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Abstract
We compute the modified friction coefficient controlling the propagation of tensor
metric perturbations in the context of a generalized cosmological scenario based on a
theory of gravity with quadratic curvature corrections. In such a context we discuss the
differences between gravitational and electromagnetic luminosity distance, as well as
the differences with the standard results based on the Einstein equations. We present
numerical estimates of the modified luminosity distance on the cosmic redshift scale
typical of Supernovae and standard sirens.
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1 Introduction

It is well known that measuring the relative luminosity distance of different astrophys-
ical sources, or the relative time-of-flight of different ultra-relativistic particles emitted
by the same source (see e.g. [1]), we can obtain important information and constraints
on the fundamental cosmological parameters. Recently, the simultaneous detection of
gravitational wave (GW) and electromagnetic (e.m.) signals with the same origin—
namely, the binary neutron star merger GW170817 [2] and the associate γ -ray burst
GRB170817A [3–6]—has opened the possibility of including also GW observations
among the useful tools for testing the standard ΛCDM model and its possible modi-
fications. Particularly useful (as noted long ago [7]) to that purpose are GW sources
like coalescing compact binaries located at different cosmic distances, which can play
the role of “standard sirens” analogous to the role of the “standard candles” typical of
e.m. signals.

In such a context it is important to note that, by comparing the propagation of GW
signals received from a given source and the propagation of other ultra-relativistic
signals emitted by the same source, we have also the possibility of testing alternative
theories of gravity on a cosmic scale of distance, as recently stressed and discussed in
[8–11] (see also [12–15]).

We should recall, in this respect, that in the standard Einstein’s theory of gravity
both GW and e.m. signals propagate with the same speed along the light cone of
the given background geometry, thus defining exactly the same luminosity distance
dL for the emitting source. In models of gravity different from General Relativity,
on the contrary, the propagation of GW and e.m. signals may be different, and not
only because the metric satisfies modified Einstein equations, whose solution may
define a background geometry different from the standard one. In addition, in fact, the
propagation of massless signals may deviate from the usual light-cone propagation,
and the deviation of GW signals may be different from the deviation of e.m. signals.

Such a modified propagation may be associated, in particular, to a different speed
and/or to a different variation of the amplitude of the signal with the distance from
the source (for what concerns a possible modified speed of GW signals, however,
there are strong constraints imposed by present observations [5], see also [16–19]).
The modified variation of the amplitude, in its turn, produces an effective variation of
the associated luminosity distance. Hence, when computing the relevant luminosity
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distance in the context of a generalized theory of gravity, we may have to face the
(in principle interesting) situation in which dGW

L �= demL �= dGR
L , where the last value

of dL refers to the one computed for the cosmological scenario based on the General
Relativity equations. Comparing the above (possibly different) three expressions of
dL may thus represent an efficient tool for testing alternative theories of gravity on
cosmological scales of distance [8–11].

In this paper we will concentrate on a simple generalization of the Einstein the-
ory which contains only one additional (constant) parameter, controlling a quadratic
curvature correction to the Einstein action. The model is also known as “Starobinsky
gravity” [20], and can be regarded as a truncated higher-curvature expansion of the
gravitational action. Also, it corresponds to a simple type of f (R)-gravity and can be
related to the largest class of Horndeski theories, widely used to test gravity through
modified GW propagation (see in particular [21] and [11,13,14]). It was shown [22]
that such a model can fit the Hubble diagram of Supernovae, consistently with other
recent cosmic data, even in the absence of an explicit dark-energy contribution. Here
we show that such a simple modification of Einstein’s gravity is already enough to
produce an interesting difference between the propagation of e.m. and GW signals,
and to predict possibly testable effects when estimating the luminosity distance of
standard sirens.

The paper is organized as follows. In Sect. 2 we recall some general result concern-
ing the propagation of tensor metric perturbations in modified theories of gravity and
the corresponding definition of the modified luminosity distance. In Sect. 3 we apply
such result to a gravitational action with quadratic curvature corrections. In Sect. 4, by
assuming that the deviations from the Einstein theory are small, we obtain an approxi-
mate expression for theGWluminosity distance by expanding to first order the solution
of the modified cosmological equations around the standard-model solution. In Sect. 5
we numerically evaluate the parameters of such a modified cosmological solution by
fitting the UNION 2 data set [23] of Supernovae. In Sect. 5.1 we compare our results
with the constraints imposed by the standard siren GW170817 and its e.m. partner
GRB170817A. In Sect. 5.2 we briefly discuss the differences between the GW and
e.m. luminosity distance and the standard luminosity distance dGR

L , based on the Ein-
stein equations and on exact light-cone propagation. Finally, Sect. 6 is devoted to our
conclusive remarks. In the “Appendix” we present an explicit computation of the prop-
agation equation for tensor metric perturbations for our model with higher-curvature
corrections.

2 GW luminosity distance in generalizedmodels of gravity

Let us start by recalling, for the reader’s convenience, a fewwell know results concern-
ing the propagation of tensor metric perturbations in a spatially flat, four-dimensional
geometry of the Friedmann–Lemaitre–Robertson–Walker (FLRW) type, described in
conformal time η by the background metric g00 = a2(η), gi j = −a2(η)δi j . In the
so-called transverse-traceless gauge, each polarization component h of the first order
metric perturbation hμν satisfies the linearized propagation equation
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d2h

dη2
+ 2Hdh

dη
− ∇2h = 0, (1)

where we have definedH = a−1da/dη (we have assumed no anisotropic stress in the
matter sources). The corresponding canonical variable [24] v = ah satisfies

d2v

dη2
−

(
∇2 + 1

a

d2a

dη2

)
v = 0. (2)

By expanding the solution in Fourier modes, let us consider those modes well
“inside” our present horizon, satisfying the condition

∣∣a−1d2a/dη2v
∣∣ � ∣∣∇2v

∣∣, like
(in particular) the modes relevant to the sensitivity frequency band of present interfer-
ometric detectors. For such modes the equation for v is unaffected by the background
geometry, so that the amplitude of a gravitational signal h = v/a emitted at the time
η and received at the time η0 > η decreases, during the propagation from the source
to the observer, by an amount determined by the standard redshift factor, i.e. by the
factor a(η)/a0 ≡ (1 + z)−1, where a0 ≡ a(η0), and z is the redshift of the emitting
source.

On the other hand, if we are interested in GW signal emitted by coalescing binaries
(like the so-called standard sirens), it is well known [25,26] that such a “weakening”
of the amplitude (due to the propagation across the expanding cosmic geometry) leads
to introduce the so-called luminosity distance of the emitting source defined in terms
of the received flux of radiation, and thus inversely proportional to the amplitude h of
the received signal, namely h ∼ d−1

L (z). Here dL is the standard luminosity distance
referred to signals propagating on the light-cone of our FLRW geometry, and given,
for a metric with scale factor a and Hubble factor H = a−2da/dη, by

dL(z) = (1 + z)
∫ z

0

dz′

H(z′)
(3)

(see also [8–11,13,14] for a detailed discussion of how the GW amplitude h is related
to the GW luminosity distance).

Let us now consider, following [8–11], a generalized model of gravity different
from Einstein’s theory and leading, in particular, to a different set of cosmological
equations. Their perturbation gives us a modified equation for the tensor modes h
which, even in the same FLRW metric as before, takes a form different from Eq. (1):

d2h

dη2
+ 2Hdh

dη
[1 − δ(η)] − c2s (η)∇2h = 0. (4)

Wemayhave, in general, amodified speedparameter, cs �= 1, and amodifiedgeometric
friction termwith δ �= 0. Both parameters cs and δmay be in principle time-dependent.
Even in that case, however, we can still introduce the analogous of a canonical variable
v defined by v ≡ ãh, where ã satisfies

1

ã

d ã

dη
= H [1 − δ(η)] , (5)
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and obtain the corresponding propagation equation in canonical form (but with a
modified “pump field”, a → ã) as follows:

d2v

dη2
−

(
c2s ∇2 + 1

ã

d2ã

dη2

)
v = 0. (6)

Let us concentrate, again, on modes well inside the horizon, and on a theory of
gravity which implies cs = 1. In that case, the only difference from the previous case
described by the perturbation of the Einstein equations is that the amplitude h = v/̃a
of the GW signal, while traveling from the source to the observer, is now decreased (or
increased) by themodified factor ã(η)/̃a0 ≡ (1+ z̃)−1 (instead of the standard redshift
factor a(η)/a0). Hence, the received amplitude turns out to be inversely proportional
to a modified luminosity distance, which we may call dGW

L , and which we may relate
to the standard luminosity distance dL as follows [8–11]:

1

dGW
L (z)

=
(
1 + z

1 + z̃

)
1

dL(z)
≡ ã(z)

ã0

a0
a(z)

1

dL(z)
= ã(z)

a(z)

1

dL(z)
(7)

Here dL is the distance given by Eq. (3) and associated with the standard light-cone
propagation in the geometry with scale factor a. Also, we have normalized the solution
of Eq. (5) for ã in such a way that ã(η0) = a(η0), so as to recover the obvious result
dGW
L (0) = dL(0) for a source at zero cosmic distance. With such a normalization, a

simple integration of Eq. (5), rewritten as d(log a/̃a)/dη = a−1(da/dη)δ, leads to
express ã in terms of a as follows [8–10]:

a

ã
(z) = dGW

L

dL
(z) = exp

[
−

∫ z

0

dz′

1 + z′
δ(z′)

]
. (8)

In the following sections we will apply the above results to a generalized model of
gravity with quadratic curvature corrections.

3 A simple model of quadratic gravity

The generalized model of gravity we shall consider here is a particularly simple case
of the so-called f (R)-theories (see e.g. [27–29] for comprehensive reviews), with a
function f (R) = R + c2R2, which we may also regard as an expansion in power
series of the scalar curvature R, truncated to second order. Our generalized action is
then

S = −M2
P

2

∫
d4x

√−g
(
R + c2R

2
)

+ Sm, (9)

where Sm is the matter action (assumed to describe perfect fluid sources), MP =
1/

√
8πG is the Planck mass, and c2 an unknown constant parameter with dimensions

of length squared (we are using units � = c = 1).
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By varying with respect to the metric gμν , and by adding to the action (9) an
appropriate generalized version of the York–Gibbons–Hawking action (see e.g. [22]),
so as to get rid of the unwanted boundary contributions (as in General Relativity), we
obtain the following generalized Einstein equations

8πG T ν
μ = Rν

μ − 1

2
δν
μR + c2

[
2RRν

μ + δν
μ

(
2�R − 1

2
R2

)
− 2∇μ∇νR

]
,

(10)

which are fourth-order differential equations for the components of the metric tensor.
We have defined� ≡ ∇μ∇μ, and Tμν is the source stress tensor, given by the variation
with respect to gμν of the matter part of the action. It can be easily checked that by
taking the covariant divergence of both sides of the above equation, and using the
contracted Bianchi identity, one consistently recovers the standard result

∇νTμ
ν = 0, (11)

which guarantees the covariant conservation of the stress tensor of the gravitational
sources.

Let us specify now the above equations to the case of a spatially flat FLRW metric
with scale factor a, denoting with a dot the derivative with respect to the cosmic time
coordinate t , related to conformal time by dt = adη. We shall adopt the following
conventions: gμν = diag(+ − −−), Rνα = Rμνα

μ, and Rμνα
β = ∂μΓνα

β − · · · .
We then find, in particular,

R0
0 = −3

(
Ḣ + H2

)
, R j

i = −
(
Ḣ + 3H2

)
δ
j
i , (12)

and

R = −6
(
Ḣ + 2H2

)
, (13)

where H = ȧ/a. For a perfect fluid source, with T ν
μ = diag(ρ,−pδ j

i ), the time
component of Eq. (10) thus gives

3H2 + 18c2
[
Ḣ2 − 6H2 Ḣ − 2H Ḧ

]
= 8πGρ. (14)

The space-like (diagonal) components of Eq. (10) lead to the condition

2Ḣ + 3H2 − 6c2
[
9Ḣ2 + 18Ḣ H2 + 12H Ḧ + 2

...
H

]
=−8πGp. (15)

The mixed components of Eq. (10) are identically satisfied. Finally, the conservation
Eq. (11) takes the usual form

ρ̇ + 3H(ρ + p) = 0. (16)
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Toobtain the evolution equation for the first-order tensor perturbations of themetric,
defined by gμν → gμν + δgμν , δgμν = hμν , we shall work in the transverse-traceless
(TT) gauge ∇νhν

μ = 0 = hμ
μ, which in our context takes the simple form hμ0 = 0,

∇ j hi j ≡ ∂ j hi j = 0 = gi j hi j . By directly perturbing the background equations (10)
(see “Appendix” for an explicit computation) we then obtain for each polarization
mode of hi j a linearized equation which, expressed in conformal time, can be written
as

d2h

dη2
+ 2H

[
1 + c2(dR/dη)

H(1 + 2c2R)

]
dh

dη
− ∇2h = 0, (17)

where R is the scalar curvature (13). Comparing with the modified Eq. (4) we then
find, for our model, a standard propagation velocity cs = 1, but a non-standard friction
term which can be written in the form (4) with the time-dependent parameter

δ(η) = − c2(dR/dη)

H(1 + 2c2R)
. (18)

It is important to recall, at this point, that the absence ofmodifications of the standard
speed parameter is a peculiar property of themodel of gravitywe are considering.More
general quadratic-curvature corrections to the Einstein–Hilbert action can lead indeed
to a propagation Eq. (4) with an effective speed parameter cs �= 1. An important
example of this type is provided by the Gauss–Bonnet two-form typically predicted
in a string-theory context, and generated by the high-curvature α′ corrections to the
String-frame gravi-dilaton action (see [30] for an explicit computation of the modified
propagation of tensor perturbations in the presence of the quadratic Gauss–Bonnet
term in the gravi-dilaton action).

It may be useful to check, also, that the previous results (17), (18) can be exactly
reproduced starting with the modified action (9), and expanding the action up to terms
quadratic in the metric fluctuations hi j (so as to obtain an effective Lagrangian for
the first-order perturbations, from which to deduce their equations of motion through
the standard variational formalism).

In fact, working again in the TT gauge, we have the following quadratic contribu-
tions to the perturbed action (see also [30–32]):

δ(2)√−g = −1

4

√−g Tr (h2), (19)

δ(2)(
√−gR) = a3Tr

[(
3

2
Ḣ + 3H2

)
h2 + hḧ

+ 4Hhḣ + 3

4
ḣ2 − 1

4
h

∇2

a2
h

]
, (20)

δ(2)(
√−gR2) = R a3Tr

[(
3

2
Ḣ + 3H2

)
h2 + 2hḧ

+ 8Hhḣ + 3

2
ḣ2 − 1

2
h

∇2

a2
h

]
, (21)
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where Tr(h2) = hi j h j
i , Tr(hḣ) = hi j ḣ j

i
, and so on. Summing up all contributions,

integrating by parts the terms in hḣ and hḧ, and neglecting a total derivative which
does not contribute to the equations of motion, it turns out that the coefficient of the
h2 term appearing in the quadratic perturbed action is identically vanishing, thanks to
the background equation (15). By decomposing the fluctuations into the two physical
polarization modes h+ and h×, i.e. Tr(h2) = hi j h j

i = 2(h2+ + h2×), and switching
again to the confromal time coordinate where ḣ = a−1dh/dη, we are eventually led
(for each polarization mode) to the following quadratic effective action:

δ(2)S = M2
P

4

∫
d3xdη a2 (1 + 2c2R)

[(
dh

dη

)2

+ h∇2h

]
. (22)

We can now easily recover the standard form of the Einstein perturbed action by
defining amodified scale factor ã, related to a (and satisfying the correct normalization
ã0 = a0, see Sect. 2) in such a way that

ã(η) = a(η)

[
1 + 2c2R(η)

1 + 2c2R(0)

]1/2
. (23)

By replacing a with ã in the action (22), and applying to h the standard variational
formalism, we are then led to the equation of motion for tensor perturbations in the
form

d2h

dη2
+ 2

ã

dã

dη

dh

dη
− ∇2h = 0. (24)

Finally, by computing ã′/̃a from the definition (23), and comparing the result with Eq.
(17), we can immediately recover the expression of the parameter δ(η) anticipated in
Eq. (18).

To conclude this section let us stress that by following this second procedure, based
on the computation of the quadratic perturbed action, we can directly obtain from Eq.
(23) the important ratio dL/dGW

L = ã/a [see Eq. (8)], with no need of performing the
explicit integration of the parameter δ(η) along the travel of the signal from the source
to the observer.

4 First-order corrections to the standard cosmological dynamics

In the previous section we have introduced a modified theory of gravity where the
propagation of GW signals, and the associated luminosity distance dGW

L , are different
from those predicted by the standard Einstein theory. In the following sections we will
discuss the possibility that such a modified GW dynamics may be compatible with
(and possibly useful to interpret) present cosmological observations, by concentrating
our attention, in particular, on the distance scales typical of the Supernovae and of the
GW sources known as standard sirens.
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In order to compare the model predictions with the observational data in that range
of distances, what we need, first of all, is to express both the friction correction δ and
the ratio ã/a = dL/dGW

L as a function of the redshift parameter z. To this purpose, by
recalling the definition (1 + z) = a0/a, we first note that ż = −(1 + z)H , so that

dR

dη
= a Ṙ = aż

d R

dz
= −(1 + z)HdR

dz
. (25)

We shall adopt, from now on, the convenient notation in which a prime denotes dif-
ferentiation with respect to z. We can then rewrite Eqs. (18) and (23), respectively,
as

δ(z) = c2
(1 + z)R′

1 + 2c2R
, (26)

dGW
L

dL
(z) =

[
1 + 2c2R(0)

1 + 2c2R(z)

]1/2
, (27)

where, from Eq. (13),

R(z) = −6H
[
2H − (1 + z)H ′] , (28)

R′(z) = −6
[
3HH ′ − (1 + z)

(
H ′2 + HH ′′)]

. (29)

It may be noted that, in spite of the fact that the exact definition of the modified
luminosity distance (27) is formally equivalent to the GW luminosity distance defined
in the presence of a time-varying effective Planck mass (considered e.g. in [11]),
the particular z-dependence predicted by the above equations is quite different, in
principle, from the z-dependence of dGW

L assumed in [11] for their phenomenological
discussion.

For an explicit evaluation of the modified luminosity distance (27) we need now
H(z), which has to be determined by solving the modified cosmological equations
(14), (15). In addition, and for a numerical estimate of the differences with the standard
results, we should determine a possible allowed range of values for the parameter c2.
To this second purpose we will follow the procedure already suggested in a previous
paper [22], namely fitting a set of Supernovae datawith an expression of the luminosity
distance dL computed according to the standard definition (3), but with an Hubble
parameter H(z) which satisfies the modified cosmological equations of this paper.

It is important to stress, in this respect, that in spite of the modified gravitational
action, the matter part of our model (9) keeps unchanged. This implies, in particular,
that the e.m. field is still minimally coupled to the background geometry (like in
General Relativity), and that the propagation equation of e.m. signals keeps the same
form as in the standard Einstein theory. Hence, the e.m. luminosity distance, demL ,
is still given by Eq. (3), with the only difference that H(z) satisfies the generalized
cosmological equations (14), (15) with c2 �= 0. A fit of the Supernovae data with
such a generalized form of dL(z) can thus provide a reliable estimate of the possibly
allowed value of c2.
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In order to obtain the required solution for H(z)we shall work under the assumption
that the higher-curvature corrections to the standard equations are small, and that the
solution of the modified equations can be expanded in power series of c2 around the
zeroth-order solution of the standard cosmological equations.

Let us consider, in particular, Eqs. (14), (16) as our independent equations, and
use the standard (ΛCDM) model of perfect fluid source with two non-interacting
components, namely ρ = ρm + ρΛ, with pm = 0 and pΛ = −ρΛ. The conservation
equation (16), expressed in terms of z, thus reduces to

ρ′
Λ = 0 , (1 + z)ρ′

m = 3ρm , (30)

and can be solved exactly to give ρΛ = ρΛ0 and ρm = ρm0(1+z)3, where ρΛ0 and ρm0
are integration constants. By inserting such solution into the generalized Friedmann
equation (14) we then find that the exact equation for H(z) takes the form:

3H2 + 18c2H
2
[
4(1 + z)HH ′ − (1 + z)2(H ′2 + 2HH ′′)

]

= 8πG
[
ρm0(1 + z)3 + ρΛ

]
. (31)

Let us now expand the solution of the above equation, to first order in c2, as follows:

H(z) = H (0)(z) + c2H
(1)(z) + · · · , (32)

where H (0) is the solution of the standard equation with c2 = 0, namely

H (0)(z) = H0

[
Ωm0(1 + z)3 + ΩΛ

]1/2
, (33)

and where we have defined Ωm0 = 8πGρm0/3H2
0 and ΩΛ = 8πGρΛ0/3H2

0 . To first
order in c2 we then obtain a simple algebraic equation for H (1), which can be easily
solved and leads to:

H (1)(z) = −27

4
H3
0 Ω2

m0(1 + z)6
[
Ωm0(1 + z)3 + ΩΛ

]−1/2
. (34)

In order to give to Ωm0 the same physical meaning as in the standard scenario
(namely, to interpret Ωm0 as the present fraction of pressureless matter in units of
the today value of the critical energy density, ρc(t0) = 3H2(t0)/8πG), we have now
to impose that H0 represents the today value of our generalized Hubble parameter,
namely that

H0 = lim
z→0

H(z) = lim
z→0

[
H (0)(z) + c2H

(1)(z)
]
. (35)

By applying this condition to Eqs. (33) and (34) we obtain that the four parameters
H0, c2, Ωm0 and ΩΛ cannot be independent, but must be related (to first order in c2)
by the non-standard condition
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ΩΛ = 1 − Ωm0 + 27

2
c2H

2
0 Ω2

m0 . (36)

By inserting this condition into Eqs. (33), (34), and combining all zeroth-order and
first-order contributions to H , we can eventually write our approximate solution as
follows:

H(z) = H (0) + c2H
(1) = H0

[
Ωm0(1 + z)3 + 1 − Ωm0

]1/2

×
{
1 + 27

4
c2H

2
0 Ω2

m0
1 − (1 + z)6

[Ωm0(1 + z)3 + 1 − Ωm0

}
. (37)

Let us stress again that the parameters H0 and Ωm0 represent the same physical quan-
tities as in the standard ΛCDM scenario (namely, the today value of the Hubble
parameter and of the critical fraction of pressureless matter). However, they are related
to the critical fraction of dark energy ΩΛ by the non-standard relation (36), imposed
(to first order in c2) by our generalized cosmological equation (14).

Given the above (approximated) expression for H(z) it is finally useful, for the
application of this paper, to explicitly evaluate also the modified friction parameter
and luminosity distance of Eqs. (26) and (27). By using Eqs. (28) and (29) we easily
obtain, to first order in c2:

δ(z) 
 c2(1 + z)R′(0) = −9c2(1 + z)3H2
0 Ωm0, (38)

and

dGW
L

dL
(z) 
 1 + c2

[
R(0)(0) − R(0)(z)

]
= 1 + 3c2H

2
0 Ωm0

[
(1 + z)3 − 1

]
. (39)

5 Numerical results using Supernovae data

By inserting the explicit form of our modified Hubble parameter, Eq. (37), into the
luminosity distance (3), we can now fit the Supernovae data to obtain a numerical
estimate of the standard cosmological parameters, as well as of the new parameter c2.

The method is the same as the one already applied in [22], with the important
difference that in this paper we have included the standard dark-energy contribution
into the lowest-order background solution. In addition, we recall that the fit presented
in [22] was performed at fixed given value of H0, using for H0 the value suggested
by Planck data. Here we prefer to keep H0 as a free parameter (after all, the local
value of H0 in the redshift range typical of Supernovae, z <∼ 1, might be different
from the corresponding value at much larger scales of distance). However, we will
perform the fit at constant given value of Ωm0, using to this purpose the recent results
of Planck+BAO data (see e.g. [33]).

We have fitted, in particular, the UNION 2 data set [23] consisting of 557 measure-
ments of redshift/distance-modulus of Type Ia Supernovae, with redshift between 0
and 1.5.We have used for the theoretical curve the standard expression of the so-called
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Fig. 1 Plot of the friction parameter δ(z) of Eq. (38) (black dashed curve), with the associated error band
(grey region) controlled by the best-fit parameters of Eq. (42)

distance modulus μ(z), with the normalization usually adopted for SNIa and defined
by

μ(z, c2, H0) = 5 log10

[
105dL(z)

1Mpc

]
, (40)

where dL is given by Eq. (3) and H(z) is given by the generalized solution (37). Given
the experimental points μobs(zi ) ± Δμ(zi ), where Δμ is the relative error of the
distance modulus for the i-th Supernova, we have performed a standard χ2-analysis,
with

χ2 =
557∑
i=1

[
μobs(zi ) − μ(zi , c2, H0)

Δμ(zi )

]2
. (41)

By inserting into Eq. (37) the standard result [33] Ωm0 = 0.311 ± 0.006, and mini-
mizing the above χ2 expression, we have then obtained the following best-fit values:

H0 = (69.84 ± 0.30) km s−1 Mpc−1,

c2 = (1.128 ± 0.670) × 10−6 km−2 s2 Mpc2, (42)

with a goodness of fit χ2/d.o.f = 0.98. Correspondingly, the critical fraction of dark
energy turns out to be fixed, according to Eq. (36), to the value ΩΛ = 0.696± 0.100.
Note that the above value of c2 is compatible with possible constraints arising from
other cosmic data [34].

With the numerical values of Eq. (42) we are now in the position of plotting the
friction term (38) and the modified GW luminosity distance (39), consistently with
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Fig. 2 Plot of the ratio (39) between GW and e.m. luminosity distance (black dashed curve), with the
associated error band (grey region) controlled by the best-fit parameters of Eq. (42)

present observational results on the chosen scale of distances. The results are shown in
Figs. 1 and 2, with the associated error bands obtained by propagating into Eqs. (38)
and (39) the one sigma best-fit errors of Eq. (42). It should be mentioned that we shall
henceforth evaluate all errors under the conservative assumption that the uncertainties
on the given parameters are to be summed with their absolute value. For the particular
case in which there are no cross-correlations among the errors of the single parameters
we are certainly overestimating the resulting error bars. However, the difference turns
out to be very small and, in any case, our choice of using upper bound errors does not
forbid a significant comparison with observations (and with standard predictions).

As shown by the plot of δ(z) in Fig. 1, the deviations from the standard Einstein
predictions tend to increase with the distance, but they are very small in the limit
z → 0, where we find

δ(0) 
 −0.015 ± 0.009. (43)

From the plot of Fig. 2 we can check the trivial identity dGW
L (0) = dL(0) at z = 0,

consistently with the chosen normalization of the modified scale factor [see Eqs. (7)
and (8)]. In the limit of large z we can see that the modification of the luminosity
distance tends to grow monotonically, as expected (at least in the considered range of
distances), and it is important to note that dGW

L > dL at all z. This means that, in the
model of gravity we are considering, the received GW signals turn out to be weaker
with respect to the value predicted by the standard Einstein theory (and thus more
difficult to be detected, given the same distance and detection sensitivity).

Finally, comparing our resultswith those based on the gravitationalmodel discussed
in [8,9] (the so-called RR model [35,36]), it may be important to note that we find a
different qualitative behavior for δ and dGW

L as a function of z (actually, the opposite
behavior).
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In the RR model (in particular, in its minimal version where one of its parameters
is set to zero) one finds δ(0) 
 0.062, which is definitely larger than our result (43).
In the large z limit, however, the ratio dGW

L /dL tends to stabilize on the value 
 0.970
(see e.g. Figs. 2 and 3 of [9]), which corresponds to a deviation from the standard
Einstein result of about 3%. In our case, instaed, we expect a deviation of about 8%
already at z = 1.5 (see Fig. 2). It should be taken into account, however, that our plots
and the plots of [9] are performed not only with a different functional dependence on
z, but also with a different H0 parameter.

5.1 Comparison with GW170817 data

It should be checked, at this point, whether the results we have presented for δ and
dGW
L may be compatible or not with other numerical estimates of such parameters,

obtained from presently available data. Let us consider, in particular, the constraints on
modified GW propagation following from the observation of the gravitational source
GW170817 [2] and of its e.m. partner GRB170817A [3–6].

In that case the redshift parameter is fixed at z = 0.00980 (with an error which is
negligible with respect to other uncertainties), and since this value is very small, we
can use Eq. (8) expanded to first order as

dGW
L

dL
(z) 
 1 − zδ(0) + · · · . (44)

Following the discussion of [9], we can then compare our previous result for δ(0)with
the ones obtained from the standard siren GW170817 in two ways: by extracting δ(0)
from the measured value of the Hubble parameter or from the measured luminosity
distance.

Concerning the first approach, what is needed is the local Hubble constant HGW
0 ,

obtained fromGW170817/GRB170817Ameasurements (updated to take into account
the correct inclination of the source and the peculiar velocity of the host galaxy [37–
39]), together with the local value of H0 obtained with the e.m. measurements of a set
of standard candles at very small redshift [40,41]. By using such values (reported in
[9]), by expanding to first order the luminosity-redshift relation as dL 
 z/H0 + · · · ,
by identifying, to this order, the measured e.m. distance with our dL , one then obtains
from Eq. (44) the same result already presented in [9]:

δ(0) 
 HGW
0 − H0

zHGW
0


 2.7+15.4
−12.8. (45)

As expected, this is not a very stringent constraint, but it is well compatible with our
previous estimate (43).

Conversely, we may note that using our result (43) for δ(0), and the previously
quoted [40,41] local value H0 = (73.48±1.66) km s−1 Mpc−1 for the e.m. determined
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Hubble constant, we obtain from Eq. (45):

HGW
0 
 H0 [1 + zδ(0)] 
 (73.47 ± 1.67) km s−1Mpc−1. (46)

This agrees, within the experimental errors, with the estimate of HGW
0 obtained from

the updated GW170817/GRB170817Ameasurements [37–39], and given by HGW
0 =

75.50+11.60
−9.60 km s−1 Mpc−1.

Finally, let us consider the second approach based on the direct comparison of the
gravitational luminosity distance dGW

L of the standard siren GW170817 [2] and the
e.m. luminosity distance demL of the host galaxy NGC4993 [42,43]. By working as
before to lowest order in z, by identifying to this order demL with our dL , and using the
expression (44), we are led to the numerical result also reported in [9],

δ(0) 
 dL − dGW
L

zdL

 −7.8+9.7

−18.4. (47)

Again, this is not a stringent limit, and is clearly compatible with our previous estimate
(43).

Conversely, using the numerical value (43) for δ(0), using for dL the e.m. luminosity
distance of the host galaxy [42,43], dL = (40.7±2.4)Mpc, and inverting Eq. (47), we
find no predicted difference for dGW

L , namely dGW
L 
 dL . This is because of the very

small deviations from the standard theory induced by our modified model of gravity
in the small redshift limit. This results also agrees with the estimated gravitational
distance of the standard siren [2], dGW

L = 43.8+2.9
−6.9 Mpc.

5.2 Comparison with the Einstein cosmological equations

In the standard cosmological scenario, based on the equations of theGeneral Relativity
theory, the luminosity distance of a source at redshift z, embedded in a spatially flat
FLRW geometry, is given by the well-known expression:

dGR
L (z) = 1 + z

H0

∫ z

0

dz′[
Ωm0(1 + z′)3 + (1 − Ωm0)

]1/2 (48)

(where GR denotes General Relativity). It depends on two observational parameters,
H0 and Ωm0, and is the same for both e.m. and GW signals (in general, it is the same
for all signals propagating on the light-cone of the given FLRW metric background).

In a cosmological scenario based on the modified gravitational equations (10) we
have instead two different types of luminosity distance.

We have still the luminosity distance demL associated with light-cone propagation
(and typical, for instance of e.m. signals): it is defined by Eq. (3), where, however, the
function H(z) is now a solution of the generalized gravitational equations and is thus
different, in general, from the standard expression of H(z) appearing in Eq. (48). In
addition, we have amodified luminosity distance dGW

L associatedwith the propagation
of GW signals (distorted by the presence of a non standard friction coefficient), and
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related to demL by Eq. (27). The aim of this subsection is to compare the generalized
expressions of both demL and dGW

L with the standard luminosity distance dGR
L of Eq.

(48).
To this purpose, and for a more consistent comparison, let us first evaluate the

parameters controlling the standard expression of dGR
L in the same way used for our

model of modified gravity: namely, in the same redshift range, by fitting the same
experimental data as before, the UNION 2 data set [23], and at the same fixed value
of the parameter Ωm0, namely [33] Ωm0 = 0.311 ± 0.006. The standard best-fit
procedure, starting with the expression (40) of the distance modulus written for the
luminosity distance (48), then gives:

H0 = (69.53 ± 0.24) km s−1Mpc−1, (49)

with χ2/d.o.f = 0.98. This completely fixes (with the relative uncertainty) the stan-
dard model luminosity (48) as a function of z.

We are now in the position of comparing the above expression of dGR
L with the

e.m. distance demL of our model—given by Eq. (3) in terms of the generalized H(z)
of Eq. (37)—and with the GW distance dGW

L , related to demL by Eq. (39). Of course,
the modified luminosity distances are to be computed (as emphasized also in [9]) with
the parameters determined by the associated fitting procedures [i.e. the ones reported
in Eq. (42)], while the standard distance (48) refers to the parameter (49). The plots
of the corresponding fractional corrections,

Δem(z) = demL − dGR
L

dGR
L

, ΔGW (z) = dGW
L − dGR

L

dGR
L

, (50)

together with the associated error bars, are presented in Figs. 3 and 4.
We can easily check that the behavior of the plotted functions is in agreement (at all

z) with the property dGW
L > demL , already emphasized by Fig. 2 and due, as previously

stressed, to a faster decrease with the distance of the GW signals with respect to e.m.
signals. We can also see, from Fig. 3, that Δem tends to be positive at large enough
z, and this implies that also the e.m. signals, in our modified-gravity scenario, tend
to be weaker than in the standard scenario, at large enough distances. In addition, by
comparing the plots of Figs. 3 and 4, we find that |ΔGW | > |Δem |, at any z (at least in
the considered redshift range). This seems to suggest that detecting GW signals might
represent a more efficient tool (than detecting e.m. signals) to test generalized model
of gravity on the given scale of cosmic distances.

Finally, it is important to recall that in the limit z → 0 the two modified distances
tend (by definition) to coincide, i.e. demL (0) = dGW

L (0) (as previously stressed, and as
illustrated by Fig. 2). This explains why, for z = 0, the two fractional corrections of
Figs. 3 and 4 go to the same (non-vanishing) value

Δem(0) = ΔGW (0) 
 −0.004 ± 0.008. (51)

Note that the differenceΔ(0) (still compatiblewith zero, to one sigma, in the context
of our numerical analysis), in principle can always be expected to be non-vanishing,
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Fig. 3 Plot ofΔem (z) (black dashed curve) with the relative error band (grey region), controlled by the best
fit parameters of Eq. (49) for dGR

L and of Eq. (42) for demL . In both cases we have setΩm0 = 0.311±0.006.
The use of different parameters for the two luminosity distances leads to Δem (0) �= 0 (see the text)

Fig. 4 Plot ofΔGW (z) (black dashed curve) with the relative error band (grey region), controlled by the best
fit parameters of Eq. (49) for dGR

L and of Eq. (42) for dGW
L . In both cases we have setΩm0 = 0.311±0.006.

The use of different parameters for the two luminosity distances leads to ΔGW (0) �= 0 (see the text)

because we have plotted the standard and the modified luminosity distances using, for
each curve, their peculiar best-fit parameters: that of Eq. (49) for the Einstein gravita-
tional equations, and those of Eq. (42) for the modified equations. Let us note, in this
respect, that the importance of using for each model its own set of estimated param-
eters has been repeatedly stressed also in [9]. Only in this way we obtain for Δem(z)
and ΔGW (z) a relevant quantity to be compared with observations [9]. This implies,
however, that the results we are presenting cannot be reliably extrapolated outside the
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range of z that we have considered to fit the data, and to obtain the corresponding
estimates.

6 Conclusion

In this paper we have studied the possible differences arising between the propaga-
tion of GW signals and e.m. signals—as well as the differences between the related
luminosity distances—in the context of a generalized theory of gravity with quadratic
curvature corrections.

Considering in particular the range of distances typical of Supernovae (z <∼ 1.5), we
have found that the deviations from the standard expression of the luminosity distance
is larger for GW signals than for e.m. signals (at least, in the range of redshift we have
considered). This seems to confirm previous suggestions [9,10] that GW detectors
might play a crucial (future) role in discriminating between different models of gravity
on cosmic scales of distances. For the case discussed in this paper, however, the
amplitude of GWsignals received by a distant source, after their modified propagation,
tends to be weaker than in the context of the standard Einstein theory.

It should be stressed, finally, that the main purpose of this paper is not only to
propose possible observational constraints on the particular model of gravity we have
considered, but also to present and discuss a general approach, possibly useful for
future applications to other (more general and motivated) non-standard theories of
gravity.

The particular choice of the model discussed in this paper has been motivated by
previous applications of the samemodel in an astrophysical context to study deviations
from the standard cosmological dynamics [44], as well as the detailed mechanisms of
neutron star formations [45,46]. The validity of the analysis presented in this paper is
limited to the redshift range z <∼ 1.5. We are planning to discuss the compatibility of
this model with other available cosmological data, and in a larger redshift range, in a
future paper.
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Appendix

Let us consider the field Eq. (10) for our generalized model of gravity, and expand
to first order the metric tensor, gμν → gμν + hμν , around the FLRW background
solution described by g00 = 1, gi j = −a2(t)δi j . Let us work in the TT gauge where
hμ0 = 0, ∇ j hi j ≡ ∂ j hi j = 0, gi j hi j = 0. In such a context we have the useful
identities:

gkj ḣik = ḣi
j + 2Hhi

j , (A.1)

gkj ḧik = ḧi
j + 2Ḣhi

j + 4Hḣi
j + 4H2hi

j , (A.2)

and we find δR00 = 0, δR0i = 0,

δRi j = −1

2
ḧi j + ∇2

2a2
hi j + 1

2
Hḣi j − 2H2hi j , (A.3)

δR = −hi j Ri j + gi jδRi j ≡ 0. (A.4)

The first-order perturbation of the field Eq. (10) thus reduces to

δRμ
ν + 2c2

[
RδRμ

ν + δμ
νδ(�R) − δ(∇μ∇νR)

] = 0, (A.5)

where

δR0
0 = 0 = δRi

0, δRi
j = −1

2

(
ḧi

j + 3Hḣi
j − ∇2

a2
hi

j
)

(A.6)

[we have used Eq. (A.2) to rewrite the Ricci curvature perturbation (A.3) in the form
of Eq. (A.6)].

We are left with the perturbation of the higher-derivative terms ∇μ∇νR. Using Eq.
(A.4) we obtain

δ(∇0∇0R) = δ(∇0∇i R) = 0, δ
(∇i∇ j R

) = Ṙ

2
ḣi j , (A.7)

so that, using Eq. (A.1),

δ(�R) = −hi j∇i∇ j R + gi jδ(∇i∇ j R) = 0. (A.8)

Finally, by using Eqs. (A.1) and (A.7),

δ(∇i∇ j R) = −h jk∇i∇k R + Ṙ

2
g jk ḣik = Ṙ

2
ḣi

j
. (A.9)

By inserting all contributions into Eq. (A.5) we find that the temporal and mixed
components of such perturbed equations are identically satisfied, while the spatial
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components give us the modified propagation equations:

ḧi
j +

(
3H + 2c2 Ṙ

1 + 2c2R

)
ḣi

j − ∇2

a2
hi

j = 0. (A.10)

In conformal time, where ḣ = h′/a, the equation can be rewritten as

h′′
i
j + 2

a′

a

[
1 + c2R′

H(1 + 2c2R)

]
h′
i
j − ∇2hi

j = 0, (A.11)

and thus defines the friction coefficient δ(η) reported in Eq. (18).
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