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Abstract
The relation between the reheating temperature, the number of e-folds and the spectral
index is shown for the Starobinsky model and some of its descendants through a
very detailed calculation of these three quantities. The conclusion is that for viable
temperatures between 1 MeV and 109 GeV the corresponding values of the spectral
index enter perfectly in its 2σ C.L., which shows the viability of this kind of models.
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1 Introduction

The Starobinsky model based on R2-gravity in the Jordan frame [1], which was exten-
sively studied in the literature (see for instance [2–5] and [6] for a detailed dynamical
analysis), is one of the most promising scenarios to explain the inflationary paradigm
proposed by A. Guth in [7] because it provides theoretical data about the power spec-
trum of perturbations, which matches very well with the recent observational data
obtained by the Planck team [8]. In addition, contrary to the Guth’s paper, in [1] the
author briefly details a successfully reheating mechanism based on the production of
particles named scalarons whose decay products reheat the universe (see [3,9,10] for
a detailed discussion of this mechanism), obtaining a reheating temperature around
109 GeV [11] (see also [2] for the derivation of this reheating temperature when the
decay products are massless and minimally coupled with gravity).

Working in the Einstein frame, R2-gravity leads to the well-known Starobinsky
potential [2], which has been recently studied as an inflationary potential, and the
reheating temperature provided by the model is related to its corresponding spectral
index [12–14] (see also [15] for the calculation of the reheating temperature when
inflation come from a constant-roll era). However, contrary to [16,17] where the
authors consider the gravitational production of superheavy particles, in those papers
the reheating mechanism is not taken into account; instead of it, it is assumed that dur-
ing the oscillations of the inflaton field the effective Equation of State (EoS) parameter
is constant. From our viewpoint, it is difficult to understand how it is possible to make
any meaningful statements about reheating temperature without consideration of its
concrete mechanisms, apart from the hypothesis of instant thermalization [18], which
has to be still justified [19].

Anyway, although we do not discuss any reheating mechanism, the main goal of
this note is to review these papers and find a very precise relation between the reheating
temperature and the number of e-folds as a function of the spectral index of scalar
perturbations, especially for the Starobinsky-type potentials that we have proposed by
slightly modifying the Starobinsky potential so that its behavior near the origin is as
a power law potential.

The work is organized as follows: in Sect. 2 we perform a very accurate calculation
of the number of e-folds from the moment in which the pivot scale leaves the Hubble
horizon to the end of inflation, which will be used in Sect. 3 to relate the spectral index
provided by the Starobinsky-type potentials with its reheating temperature. And we
shownumerically that for temperatures between 1MeVand109 GeV the spectral index
ranges in its 2σ Confidence Level, which means that these reheating temperatures are
compatiblewith themodel. Section4 is devoted to the studyof the particular casewhere
the effective EoS parameter during the oscillations of the inflaton field is equal to 1/3.
This is a very particular case where it is impossible to define exactly when the radiation
starts and, thus, that it is impossible to obtain the value of the reheating temperature.
From what we show, we might argue that this case is physically unacceptable and all
its consequences derived from it must be disregarded. However, one has to take into
account that a constant effective EoS during the oscillations of the inflaton is only an
approximation because the physics of this period is far from being clearly understood
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and, thus, this approximation could lead to wrong conclusions. Finally, in the last
section we discuss the obtained results.

The units used throughout the paper are � = c = 1 and the reduced Planck’s mass
is denoted by Mpl ≡ 1√

8πG
∼= 2.44 × 1018 GeV.

2 The number of e-folds

First of all, we will assume that from the end of inflation to the beginning of the
radiation era the effective Equation of State (EoS) parameter, namely wre following
the notation of [13], is constant. However, from the end of inflation to the onset of the
radiation era there is a transient period where the EoS is not constant. This period is
largely unknown, as well as the mechanisms to produce and thermalize the relativistic
plasma which reheats the universe. So, takingwre constant is an approximation which
in some cases could lead to incorrect results and interpretations.

In this situation, whenwre �= 1/3, the number of e-folds from the moment in which
the pivot scale crosses the Hubble horizon to the end of inflation, namely Nk , is given
by (see formula (2.4) of [14])

Nk = ln(aeq/ak) + ln(ρeq/ρend)

3(1 + wre)
+ 3wre − 1

12(wre + 1)
ln(ρeq/ρre), (1)

where “eq” means the matter-radiation equality and “end” the end of the inflationary
period (see also [20,21]).

This expression could be written as

Nk = − ln(1 + zeq) + ln(Hk/kphys) + ln(ρeq/ρend)

3(1 + wre)

+ 3wre − 1

12(wre + 1)
ln(ρeq/ρre), (2)

where z denotes the red-shift and kphy is the physical value of the pivot scale.
We choose for example kphys ≡ k

a0
= 0.05Mpc−1 ∼= 1.31 × 10−58Mpl , zeq =

3365, ρeq = π2

15 geqT
4
eq with geq = 3.36 and, from the adiabatic evolution of the

universe after reheating, we have that aeqTeq = a0T0 �⇒ Teq = (1 + zeq)T0, where
the present CMB temperature is T0 = 2.725 K ∼= 2.35 × 10−4 eV.

We also consider ρre = ργ,re where ργ,re = π2

30 greT
4
re is the energy density of the

relativistic plasma (see for example the formula (3.51) of Mukhanov’s book [22]) at
the reheating time and gre = g(Tre) is the effective number of degrees of freedom at
the beginning of the radiation epoch. This is verified since after inflation the inflaton
field has completely decayed and, thus, ρφ plays no roll.

We use as well that ρend = 3
2Vend and, in order to get the value of Hk , we need

the spectrum of scalar perturbations when the pivot scale crosses the Hubble horizon
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[23], namely

Pζ = H2
k

8π2M2
plεk

∼= 2 × 10−9, (3)

where

εk = M2
pl

2

(
Vφ(φk)

V (φk)

)2

, (4)

is the main slow-roll parameter at the crossing time.
Then, we can write the number of e-folds as follows:

Nk = − ln(1 + zeq) + ln(Hk/kphys) + 1

4
ln(ρeq/GeV

4)

+ ln(GeV4/ρend)

3(1 + wre)
+ 3wre − 1

12(wre + 1)
ln(GeV4/ρre)

∼= 96.5684 + 1

2
ln εk + ln(GeV4/ρend)

3(1 + wre)

+ 3wre − 1

12(wre + 1)
ln(GeV4/ρre), (5)

which only depends on the main slow roll parameter when the pivot scale leaves the
Hubble horizon, the effective EoS parameter wre, the energy density at the end of
inflation and the reheating temperature.

3 Different models

Wewill consider the following kind of Starobinsky-like potentials, depicted in Fig. 1,

Vn(φ) = λnM
4
pl(1 − e−κnφ

n/Mn
pl )2, (6)

where λn and κn are dimensionless parameters (see also [24] for the study of other
potentials slightly different from the Starobinsky one). As we have pointed out in
the introduction, these potentials represent a variation of the Starobinsky potential
(the one when n = 1) with regards to the power of the scalar field. This n parameter
enables us to mimic the behavior of a power law potential near the origin. Note that the
factor κ1 is required to be

√
2/3 in the Starobinsky model in order to impose canonical

normalization of the scalar φ when passing from the R2 theory to the Einstein frame
[2]. For n �= 1, given that this is not the case, we will be considering different possible
factors so as to discuss for which ones the observations constraints are best fulfilled.

In Fig. 2 we see that for n even (the odd case is clear) the inflaton field oscillates
in the deep well potential after inflation, thus leaving its energy in order to produce
enough particles to reheat the universe.
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Fig. 1 Different shapes of the potential for even and odd values of n, here considering κ4 = κ1

Fig. 2 The dynamical evolution of the inflaton field for n = 4

This kind of potentials, contrary to the power law ones, are allowed by the observa-
tional Planck results because the values of the spectral index ns and the ratio of tensor
to scalar perturbations r enter perfectly in the marginalized confidence contour in the
plane (ns, r) at 1σ and 2σ Confidence Level.

In addition, near the origin the potential is like φ2n , that is, the shape of the well of
the Starobinsky-type potential is the same as for a power law potential. Then, during
the oscillations of the inflaton field, for a a potential V (φ) = V0φ2n and using the
virial theorem, we get that the effective EoS parameter is given by [25,26]

wre = n − 1

n + 1
, (7)

meaning that this also holds for the potentials (6).
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On the other hand, dealing with the power spectrum of scalar perturbations, we
have that

εk = 2(κnn)2
(

φk

Mpl

)2(n−1) e−2κnφn
k /Mn

pl(
1 − e−κnφ

n
k /Mn

pl

)2

∼= 2(κnn)2
(

φk

Mpl

)2(n−1)

e−2κnφn
k /Mn

pl , (8)

and

ηk = M2
pl
Vφφ(φk)

V (φk)
= 2κnn(n − 1)

(
φk

Mpl

)n−2 e−κnφ
n
k /Mn

pl

1 − e−κnφ
n
k /Mn

pl
(9)

−2(κnn)2
(

φk

Mpl

)2(n−1)

e−κnφ
n
k /Mn

pl
1 − 2e−κnφ

n
k /Mn

pl(
1 − e−

√
2
3φn

k /Mn
pl

)2

∼= −2(κnn)2
(

φk

Mpl

)2(n−1)

e−κnφ
n
k /Mn

pl , (10)

and, thus, the spectral index can be computed for n = 1 without the approximation
carried out in the last step for both εk and ηk . Hence, using the well known relation at
first order between the spectral index and these slow roll parameters ns = 1+2ηk−6εk
(see for example [23]), we obtain that

1 − ns ∼= 6εk − 2ηk = 8

3

e−
√

2
3φk/Mpl

1 − e−
√

2
3φk/Mpl

⎛
⎝ e−

√
2
3φk/Mpl

1 − e−
√

2
3φk/Mpl

+ 1

⎞
⎠ , (11)

getting that φk =
√

3
2 ln

(
7−3ns+4

√
4−3ns

3(1−ns)

)
(see for instance [12]). Effectively, let us

express εk = 4
3(1−s)2

andηk = 4
3

2−s
(1−s)2

, where s = e

√
2
3

φk
Mpl . So, Eq. (11) can bewritten

as a 2nd order polynomical equation, namely 3(ns−1)s2+s(−6ns+14)+3ns+5 = 0,

which is satisfied for s = 7−3ns+4
√
4−3ns

3(1−ns)
, from which the given value of φk follows.

On the other hand, for n �= 1 one approximately has

1 − ns ∼= 6εk − 2ηk ∼= 4(κnn)2
(

φk

Mpl

)2(n−1)

e−κnφ
n
k /Mn

pl . (12)

Only for the exact Starobinsky model (n = 1) one can express analytically εk as a
function of 1 − ns . In the other cases (n �= 1) one has to obtain it numerically.
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Note also that inflation ends when

εend = 2(κnn)2
(

φend

Mpl

)2(n−1) e−2κnφn
end/Mn

pl(
1 − e−κnφ

n
end/Mn

pl

)2 = 1 (13)

and the value of φend can only be obtained analytically for the exact Starobinsky
model.

3.1 Case n = 1: the exact Starobinskymodel

Aswe have already explained in the introduction, this potential comes from R2-gravity
in the Einstein frame (see for example [27] for a detailed explanation) and, since n = 1,
wre = 0. In addition, from (13) one gets

φend = −
√
3

2
ln(

√
3(2 − √

3))Mpl ∼= 0.9402Mpl , (14)

obtaining

Vend = 4λ(2 − √
3)2M4

pl �⇒ ρend = 6λ(2 − √
3)2M4

pl , (15)

where we have used that at the end of inflation φ̇2
end = V (φend) and, thus, ρend =

3
2V (ϕend).

To calculate the value of the parameter λ we use that H2
k

∼= V (φk )

3M2
pl

∼= λM2
pl

3 . There-

fore, from the formula of the power spectrum of scalar perturbations (3) we obtain

λ ∼= 48π2 × 10−9εk, (16)

where εk = 4
3(1−s)2

, being s = 7−3ns+4
√
4−3ns

3(1−ns)
, as used in (11). With regards to the

number of e-folds, it is given by

Nk ∼= 96.5684 + 1

2
ln εk + 1

3
ln

(
GeV3ρ

1/4
re

ρend

)
, (17)

but can also be calculated using the formula

Nk =
∫ tend

tk
Hdt = 1

Mpl

∫ φk

φend

1√
2ε

dφ. (18)

So, using the values defined above, one gets that

Nk = 1

4

(
3

(
e

√
2
3φk − e

√
2
3φe

)
− √

6(φk − φe)

)
, (19)
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Fig. 3 The reheating temperature and the number of e-folds for n = 1 as a function of the spectral index,
only for temperatures between 1 MeV and 106 TeV

which leads to 44.02 ≤ Nk ≤ 54.88 for the values of ns given by Planck’s team [28]
within its 2σ C.L., namely 0.9565 ≤ ns ≤ 0.9733. We note that if we invert this
function the obtained result coincides to a great extent with the relation in equation
(32) of [29], reached through a next-to-leading order expansion.

Now, by equating (17) and (19) we get a relation between the reheating temperature
and the spectral index of scalar perturbations, which is represented in Fig. 3.

Here, it is important to take into account that a lower bound of the reheating tem-
perature is 1 MeV because the Big Bang Nucleosynthesis (BBN) occurs at this scale
and the universe needs to be reheated at this epoch. In the same way the upper bound
of the reheating temperature could be obtained imposing that relic products such as
gravitinos or modulus fields which appear in supergravity or string theories do not
affect the BBN success, which happens for reheating temperatures below 106 TeV
(see for instance [30]).

In Fig. 3we can see that for reheating temperatures between 1MeV and 106 TeV the
spectral index satisfies 0.9565 < ns < 0.9624, which enters perfectly in its 2σ C.L.,
and the number of e-folds ranges between 44.02 and 51.08, which is in agreement
with the previous and maybe not so exact calculations made in [13,14] and coincides
as well to a great extent with the result obtained in [12] by using a diagrammatic
approach (see the reheating temperature shown in Figure 3 of [12]). Note also that we
have used as gre the function obtained as a linear interpolation of the values in the
Table 1 of [31].

We end this subsection pointing out that the Starobinsky potential could also be used
in quintessential inflation improving the well-known Peebles-Vilenkin model [32]. In
that case it was shown in [33] that the reheating temperature depends on themechanism
used to reheat the universe. More precisely, when superheavy particles (whose decay
products will reheat the universe) are gravitationally produced, the upper bound of
Tre is around 40 TeV and, when the mechanism is the so-called instant preheating
[34,35], one gets the following lower bound, Tre ≥ 20 TeV.

3.2 Case n �= 1

When n �= 1 the relation between the reheating temperature and the spectral index
has to be calculated numerically. For each value of ns in the 2σ C.L. interval, we have
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numerically solved Eqs. (11) and (13) in order to find the values of φk and φend . Then
we have used the value of εk in Eq. (8) in order to calculate the number of e-folds Nk

as stated in (16). And finally we have obtained the reheating temperature by setting
this value equal to the one in Eq. (5). As in the case n = 1 we have taken as gre the
linear interpolations of the values in the table 1 of [31].

In Fig. 4, taking viable reheating temperatures from 1 MeV to 106 TeV, we have
depicted the corresponding values of the spectral index for several models and several
values of κn , showing that they enter in its 2σ C.L. We have also represented the
corresponding number of e-folds for these values of ns . Themodels studied correspond
to the values n = 3, 4 and 5 which are respectively equal to the following values of
the effective EoS parameter, wre = 1/2, 3/5 and 2/3. Note that in all these cases
the reheating temperature decreases as ns grows, in opposite to what happens when
n = 1. This arises from the fact that the last term in Eq. (5) vanishes for n = 2. As a
consequence, Tre is constant in ns for n = 2, thus increasing (resp. decreasing) as a
function of ns for n < 2 (resp. n > 2).

For each of these values of n we have studied the results for values of κn between
0.2 and 10 and we have also drawn straight lines for the bounds for the reheating
temperature aswell as the lower limit of the allowed interval for ns at 1σ C.L. according
to the results of [28], given that all the depicted values of ns are already in the 2σ C.L.
interval. While for all the values of n and κn that we have represented the allowed
values of the reheating temperatures fall within the 2σ C.L. interval of ns , when both n
and κn become higher a wider range of the allowed reheating temperatures correspond
to a value of ns within the 1σ C.L. interval. With regards to the number of efolds, all
the obtained values (namely between 55 and 65) are feasible. And, as far as the ratio of
the tensor to scalar perturbations is concerned, it does not influence our results since
in all the cases it is verified that r < 10−5.

Therefore, we see that by modifying the power law behavior at the origin of the
Starobinsky potential, we obtain values of the reheating temperature and the number
of e-folds from the crossing of the Hubble horizon of the pivot scale until the end
of inflation which continue being in accordance with the allowed ones by taking the
spectral index within the 2σ CL of the Planck 2018 data [28]. So, we have found a
new group of potentials which match as well as the Starobinsky potential with the
observational data and, moreover, they contain a parameter n which can be tunned in
order to adjust the behavior that we want to have near the origin.

4 The particular casewre = 1/3

This situation is obtained for our potentials when n = 2 and it has been already shown
that it is impossible to obtain neither the value of the reheating temperature Tre, nor
the number of e-folds from the end of inflation to the beginning of the radiation era
Nre = ln( are

aend
). The reason is that, in order to obtain the values of Tre and Nre, one

needs to know the beginning of the radiation epoch, i.e., when the energy density of the
light particles obtained from the decay of the inflaton field starts to dominate, which
does not happen in this case because during the oscillations of inflaton the effective
EoS parameter is the same as in the radiation era [12–14].
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However, in this particular case it is possible to calculate the effective number of
degrees of freedom at the beginning of reheating, which is obtained using the formula
(2.12) of [13]:

gre =
(
43

11

)4 (
π2

30

)3
(

Hka0T0

eNkρ
1/4
endk

)12

. (20)

Now, taking into account that Hk/k = 1/ak and that akeNk = aend , one gets

gre =
(
43

11

)4 (
π2

30

)3
(

a0T0

aendρ
1/4
end

)12

(21)

and, using that from the end of inflation to the matter-radiation equality the effective
EoS parameter is 1/3, which implies aendρ

1/4
end = aeqρ

1/4
eq , one finally obtains

gre =
(
43

11

)4 (
π2

30

)3
(

(1 + zeq)
T0

ρ
1/4
eq

)12

. (22)

This formula is very interesting because it depends neither on the shape of the
potential during inflation, nor on the pivot scale. Instead it only depends on the number
of degrees of freedom at the matter-radiation equality. Effectively, using once again
that Teq = (1 + zeq)T0 and ρeq = π2

15 geqT
4
eq , with geq = 3.36 the number of degrees

of freedom at the matter-radiation equality, we get the following abnormally small
number

gre = 43

11

(
43

22geq

)3 ∼= 0.6256, (23)

which is in contradiction with the values of the effective degrees of freedom (see for
instance Figure 1 of [31]). In fact its minimum value is approximately geq = 3.36,
which is obtained at the matter-radiation equality.

Therefore, one might conclude that the case wre = 1/3 has to be disregarded,
as well as all its consequences. For example, the assumption that the value of gre is
approximately 100 (see for instance the Section 2.1 of [13]) and also the consequences
derived in Section 5 of [12]. However, as we have already explained at the end of the
Introduction and at the beginning of Sect. 2, one has to be cautious with this kind of
result because a constant effective EoS is only an approximation. Hence, in order to
be sure of their viability, one must deal with a more realistic model containing a well
defined reheating mechanism telling us which is the real evolution of the effective
EoS parameter from the end of inflation to the beginning of the radiation era (see for
example [36] where the authors study some viable models obtaining numerically the
evolution of the effective EoS parameter during this period) .
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5 Conclusions

In this short note we have proved that for Starobinsky-type potentials of the form
λnM4

pl(1−e−κnφ
n/Mn

pl )2 depending on twodimensionless parametersλn and κn (which
seem to be the best for predicting the values of the power spectrum of perturbations
according to the recent observations) the reheating temperature ranges in awide region
of its allowed values, which span below 106 TeV—in order that the production of relics
such as gravitinos or modulus fields in supergravity theories do not affect the success
of the BBN—and above 1 MeV to ensure that the reheating was previous to the BBN.
In fact, as one can see from Fig. 4, the higher the values of n and κn are, a wider
range of allowed reheating temperatures enters in the 1σ C.L. of the spectral index,
indicating that in this sense the model is more favored. In addition, for the special case
n = 1 (the Starobinsky model) our results are in agreement with the ones obtained
independently in [12] by following a different scheme named diagrammatic approach.

Finally, we have also studied the particular case when the effective EoS parameter
during the oscillations of the inflaton field is equal to 1/3 showing that this case leads
to an absurd value of the number of degrees of freedom at the reheating time, meaning
that this ideal situation (in a more realistic model the effective EoS is not constant)
and its consequences must be disregarded.
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