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Abstract

A method is presented to construct a particular, non-minimally coupled scalar—tensor
theory such that a given metric is an exact vacuum solution in that theory. In contrast
to the standard approach in studies of gravitational dynamics, where one begins with
an action and then solves the equations of motion, this approach allows for an explicit
theory to be built around some pre-specified geometry. Starting from a parameterized
black hole spacetime with generic, non-Kerr hairs, it is shown how an overarching
family of theories can be designed to fit the metric exactly.
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1 Introduction

In the study of Lagrangian field theory and the calculus of variations, one typically
begins with an action functional and then investigates the dynamics of the associated
theory. In many cases however, the inverse problem is also of fundamental interest
[1,2]: starting from a particular field configuration, can one find an invariant Lagrangian
density whose equations of motion admit that field as an exact solution? Owing to the
complexity of the differential equations involved, which are typically non-linear in

B Arthur G. Suvorov
arthur.suvorov @tat.uni-tuebingen.de

1 Theoretical Astrophysics, IAAT, University of Tiibingen, 72076 Tiibingen, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-020-02779-8&domain=pdf
http://orcid.org/0000-0002-3112-5004

6 Page2of9 A. G. Suvorov

realistic problems, finding such a Lagrangian, let alone all Lagrangians, can be a
challenging task. This is especially true in studies of gravitation (e.g., [3,4]), where
the action is built from geometric invariants which depend on the tensorial metric
field in complicated ways. Even conceptually simple cases like the f(R) theories [5],
which involve only some function, f, of the Ricci scalar curvature, R, admit rich
configuration spaces [6—8]. Nevertheless, substantial progress has been made on the
gravitational inverse problem from cosmological observations in recent years [9—11].

In the context of tests of general relativity (GR) from observations of compact
objects, two main techniques are employed. One approach (sometimes called ‘top-
down’) involves picking a particular theory of gravity and comparing the solutions
obtained within that theory with a suitable GR counterpart (e.g., [12,13]). In this way,
the predictions of a given theory are challenged directly using experimental data.
Top-down methods are however limited because exact solutions describing realistic
compact objects within a given theory are often not known, and it can be impractical
to test multiple theories simultaneously using a given framework. The other approach
(‘bottom-up’) involves a phenomenological parameterization of the spacetime that
incorporates generic deformations of the GR counterpart [14-17]. However, even if
the deviation parameters of the parameterized metric can be constrained, bottom-up
approaches do not necessarily guide one towards the ‘true’ theory of gravity. More-
over, backreaction effects cannot be self-consistently accounted for when a metric
is considered independently of a parent theory [18,19]. A unification of these two
approaches, which would remedy the above shortcomings, boils down to requiring
a solution to the inverse problem: given a metric (reconstructed from astrophysical
data), find a (theoretically robust) theory of gravity that supports the solution exactly.

In this Letter we show how one can construct such a theory. In particular, a new
class of mixed scalar- f (R) theories are presented which involve a function f whose
argument includes the scalar curvature and both potential and kinetic terms of a scalar
field in a precise way. We show that there are large families of functions f such that,
for a particular scalar-field configuration, a given metric is an exact solution to the
equations of motion. The theory reduces to a number of well-known cases in some
limits, though in general has such a large configuration space so as to encompass prac-
tically any metric for some f. While the presented theory provides only one particular
(not necessarily physically-motivated) example of a covariant action that can be tai-
lored to a given metric, having an explicit construction on hand helps toward finding
a general solution to the inverse problem. The approach has the benefit that gravita-
tional perturbations of a given spacetime can be accounted for self-consistently when
using bottom-up methods. This could lead to improved accuracy in studies involv-
ing extreme-mass-ratio inspirals (EMRIs) [14,20], magnetohydrodynamical models
of accretion disks [21,22], or quasi-normal ringing [23,24] that aim to test GR but
treat backreaction approximately.

Except where needed for clarification, natural units with c = G = 1 are adopted
throughout.
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2 A mixed scalar-f(R) gravity

Consider the theory governed by the action
«4=K/d4xx/—gf(F(¢)R+V(¢>)—w(¢>)Va¢>V“¢), (D

where k = (167G)~!, G is Newton’s (bare) constant, R = R w8’ is the scalar
curvature for metric tensor g, and F, V, and w are potential functions of the scalar
field ¢. When the function f is linear in its argument X, where X = F(¢)R+ V (¢) —
w(9)Vup V¥, the theory described by the action (1), which is a member of the general
class considered by Hwang and Noh [25,26], reduces to standard scalar—tensor theory
in the Jordan frame [27,28]. The f(R) theory of gravity is also recovered for constant
scalar field and vanishing potential V [5]. Here we consider only vacuum solutions of
this theory, although matter fields could be included in the usual way.

The equations of motion for the theory (1) are found via the Euler-Lagrange equa-
tions, and are qualitatively similar to those of f(R) gravity. Variation of (1) with
respect to the metric yields

X
0= F@) /'R~ T g0 + g O [F @) 1'00] o
- VuVy [F(d))f’(X)] — (@) f(X)V,.pVi0,
while variation with respect to ¢ gives
0= [2w<¢)m¢ + 29D 5w
¢ 3

RIF@ dV(¢>} +20($) V4PV f1(X),

e T Tag

in vacuum.

In general, several conditions are imposed on scalar—tensor dynamics to ensure
a well-defined theory. For example, demanding that the graviton carries a positive
energy amounts to demonstrating that gravitational repulsion cannot occur. This can
be achieved by linearizing the field equations about a perfect fluid background and
expressing the resulting equations of motion in Poisson-like form [27,28]. One may
then read off the effective Newton ‘constant’, which is required to be positive, from
the coefficient of the mass density. This procedure however requires a non-vacuum
perturbation analysis, and is challenging to carry out in general [29]. Additionally, it
is necessary for the astrophysical health of the theory that the kinetic energy of the
scalar field be non-negative. This is guaranteed if the coefficient of [J¢ within the
field equation (3) is non-negative [30]. Unfortunately, it is also non-trivial to check
this condition in general because the Ricci scalar R not only depends on U¢, as
can be seen from Eq. (2), but is also dynamical; Ricci modes can exist even in the
f(R) subcase (e.g. [19]). A thorough check of these conditions involves detailed
calculations on a case-by-case basis that will be conducted elsewhere. At least in
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the case of linear f however, the aforementioned conditions reduce to the standard
scalar—tensor ones F(¢) > 0 and 2F (¢p)w(¢p) + 3 [dF(¢>)/d¢]2 > 0, respectively
[30]. These are automatically satisfied for the Brans—Dicke choices F(¢) = ¢ and
w(¢) o< g [31].

For any f, however, an appealing feature of the theory described by (1) that can
be proven without much difficulty is that energy—momentum is conserved identically.
Employing the Bianchi identities V, (R/w — %g,w R) = 0and (JV, = V,[) Z =
R,y V" Z, the first of which is familiar from GR while the second is valid for any
function Z [32], some extensive though not particularly difficult algebra shows that
applying a contravariant divergence to the right-hand side of (2) produces a sequence
of terms which vanish identically when Eq. (3) is used. As such, for the non-vacuum
case where a stress-energy tensor Ty,, occupies the left-hand side of (2), geometric
identities give V/*T},,, = 0 exactly, as in the pure f(R) and scalar—tensor cases [33].

3 Constructing a solution to the inverse problem

In the case of pure f(R) gravity, families of functions f can be constructed such that
any metric g with constant scalar curvature, R, can be admitted as an exact solution.
For example, if f has a critical point at Ry and also happens to vanish there (i.e., f = 0
is a local extremum at the point Rg), the equations of motion are necessarily satisfied
for any metric g whichhas R = Ry. One such theory in this class is the Starobinsky-like
quadratic theory with f(R) = (R — Ro)2 [34], for example. Therefore, in the case of
constant-scalar-curvature (though not necessarily Einstein) spacetimes, certain f(R)
theories are already examples of solutions to the inverse problem.! While this is a
somewhat trivial observation, it has, to our knowledge, not been expressly detailed
elsewhere.

A similar but more extensive phenomenon to that described above exists in the
generalized theories associated with the action (1). If the scalar field counterbalances
the Ricci curvature in some precise way, the function f within (1) can be chosen to
vanish at a realizable local extremum. As in the case of f (R) gravity, this implies that,
given any reasonable metric g, there exists a family of mixed scalar- f (R) theories
admitting that particular g as an exact solution.

To see this explicitly suppose that, for a given g (reconstructed from astrophysical
data, for instance), the scalar field ¢ solves the kinematic constraint equation,

X=F(@R+V($) —o@)VapV*P = Xo, “

for some constant Xg. If the function f has a critical point at X and also vanishes
there, then the field equations are necessarily satisfied for this combination of g and
¢, as each term within (2) and (3) can be seen to vanish. This means that, provided

! This implies that given any metric g, the conformal metric 2% g for conformal factor ¢ is a solution to
some f(R) theory provided that the factor ¢ is chosen such that the conformal scalar curvature is constant;
mathematically, this requires the existence of a solution to the Yamabe problem [35,36]. As such, practically
any conceivable causal structure can arise in some f(R) theory [37], because a metric conformally related
to any given metric can be admitted as an exact solution.

@ Springer



A family of solutions to the inverse problemiin... Page50f9 6

the scalar field can be chosen such that V, X = 0, there exists a function f [e.g.,
f(X) = (X — Xo)? for some X¢] for which some particular (though arbitrary) g is an
exact, vacuum solution to the theory governed by (1). In fact, there are infinitely many
such functions. If we consider only those f that are analytic, then the most general
such f can be represented as a power series, viz. f(X) = > ., ar (X — Xo)k for
arbitrary coefficients a;. Allowing for non-analytic f further widens the class of
suitable functions (see the example given in the next section).
In short, the main result of this Letter is that, for any given metric g, if

(i) ascalar field ¢ can be chosen such that X = X for some constant X, and
(ii) the function f satisfies f(Xo) = f'(Xo) =0,

then g is a solution to the field equations (2) and (3) for the gravitational action (1). Note
that these conditions are sufficient but not necessary; the Kerr metric, for example,
can be an exact solution even when condition (ii) is not satisfied [38].

It is important to note that we do not comment here on the physical viability or
otherwise of such theories. Indeed, further analysis, beyond the scope of this Letter, is
required to determine whether there exists members of the class constructed above that
can accommodate existing (and upcoming) astrophysical experiments. For example,
there may be no such f which simultaneously satisfies the above and passes Solar
System [39] and/or strong-field [40] tests, even with screening mechanisms [41,42].
However, the exact conservation of energy—momentum hints that this may be possible.

4 An example: parameterized black hole geometries

Various techniques based on electromagnetic [21,22] and gravitational-wave [23,24]
observations allow one to, with varying degrees of precision, identify the local space-
time geometry surrounding a monitored (usually compact) object. However, especially
in the gravitational case, these tests inherently presuppose a particular set of field equa-
tions. Radiation of any sort saps energy from the system, and backreaction cannot be
self-consistently accounted for without some overarching equations of motion. Back-
reaction effects are negligible in many cases of course, though those tests which involve
oscillations or violent outbursts of compact objects may be sensitive to the particulars
of the gravitational action [18,19]. Metric reconstruction techniques, which use some
parameterized scheme in lieu of an exact theory, are therefore limited in their validity
to some degree [43]. The recipe given in the previous section essentially allows one
to build a theory around a given metric, which allows for a potential resolution to this
problem.

In this section, we show how one may tailor a particular theory of gravity to a
given family of parameterized black holes, such as those considered in Refs. [14—17].
For demonstration purposes, suppose that astrophysical data implied that black holes
were described by a simple generalization of the Kerr metric whose line element, in
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Boyer-Lindquist coordinates (¢, r, 6, ¢), reads

) 1.2 2 2
60— A 2asin“0 (a®+r-— A
PRI ( ) drdg
) )
(a2+r2)2—a2sin29A 5
2 de”,
cscr X

(&)

2 2 2
+ Sdr? + $do’ +

where A = r2 —2Mr+a*+eM?/rand ¥ = r?+a®cos?6.In expression (5), M and
a denote the mass and spin of the black hole, respectively, while € is a dimensionless
‘hair’. The metric (5) admits an (outer) event horizon at the largest positive root of
A = 0, which occurs near the Kerr value for sufficiently small €, viz. r =& M +
VM2 —a? + O(e).

The geometry described by (5) represents a generalization of the Kerr spacetime
with several desirable properties. Most notably, (1) the metric is asymptotically flat, (2)
many post-Newtonian constraints [39] are automatically satisfied due to the absence
of quadratic terms in the static limit ¢ = 0, and (3) the metric coefficients are alge-
braically simple, so that astrophysical tests involving electromagnetic data analysis
are numerically easy to handle. The metric (5) is a member of those considered in Ref.
[17], for instance.

Consider, for example, the mixed scalar- f (R) theory described by the action (1)
with f(X) = X'*® for any § > 0. Such theories represent a generalization of the
f(R) = R1t3 theories studied by Clifton and Barrow [6], which are known to admit
non-Kerr solutions [13]. Note that this function f is not analytic for § ¢ Z, though
f = 0 is still a critical point at X = 0 for any 6 > 0. The generalized theory (1)
therefore admits the metric (5) as an exact solution, provided that the scalar field ¢
solves the kinematic constraint equation (4) with Xo = 0, i.e.,

0=F@R+ V(@) — (@) VapV“p. (6)

For the metric (5) we find R = —2M3¢/ (3 X), which interestingly implies that we
need only consider a radial scalar field when working with the Brans—Dicke choices
F(¢) = ¢,V = 0, and w(¢) = ¢! in the following sense. Taking a time- and
azimuth-independent scalar field ¢ (r, 8) so as to respect the Killing symmetries of
the metric, we have that V,¢ V% = g'" (¢,r)2 + g% (¢,9)2. Since the contravariant
components g"" and g% are proportional to X ~!, the angular terms in (6) cancel out.
It can be formally shown then that Eq. (6) implies ¢ 9 = 0 when imposing periodic
boundary conditions on 0, i.e., demanding ¢ (r, ) = ¢ (r, 0) forces a radial scalar
field. For a more general stationary metric or for a theory with a more involved scalar
sector, however, the scalar field will necessarily depend on 6.

For simplicity, we therefore make the Brans—Dicke choices detailed above, though
more complicated examples can be readily designed. In this case, Eq. (6) reduces to
the simple form

(N

do(r)7?
dr ’

0=2Mp(r)’> +r3Aw) [

@ Springer



A family of solutions to the inverse problemiin... Page70f9 6

T T T
- €=-0.3

s — €=-02
& - e=-0.1 7
g
S
wn

| | " ‘¢‘=11““1 " " PR BT

5 10 50 100 500 1000

Radius r

Fig. 1 Radial scalar-field solutions to (7) for M = 1 and @ = 0.9, with € = —0.1 (black curve), e = —0.2
(blue curve), and € = —0.3 (red curve). The horizon in each case is shown by a vertical dashed line (color
figure online)

In general, there exists a well-behaved solution for ¢ (i.e., one that is smooth, positive,
and has non-negative kinetic energy; see Sect. 2) to the constraint equation (7) for a
wide range of € < 0. Figure 1 shows numerical solutions to (7) for M = 1 anda = 0.9
subject to the boundary condition lim,_,» ¢ (r) = 1, which forces ¢ to asymptote
towards the Newtonian [i.e., F'(¢) — 1] value at large radii. Figure 1 illustrates that
the scalar hair induced by the non-Kerr parameter € is rather short-ranged, as ¢ ~ 1
to within 1% already for » 2 30 for all considered values of €. This particular field
¢, for which the metric (5) is an exact solution to the theory (1) for f(X) = X !9,
therefore appears to be well behaved and physically reasonable. For vanishing € we
find that ¢ is everywhere constant, as expected, since the Kerr metric is Ricci-flat and
Eq. (7) reduces to d¢ /dr = 0.

5 Discussion

In this Letter, a method is presented to build a covariant, Lagrangian theory of gravity
around a pre-specified spacetime metric; in other words, a particular solution to the
inverse problem in gravitation is found. Given some metric g, we show that a func-
tion f and scalar field ¢ can often be found [so long as a solution to the kinematic
constraint equation (4) exists] such that g is an exact solution to the mixed scalar-
f(R) theory governed by the action (1). For the particular case of f(X) = X!*¢
for § > 0, we found that a parametrically-deformed Kerr metric (5) (cf. Ref. [17])
is an exact solution to the field equations (2) and (3), provided that the scalar field
satisfies the kinematic constraint (7). Solutions to Eq. (7) are shown in Fig. 1 for a
variety of black hole parameters. In all cases considered, the scalar field ¢ is short
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ranged, well behaved, and asymptotes to the Newtonian value ¢, = 1, as expected
of physical black hole geometries. Despite a number of attractive features, important
questions remain about whether or not the theories considered herein are compatible
with astrophysical constraints [39,40] (see also Sect. 2). A thorough investigation will
be conducted elsewhere.

One of the major benefits of the construction detailed herein is that gravitational
perturbations of a given spacetime can be studied self-consistently. Given a solution
to the equations of motion (2) and (3) [such as (5), for instance], a perturbation,
encapsulated by the Eulerian scheme ¢ — g+3g and ¢ — ¢+ 5¢, can be introduced
to deduce stability [44] and characterize any resulting gravitational radiation. This
may lead to improvements in models of EMRIs [14,20] or quasi-normal ringing [24,
43] that employ a parameterized non-Kerr object, since its response to astrophysical
disturbances can be studied exactly in the theory described by (1).

Some philosophical curiosities arise by noting that the approach presented here
involves the construction of vacuum solutions. Since the seed metric could arise as a
matter-filled solution in GR (for example), this implies that vacuum gravitational fields
in the theory governed by expression (1) can imitate the gravitational fields of material
bodies in a different theory. In this way, the gravitational field within and surrounding
a star, for instance, could be mimicked by that of a vacuum object in the theory (1).
This raises the interesting possibility of ‘gravitational doppelgédngers’. Some examples
of this phenomenon are already familiar from the literature; for instance, it is known
that the electrovacuum Kerr—Newman metric arises as a pure vacuum solution in some
modified theories of gravity [13,45].

Finally, it is worth noting that the general approach to the inverse problem consid-
ered here is not unique to scalar—tensor gravities. One could, for example, envision
a mixed vector—tensor gravity, such that (functions of) gauge fields A, enter into the
argument of f instead of the scalar field ¢, where a similar constraint equation to that
of (4) may be imposed to provide a solution to the inverse problem. A larger solution
space can be built in this way. Moreover, another avenue that would be worth consid-
ering involves finding a general solution for the inverse Kerr problem [38]; one may
attempt to map out the space of theories that abide by the classical no-hair theorems
using such an approach (see also Ref. [8]).
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