that the integrals in (3.14) had
already been applied in (2.3), and it is immediate to see that

̂N ̂Kl
l = Lρ(logAρ) . (3.15)

Accordingly, if the product ̂N ̂Kl
l could be replaced by its average—i.e. if the

constancy of ̂N ̂Kl
l could be guaranteed on the individual ρ = const level sets—then

(3.6) and (3.13) would allow us to conclude that

Lρ MG = A
1/2
ρ

64π3/2

[

LρW + 1
2 Lρ(logAρ) · W

]

= 1

16π
Lρ

[

(

Aρ

4π

)1/2
]

∫

Sρ

[

(3)
R +

◦
̂Kkl

◦
̂Kkl + 2 ̂N−2 γ̂ kl (̂Dk ̂N )(̂Dl ̂N )

]

ε̂ .

(3.16)

What has been established in the foregoing can be summarized by the following.

Proposition 1 Consider a Riemannian three-space (�, hi j ) such that � satisfies the
Condition specified in sect. 2. Assume that, apart from origins, ρ : � → R is a
smooth radial function such that theSρ level sets, apart from origins, are topological
two-spheres. Assume also that a flow ρi = ̂N n̂i + ̂Ni can be chosen on �, and that
the relation

̂N ̂Kl
l = ̂N ̂Kl

l = Lρ(logAρ) (3.17)

holds at a ρ = const level set. Then,

(i) the generic variation Lρ MG of the Geroch mass, at Sρ , is given by (3.16), and
(ii) if, in addition, the area Aρ is non-decreasing, with respect to the flow ρi , and the

inequality

∫

Sρ

[

(3)
R +

◦
̂Kkl

◦
̂Kkl + 2 ̂N−2 γ̂ kl (̂Dk ̂N )(̂Dl ̂N )

]

ε̂ ≥ 0 (3.18)

holds, then the Geroch mass is non-decreasing atSρ .

Notice that even (3.18) would allow
(3)
R somewhere or, when either

◦
̂Kkl or ̂Dk ̂N

does not vanish, everywhere to be slightly negative on Sρ . Nevertheless, as in most

of the conventional constructions
◦
̂Kkl and ̂N get to be known only at the very end,

usually
(3)
R ≥ 0 is assumed in the pertinent arguments [2, 3, 11, 12]. If one would
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like to use the weakest possible restrictions, it is rewarding to keep in mind that, if the
area is non-decreasing, it suffices to require (3.18) to guarantee that the Geroch mass
is non-decreasing atSρ .

Having these observations the main dilemma we have to face originates from the
rigidity of the setup we started with. Namely, if both the Riemannian metric hi j and
the foliation are fixed then so are the mean curvature ̂Kl

l = γ̂ kl(Dkn̂l) = Dkn̂k and
the lapse ̂N = (̂ni∂iρ)−1. Indeed, the only “freedom” still remained is nothing but a
simple relabeling ρ = ρ(ρ) of the level sets of the foliation which cannot yield more
than the trivial rescaling ̂N → ̂N (dρ/dρ) of the lapse. Accordingly, the factor ̂N ̂Kl

l

in (3.13) is not constant but, at best, it is merely a smooth function on the Sρ level
sets of the foliation.

3.2 The alternative ways of getting control onmonotonicity

It is rewarding to have a glance again at the structures we have by hand. We started
with a Riemannianmetric hi j defined on a three-surface� foliated by topological two-
spheres. The foliation was fixed by choosing a function ρ : � → Rwhich, apart from
origins, is smooth with a well-defined and non-vanishing gradient ∂iρ. In addition, a
flow ρi was also chosen such that ρi∂iρ = 1 holds—apart from origins—everywhere
on �.

Once we have a foliation and a flow local coordinates (ρ, x A) adapted to ρi can be
introduced such that ρi = (∂ρ)i , whereas the shift and the induced metric can be given
as a two-vector ̂N A and a 2 × 2 positive definite matrix γ̂AB , respectively, such that
both smoothly depend on the coordinates ρ, x A. (The capital Latin indices always take
the values 2, 3.) In particular, in these coordinates, the line element of the Riemannian
metric hi j reads as

ds2 = ̂N 2dρ2 + γ̂AB
(

dx A + ̂N Adρ
) (

dx B + ̂N Bdρ
)

. (3.19)

In summing up, we can say that those Riemannian three-spaces (�, hi j ), where �

can be foliated by topological two-spheres and a flow had been chosen on �, can be
represented by either of the sets {hi j ; ρ : � → R , ρi } or {̂N , ̂N A, γ̂AB ; ρ : � →
R , ρi = (∂ρ)i }. If, for instance, it is desirable to have control on the monotonous
behavior of the Geroch mass, then, in virtue of Proposition 1, sensible choices for
certain maximal subsets have to be made such that the left out ingredients yet have to
be constructed in such a way that guarantees (3.17) and (3.18) to hold. For instance,
if the Riemannian metric hi j on � is preferred to be fixed, then the flow and foliation
have to be constructed. This is indeed the path laid down byGeroch in [9] by proposing
the use of inverse mean curvature flow (see Sect. 4 below).

Alternatively, one may prefer to start with a globally well-defined smooth foliation
ρ : � → R and flow ρi = (∂ρ)i and with a smooth distribution of Riemannian
two-metrics, γ̂AB , on the ρ = const level sets in �. To construct Riemannian three-
spaces such that the ρ = const level sets form a smooth inverse mean curvature
foliation, and such that the Geroch mass is non-decreasing while moving outward in
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the foliation, then the lapse and shift are to be chosen such that both (3.17) and (3.18)
hold throughout �.

4 Inverse mean curvature flows and foliations

As indicated above, once the three-metric is fixed, to get control of the monotonous
behavior of the Geroch mass, the foliation has to be constructed dynamically. In virtue
of Proposition 1, it is not incidental that each of the known attempts aiming to get
foliations with non-decreasing Geroch mass [8, 9, 13–15, 19, 33] essentially starts by
specifying a two-sphere and construct the other members of the desired foliation by
flowing this initial two-sphere in � using an inverse mean curvature flow 6 (IMCF).
The simplest possible form of such a flow, proposed originally by Geroch in [9], is

ρi
{I MCF} = (

̂Kl
l
)−1

n̂i . (4.20)

Whenever the global existence of the corresponding foliation can be shown ̂N ̂Kl
l ≡ 1

holds automatically, and the Geroch mass is non-decreasing with respect to this flow
provided that (3.18) is satisfied. As in this process the foliation ρ : � → R and, in
turn, the lapse ̂N = (̂ni∂iρ)−1 and

◦
̂Kkl , get to be known only at the very end of the

construction the inequality
(3)
R ≥ 0 is imposed (see, e.g. [9, 11, 12]) to guarantee

(3.18) to hold.
In virtue of the observations made in the previous subsections this construction can

also be carried out by using slightly more general form of flows. First, by applying
a relabeling ρ = ρ(ρ) such that ̂N ̂Kl

l ≡ 1 can be replaced by the relation ̂N ̂Kl
l =

̂N ̂Kl
l = Lρ(logAρ). In addition—however counter intuitive it looks like, especially

in virtue of the insensitivity of the variation of the area and the Geroch mass to the
shift—we can also add a “shift part” to the rescaled IMCF to get the more general
flow, 7

ρi = Lρ(logAρ) · (̂Kl
l
)−1

n̂i + ̂Ni . (4.21)

It is important to keep in mind that, by virtue of (2.1) and (2.2), ̂N ̂Kl
l and ̂Ni are

related via

6 Note that there is a much higher variate of dynamically determined foliations and flows to be applied.
The so-called β-foliations proposed by Jacek Jezierski in [16–18]—generalizing the “conformal harmonic
gauge fixing” (corresponding to β = 1) introduced originally by Jerzy Kijowski [19] and studied in some
details by Piotr Chruściel in [6]—are excellent examples of these types. Note, however, that, likewise in the
case of the IMCF, proving the global existence of β-foliations is also a notoriously difficult problem, and, as
far as the author knows, this has not been done yet apart from simple spherically symmetric configurations.
7 Notably, the β-foliations introduced by Jezierski [16–18], via setting up “gauge conditions” in a com-
pletely coordinate dependent way (see, e.g. eqs. (3) and (6) in [16]), when β = 0 and when an inverse mean
curvature foliation labeled by the area radius is applied—neither of the later two conditions was mentioned
in [16–18]—can be seen to reproduce a restricted class of these flows.
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̂N ̂Kl
l = 1

2 γ̂ i jLργ̂i j − ̂Di ̂N
i (4.22)

or—whenever local coordinates adapted to the foliation and the flow are applied—via

̂DA ̂N A = Lρ log
[√

det(γ̂AB)
] − Lρ(logAρ) . (4.23)

In subsection 5.1 we shall return to the solvability of this equation for ̂N A provided
that γ̂AB is given on the Sρ level sets. Note also that if ̂N A was given (4.23) would
yield, instead, a restriction on γ̂AB .

Theflowgiven by (4.21) could also be used, in practice, as follows. Start by choosing
a mean-convex topological two-sphere S in �, and an arbitrary but small positive
real number A > 0 and set the initial value, (0) ̂N , to be the positive function (0) ̂N =
A · (̂Kl

l)
−1 on S . Construct now an infinitesimally close two-surface S ′ simply by

Lie dragging the points ofS along the auxiliary flow ρi = ̂N n̂i in �. By comparing
the metric induced onS andS ′, respectively, both terms on the r.h.s. of (4.23) can be
evaluated onS ′. In performing the succeeding steps we have to update both the lapse

and the shift such that the relation ̂N ̂Kl
l = ̂N ̂Kl

l gets to bemaintained in each of these
steps. In doing so update first the lapse onS ′ by setting ̂N = Lρ(logAρ) · (̂Kl

l)
−1,

where Lρ(logAρ) is the positive real number determined via the infinitesimal step
just hadmade. The key point here is that one can also update the shift onS ′—such that
̂N ̂Kl

l = ̂N ̂Kl
l holds there—simply by solving (4.23) for ̂N A as shown in subsection

5.1.
The succeeding infinitesimal step can then be performed by Lie dragging the points

of S ′ along the flow ρi = ̂N n̂i + ̂Ni with lapse and shift determined on S ′ as
indicated above. This way, we get the next (infinitesimally close) two-surfaceS ′′. By
performing analogous infinitesimal steps ultimately, we get a one-parameter family of
two-surfacesSρ foliating a one-sided neighborhood ofS in � such that the product
̂N ̂Kl

l is guaranteed to be a positive constant on each of the individual level sets.
It is important to emphasize that the above-outlined construction by no means is

proving the existence of an inverse mean curvature flow. Even a local existence proof
requires the use of a suitable parabolic equation (for more details, see [2, 3, 11, 12]).

It is also rewarding to keep inmind that the vanishing of ̂Kl
l , which in a non-singular

setup corresponds to the vanishing of ̂N−1 · Lρ(logAρ), could get in the way of
applicability of theflow in (4.21). In particular, as ̂Kl

l vanishes atminimal andmaximal
surfaces, they do represent naturally limits to the domains in �, where the above-
outlined construction can be applied. Note, however, that the occurrence of minimal
and maximal surfaces depends on the choice we make for a timeslice in the ambient
space. For instance, while the bifurcation surface of the Schwarzschild spacetime is a
minimal surface on the standard Schwarzschild tSchw = const timeslices, the Kerr-
Schild tK S = const timeslices of the same spacetime can be foliated bymetric spheres
with area radius ranging from zero to infinity such that neither of the r = const level
sets is extremal. It is also important to keep in mind that the use of the flow in (4.21)
does not require � to be ‘time symmetric’ or maximal. In particular, we nowhere
required the three-scalar curvature,

(3)
R, to be non-negative.
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Note also that the most serious issue, namely, the global existence and regularity
of foliations yielded by an inverse mean curvature flow8 does not get to be relaxed by
applying the flow (4.21). To see this recall that the level sets of foliation constructed by
(4.20) remain intact while they get to be relabeled and combined by the integral curves
of the flow determined by (4.21). In virtue of these observations the introduction of
this more general looking inverse mean curvature flow may appear to be completely
superfluous. The rest of this paper is to convince the readers that things are in order.
More precisely, it is shown that by applying the flexibility provided by involving flows
with a non-trivial shift, a large variety of Riemannian three-spaces can be constructed
such that each will be endowed with a smooth inverse mean curvature foliation and
with some additional desirable properties.

5 The new construction

This section describes the construction that allows producing an inverse mean curva-
ture foliation from a given smooth foliation. We start with a one-parameter family
of Riemannian two-metric γ̂AB given on the Sρ level sets of a foliation of the
three-manifold � satisfying the Condition specified in sect. 2. The Sρ level sets
are topological two-spheres which are determined by a function ρ : � → R that,
apart from origins, is smooth. Accordingly, it is assumed that the gradient ∂iρ is well-
defined and non-vanishing everywhere, apart from origins, and that a flow ρi had also
been chosen such that ρi∂iρ = 1, apart from these origins, throughout �. Our main
task is to show that we can always choose the shift such that theSρ level sets constitute
a smooth inverse mean curvature foliation of � for the three-metric constructed out
of suitable data ̂N , ̂N A and γ̂AB via (3.19).

5.1 Determining the shift

In proceeding first we show that—while treating the foliation ρ : � → R, the flow
ρi = (∂ρ)i and the metric γ̂AB , on the Sρ level sets, as prescribed fields on �—
equation (4.23) can always be solved for the shift.

Before solving (4.23) it is important to make the following consistency check.
Clearly, the integral of both sides of (4.23), when evaluated on any of the Sρ level
sets, must vanish. The integral of the total divergence on the l.h.s. is obviously zero,
whereas the integral of the r.h.s. can also be seen to vanish by virtue of the relations

∫

Sρ

Lρ log
[
√

det(γ̂AB)
]

ε̂ =
∫

Sρ

Lρ

[
√

det(γ̂AB)
]

ε = Lρ

[

∫

Sρ

ε̂
]

= Lρ(logAρ)

∫

Sρ

ε̂ , (5.24)

8 The level of the involved technicalities gets to be transparent in the proof of the Riemannian Penrose
inequality byHuisken and Ilmanen [11, 12], or in that of the correspondinghigher dimensional generalization
by Bray [2], Bray and Lee [3].
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where ε = ε̂/
√
det(γ̂AB), along with its ρ-invariance, was applied.

Notably, solving (4.23) is easier than it appears at first glance. To see this, recall
that as the first Betti number of topological two-spheres is zero, they admit only the
trivial harmonic form. This allows us, by making use of the Hodge decomposition, to
represent the shift vector, on any of the Sρ level sets, via a pair of smooth potentials
χ and η as

̂N A = ̂DAχ + ε̂AB
̂DBη . (5.25)

The first and the second terms on the r.h.s. of (5.25) are the longitudinal and transversal
parts of ̂N A, respectively. Notably (4.23) can then be seen to take the form

̂DA
̂DAχ = Lρ log

[ √

det(γ̂AB)
] − Lρ(logAρ) (5.26)

which is an elliptic equation for χ . Solutions to (5.26) can, in principle, be given in
terms of the coefficients of the expansion of the r.h.s. of (5.26) with respect to the
eigenfunction of the Laplacian ̂DA

̂DA [4]. As all the coefficients and source terms in
this elliptic equation smoothly depend on the one-parameter family of smoothmetrics,
γ̂AB , solutions to (5.26) do exist—they are unique up to the “monopole” part— and
they do also smoothly depend on ρ.

It is an important to know whether the above-outlined determination of the shift
is compatible with the middle relation of (3.8) when considerations are restricted
to regular origins. In verifying that this is so the aim is to show that the proposed
procedure does yield a shift vector field that satisfies the middle relation of (3.8), in
area-radial coordinate ρ defined in a neighborhood of a regular origin provided that
only the third relation of (3.8) restricting the two-metric there is allowed to be applied.
In proceeding notice first that, in virtue of the third relation of (3.8), the source on the
right hand side of (5.26) must have the functional form (ρ − ρ∗) ψ1 +O[(ρ − ρ∗)2],
whereψ1 is a smooth function in a neighborhood of the regular origin at ρ = ρ∗. This,
in virtue of (5.26), implies then that χ , and, in turn, ∂Aχ ∼ O[(ρ − ρ∗)3] or ∂ Aχ ∼
(ρ−ρ∗)−2 ◦

γ AB∂Bχ ∼ O[(ρ−ρ∗)1]. By choosing then the freely specifiable potential
η to be the product of a smooth bounded function and (ρ − ρ∗)3 in a neighborhood
of the regular origin at ρ = ρ∗, in virtue of the third relation of (3.8), the second
term ε̂AB∂Bη ∼ ((ρ − ρ∗)−2 ◦

γ AE )((ρ − ρ∗)−2 ◦
γ BF )((ρ − ρ∗)2

◦
εEF ) ∂Bη is also of

order O[(ρ − ρ∗)1] in a neighborhood of the regular origin at ρ = ρ∗. Combining
these simple observations, it is straightforward to see that the shift ̂N A, determined
via (5.25), does also satisfy the middle relation of (3.8).

Summing up the above observations, we have then the following.

Theorem 1 Consider a smooth, three-dimensional manifold � satisfying the Con-
dition specified in sect. 2. Assume that ρ : � → R is a function such that,
apart from origins, it is smooth, and the ρ = const level sets are topological
two-spheres. Assume that a smooth one-parameter family of Riemannian two-metric
γ̂AB on the Sρ level sets, along with a flow ρi that is smooth, apart from ori-
gins, had also been chosen on �. Then, apart from origins, there exists an, up
to the monopole part, the unique smooth solution to (5.26) on the Sρ level sets
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such that, regardless of choice made for the potential η and the lapse ̂N, for
the corresponding smooth vector field ̂N A (4.23) holds, apart from origins, on
�.

Note that whenever ̂N A is chosen as described above then—irrespective of the
choicemade for the other potential η and for the lapse ̂N—the constructed Riemannian

three-metric will be such that ̂N ̂Kl
l = ̂N ̂Kl

l = Lρ(logAρ) holds on the individual
ρ = const surfaces. In fact, the most important implication of Theorem 1 is that the
topological two-spheresSρ forman inversemean curvature foliation of� independent
of the choice made for η and ̂N . In particular, if the lapse is chosen to be constant
on the individual Sρ level sets then the trace ̂Kl

l = ̂N−1Lρ(logAρ) gets also to be
constant on them. In this special case theSρ level sets do also form a CMC foliation
of �.

It is also important to emphasize that the statement of Theorem 1 also holds
in a wider context. Consider a generic smooth, three-dimensional manifold �. As
discussed in section2, whenever � is (almost everywhere) foliated by topological
two-spheres, then � can be given as the disjoint union of disks and cylinders that are
glued together via ρ = const slices through index one or two non-degenerate critical
points of a suitable Morse function ρ : � → R. Assume that a smooth distribution
of two-metric γ̂AB can be introduced on the ρ = const level sets of �. For instance,
smooth distribution of this type can always be given by starting with a smooth aux-
iliary Riemannian three-metric˜hi j on � and by determining the two-metric induced
by ˜hi j on each of the Sρ level sets. Recall now that the determination of the χ -
potential, and in turn of the shift ̂N A, as described above, can be carried out level set
by level set, which by smoothness of all the geometric ingredients yields an inverse
mean curvature foliation on �, that is smooth everywhere apart from the ρ = const
slices through the non-degenerate critical points. Note that then, in virtue of (3.17),
the function ∂ρ(logAρ) is constant on any of those regular Sρ level sets. Consider
now a critical slice ρ = ρ and an arbitrary point p on this level set. By smoothness of
the Morse function ρ : � → R the point p, as any other point on the critical sliceSρ ,
can always be represented as an accumulation point of a point sequence {pi }, with
pi ∈ Sρi , such that {ρi } → ρ. As the function Lρ(logAρ) is constant on each of
theSρi regular level sets for any choice of {pi } the sequence {Lρ(logAρ)|pi } of real
numbers by construction must tend to a common limit value, denoted byLρ(logAρ).
This, in turn, guarantee then that Lρ(logAρ) is a smooth function on � such that it
is constant on each of the ρ = const level sets.

The aforementioned smoothness properties do also guarantee that the potentials χ

and η, and, as well as the shift, determined by them via (5.25), extend smoothly to the
critical slices, and, in turn, also to the entire of �.

The following is a summing up of what has just been verified.

Corollary 5.1 Consider a smooth, three-dimensional manifold �. Assume that � is
generic, i.e., there exists a (smooth) Morse function ρ : � → R such that, apart from
the ρ = const slices through the isolated critical points, the connected components
of the ρ = const level sets are topological two-spheres. Assume that a smooth distri-
bution of Riemannian two-metrics γ̂AB on theSρ level sets, along with a smooth flow
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ρi had also been chosen on �. Then, the function Lρ(logAρ) is smooth throughout
� such that it is constant on the individual ρ = const level sets. Besides, there exists
a shift vector field such that, apart from critical points, ̂N A is smooth, and it satisfies
(4.23) on �.

5.2 Choosing the lapse

In this subsection, first conditions on the lapse and the area will be identified that
guarantee the non-negativity of the Geroch mass on the individual Sρ level sets.
An integrodifferential expression is also derived that can be used to characterize the
ρ-dependence of the Geroch mass there.

Assuming that the shift ̂N A is chosen as in Theorem 1, i.e. the relation ̂N ̂Kl
l =

̂N ̂Kl
l = Lρ(logAρ) holds on each of the Sρ level sets, the Geroch mass can be

rephrased, in terms of the area and lapse, as

MG = A
1/2
ρ

64π3/2

∫

Sρ

[

2 ̂R − (̂Kl
l)
2
]

ε̂ = A
1/2
ρ

64π3/2

[

16π −
∫

Sρ

[Lρ(logAρ) ]2 ̂N−2 ε̂
]

= A
1/2
ρ

64π3/2

[

16π −
∫

Sρ

[Lρ(logAρ) ]2 ̂N−2
(Aρ

4π

)

ε̃
]

= 1

8π

(Aρ

4π

)1/2
∫

Sρ

[

1 −
(

Lρ

(Aρ

4π

)1/2 )2
̂N−2

]

ε̃ , (5.27)

where in the last but one step the “normalized volume element” ε̃ =
(

Aρ/(4π)
)−1

ε̂,

satisfying the relation
∫

Sρ
ε̃ = 4π was introduced.

In many cases it is advantageous to use the “area-radial coordinate”, i.e., to choose
ρ : � → R such that it satisfies the relationAρ = 4πρ2. Nevertheless, in advance of
applying, it is rewarding to have a glance again at the relation

̂Kl
l = ̂N−1Lρ(logAρ) . (5.28)

Recall that (5.28) is guaranteed to hold—for any choice of the ρ-parameter—as far as
theSρ level sets do form an inverse mean curvature foliation of �. In virtue of (5.28)
if for some value of ρ the Sρ level set is extremal, i.e. ̂Kl

l = 0 then either ̂N−1 or
Lρ(logAρ) has to vanish. Accordingly, if one uses area-radial coordinate ̂N cannot
be bounded on such an extremal surface as Aρ = 4πρ2 implies that Lρ(logAρ) =
2/ρ which does not vanish. Similarly, if ̂N is demanded to be smooth and bounded
everywhere on � then either there is no extremal Sρ level set on � or, alternatively,
ρ cannot be an area-radius throughout �. Even if there are extremal surfaces on �

if they are isolated then area-radial coordinate can be introduced between any of the
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succeeding pairs of them9. In addition, it may also happen that ̂Kl
l vanishes on some

tubular subsets of �. Note, finally, that independent of the above discussed particular
cases, in virtue of (3.5), the relation

Aρ = 16π [MG(ρ)] 2 (5.29)

must hold on any of the extremal Sρ level sets.
Once the area-radial coordinate ρ can rightfully be applied by substituting the

relations Aρ = 4πρ2 and Lρ(logAρ) = 2/ρ into (5.27), the Geroch mass simplify
to

MG = 1

8π

∫

Sρ

ρ
(

1 − ̂N−2
)

ε̃ . (5.30)

Notably, in case of quasi-spherical foliations, and only in that special case, the
normalized volume element ε̃ reduces to the unit sphere volume element

◦
ε. The concept

of quasi-spherical foliations—with γ̂AB = ρ2 ◦
γ AB , where

◦
γ AB stand for the unit

sphere metric—was introduced by Bartnik in [1]. He also introduced a mass aspect
function which, in the present notation, reads asm = 1

2 ρ
[

1− ̂N−2
]

. Bartnik applied
this function in [1] to verify the global existence of solutions to a parabolic equation
that arises in the context of quasi-spherical foliations for the lapse. Indeed, then the
quasi-local mass introduced by Bartnik, see equation (1.5) of [1], that is an integral
of the aforementioned auxiliary mass aspect function, is a special case of the Geroch
mass (3.5) which takes the form (5.30) when area-radial coordinates can be applied.

In returning to the generic case, note that in virtue of (5.27) ̂N can always be chosen
such that the quasi-local Geroch mass is non-negative throughout�. This verifies then
the following.

Theorem 2 Assume that the conditions of Theorem 1 hold, i.e. the shift is such that
̂N ̂Kl

l = ̂N ̂Kl
l = Lρ(logAρ) throughout, and also that � foliated by a one-

parameter family of topological two-spheres Sρ that are level surfaces of a function
ρ : � → R that is, apart from origins, smooth and the ∂iρ gradient of which is
well-defined and does not vanish apart from origins. Then,

(i) the Geroch mass is non-negative on a specific ρ = const level set if the inequality

∫

Sρ

[

1 −
(

Lρ

(Aρ

4π

)1/2 )2
̂N−2

]

ε̃ ≥ 0 (5.31)

holds, and

9 However extreme it sounds, there may exist {ρi } sequences possessing an accumulation point ρ such that
̂Kl

l vanishes at each of the ρ = ρi level sets. Special care is required then to investigate what happens at
the accumulation surfaceSρ though ̂Kl

l must also vanish there. Clearly, the use of area-radial coordinate
in its neighborhood appears to be completely adverse, nevertheless, the author is indebted to an unknown
referee for pointing out the possible occurrence of such cases.
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(ii) if ρ is the area-radial coordinate, in virtue of (5.30), regardless of the specific
functional dependence of the lapse ̂N, the Geroch mass is non-negative on �

provided that

∫

Sρ

(

1 − ̂N−2
)

ε̃ ≥ 0 . (5.32)

In particular, MG ≥ 0 on those Sρ level sets where ̂N ≥ 1.

Note that the primary role of the conditions in Theorem 1 is to guarantee that—for
anyof the constructedRiemannian three-spaces, theSρ level sets forman inversemean
curvature foliation in �. Consider again—as in the discussion preceding Corollary
5.1—a generic smooth, three-dimensional manifold. In virtue of Corollary 5.1, by
choosing the shift ̂N A properly, the ρ = const level surface of a Morse function
ρ : � → R are guaranteed to form an inverse mean curvature foliation. This, by
appealing to the smoothness of �, along with that of γ̂AB, ̂N A and ̂N , implies the
non-negativity of the Geroch mass on the critical level sets provided that (5.31) holds
on each of the non-critical slices.

This verifies then the following.

Corollary 5.2 Consider a smooth, three-dimensional manifold �. Assume that � is
generic, i.e., there exists a (smooth) Morse function ρ : � → R such that, apart from
the ρ = const slices through the isolated critical points, the connected components
of the ρ = const level sets are topological two-spheres. Assume that a smooth distri-
bution of Riemannian two-metrics γ̂AB on theSρ level sets, along with a smooth flow
ρi had also been chosen on �. Then, by choosing the shift, ̂N A as in Corollary 5.1,
the Geroch is guaranteed to be non-negative on each of the ρ = const level sets in �

if (5.31) holds on them.

Recall that in virtue of the argument in sect. 3 Geroch mass, with respect to the
flow ρi , is determined by (3.16), provided that theSρ level sets form an inverse mean
curvature foliation.

All these can be used to verify the following.

Theorem 3 Assume that the conditions of Theorem 1 are satisfied, and thereby the

shift ̂N A is constructed such that the relation ̂N ̂Kl
l = ̂N ̂Kl

l = Lρ(logAρ) holds,
apart from origins, on �. Assume that ρ : � → R is the area radial coordinate and
a smooth positive and bounded lapse, ̂N, has also been chosen on �. Then, for any
ρ1 < ρ2 the inequality MG(ρ1) ≤ MG(ρ2) holds provided that the integral inequality

∫ ρ2

ρ1

(

∫

Sρ

[

(3)
R +

◦
̂Kkl

◦
̂Kkl + 2 ̂N−2 γ̂ kl (̂Dk ̂N )(̂Dl ̂N )

]

ε̂

)

dρ ≥ 0 (5.33)

is satisfied.

Notice that (5.33) is less stringent than (3.18) as it allows the integral in the round
bracket to be negative on certain subintervals between ρ1 and ρ2.
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5.3 Asymptotically flat configurations

In this subsection attention will be restricted to asymptotically flat configurations. In
proceeding recall first that a three-metric hi j is asymptotically flat if in the asymptotic
region—that is supposed to be diffeormorphic to R3 \B(0, r), where B(0, r) is a ball
of radius r centered at the origin inR3—it approaches the Euclidean metric not slower
than ρ−1, where ρ stands for the area-radial coordinate in the asymptotic region. In
virtue of the results in subsection 2.2.1 of [7], asymptotic flatness of a three-metric is
guaranteed if the fields ̂N , ̂N A, γ̂AB fall off as

̂N − 1 ∼ O(ρ−1) , ̂N A ∼ O(ρ−3) , γ̂AB − ρ2 ◦
γ AB ∼ O(ρ−1) , (5.34)

respectively, where
◦
γ AB stands here again for the unit sphere metric.

As an essential self-consistency check, it is important to show that the middle
relation in (5.34) is compatible with the determination of the shift as described in
detail in subsection 5.1. To see that this is indeed the case, note first that, whenever the
freely specifiable two-metric γ̂AB is arranged to satisfy the third relation in (5.34) then
the source on the right-hand-side of (5.26) must have the asymptotic form ψ−3 ρ−3 +
O[ρ−4], where ψ−3 is a smooth bounded function in the asymptotic region. This, in
virtue of the third relation in (5.34), implies that theχ potential, and, in turn, its gradient
∂Aχ is guaranteed to decay as ρ−1. This implies then that ∂ Aχ ∼ ρ−2 ◦

γ AB∂B χ falls
off not slower than ρ−3. Since the other potential η is freely specifiable, in virtue of
the relation ε̂AB∂Bη ∼ (ρ−2 ◦

γ AE )(ρ−2 ◦
γ BF )(ρ2 ◦

εEF ) ∂Bη, by choosing η to be a
bounded smooth function on � that decays as ρ−1, the shift ̂N A—constructed out of
χ and η via (5.25)—is guaranteed to fall off as ρ−3 which completes our consistency
check.

Consider now a datum ̂N , ̂N A, γ̂AB on � such that the three-metric determined by
them, via (3.19), is asymptotically flat. Then, in virtue of the third relation in (5.34) the
area of the Sρ level sets is increasing (at least) in the asymptotic region exterior to a
ρ = ρ1 = const level set. Assume that � is either diffeomorphic to R3 with a regular
origin at ρ = ρ0 such that neither of the Sρ level sets is a minimal surface on �, or
� is cylindrical with an inner boundary Sρ0 that is an outermost minimal surface on
�. In both cases, the area is increasing throughout �, and area-radial coordinates can
be introduced everywhere on �. Assume that this has been done. It is also known that
if � is diffeomorphic to R

3 then the Geroch mass MG vanishes at the regular origin,
whereas whenever � is cylindrical Aρ0 = 16π

[

MG(ρ0)
] 2 holds at theSρ0 minimal

surface.
Assume, in addition, the inequality

∫ ∞

ρ0

(

∫

Sρ

[

(3)
R +

◦
̂Kkl

◦
̂Kkl + 2 ̂N−2 γ̂ kl (̂Dk ̂N )(̂Dl ̂N )

]

ε̂
)

dρ ≥ 0 (5.35)

holds. Then—in virtue of (3.16), along with the fact that in the asymptotically flat case
(as shown, e.g. in [13]) the Geroch mass tends to the Arnowitt-Deser-Misner (ADM)

123



On the construction of Riemannian three-spaces… Page 19 of 23 55

mass, MADM , in the ρ → ∞ limit—if � is diffeomorphic to R3

MADM ≥ 0 , (5.36)

whereas in the cylindrical case

Aρ0 = 16π
[

MG(ρ0)
] 2 ≤ 16π

[

lim
ρ→∞ MG(ρ)

] 2 = 16π M 2
ADM (5.37)

can be seen to hold. All these observations are summed up in the following.

Theorem 4 Assume that the conditions of Theorem1hold andalso that theRiemannian
three-space (�, hi j ) constructed out of the data ̂N , ̂N A, γ̂AB is asymptotically flat in
the exterior to a ρ = ρ1 = const level set.

(i) If � is diffeomorphic to R
3, with a regular origin, such that neither of the Sρ

level sets is minimal on �, and the inequality (5.35) holds such that it is strict
somewhere on � then the positive mass theorem holds, i.e., MADM > 0.

(ii) If � is cylindrical andSρ0 is an outermost minimal surface on its inner boundary
such that the inequality (5.35) holds then the Penrose inequality

Aρ0 ≤ 16π M 2
ADM (5.38)

is satisfied.

Note that the inequality (5.35) ismuch less stringent than (3.18) as the integral in the
round bracket in (5.35) may become negative on various subintervals in [ρ0,∞). This
happens, for instance, if the Geroch mass, while still being non-negative, is decreasing
on the corresponding subintervals.

6 Final remarks

A new method was introduced that can be used to construct a high variety of Rieman-
nian three-spaces such that each admits a smooth inverse mean curvature foliation.
The construction starts by choosing a smooth one-parameter family of Riemannian
two-metric γ̂i j on a sphereS . The desired type of Riemannian three-spaces (�, hi j )
is constructed by choosing suitable lapse and the shift. Notably, if the longitudinal
potential of the shift is chosen such that equation (5.26) holds, the two-spheres are
immediately guaranteed to form an inverse mean curvature foliation in (�, hi j ). We
showed then that if on a ρ = const level set the area and lapse satisfy the integral
expression (5.31) then the non-negativity of the Geroch mass is guaranteed on that
level set. If the constructed three-space happens to be asymptotically flat, mild integral
conditions guarantee that the positive energy theorem and the Penrose inequality hold.
We also pointed out that the quasi-local mass introduced by Bartnik in the context of
quasi-spherical foliations could also be viewed as a special case of the Geroch mass.

It is important to emphasize that no assumption was made anywhere in our analysis
concerning the sign of the scalar curvature of the constructed three-spaces. The reader
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may doubt if (3.18) or (5.32) hold then. The following example demonstrates that these
relations hold even if the scalar curvature becomes negative on parts of the foliating
two-surfaces.

Example Consider first a tSchw = const timeslice of a Schwarzschild spacetime of
mass M . Such a tSchw = const timeslice spans from the bifurcation surface to space-
like infinity, and it is also foliated by the r = const (≥ 2M) metric spheres. The
latter is, indeed, a quasi-spherical foliation such that

(3)
RSchw = 0, and such that

γ̂AB = r2
◦
γ AB , ̂N A

Schw = 0 and ̂NSchw = 1/
√
1 − 2M/r . The desired Rieman-

nian three-metric is constructed by adding the term c M2 r−2 Y10 to ̂NSchw, where
c is a constant and Y10 stands for the spherical harmonics, with  = 1 and m = 0.
Accordingly, the constructed Riemannian three-metric on � 10 is determined via the
relations

̂N = ̂NSchw + c M2 r−2 Y1
0 , (6.39)

γ̂AB = r2
◦
γ AB and ̂N A = 0. It is straightforward to verify then that on any of the

r = const level sets the scalar curvature vanishes at the equatorial θ = π/2, and, if
c > 0,

(3)
R is positive and negative on the upper and lower hemispheres, respectively.

In particular, if c = 10−1, the integral

∫

Sr

[

(3)
R +

◦
̂Kkl

◦
̂Kkl + 2 ̂N−2 γ̂ kl (̂Dk ̂N )(̂Dl ̂N )

]

ε̂ (6.40)

is negative on the interval 2M < r < r∗ ≈ 3.33318 · 2M , implying that the Geroch
mass decreases there. Nevertheless, as the lapse, ̂N in (6.39), is everywhere greater
than one, in virtue of (5.30), the Geroch mass must remain positive throughout �. It
is also important to note that the yielded Riemannian three-space is asymptotically
flat with MADM = M . Note also that the r = 2M level set is a minimal surface on �

and that the inequality (5.35) holds. This implies that the conditions in Theorem4 are
satisfied, i.e., both the positive mass theorem and the Penrose inequality hold.

An abundance of analogous examples may be created such that they all admit
an inverse mean curvature foliation, such that, in the meanwhile,

(3)
R ≥ 0 does not

hold. Notably, these spaces cannot be part of maximal slices, and thereby, as already
indicated, they are out of the validity range of the results covered in [2, 3, 11, 12].

It is also important to emphasize that a wide variety of Riemannian three-spaces
can be constructed by the proposed method. Each of these spaces possesses a smooth
inverse mean curvature foliation. To see this, recall first that in fixing the shift, only
one of the potentials in (5.25) gets to be determined by solving (5.26), whereas the
other potential remains freely specifiable. Note also that, as far as only the construction
of the inverse mean curvature foliations is concerned, in virtue of Corollary 5.1, the
topology of � can be allowed to be generic. Note, finally, that as the choice made
for the lapse does not affect the inverse mean curvature character of the foliation, the
corresponding freedom also enlarges the variety of the constructed three-spaces.

10 Here � is a shortcut for the tSchw = const timeslice.
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To give another, possibly more tempting, application of the proposed new con-
struction, for simplicity, consider a three-manifold � with topology R × S

2, i.e. it
is smoothly foliated by topological two-spheres (determined by a smooth function
ρ : � → R). Assume that hi j is a smooth three-metric on �. Choose, as described
in sect. 2, a smooth flow on �. If adapted coordinates are used, the metric takes the
form (3.19) in the pertinent coordinate patch determined by the triplet (̂N , ̂N A , γ̂AB).
The ρ = const level sets in �, in general, have no chance to form an inverse mean
curvature foliation of the Riemannian three-space (�, hi j ). This is so because, as
noted at the end of subsection 3.1, whenever the three-metric hi j on � is fixed, the
entire geometric setup gets to be too rigid. Nevertheless, the construction proposed
in this paper is guaranteeing that the very same foliation gets to be an inverse mean
curvature foliation for the Riemannian three-metric h∗

i j on � that is yielded from hi j
by replacing the lapse ̂N and shift ̂N A by suitably chosen new lapse ̂N∗ and shift ̂N A∗
while keeping the two-metric γ̂AB , the ρ = const level sets and the flow vector ρi

intact. Notice that the fixed elements in { ρ : � → R , ρi = (∂ρ)i ; γ̂AB} can be used
to evaluate both of the Lie derivatives on the right hand side of (4.23) without referring
to any additional geometric structure. The construction comes into play by solving
(5.26) for the potential χ . It is important to emphasize that neither the shift ̂N A∗ nor the
three-metric h∗

i j is known yet. Nevertheless, for a great surprise, we do already have
the guarantee that, regardless of choice we shall make for the other, freely specifiable,

potential η in (5.25) and the new lapse ̂N∗, the relation ̂N∗ ̂K∗l l = ̂N∗ ̂K∗l l will hold.
This may be really astonishing as neither ̂N∗ nor ̂K∗l l , appearing in this relation, are
known yet. Nevertheless, things are in order as the unit normal n̂∗i and, in turn, ̂K∗l l ,
gets to be determined via the relations

n̂∗i = ̂N−1∗
[

(∂ρ)i − ̂N A∗ (∂A)i
]

, and ̂K∗l l = Di n̂∗i (6.41)

only after, in addition to the other potential η, fixing the shift ̂N A∗ via (5.25), and the
new lapse ̂N∗ gets also to be fixed.

It is an interesting issue how close the twometrics, hi j and h∗
i j , can be placed to each

other in the space of three-metrics on �. Given a Riemannian three-space (�, hi j )
is it possible to construct a three-metric, analogous to h∗

i j , on � such that a suitably
chosen smooth foliation of (�, hi j ) gets to be an inverse mean curvature foliation for
the constructed Riemannian three-space (�, h∗

i j ) and such that in the mean time h∗
i j

is close to hi j? This question is leading out of the scope of the present paper, and it is
left for future investigations.

It is also an interesting question what would happen if the requisite conditions
employed to show the non-negativity of the Geroch mass and Penrose inequality were
not satisfied. For example, what kinds of spaces violate (5.31)? Are the corresponding
spaces pathological? Though the answer to these is not known, the author would like
to recall that the principal aim of the present paper is to introduce a construction of
Riemannian three-geometry with IMCF. It is also worth emphasizing that the lapse
̂N in the proposed construction is freely specifiable, and its choice does not affect the
IMC character of the constructed foliation. Thereby, one could choose the lapse such
that, e.g. (5.31) is violated. Whether the corresponding Riemannian three-geometry is
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pathological or not depends on the context fixed by some additional yet unspecified
conditions. Thereby, the questions raised above are out of the present paper’s scope
though they would deserve further investigations.

Note also that our main results are local in the radial direction. This would allow
addressing various interesting questions concerning global properties. For instance,
one may ask what conditions would guarantee asymptotic flatness of the constructed
Riemannian three-spaces. Though interesting, this problem is out of the scope and is
left for later investigations.

Note, finally, thatmerely theRiemannian character of the two-metric γ̂AB on theSρ

level sets, alongwith that of the three-metric hi j on�, was assumed. Accordingly, if�
happens to be a hypersurface in some four-dimensional ambient space, the signature
of the pertinent four-metric, gab, can be either Lorentzian or Euclidean. Note also
that no field equation restricting the metric hi j on � or the four-metric gab on some
four-dimensional ambient space was used anywhere in our analysis. An immediate
implication of these observations is that the proposed construction applies essentially
to Riemannian three-spaces in any metric theory of gravity.
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