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Abstract

We use an orthonormal frame approach to provide a general framework for the first
order hyperbolic reduction of the Einstein equations coupled to a fairly generic class
of matter models. Our analysis covers the special cases of dust and perfect fluid. We
also provide a discussion of self-gravitating elastic matter. The frame is Fermi—Walker
propagated and coordinates are chosen such as to satisfy the Lagrange condition. We
show the propagation of the constraints of the Einstein-matter system.
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1 Introduction

Einstein’s theory of General Relativity provides us with the most appropriate tool for
studying the dynamics of self gravitating objects. It is therefore of clear interest to study
the structural properties of the Einstein field equations and to provide a framework for
studying their solutions. The Cauchy problem (or, initial value problem) provides a
setting for the analysis of generic solutions to the field equations parametrised in terms
of the initial conditions—for details, see [7,20,27]. In particular, one is interested in
showing that the Einstein equations admit a well-posed initial value formulation [29].
The standard strategy to address this issue is to show that the Einstein equations imply
evolution equations that are on a hyperbolic form. Physical considerations associated
to causality lead to the expectation of the Einstein equations admitting a hyperbolic
formulation despite the fact that the immediate form of the equations is not mani-
festly hyperbolic due to general covariance. Thus, it is necessary to find a subset of
the Einstein equations which indeed admits hyperbolicity. This procedure is called
hyperbolic reduction—see [24] and [17] for details; for an overview of the different
reduction methods, see [28].

The well-posedness of the vacuum Einstein equations was first shown in [ 14]—and
later in the case for dust and the Einstein-Euler by the same author [13]. These results
were obtained using a harmonic gauge to reduce the field equations to a form which
is second order hyperbolic (Leray hyperbolicity). In [2] this method is extended to
show existence of solutions locally for a self-gravitating, relativistic elastic body with
compact support. Furthermore, in [10] well-posedness of a viscous fluid coupled to the
Einstein equations is presented and in [12] a viable first order system is constructed.
In [21] the concept of first order symmetric hyperbolic (FOSH) equations was devel-
oped. The same author showed later [22] that the Einstein-Euler system could be put
on a FOSH form. In [18] a different approach, which makes use of a formulation in
terms of frame fields, is employed to construct evolution equations for the Einstein—
Euler system which also are on the form of a FOSH system. This method has the
advantage that the reduced equations are symmetric hyperbolic while still maintain-
ing a Lagrangian form—which is important in order to keep track of a boundary in
the case of matter distributions with compact support.
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As is made clear by the discussion above, it has been customary up until now to
apply the hyperbolic reduction procedure to individual matter models separately—i.e.
for every particular type of energy—momentum tensor. The motivation for our study
is provided by the observation that the energy momentum tensor for a perfect fluid,
elastic matter—see [3,4,23] for details—and bulk viscosity—e.g. see [5,6,11,25,26]
and references therein—may be put on a form consisting of a part involving the 4-
velocity u and energy density p and a part involving a spatial symmetric tensor II.
Thus, by “hiding” the specific matter variables in the tensor IT one cannot differentiate
between elastic matter, perfect or viscous fluid by considering the energy momentum
tensor alone. By employing a hyperbolic reduction of the Einstein field equations
coupled to an energy—momentum tensor on such a general form, we provide the
necessary conditions for such a matter model to form FOSH evolution equations. We
show that one can avoid the details of the specific matter models in the construction of a
FOSH system by introducing an auxilliary field. Furthermore, we provide a constraint
on the 11 on the form of a wave equation, which must be satisfied for the system to be
put on a FOSH form.

The procedure we employ to obtain these evolution equations is similar to that
of [18] and may be described as follows: we introduce a frame field to replace the
metric tensor as a variable and fix the gauge by choosing Lagrangian coordinates—i.e.
one of the vectors of the frame field is chosen as to coincide with the 4-velocity of the
particle trajectories; we also let the rest of the frame be Fermi propagated. By virtue
of the Bianchi identity and assuming the connection to be Levi—Civitas we show that
the solution to a set of new field equations constructed with so called zero-quantities
implies the existence of a metric solution to the Einstein field equations. A subset
of these equations provides the symmetric hyperbolic evolution equations. As part
of this construction, it turns out to be necessary to introduce an auxilliary field to
remove derivatives of the energy—momentum tensor from the principal part of the
evolution equation of some of the geometric fields. The evolution equation of TI—
which encodes the matter fields—is given in terms of the electric decomposition of the
auxilliary field. Finally, we make use of the evolution equations, Cartan’s identity and
the Bianchi identities to show the propagation of constraints. It is important to stress
that due to the generality of the procedure, we do not provide an equation defining p.
It is therefore necessary to provide an equation of state (or the equivalent) when using
our equations for a specific matter model. We treat dust and perfect fluid as examples
at the end and briefly discuss elastic matter.

A limitations of our procedure is in requirement of IT being a purely spatial tensor—
indeed, without this requirement the energy momentum tensor would take its most
general decomposition form. The difficulty of allowing IT to have timelike components
resides in the procedure of keeping the hyperbolicity of the theory. We have used the
spatial property of II extensively in the process of eliminating problematic derivative
terms from the principal part of the equations. We also assume that the equations
of motion for a matter system may be entirely determined by the divergence-free
condition of the energy—momentum tensor. Thus, any matter models which require
additional equations to close the evolution of the matter variables, are not considered
herein.
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Lastly, we should mention that a very good discussion of the Einstein—Euler-entropy
system is found in [9] where a complete discussion of the arguments of the framework
put forward in [18] is given.

Overview of the article

In Sect. 2 we introduce the geometric tools necessary for the subsequent discussion;
in particular the frame formalism is introduced. The Einstein equations together with
the energy momentum tensor is presented in Sect. 3; we also give a brief review of the
projection formalism. In Sect. 4 we outline the gauge choices and in Sect. 5 we present
the zero-quantities used in the propagation of constraints. The evolution equations for
our system are derived in Sect. 6. In Sect. 7 we show propagation of constraints and in
Sect. 8 we present the reduced equations for the special cases of dust and perfect fluid.
A brief discussion of self-gravitating elastic matter is also presented. Final remarks
are given in Sect. 9. An Appendix provides an extended discussion of a framework
for relativistic elasticity—this model provided the main motivation for the present
analysis.

Notation and conventions

Throughout, for convenience, we use a combination of abstract-index and index-free
notation to denote the various tensorial objects. Greek and Latin letters will be used
as coordinate indices in the spacetime manifold, where i, v, A, ... = {0, 1, 2,3} and
i,j,k...=1{1,2,3}. To denote frame indices we will make use of bold latin letters
where a,b,c... ={0,1,2,3}and i, j, k... = {1, 2, 3}. Hence, the components in
a frame basis of a vector v € M is thus labelled v?.

2 Geometric background

In what follows, let (M, g) denote a spacetime represented by a 4-dimensional man-
ifold, M, with a Lorentzian metric g. The motion of particles of some matter filling
spacetime give rise to a natural splitting by constructing frames comoving with the

flow lines of the particles. One advantage with such a view is that it does not require
a foliation. We shall denote the tangent vector to the flow lines as u satisfying

gu,u)y=—1.
At each point p € M the frame field {e,} is such that
8(eq, €p) = Nab-
The frames {e,} give rise to a co-frame, {®w?*} satisfying
(eq, @) = 84°.
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In the following all indices will be given in terms of the frame and co-frame unless
otherwise stated. The metric tensor give rise to a natural connection V such that
Vg = 0, which is the metric compatibility condition. In terms of the frames, this
condition takes the form

l—‘abcnbd + l—‘abdnbc =0, (D

where the frame connection coefficients are defined by the directional derivative along
the direction of the frame indices

Vaep =Ta‘pec, Va = (€4, V).
Furthermore, if the connection V is forsion-free, we have that
2 =0, (2)
where the frame components of the torsion tensor are defined by
a‘pec = [eq, ep] + (Facb - 1—‘bca) €c.

The commutation of the connection may be expressed in terms of the Riemann cur-
vature tensor and the torsion tensor

Via Ve v’ = Reaapv® + o pVar©,
VieVoiwe = —R? capwa + o pVawe.

The frame components of the Riemann curvature tensor is given by

Reaap = 84T — 5T a + T ra(Cpl o — Talp) + TpT alu
Tl alp p — 0! 3T 4% (3)

—see [24] for details. The Riemann tensor has all the usual symmetries, and it satisfies
the Bianchi identity for a general connection

R teap) + ViaZs?e) + SiapTere = 0, @)
V[aRd\e\bc] + Z[abed‘emf = O (5)

Furthermore, we recall that the Riemann tensor admits the irreducible decomposition
R 4ab = CCdap + 2(8%[aLbja — NajaLp)®), (6)

with C€ 445 the components of the Weyl tensor and

1
Lap = Rap — anab (7
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denotes the components of the Schouten tensor. The connection V is called the Levi-
Civitas connection of g if it satisfies (1) and (2). In what follows we will assume the
connection to be Levi—Civitas.

3 The Einstein equations

In this work we consider the Einstein equations
1
Rap — EnabR =«Tap (®)
with energy—momentum tensor on the form

Tap = puqup + Mgp. 9)

where p is a positive function of the matter fields. We require I1,; to be a symmetric
and purely spatial tensor—i.e.

apu® =0, (10a)
Mg = H(ab)- (10b)

We do not put any further restrictions on I, other than it satisfies the divergence-free
condition of (9)
V4Tap = 0. (11)

Remark 1 An energy momentum tensor of the form given in (9) is of a very general
form and the conditions (10a), (10b) are not stringent restrictions. Thus, the power of
the formalism developed herein lies in its generality: given an equation for p in terms
of the matter fields, one can ignore the matter specific equations of motion and instead
solve equations for I1,;. The equations obtained will then be symmetric hyperbolic.
This assumes that one can extract the complete set of equations of motion for the
matter fields from (11).

A projection formalism

At each point in the spacetime manifold M the flow lines give rise to a tangent space
which can be split into parts in the direction of # and those orthogonal. This means
that without implying a foliation, we may decompose every tensor defined at each
point p € M into its orthogonal and timelike part. This may be done by contracting
with u and the projector defined as

ha® = na® +uau®,  u=ue,.
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Thus, a tensor T, may be split into its time-like, mixed and space-like parts given,
respectively, by

b / b 1 b
Too = u“u’Typ, Ty, = uh® Typ, T,= “ch’ qTap,

where " denotes that the free indices left are spatial—e.g. T,qu® = 0. Decomposing
Vu we obtain
Vau® = xa® + uad”, (12)

where x,? and a? are the components of the Weingarten tensor and 4-acceleration,
respectively, defined by

xa = haVeu®,  a® =uvoul.
In the literature (e.g. see [29] p.217) the trace, trace-free and antisymmetric part
of (12) is called, respectively, the expansion, shear and the twist of the fluid. By

decomposing (11) we obtain an equivalent system of equations in terms of the above
quantities

Val-[ab = —app + ubnachc, (13a)
U'Vap = —px — Mapx . (13b)

The decomposition of the four volume is
- _ — a
€abcd = Ula€blcd — €ab[cUd]) » €bcd = €abcdU -

Given a tensor T, which is antisymmetric in its two last indices, we may construct
the electric and magnetic parts with respect to u. In frame indices this is, respectively,
defined by

Ecq = Tabehcahdbuey Bea = T*abehcahdbuey

where the Hodge dual operator, denoted by *, is defined by

1
T*pe = —=€™

2

n
be Tamn

and has the property that

*k
T gpe = —Type-

Depending on the symmetries and rank of the tensor, the above definition for electric
and magnetic decomposition may vary slightly. Central for our discussion is that E,p
and By are spatial and symmetric.
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4 Gauge considerations

The gauge to be considered in our hyperbolic reduction procedure for the Einstein
field equations follows the same considerations as in [18]. In particular, we make the
following choices:

i. Orientation of the frame. We align the time-leg of the frame with the flow vector
u tangent to the worldlines of the particle—that is, we set

ii. Basis in a coordinate system. Given a coordinate system x = (x**) we expand the
basis vectors as
eq =eq"9,. (14)

Given an initial hypersurface, S,, then the coordinates (x/) defined on S, remain
constant along the flow and, thus, specify the frame.

iii. Lagrangian condition. The implementation of a Lagrangian gauge is equivalent
to requiring that eg = 9, where 7 is a suitable parameter along the world-lines of
the material—e.g. the proper time. In terms of the components of the frame, this
condition is equivalent to requiring that

ept = So™. (15)

iv. Fermi Propagation of the frame. We require the vector fields e, to be Fermi
propagated along the direction of ep—i.e.

Voeq, + g (eq, Voeg) eg — g (eq, €9) Voeq = 0.
This implies the following conditions on the connection coefficients:

Ty'j =0, (16a)
Iy’ =0, (16b)

fori, j = 1, 2, 3. The second condition is a consequence of the metric compat-
ibility condition. A frame satisfying the above equation is a frame where eg = u
and {e; } is orthonormal at every point along the trajectory for which u is the tangent
vector.

@ Springer



Evolution equations for a wide range of Einstein-matter... Page9of36 103

5 Zero-quantities

In the subsequent discussion it will prove convenient to introduce, as a book-keeping
device, the zero-quantities

Adabc = Rdabc - pdabc'a (17a)
Fpea = VaFped, (17b)
Neab = Zeab — zv[a 1_[b]m s (17¢c)

where L., denotes the components of the Schouten tensor as defined by Eq. (7).
Moreover, by R . it is understood the expression for the Riemann tensor in terms
of the connection coefficients Fab ¢ and its frame derivatives. We have also defined

pdabc = CA‘dabc + 2nd[b£c]a - 2na[bltc]d’ (18a)
Féaba = CCaba — 20°pLatas (18b)
anb = ZV[,,I'I,,]C, (180)
~ 1

Lab = Ttlb - gnabT, ) (18d)

where €4, is defined as having the same symmetries as the components of the Weyl
tensor Cdabc.

Remark2 The components pdab . are known as the algebraic curvature and encode
the decomposition of the Riemann curvature tensor in terms of the Weyl and Schouten
tensors while ¢, = are the components of the Friedrich tensor. The latter provides a
convenient way to encode the second Bianchi identity for the curvature.

Remark 3 The tensor Z.,p, hereafter to be referred to as the Z-tensor, is introduced in
order for the evolution equations of the electric and magnetic part of the Weyl tensor
to be expressed in terms of lower order terms—i.e. preventing any derivatives of 1,
to appear in the equations and hence keeping their hyperbolicity.

In terms of the objects introduced in the previous paragraphs, the Einstein field
Egs. (8) can be encoded in the conditions

VT =0, (19a)
X =0, (19b)
A, =0, (19¢)
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More precisely, one has the following result:

Lemma 1 Fora given p, let (Lab, etq, Tyfp, C abc) be a solution to Egs. (19a) (19d)
for which the metric compatibility condition (1) holds. Then (Lab, e, Tap, C abc)
implies the existence of a metric g solution to the Einstein field equations (8) with
energy—-momentum tensor defined by the components Tpp. Moreover, the fields lol abe
are, in fact, the components of the Weyl tensor of g.

Remark 4 Note that Egs. (19a)—(19d) do not provide a closed system of evolution
equations for the unknowns of our system. They are only the necessary equations for
giving Lemma 1.

Proof The frame {e,} obtained from the solution to Eq. (19b) implies, in turn, by
the condition (w?, e;) = 8,” the existence of a coframe {w”?} from which one can
construct a metric tensor g via the relation

g = Nap®” @ w".

Since the coefficients I',€, satisfy the no-torsion and metric compatibility condi-
tions (19b) and (1), then they must coincide with the connection coefficients of the
metric g with respect to the frame {e,}. Moreover, by Eq. (3) we have that

pd d
R abe = R ape,

where Rdab,: denotes the frame components of the Riemann curvature tensor. Using
the Riemann decomposition as defined by Eq. (6) together with Eq. (19¢) we obtain

A

Cdabc + 277‘1[ch]a - 2na[ch]“ = Cdabc + 277“ [bic]a - 277(/z[bilc]a~ (20)

Taking the trace of Eq. (20) with respect to the indices b and d and using the trace-free
property of the Weyl tensor and C? pe we obtain

1 A 1 ~
Leg + zncade = Lea + E’?cade- 2D

Finally, taking the trace of Eq. (21) and using Egs. (11) and (5), we get the identity,

The latter shows that iab are, in fact, the components of the Schouten tensor of the
metric g. Using the definition of the Schouten tensor in terms of the Ricci tensor,
Eq. (7), it follows readily that the metric g satisfies the Einstein field equations with
an energy—momentum tensor defined by the components 7,p. Returning to Eq. (21)
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we conclude by the uniqueness of the decomposition of the Riemann tensor that the
fields C¥4p, are, in fact, the components of the Weyl tensor of g. O

Remark 5 In the following to ease the notation, and in a slight abuse of notation we
simply write C d abe instead of Cd,,bc.

6 Evolution equations

Given the gauge conditions introduced in Sect. 4, the next step in our analysis involves
the extraction of a suitable (symmetric hyperbolic) evolution system from Eqgs. (19a)—
(19d). We do this in a number of steps.

6.1 Equations for the components of the frame

The evolution equations for the components of the frame ¢," are obtained from the
no-torsion condition (19b). In order to do so we exploit the freedom available in the
choice of the frame and require it to be adapted to the world-lines of the material
particles and the gauge conditions outlined above.

Making use of the expansion (14) in Eq. (19b) one readily finds that

ea0uep” — eptduea” = (Tap — Tpa) ec”.

Setting @ = 0 in the above expression and making use of the Lagrangian gauge
condition (iii) we obtain

doer” — (Tos — I'p0) ec” = 0. (22)

This last equation will be read as an evolution equation for the frame coefficients ep”
with b = 1, 2, 3. As it only contains derivatives along the flow lines of the matter,
it is, in fact, a transport equation along the world-lines. Observe that for b = 0 the
equation is satisfied automatically—recall that as a consequence of the Lagrangian
condition (15) the coefficients ep* are already fixed.

Remark 6 Assuming that the gauge conditions (i), (ii) and (iii) above hold, Eq. (22)
can be succinctly written as

Yo% = 0.
This observation will be of use in the discussion of the propagation of the constraints.
6.2 Evolution equations for the connection coefficients
The evolution equations for the frame components are given in terms of the frame

connection coefficients. Due to the Fermi propagation and the metric compatibility,
Eq. (1), the independent, non-zero components of the connection coefficients are r;* js
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I'0%; and I';;. Evolution equations for I';¥ ; may be extracted from the equation for
the algebraic curvature (19c). More precisely, we consider the condition

AdcaO =0,

which implies

A

d d
R ca0 = 0% cao-

The Riemann tensor can be expressed in terms of the connection coefficients via
Eq. (3). Furthermore, using Eq. (18a) and the gauge condition (iv), we obtain

0T k =~/ kTito — Tod o1 % + il oT0"% — C7 . (23)

W.here i, j, k,...=1, 2, 3.1Inthe above calculation we have used that I1,9 = 0 and
n'o=0.

Remark 7 Assuming that the gauge condition (iv) holds, Eq. (23) is equivalent to
Afqpp = 0.

Observe again, that the resulting equations are, in fact, transport equations along the
world-line of the material particles.

The evolution equations for the remaining connection coefficients will be obtained
by splitting [T, into its trace and trace-free part,

1
Map = Migpy + gnnab,

where IT4p) denotes the trace-free part of I1,5. Plugging this into (13a) and (13b), we
obtain

1 1
VT gy = —gvbn — pap + upTliaey x““ + §HX’4b, (24a)
1
uNVap = =px = Man x* = 3Mx. (24b)

In the above and throughout we have put IT = I1¢,. Since V4 VpIT = 0, we obtain
from Eq. (24a) that

Jap =0,
with
Jab = —2pVpag + 2aia Ve p + 2Maey x *“ Viaup) + 2uipVay (Miacy x )

2 2
+ anv[dub] + gu[bvd] (Tyx) — ZV[dVaH{b]a}.
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The last term may be written,

ViaVTpiay = =R pa" Mima) + R™ ap” Mimay + 2R™ (aMiaim) + V Zaas,

(25)
= 2R" (aMaim) + V* Zaas,

where we have used the symmetry of the Riemann tensor in the last step. A straight
forward calculation shows that,

Zaab = VmC™ adb + Padb,

where
Paap = ;V[d(nb]a T) —2Via(pupia).
Using that,
VaVpC%eq =0,  ViuVyT =0,
we have,

V4 Zaap = —2V*Via(pupjua). (26)

Substituting this back into (25), we may now write the {0, i} components of Jzp as
Joi = —2pVoa; — Ro/ Tij —2ai px —2a; i " +al pxij—pVjxi’ +oVix. 27)

In the above expression we have used the Lagrangian gauge condition to set u; = 0.
Finally, using the definition for a;, we readily obtain

300T0% — 0/ ;0% = —2aix +a’ xij — 07T % + Tk — T/ pxi*
1 . . .
- (ROJHij + Zail'lijx”) —T;%x7i = Toix (28)
+ Lo/ iTo®; + 0/ 1 ;1% + /im0

To obtain the evolution equation for the remaining connection coefficient, we consider
the {i, j} components of Jgp:

1 1
ol = ;2Rjknik - ;Riknjk — xaj xi* + i xi* 4 90T % + 0iTo’

L Vi — 5T — 190V 0 — FO%a: 4 T %a: 4 Tk ?
+,0 ajVvip a_]FOI P ai Vvijp I 0“]+F] oai + 0" ik Jj

+ Dok 1% — To* T — Do*im %% + Dok iTo % — Do To%.
(29)
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From Eq. (3) we have,

9;T0% = aor';% — R%0j + % (T 9 — T/ )
—i—ijiF()Of —Fofil“j”f —Eofjl“f“,-.

Substituting this back into (29) gives the final evolution equation:

0 0 2 ok k4 0
ol ; — il j = ;R[j ik + 2 xkpi X1 +;a|jVi]/0—R i0j
30
— 1T %0 — 0% — Ti%a; + T %a; ©0)

+ FOkiFkOj + FokjFiOk + To*iTo% — FijFOOk-

Equations (28) and (30) are on a form which is known to be symmetric hyperbolic—we
refer again to [1] for details.

Remark 8 The presence of a spatial derivative of p in Egs. (28) and (30) means that an
equation for p is necessary to ensure the hyperbolicity of the equations. Furthermore,
the choice of p must at least be C'. In other words our treatment does not allow for
discontinuities in the matter source.

6.3 Evolution equations for the decomposed Z-tensor

It is well known that in vacuum the Bianchi equation leads to a symmetric hyperbolic
equation for the independent components of the Weyl tensor. By contrast, an inspection
of the definition of the Friedrich tensor Fypcq, Eq. (17b), reveals that the condition
Fape = 0 involves both derivatives of Cgpeq and the matter variables. This potentially
destroys the symmetric hyperbolicity of the equation for the components of the Weyl
tensor. In the following we will show that it is possible to deal with this difficulty by
providing two auxiliary fields—the Z-tensor and o -tensor as defined by Eqgs. (18c)
and (34), respectively.

We first define some important quantities and identities used in the following dis-
cussion. The Z-tensor has the symmetries

Z[abc] = Os Zabc = Za[bc]-

The symmetry of the Z-tensor thus allows for a decomposition in terms of its electric
and magnetic parts defined respectively as

d b d b
Wae = Zepaut haehc > Dy = Z:bdu haehc s
where Z7, . is the dual Z-tensor defined in the customary way. The electric and
magnetic part of the Z-tensor are symmetric tensors defined on the orthogonal space
of u —i.e. one has that

Wye = \Ij(ac)s qjacua =0, Dy = q>(ac)a CI)acua =0.
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As such, the Z-tensor and its dual may be expressed in terms of the spatial fields

Zeab = Yeptta — Yealtp — €ap’ Pee + ”cndb)(ad - ”cndadea (31a)
Z*amn = %\Ijacfmnc + Uim n]a + Emminc Xa - ]EmncnadXCd~ (31b)

By plugging the definition for the Z-tensor into the definitions of W,p and Pgp,
respectively, we obtain an evolution equation for the matter tensor I1, in terms of
W, together with a constraint equation. Namely, one has that

u'Vall pp = a"um Tl g4 +a”ufl'lma —Mnaxf* = Vpm, (32a)
E€f anH “ —efbaum ¢ X “l‘q)fm (32b)

where Dj denotes the Sen connection defined as,
Dplleg = hp*Valleq.

Itis worth noting that due to the 143 split of space time, we do not have a spatial metric
on the 3-dimensional hypersurfaces. Hence, we cannot define a spatial derivative—i.e.
a spatial metric satisfying the metric compatibility condition does not exist on the three
surfaces. Equation (32b) is regarded as a constraint equation.

Remark 9 Note that Eq. (32b) will always hold as long as the definition of the Z-tensor
(i.e. Eq. (18c)) propagates. This will be showed in Sect. 7.

In order to close the system and to ensure hyperbolicity a set of evolution equations
for the fields W,p and ®,p are needed. In the rest of this section we shall develop these
equations and show they form a first order symmetric hyperbolic system.

The evolution equations for W, is obtained by taking the divergence of the Z-
tensor—i.e we have the equation

V8 Zeap = 2V0 V[, .

Expanding the above equation and using the decomposition of the Z-tensor—i.e.
Eq. (31a)—we obtain after a number of steps the equation

ubvb“yac - 6abd,Dch)cb = Wae, (33)
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where W, denotes the lower order terms and is explicitly given by

Wap = —Zab\llcbua - ab\IJabuc
— apaluqucp + aleapa®? + a®auqucpa + Rapea 1™
+ Rabncb + ”uubRbdncd + ”bucRadbe Hde
+ 2uqub Reape 119 + 2uaubucudeedf nef
- ab”cPXab + abua 1_[chbd + \I"cbXba - \I’achb
- acuaPXbb - nadedec
— Wpattate X + €paetta e x P + echerta®a® x*?
+ eabe”cq:)dexbd
- acuanbdxbd - 1_Ibanchd - 3uaucndeXbede
— aPugMpaxe® + a®ualpax?.
+ Mpaxa® x%e + aPuallepx?a + 2uquepe x* x“a
+ pVaac +acVap + Maubpvbac
b d b de bd
+uqu MegVpa® + uqu”ucllgeVpx©° + 0ac + g Wpatte x
— Ua€cda quade + uUq Hdechd
+ ubucaab + uaubacb + uaucnbdvdab
— Ug l'[dedx,;b + 2uaubucudabd.
In the above, we have defined
Oab = Vcvcnab- (34)
Note that the derivatives of y4p and a, may be expressed in terms of the connection
coefficients and thus dealt with by (23) and the definition for the Riemann tensor—i.e.
we have
Xab = hamhbnrmonv g = hacFOCO'
In obtaining Eq. (33) we have used standard tensor manipulations involving the com-
mutation of derivatives using the Riemann tensor and frequently making use of the
spatial property of I1,p to get rid of derivatives. In particular, we have used the iden-
tities
2 Vallgp = —x“"Vallaa + L.O.T,  Vallpe = Zeap + VoTlac,

where L.O.T is a shortening for “lower order terms”. The first is obtained from con-
sidering V? Z!p and the second is a trivial result of the definition for the Z-tensor.
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Remark 10 To preserve the hyperbolicity of Eq. (33) it is understood that the tensor
ogp 18 given in terms of lower order terms. It can readily be shown that g9 = L.O.T
from the temporal part of Eq. (33); with the symmetry of 0,4, it is thus 9 components
which need to be specified:

oap = F (L.O.T).

To obtain the evolution equation for the field ®,3, we proceed in a similar way as
above by considering the dual equation,

VbZ*cab = _eabdevbv[d 1_[e]c

By applying the decomposition (31b) and expanding we obtain after a few manipula-
tions the evolution equation on the desired form,

“bvb Pyc + €abm D™ \chb = Uac, (35)
with U, denoting the lower order terms —explicitly given by

Uge = _ab‘pcmfabm - abua Dep + 26b"dua Remnd ™
- 26mnd’/‘a Rbmnd ch

- Eand“bRbmnd“cm - €and”bRbnmd "

+ Eamd”bchbd " + (chXba

- q>achb - 2\ycn€bmnuaxbm

- wmnéabnucxbm + 2uauc¢'bmxbm - aceabnnmnxbm

- Eabd"icl_[nd)(bm)( +a Emnd”aucnbd m

- Ebmd”cnndeaX

+ 6amducHndeme" - 26bmd“annd)(bcxm"

d_ b
— €mndallp” Xc an

+€bnduancmXmend+€amdu ucnn Vpx™"

+ 2€pnatiaiie V" x ™.
Equations (33) and (35) are on a form known to be symmetric hyperbolic—see [1] for

a more detailed discussion. We note that we have made ample use of the suite xAct!
to obtain WV and U.

Remark 11 1In the expressions for W, and U, it is understood that wherever RY “abe
appears, it is to be evaluated using the decomposition in terms of the c abe and Lab

I See http://www.xact.es for more information.
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6.4 Evolution equations for the decomposed Weyl tensor

The construction of suitable evolution equations for the components of the Weyl
tensor follows a similar approach as in the previous discussion. Again, the strategy is
to decompose the Weyl tensor into parts orthogonal to the 4-velocity—i.e. one needs
to understand the form the Weyl tensor takes on the orthogonal space to the 4-velocity.

Due to the symmetries of the Weyl tensor, the essential components are encoded in
what are called the electric and magnetic parts of the Weyl tensor defined, respectively,
as

Eqe = Cebfdubudhaehcf: Bge = C:bfdubudhaehcf:

where C;, . denotes components the Hodge dual of the Weyl tensor. In terms of

these spatial tensors, the frame components of the Weyl tensor and its dual admit the
decomposition

Cabed = =2 (IpicEdja — laicEam) — 2 (ure Ba1p€® ab + uia Bo1p€® ca) »
Caped = 2U1aEp1p€? ca — 4EP [a€pipietta) — 4utjaBpiictta) — Bpge” ave oy,

—see e.g. [24] for details. For convenience we have written
lap = hap — ugqup.

In order to obtain evolution equations for E,p and B,p, we make use of the following
decomposition of the Bianchi identity (19d) and its dual:

Fyea = up (Foeotta — Fogoe) + 2Fb/0[cud] — upFoeq + Fpeq: (362)
Fhea = ub (Fogotta — Fogotte) + 2Fpgicta) — upFogq + Fpq- (36b)
The term Fuop = —Fapo in Eq. (36a) gives the evolution equations for E,p. More

precisely, after a long computation one finds that

UVeEap — €aef DI By® = 36 Wap — a°Epettq — a° Eqeltp
- éK\I’cchab + acecefBaehbf — kaupTlge
— kauqTpe + 3k peXa® — 360 Xba — EacXp°
— Sk Tacxs” + 2Epex a — 2Eapx e + $kphapx e

— Ecahabx® + €cacr By*ha” x° + eapaupBe” x%.
37
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Similarly, the symmetric part of the term F,, in equation (36b) gives the evolution
equations for Bgp—namely,

udVdBab + DfE(dea)df = —%adEbeadf — %adEabedf
- adubBad — aduaBbd — %chab — %KadEbdeaf
- Zl;’“ldeadfnbf + %Bbdxad + %Bad)(bd + Bpax“a

+ Baax®s — 2Bapx?a — YE fCepacuax™

— YEfCeqacupx™ — Baphapx™ .
(38)
We note that Eqgs. (37) and (38) are on the same form as the one given in [18] and
constitutes a symmetric hyperbolic system of equations. We refer once again to [1]
for an explicit discussion.

Remark 12 The standard approach to show that Egs. (37) and (38) constitute a sym-
metric hyperbolic system ignores the tracefreeness of the fields E,p and B,p and list
12 components in a vector. Thus, a posteriori it is necessary to show that the fields
are tracefree if they were so initially. This is discussed in Sect. 8.

6.5 Summary

We summarise the results of the long computations of this section by the following
proposition:

Proposition 1 The evolution equations for the matter fields as expressed by Tlgp is
given by (32a) and satisfy the constraint (32b). Furthermore, the evolution equations
for the geometric fields e,", Fabc, Eap, Bap and the auxiliary fields Vap, ©gp are
given, respectively, by

Zoeb =0, (39a)
A% a0 = 0, (39b)
Jia =0, (39¢)
Fapo = 0, (39d)
Flipo = 0. (39%)
VP Neas = 0, (39f)
VPN, = 0. (392)

The above evolution equations constitutes a symmetric hyperbolic system. The remain-
ing equations from (19a)—(19d) are considered constraint equations.
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7 Propagation equations

In order to complete our analysis of the evolution system, we need to show that
the equations that have been discarded in the process of hyperbolic reduction (i.e.
the constraints) propagate. In this section we will, therefore, construct a subsidiary
system for the zero-quantities X¢,p, A9 b and Fape. The task is then to show that
either the Lie derivative of the constraints vanish, or that it may be written in terms
of zero-quantities. A key observation in this strategy is the fact that several of the
zero-quantities can be regarded as differential forms with respect to a certain subset
of their indices —thus, Cartan’s identity can be readily be used to compute the Lie
derivative in a very convenient way.

Remark 13 In what follows one should be careful when evaluating the covariant deriva-
tive of a tensor fields in frame coordinates. The following order should be employed:
first, evaluate the tonsorial expression for the derivative of the tensor, then write the
expression in a frame basis, and lastly do any contractions if necessary—e.g contract-
ing with the four velocity.

7.1 Propagation of divergence-free condition

The divergence free condition gives rise to two equations: on the one hand, Eq. (63b)
is an evolution equation for p and the other hand Eq. (63a) a constraint for I1. As such,
the latter needs to be shown to hold on the whole space time if satisfied on an initial

hypersurface.
We first define the zero quantity,

Op = Vlap +app — upllaex .

As is obvious from the above, Qp = 0 must hold for the Einstein equations to be
satisfied. By contracting with u it is readily shown that Qg = Qpu® = 0. Thus it is
sufficient to only consider Q; in what follows. A simple calculation shows that,

2V1a Op) = 2V Zaap + 2Va (ap1p) + 2Re" (d1a) 5
— 2V (up)Tacx ) + 4214 1a) Ve Ip“,

where we have used the commutation property of the connection followed by the
definition of the Z-tensor, as well as,

2R ad1alle” = 0.

By using Eq. (26) and multiplying through with u¢, followed by applying Egs. (17a)
and (27), we obtain the propagation equation,

u'Va Qi = — 07 xij + MMy + 25" j T i 4+ 25,0 j T ak. (40)
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Note that p jkOk = 0 due to the divergence free property of Weyl and Tp; = O as a
consequence of the gauge. We have also made use of the evolution equation X¢¢, = 0.

7.2 Propagation equations for the torsion

For fixed value of the index e, the torsion X, can be regarded as the components of
a 2-form—namely, one has that

3¢ = T3¢0’ @ of.
Using Cartan’s identity to compute its Lie derivative along the vector u one finds that
LY =i, dX° +d(i, X). 41)

The second term in the right-hand side of the above equation can be seen to vanish as
a consequence of the evolution equations (cf. Remark 6) while the first one involves
the exterior derivative of the torsion which can be manipulated using the general form
of the Bianchi identity. For clarity, these computations are done explicitly using frame
index notation.

Following the general discussion given above consider the expression VipX,
which roughly corresponds to the first term in the right-hand side of Eq. (41). Expand-
ing the expression one readily finds that

3VioZa s = VoZap + VaZp0 + VX0
=VoZap —Ta0Zp e — Tp02a .

Now, we compute V9%, in a different way using the general expression for the
first Bianchi identity (i.e. the form this identity takes in the presence of torsion):

Rd[cab] = _V[a z:bdc] - z:[aebzc]de~

Setting @ = 0 and making use of the zero-quantity defined in (17a) to eliminate the
components of the Riemann curvature tensor one finds that

3V Zs e = =A% 0n — Z0¢5 e
= —A%p,

where we have used the fact that
0 cab) = 0

and the evolution Egs. (39a) and (39b) in the last step. From the above discussion it
follows the propagation equation

VoZas = Ta“0Zp% + [0 Za’e — A%0pe. (42)
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Remark 14 The main structural feature of Eq. (42) is the fact that it is homogeneous
in the zero-quantities $,5 and A% ..

7.3 Propagation equations for the geometric curvature
Next we turn to Eq. (19¢). For this we observe that the zero-quantity A4 4p for fixed

values of d and ¢ can be regarded as the components of a 2-form on the indices a and
b. Using again Cartan’s identity one finds that

LuAY, = i,dAY, +d (iuAdc> .

Now, the last term in the right-hand side vanishes due to the evolution equation for
the connection coefficients (see Remark 7), while the first term takes the form

iudAdc = V[()Ad‘c‘ab]wa ® w".

As in the case of the torsion, the strategy is to rewrite this expression in terms of
zero-quantities only. For convenience in the following calculations we set

Sab*" = 84585 + 8485 — napn®. (43)
From Egs. (5) and (18a) it readily follows that
ViaA i1 = ViaC%eppe1 — SV oipVaLey — Ef[abele|c]f-
To simplify the calculations, we multiply by €,%%¢. The first term yields
¢V C gpe) = =2V, CF)12,. (44)
while the second term gives
Y Sep™ Vol = —€9VaLee + €107 Vo Les (45)

where we have made use of the definition (43) and the symmetry of the Schouten
tensor. Now, from Egs. (17b), (18b) and (19d) we readily obtain that

™ VipLera = —€1"" Fape + €™ Vi C™ ape.
Plugging this result back into (45), we obtain

6lache[bdfvaic]f = 6ld‘erac - ndffleachac

(46)
+ ﬂdfzvuc*afle _ Zvac*bmaeld_
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Putting the result for calculation (46) and (44) together, we obtain

6labcva,odebc = 6ldacFeac - ndféleachacs
where we made use of Eq. (4). Multiplying by € mnp»> We recover the equation in its
original form. Thus, the right-hand side of the propagation equation for A4 clab] 15

given by
V[OAd\e\bc] = —ne[odec] + nd[oF\e\bc]- 47

But we also have that,
V[oAd|e|bc] = VoA? pe — FcfoAdefb - beoAdecf~
Plugging the above result back into Eq. (47), we obtain the final propagation equation

V()Adebc = _Ue[Odec] + 77d[0F|e|bc] + 1_‘chAdefb + beOAdecf- (48)

Remark 15 As in the case of the propagation equation for the torsion the main conclu-
sion of the previous discussion is that the propagation equation for the zero-quantitity
Adabc is homogeneous on zero-quantities.

7.4 Propagation of the N-tensor
It is also necessary to show that Ngp.—see Eq. (17c)—propagates. The strategy will
be different than what has been employed in the above discussions; rather, we will
follow the strategy employed for the propagation of the Friedrich tensor in [17].

In the subsequent discussion we shall make use of the observation that,

VbN/*cab =0, N/cﬂb =0, N/*c()b =0.

respectively are equivalent to the evolution equations for Wgp, ®4p and 1,5 and the
constraint equation as given in (32b). Furthermore, we define the fields,

Eab = N"ap0.  2ab = Noap-
By decomposing N*gp, in terms of the fields A, and &,p, we have
N*cab = Ecaltp — Ecpita + 3haeuipea)™ute (49)
Using the symmetry relation
Niabe) =0,
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we obtain the expression
Aab = N'pa0 — N’ apo.
But from the evolution equation for I1,p, we have that N'p,9 = 0, thus
Aap = 0.
Applying the above result, and the divergence in Eq. (49) we obtain,

upVP&ea = Ecaa®ug — Ecax + Ecnxba.

To obtain the above we have used the evolution equation for ®,p and multiplied
through with the projector 4% to get rid of a divergence. This is permitted as the field
&,p 1s spatial. Thus, we have established the following lemma:

Lemma 2 [fthe constraint &4 = O0—equivalently Eq. (32b)—holds initially, and under
the assumption that the evolution Egs. (32a) and (39g) holds everywhere on M, then
the relation,

anb = 2v[a Hb]cw
also holds everywhere on M.

7.5 Propagation equations for the Bianchi identity

Lastly, we need to show propagation of the Bianchi identity, Eq. (19d). Again the
strategy is to use the decomposition of the Friedrich tensor and its dual and use the
divergence to obtain propagation equations for the constraints.

First, we shall express the divergence of Fgp. in terms of known zero quantities.
We have,

2V8 Fpea = —2R' " Crpea — 2R % Catea — 2R 2 Cupra
— 2R P Cuper + 2R P cLip + 2R W Ly
— Ryl — R gL + 45 5 ViC™ g + VaVP Loy — VeVP Lap,

where we have used the antisymmetry property of the Weyl tensor about the indices
a and b and the commutator as defined in

V[bva]a)c = _Recabwe + 2:bdavda)m
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Substituting from the definition (17a) we obtain after a lengthy and somewhat messy
calculation that

VP Fpea = — A" Cipea — A5 Carea — A" Capta — A'a™ Cape
+ AP L+ AP Lay — APl — Ay alea + Via Qe (50)

1
+ 43, 5ViC% g — 255" V1 Sg® 4+ 255 Vi SP + gﬁecheT,

where ¢, is the zero quantity defined in Sect. 7.1.
Following the strategy outlined in [17], we define the fields,

— _ */
Pa = Foqp,  qa = Foqy,

which encodes the information of the constraint equations of Fgpe and F, ., respec-
tively. Thus, the aim is to find evolution equations for p, and ¢q,.
In terms of the above fields the decomposition (36a) takes the form,
1 e
Fpea = 2up preua) + hpjape — SUbGeced (51)

where we have used,

1
Fopa = 9e€ba’s  Fiog = hbjape + Euerfcde-

To obtain the above, we used the evolution equations—i.e. that Fpco = 0 and F* )0 =
0 as well as the identity,

1
F[ab]c = _E cab,

which is a direct result of the symmetry properties of Fgp.. By taking the divergence
of the first index of (51) and equating with uh,¢ times (50), we obtain a propagation
equation for the p, field, namely

2PV pa = 2uaa’pe — €4 acqa + xape + 3% Pa + 28" Crpeoha
4+ 2AN 2" Crteoha® 4 20N P Crupioha + 20N Conperha®
+2AL 2o Lipha +2AN 0 Lar — 2V Qha®
+ 408 2y VIC® g — 2uhe 2 V1S + 2uh S 2y Vi SP.
(52)
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In the above, we have used that ¢¢; = 0 everywhere on M. Applying the same
procedure to (36b) we obtain the propagation equations for the ¢, field,

ubvan - eaCdZ)cpd = uaac‘h — X4a + 2pc6abab

+ Alabmcl*bcohac"f‘ Albbmc;:,lcohac + Alpbmcmblneapn

+ Alnbmcmbpl'galm + Alpanleapn + Albanplealm

+ Vi Qpea™ + 4™ pViIC W iy + 2550, V1S 0P
(53)

Remark 16 Again, the main observation to be extracted from the previous analysis is
that Egs. (52) and (53) are homogeneous in the various zero-quantities. Moreover,
their form is analogous to that of the evolution Egs. (37) and (38). Thus, it can be
verified they imply a symmetric hyperbolic system. Note also that Eq. (52) is different
in the principle part compared to Eq. (53). This is due to the fact that the evolution
equation Fgpg = 0 is not symmetrized. It is also understood in Eq. (52) that one apply
Eq. (40) to eliminate the time derivative of Q.

7.6 Main theorem

The homogeneity of the propagation equations for the various zero-quantities implies,
from the uniqueness of symmetric hyperbolic systems that if the zero-quantities vanish
on some initial hypersurface S, then they will also vanish at later times. We summarise
the analysis of the previous subsections in the following statement:

Theorem 1 A solution
(eaﬂs 1—‘l'lka 1ﬂ00k1 1—110_]7 Eabv Babs \I]abs cbabs Hab, 10)

to the system of evolution equations given, respectively, by Egs. (22), (23), (28), (30),
(37), (38), (32a), (33), (35) and (13b) with initial data satisfying the conditions

z:abc =0, Adabc =0, Fape = 0,

on an initial hypersurface S, implies a solution to the Einstein-matter frame
Egs. (192)—(19d).

Remark 17 As a consequence of Lemma 1 it follows that the solution the Einstein
matter frame equations implies, in turn, a solution to the standard Einstein-matter
field equations (8).

8 Matter models

We will in the following exemplify the previous discussion with a number of particular
matter models. We shall also note that although the equations given in the following
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resembles those found in [18], the treatment of the propagation of constraints for dust
or perfect fluid was not treated therein. We fill this gap in this paper.

8.1 Dust

The simplest case is of course that of dust. In this case I1,; = 0 and the expression
for the energy—momentum tensor, Eq. (9), reduces to

Tap = pugqutp.

Furthermore, as there are no internal interactions, each dust particle follows a
geodesic—i.e the following hold

a, =0, oy =0.

Consequently, Eq. (13b) reduces to

a

uNap = —px (54)

and Eq. (23) takes the form

1
% = —Ta%Ti% + C%io + gphib- (55)

Remark 18 Note that in the above equation the indices @, b run over all four coor-
dinates, while in Eq. (23), only spatial coordinates are considered. One could also
potentially use Eq. (23) wihtout any alterations together with (28) and (30) with suit-
able changes to represent dust.

Also, we have that Z,3, = 0. Thus, the discussion of the Z-tensor and its evolution
equations are irrelevant—i.e. there is no need for the construction of an auxiliary field.
The evolution equations for the Weyl tensor reduce to

UVeEap — €aef DY By
= —3kpXba — Eacxp® +2Epcxa — 2Eapx e + tkphapx®c  (56)
— Ecahabx® + €caef By*ha” x°* + €apaunBe” x,
and,
ulVygBap + DfE(bdéa)df
= 1Bpaxa® + $Baaxs” + Brax“a + Baax®s — 2Bapx“a (57
- %Efcebdcua)(df - %Efceadcubxdf - Bdfhabde-

Thus, Egs. (22), (55), (56), (57) and (54) provide the symmetric hyperbolic evolution
equations for the fields el T, Eap, Bap and p, respectively.
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8.2 Perfect fluid
Before we discuss the details of a perfect fluid, we shall briefly review some important
quantities in relativistic thermodynamics.

Given a material with N different particle species, n4 denote the number density
of a particular species, where A = {1, 2, ..., N}. Furthermore, we denote by s the
entropy density. The energy density of the system is a function of these quantities

—1.e. we have
o= f(s,n1,ny,....,nN). (58)

The function f is called the equation of state of the system. Finally, the first law of
Thermodynamics is given by,

dp = Tds + udny, (59)

where

(%) (302)
T=|— s A=\ 77— 4
as na ona /)

denotes the temperature and chemical potential, respectively. In what follows we shall
consider a simple perfect fluid—i.e a fluid of only one type of particles (A = 1) and
with an energy momentum tensor with

[ap = phas. (60)
Consequently, we have
Miapy = puqup, I =3p,
where p denote the pressure and is defined by
p=nu—p. 1)

Throughout we shall assume an equation of state of the form given by (58) with A = 1
and the law of particle conservation—i.e.

uVan = —ny. (62)

With these assumptions, Egs. (24a) and (24b) reduce to the well known Einstein—Euler
equations, given by

upu®~Nep + Vpp = — (p + p) ap, (63a)
u~Vap =—(p+p)x. (63b)
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It follows from Eqs. (61), (63b), (62) and (59) that the fluid is adiabatic—i.e we have
uVas = 0. (64)
From the above discussion it follows that Eq. (28) takes the form
39000 — /% T;% = —2aix +a’ xij — 9/0;% + U5 — Tl pxi®

~ = (Rop -+ 2pa) = Tl = T (65)
+ Lo/ i 0% + /%1 ;T % + 0/ Tia ;0.

Similarly, Eq. (30) takes the form

a0 — 0:To"j = %R[jkphi]k + 2 051" + % (nagjniy +nTagjsiy) — R%o;

0.k k0 0 0
—TIilj% —Tj%ilo 'k —Tivoaj +I'j 0ai

+ FokiFkOj + Tokjriok + To*i 0% — Fokjrook-,

(66)
where we have defined
Sa = Vgs, Ng = Vyn.

The corresponding evolution equations are obtained by using Eqs. (64) and (62),
u'Vasp = —sa (xp* +a“up) (67a)
uVanp = —npx — nVpx — na (xp* +aup) . (67b)

Now, writing Egs. (32a) and (32b) in terms of the above definitions we obtain

Wab = Xoa — hap (0 + p) (1= v2) X + happany, (682)
Dap = —€a’b (0 + P) aa — €acax* pus, (68b)

where we have used Eq. (61) and the definition of p to obtain,
u*Vap = (p+p) (l—vz)x—lmx. (69)

Finally, the evolution equations for E,p and B, are obtained by substituting
Eqgs. (68a), (68b) and (60) into the Eqgs. (37) and (38)
u*VeEap — €aca D? By*
= —2a°U(aEp)c + a€pca Ba® — 2kapiiayp + K pX(ab) + %KXba (70)
— $kpXba + Eacxp® +2Epcxa — 2Eapx e — thapx‘e
+ tkphapx©e + €acettn Ba X — Ecahapx .
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udVdBab — DfE(adGb)df
= —%adEbféadf - %adEafébdf —a®upBaa — a®uaBpa + %Bbdxad 1)
+ 3 Baaxs” + Boax“a + Baax®s — 2Bapx®a — YE f epactiax™

— YECeqacunx™ — Baphapx™ + Leeparuapx® + teeqapuppx® .

Equations (22), (23), (65), (66), (70), (71), (69), (63b), (67b), (67a), (64) and (62)
provide the symmetric hyperbolic system for the fields (el Tilg, F()Ok, Fio js Eabs
Ba.b, P, ps SiuNi,s,n) respectively.

8.3 Elastic matter

The following discussion follows the treatment of relativistic elasticity found in [4].
The energy density of the elastic system is given by

p = ne, (72)
where € is the stored energy function of the system. It can be shown? that the elastic
energy—momentum tensor in frame coordinates can be put on the form of Eq. (9) with
an energy density as given by (72) and

Mab = 20nap + 2ntaB A4 AP, (73)

where 74 p denotes the relativistic Cauchy stress tensor and is defined by

where K48 is the strain tensor defined by
hAB = AAaAanab.

The particle density number 7 is also defined in terms of these fields—i.e. we have
that

n? = - det(h4B).

=

Thus, the components A4, is the fundamental material field of the theory (see the
“Appendix” for more details). We shall, however, not write explicit equations for these
fields, but rather use the formalism described in the main part of the paper. Hence, the
information regarding A4 is encoded in the tensor I, by Eq. (73). Consequently,
the symmetric hyperbolic system for the fields (el; , ik, To%, T;° j»Eabs Bap, Yab,
D45, I4p, p) arerespectively given by Eqs. (22), (23), (28), (30), (37), (38), (32a), (33),
(35) and (13b). Equations (13a) and (32b) are considered constraint equations.

2 See “Appendix”.
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9 Concluding remarks

As stressed previously, we have developed first order symmetric hyperbolic evolution
equations for a wide range of matter models which solves the Einstein equations. Our
formalism should thus be applicable to the development of a theory of Neutron stars
as an relativistic elastic system. In this case one would proceed as with the perfect
fluid case: one need to write the tensor II in terms of its trace and trace-free part and
provide equations for n and € to close the system. The latter is likely obtained from
thermodynamical considerations. In addition it is necessary to provide an equation for
o in terms of lower order terms.

The treatment given in this paper is sufficiently general that showing symmetric
hyperbolicity for a given matter model coupled to the Einstein equations, is reduced
to the simple task of showing that the system admits an energy momentum tensor on
the form (9) satisfying (10b) and (10a). It is understood that an equation for p and o
is provided.

The analysis of this article assumes that suitable initial data for the evolution equa-
tions has been provided. The details on how to construct suitable data depend on the
particular details of the matter model under consideration. However, there exists a
more or less general procedure to construct solutions to the constraint equations of
General Relativity coupled to general classes of data —see e.g. [8]. Accordingly, we
do not expect the construction of initial data to be a major issue.

The ultimate aim of the formulation of the evolution problem of relativistic self-
gravitating systems provided in the present article is to make connections with
numerical Relativity. There is, however, currently a limited experience in the numer-
ical community regarding the use of frame formulations of General Relativity in
simulations—see however [15,16]. The techniques developed in these references pro-
vide an initial stepping stone for the implementation of the equations in the present
article.

A natural, and in some ways necessary, extension of the analysis in this article
is the formulation of an initial-boundary value problem for the evolution equations.
This analysis requires the identification of proper boundary conditions and evolution
equations which ensure the propagation of the constraints. This is a challenging task.
However, the seminal work on the initial-boundary value problem for the Einstein
vacuum equations given in [19] makes use of a frame formulation for the vacuum
Einstein field similar to the one used in the present article. Thus, several of the key
ideas in that reference may be carried over to the more general setting of matter models.
These ideas will be explored elsewhere.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Appendix: The frame components of elastic energy-momentum ten-
sor

In the following let B be a 3-dimensional manifold representing the ensemble of
particles making up the elastic body. The key object in relativistic elasticity is a map

¢: M— B,

such that if ¥ = (x#) and X = (X™) are, respectively, coordinates on the spacetime
and body manifold we then have

oM (xH) = XM,

As the manifolds M and B have, respectively, dimension 4 and 3, the map ¢ is
non-injective (one-to-one). In the following it will be assumed that the inverse image
¢~ 1 (X) of a point on B with coordinates X = (XM) is a timelike curve on M. We
denote the tangent vector to the curve y : R — M with y = ¢~ (X) by u. If we
assume y to be parametrised by its proper time, then we have that

gu,u)=—1.

The curve y describes the worldline of the particle of the point on B with coordinates
X.

The map ¢ represents the configuration of the elastic body. This means that ¢ asso-
ciates to each spacetime event a material particle. In other words, ¢ relates the physical
state of a material body with the notion of an event in spacetime. The deformation of
the elastic body is represented by the deformation gradient, defined by in terms of the
coordinates at M and B by

M M
w=0,0".

For a fixed value of the coordinate indices on the body manifold, the components ¢ “
give rise to a covector field ™, on M satisfying the condition

oM u = 0.

We introduce the strain of the material by applying the push-forward to the inverse
metric tensor g"¥ on M. Its the components are given by

hMN = ¢)MM¢N1)gHUo
The body manifold is equipped with a volume form V4 ¢ which allows us to construct

a scalar function n interpreted as the particle density number of the material via the
relation

1
n? = 3 det(hMN).

@ Springer



Evolution equations for a wide range of Einstein-matter... Page330f36 103

This interpretation of n is found reasonable by the observation that the equation for
particle conservation hold—that is, one has that

V. (nu“) =0.

In order to formulate a frame version of the energy momentum tensor of a relativistic
elastic material, we begin by consider a frame {E 4} on B with associated coframe
{28}. As we have not introduced a metric on B, we do not assume any orthonormality
condition on the frame and coframe.

The map ¢, defines the pullback ¢* which can be used to pull-back the coframe to
M. More precisely, one has that

AB=¢*QB, AP, =(AB e,).

As the map ¢ is surjective and has maximal rank, the set of covectors { A} is linearly
independent. The fields { A2} will be used, in the sequel, to describe the configuration
of the material body. The coefficients A4, are orthogonal with respect to u® —that
is

A u® =0.

We denote the determinant of the frame field as e. It is related to the determinant
of the metric tensor by e = /—g. Furthermore, we have

Se = wg"Sel, (74a)

SAAy = A Seq" (74b)

In the above § is understood as an infinitesimal variation. More precisely, for a function
f we have,

_9f .

Equation (74a) can be obtained by using Jacobi’s formula for a square matrix given
by,

ddet(A) det(A) (A~
M de ;
dA "
and recalling that 0%, = e - Equation (74b) follows form observing that

dey"”

deH

Ay = A e, = 58",
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In terms of the above fields we construct a Lagrangian on the form L =
L (A%, ea"). The action thus reads

S = /E(AAb,ea“) d*x,

where we have defined the Lagrangian density
L (AAb, ea“) =clL (AAb, ea“) .

The variation of the action yields

0 oL oL
§S = / (8 ¢ Ses"L + e Se," +e (SAAI,> d*x

eqt degh IAAY
oL AL, .
- f <wa“L *aear T oan, ") el dx
- / T4 ebe," d*x,

where we have made use of Egs. (74a) and (74b) and defined

oL oL
T =" L+ — +

AA .
degt  and, "

By multiplying with e.* n*¢, and applying the chain rule to the second term, we obtain

aL
T = 5" 42 AAenbe. (75)

IAA,

Assuming that the Lagrangian may be written on the form (see [30] for details)

L = p = ne,
we find that
oL de ohAB on
oA, "onAB oAA, T CGAA,
with
% = 2N A 8B p, 818\’;)‘1 = nhagn®™ A% 8% 4.

Substituting the above expressions back into Eq. (75) we find an expression for the
components of the energy—momentum tensor of the form

Tab — nenab + Hab (76)
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where in the following, I1%? will be known as the components of the Cauchy stress
tensor and is given by

Iy = 2n‘L’ABAAaABb + EnhABAAaABb. 77
We further make the reasonable assumption that
hap = hABAAaABba

where hgp as usual denotes the frame components of the projector metric. To show
that this is reasonable, we note the following: the equation holds identically both under
multiplication of u® and 7°® A€ ,—in the latter case, one has to invoke the definition
of hap on the right hand side of the equation to show this. Secondly, on a spatial
hypersurface S € M the map ¢ is a diffeomorphism which implies that the object
hqap defined on S is physically equivalent to the corresponding object defined on 3 via
¢. Using this assumption in (77) we obtain the desired form of the energy momentum
tensor. Namely, one has that

Tap = puqup + Igp, (78)

with
Map = 20N0ap + 2nrABAAaABb. (79)
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