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                    Abstract
We discuss in Minkowski spacetime the differences between the concepts of constant proper n-acceleration and of vanishing \((n+1)\)-acceleration. By n-acceleration we essentially mean the higher order time derivatives of the position vector of the trajectory of a point particle, adapted to Minkowski spacetime or eventually to curved spacetime. The 2-acceleration is known as the Jerk, the 3-acceleration as the Snap, etc. As for the concept of proper n-acceleration we give a specific definition involving the instantaneous comoving frame of the observer and we discuss, in such framework, the difficulties in finding a characterization of this notion as a Lorentz invariant statement. We show how the Frenet–Serret formalism helps to address the problem. In particular we find that our definition of an observer with constant proper acceleration corresponds to the vanishing of the third curvature invariant \(\kappa _3\)—thus the motion is three dimensional (3d) in Minkowski spacetime—together with the constancy of the first and second curvature invariants and the restriction \(\kappa _2 < \kappa _1\), the particular case \(\kappa _2=0\) being the one commonly referred to in the literature. We generalize these concepts to curved spacetime, in which the notion of a 2d trajectory is replaced by the vanishing of the second curvature invariant \(\kappa _2\). Under this condition, the concept of constant proper n-acceleration coincides with that of the vanising of the \((n+1)\)-acceleration and is characterized by the fact that the first curvature invariant \(\kappa _1\) is a \((n-1)\)-degree polynomial of proper time. We discuss several possible definitions of the uniformly accelerated observer and we illustrate some of our results with examples in Minkowski, de Sitter and Schwarzschild spacetimes.
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                    Notes
	From now on, by uniformly—or constantly—accelerated observer we mean the observer with constant proper acceleration. Proper in the sense of being described in the instantaneous frame comoving with the observer. More details below.


	We learn in [4] that “This terminology goes back to a 1932 advertisement of Kellogg’s Rice Crispies which ‘merrily snap, crackle, and pop in a bowl of milk’ ”. Here our use of these concepts is unrelated to the standard use in cosmology as higher order time derivatives of the scale factor in the Friedmann–Lemaitre–Robertson–Walker (FLRW) metric


	This issue only arises if the Minkowski spacetime has more than 2 dimensions.


	\(B_W(s_{\!{}_0})\) is just the proper boost (4.12) with V replaced by W.
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Appendices
Appendix A: Uniform circular motion
Consider in a 3d Minkowski spacetime the trajectory (\(r>0 \) and \(\omega > 0\) are constant)
$$\begin{aligned} X(t(s))=\left( \begin{array}{c} t(s)\\ r \sin (\omega \, t(s))\\ -r \cos (\omega \, t(s))\\ \end{array} \right) . \end{aligned}$$

                    (A.1)
                

Its velocity with respect to proper time s is
$$\begin{aligned} V(s)=\dot{t}(s)\left( \begin{array}{c} 1\\ r\,\omega \cos (\omega \, t(s))\\ r\omega \sin (\omega \, t(s))\\ \end{array} \right) , \end{aligned}$$

and the condition \((V)^2 = -1\) determines \(\displaystyle \dot{t}(s) = \frac{1}{\sqrt{1-r^2 \omega ^2}} \equiv \gamma \). Note that \(r,\ \omega \) are required to satisfy \(r\, \omega < 1\).
The curvature invariant \(\kappa _3\) vanishes—the motion is 3d—and we obtain \(\displaystyle \kappa _1= \frac{r \omega ^2}{1-r^2 \omega ^2},\ \kappa _2 = \frac{\omega }{1-r^2 \omega ^2}\). Thus \(\kappa _1 = r\,\omega \,\kappa _2 < \kappa _2\). Being \(\kappa _2>\kappa _1\) these circular orbits can not be qualified as uniformly accelerated trajectories, according to our definition in Sect. 6.1.
Following a procedure similar to the one used in Sect. 6.1, we can easily recover from the constancy of \(\kappa _1\, (< \kappa _2)\) and \(\kappa _2\) the solution (A.1).
One can systematically compute the n-accelerations. Let us define the unitary, spacelike vectors T and N (the spatial component of T is tangent to the spatial component of V and the spatial component of N is normal to the spatial component of V),
$$\begin{aligned} T=\gamma \left( \begin{array}{c} r\,\omega \\ \cos (\omega \, t(s))\\ \sin (\omega \, t(s))\\ \end{array} \right) ,\quad N=\left( \begin{array}{c} 0\\ -\sin (\omega \, t(s))\\ \cos (\omega \, t(s))\\ \end{array} \right) \end{aligned}$$

So we have \(T^2=N^2=1\), \((T,N)=(T,V)=(N,V)=0\). It is then a matter of straightforward computation to see that the n-accelerations \(A_n\) can be written as
$$\begin{aligned} A_{2k+1}= & {} (-)^k\, r\,\omega (\gamma ^2\omega )^{2k+1} N,\ k=0,1,2\dots \\ A_{2k}= & {} (-)^k\, r\,\omega (\gamma ^2\omega )^{2k} T,\ k=1,2,3\dots \end{aligned}$$

Thus in this simple case of uniform circular motion all the n-accelerations are non-vanishing, though the norm of each one is constant.
The proper n-acceleration is obtained by applying to \(A_n\) the pure boost (4.12). Noticing that \(B\,N = N\) and \(B\, T= \gamma (T-r\omega V)\) we observe that all the proper n-accelerations \(A_n^{[p]}\) exhibit a dependence of periodic type on proper time.
Appendix B: Uniformly accelerated observers in an expanding de Sitter universe
We consider the de Sitter metric with flat equal-time slices,
$$\begin{aligned} ds^2 = -dt^2 + \left( \mathrm{e}^{\sqrt{\frac{\Lambda }{3}}\,t}\right) ^2\Big (dx^2 + dy^2 + dz^2\Big ), \end{aligned}$$

                    (B.1)
                

where \(\Lambda \) is the cosmological constant, \(\Lambda >0\). With this parametrization, the comoving observers (\(\vec {x} = \) constant) are geodesics.
We will show that the timelike trajectory
$$\begin{aligned} x(t) = (x^0-u) + u \,\mathrm{e}^{-\sqrt{\frac{\Lambda }{3}}\,t},\ y=y^0,\ z=z^0, \end{aligned}$$

                    (B.2)
                

(the constant parameter u will be restricted below) satisfying \(x(0)=x^0\), exhibits vanishing Jerk, which implies constant proper acceleration.
In fact, the velocity with respect to proper time (\((V)^2 = V^\mu g_{\mu \nu } V^\nu =-1\)) is
$$\begin{aligned} V=\frac{1}{\sqrt{1-\frac{u^2\Lambda }{3}}}\left( \begin{array}{c} 1 \\ -u\,\sqrt{\frac{\Lambda }{3}}\mathrm{e}^{-\sqrt{\frac{\Lambda }{3}}\,t} \\ 0\\ 0 \end{array} \right) . \end{aligned}$$

Note that we need \(|u|< \sqrt{\frac{3}{\Lambda }}\), otherwise the trajectory becomes lightlike (for \( |u|= \sqrt{\frac{3}{\Lambda }}\)) or spacelike (for \( |u|> \sqrt{\frac{3}{\Lambda }}\)).
Note that the coordinate time is proportional to the proper time, \(\displaystyle \frac{d\,t}{d\,s}= \frac{1}{\sqrt{1-\frac{u^2\Lambda }{3}}}\). The acceleration becomes
$$\begin{aligned} A^\mu = \frac{d}{d\,s} V^\mu + V^\rho \Gamma _{\rho \nu }^\mu V^\nu = \frac{1}{\sqrt{1-\frac{u^2\Lambda }{3}}}\frac{d}{d\,t} V^\mu + V^\rho \Gamma _{\rho \nu }^\mu V^\nu = \left( \begin{array}{c} \frac{u^2\Lambda ^{3/2}}{\sqrt{3} \left( 3-u^2\Lambda \right) } \\ -\frac{u\,\Lambda }{3-u^2\Lambda }\mathrm{e}^{-\sqrt{\frac{\Lambda }{3}}\,t} \\ 0\\ 0 \end{array} \right) , \end{aligned}$$

which satisfies
$$\begin{aligned} (A)^2 = A^\mu g_{\mu \nu }A^\nu = \frac{u^2\Lambda ^2}{9-3\, u^2\Lambda }. \end{aligned}$$

Note that for \(u=0\) the motion is geodesic. Finally, we check that the Jerk vanishes,
$$\begin{aligned} \Sigma ^\mu = \frac{d}{d\,s} A^\mu + V^\rho \Gamma _{\rho \nu }^\mu A^\nu - (A)^2 V^\mu =0. \end{aligned}$$

One can compute also curvature invariants. We obtain \(\displaystyle \kappa _1= \frac{u \,\Lambda }{\sqrt{9-3\, u^2\Lambda }}\), \(\kappa _2=0\). We may notice that, in view of (6.4), which is valid for our curved spacetime, the constancy of \(\kappa _1\) and the vanishing of \(\kappa _2\) are equivalent to the vanishing of the Jerk.
1.1 1. Horizon for the accelerated observer
Now we compare the trajectory of our accelerated observer with that of light. In the x direction the two lightlike trajectories with initial condition \({\bar{x}}(0) = {\bar{x}}^0\) are
$$\begin{aligned} {\bar{x}}(t) = \left( {\bar{x}}^0 \mp \sqrt{\frac{3}{\Lambda }}\right) \pm \sqrt{\frac{3}{\Lambda }}\mathrm{e}^{-\sqrt{\frac{\Lambda }{3}}\,t},\ {\bar{y}}=y_0,\ {\bar{z}}=z_0, \end{aligned}$$

                    (B.3)
                

so that \({\bar{x}}(0) = {\bar{x}}^0\).
Let us find conditions on \(x^0\) and \({\bar{x}}^0\) to guarantee that at some moment in the future or in the past both trajectories intersect. The geodesic line between the two trajectories taken at time \(t_0\) is, for the x coordinate (\(\lambda \in [0,\,1]\))
$$\begin{aligned} {\hat{x}}(\lambda ) = \lambda \, x(t_0) +(1-\lambda )\,{\bar{x}}(t_0), \end{aligned}$$

and \({\hat{y}}(\lambda ) =0,\ {\hat{z}}(\lambda ) =0\). The distance d at \(t_0\) between the two trajectories at this time \(t_0\) is
$$\begin{aligned} d\Big ({\bar{x}}(t_0),x(t_0)\Big ) =\int _0^1 d\lambda \sqrt{\frac{d{\hat{x}}}{d \lambda }g_{xx} \frac{d{\hat{x}}}{d \lambda }} = |({\bar{x}}(t_0) - x(t_0)) \mathrm{e}^{\sqrt{\frac{\Lambda }{3}}\,t_0}|. \end{aligned}$$

For this distance to vanish at some finite time \(t_0\) we need
$$\begin{aligned} 0= \Big |({\bar{x}}(t_0) - x(t_0))\mathrm{e}^{\sqrt{\frac{\Lambda }{3}}\,t_0}\Big |= \left| \left( {\bar{x}}^0 - x^0 +\left( u \mp \sqrt{\frac{3}{\Lambda }}\right) \right) \mathrm{e}^{\sqrt{\frac{\Lambda }{3}}\,t_0} - \left( u \mp \sqrt{\frac{3}{\Lambda }}\right) \right| \end{aligned}$$

and this equation has solution for \(t_0\) if and only if
$$\begin{aligned} \frac{{\bar{x}}^0 - x^0 +\left( u \mp \sqrt{\frac{3}{\Lambda }}\right) }{\left( u \mp \sqrt{\frac{3}{\Lambda }}\right) }>0, \end{aligned}$$

which is equivalent to
$$\begin{aligned} \Big |{\bar{x}}^0 - (x^0-u)\Big |< \sqrt{\frac{3}{\Lambda }}. \end{aligned}$$

This is the condition for the accelerated observer and lightlike trajectories to intersect somewehere. The non-intersection condition sets up a horizon—here at time \(t=0\)—located at \({\bar{x}}_0=x_H(0)\),
$$\begin{aligned} x_H(0) = (x^0-u)\pm \sqrt{\frac{3}{\Lambda }}. \end{aligned}$$

                    (B.4)
                

This horizon moves at the speed of light,
$$\begin{aligned} x_H(t) = (x^0-u)\pm \sqrt{\frac{3}{\Lambda }}\mathrm{e}^{-\sqrt{\frac{\Lambda }{3}}\,t}. \end{aligned}$$

                    (B.5)
                

The picture given by (B.5) is incomplete and can be misleading since it seems that there are two horizons. In view of (B.2) and (B.5) it is convenient to adopt spherical coordinates for the equal-time 3-surfaces centered in \(x= x^0-u,\ y=y^0,\ z=z^0\). With r the radial coordinate, the trajectory of the accelerated observer is then
$$\begin{aligned} r(t)= u\,\mathrm{e}^{-\sqrt{\frac{\Lambda }{3}}\,t }, \end{aligned}$$

                    (B.6)
                

with the angular variables remaining fixed. Now the horizon appears in the equal-time surfaces as a sphere around the point of coordinates \((x^0-u,\ y^0,\ z^0)\), with coordinate radius
$$\begin{aligned} r_H(t) = \sqrt{\frac{3}{\Lambda }}\mathrm{e}^{-\sqrt{\frac{\Lambda }{3}}\,t}. \end{aligned}$$

moving at the speed of light. Notice that this is nothing but the future event horizon [18], also known as the cosmological horizon of de Sitter.
Note that for \(t\rightarrow \infty \) both r(t) and \(r_H(t)\) tend to \(r=0\), but this is an effect of the coordinatization. As a matter of fact all equal-time distances between the center \(r=0\), the trajectory of the accelerated observer, and the horizon, remain constant. For instance the distance between the trajectory and the horizon is, for the same values of the angular variables,
$$\begin{aligned} D\Big (r(t),r_H(t)\Big ) = |(r(t)-r_H(t))\mathrm{e}^{\sqrt{\frac{\Lambda }{3}}\,t}|= \sqrt{\frac{3}{\Lambda }}-u. \end{aligned}$$

whereas the distance of the accelerated observer to the center is u and the length of the radius of the spherical horizon is \(\sqrt{\frac{3}{\Lambda }}\).
1.2 2. Comoving observers of different kind
In fact one can use (B.6) to define the standard static coordinates for de Sitter. We know that the comoving observers for the metric (B.1) are geodesics, and we also know that the radial motion that keeps \(r\,\mathrm{e}^{\sqrt{\frac{\Lambda }{3}}\,t}\) constant is that of a uniformly accelerated observer. If we define the new radial coordinate \(u=r\,\mathrm{e}^{\sqrt{\frac{\Lambda }{3}}\,t}\) then this accelerated observer will sit at constant u. The metric becomes
$$\begin{aligned} ds^2= & {} -dt^2 + \mathrm{e}^{\sqrt{\frac{\Lambda }{3}}\,t}\Big (dr^2 + r^2(d\theta ^2 + (\sin \theta )^2 d\varphi ^2)\Big )\ \rightarrow \nonumber \\&-\left( 1-\frac{\Lambda }{3}u^2\right) dt^2 + du^2 -2 u \sqrt{\frac{\Lambda }{3}} dt\, du + u^2(d\theta ^2 + (\sin \theta )^2 d\varphi ^2).\nonumber \\ \end{aligned}$$

                    (B.7)
                

Next, to get rid of the non-diagonal term, we solve a differential equation and obtain the change of variables \(\displaystyle T = t-\frac{1}{2} \sqrt{\frac{3}{\Lambda }} \log (1-\frac{\Lambda }{3}u^2)\). We get
$$\begin{aligned} ds^2=-\left( 1-\frac{\Lambda }{3}u^2\right) dT^2 + \frac{1}{1-\frac{\Lambda }{3}u^2}du^2 + u^2(d\theta ^2 + (\sin \theta )^2 d\varphi ^2). \end{aligned}$$

                    (B.8)
                

So, in de Sitter spacetime, whereas the comoving observers in the coordinatization of (B.1) are geodesics, the comoving observers in (B.8) are uniformly accelerated observers.
A similar construction can be performed for Anti de Sitter spacetime. The comoving observers in the coordinates of the metric (B.8), now with \(\Lambda <0\), exhibit constant proper acceleration. Looking for the radial geodesics in this form of the metric we can move to a coordinatization in which such geodesics are the trajectories of the comoving observers. Unsurprisingly, one obtains the “cosmological” form of AdS metric (\(a=\sqrt{-\frac{\Lambda }{3}}\)),
$$\begin{aligned} ds^2=- dt^2 + (\cos (a\, t))^2\Big (\frac{1}{1+a^2 r^2}dr^2 + r^2(d\theta ^2 + (\sin \theta )^2 d\varphi ^2)\Big ). \end{aligned}$$

                    (B.9)
                


Appendix C: Circular orbits in Schwarzschild spcetime
With coordinates \((t,r,\theta ,\varphi )\), we consider Schwarzschild metric
$$\begin{aligned} ds^2=- \left( 1-\frac{2\, M}{r}\right) dt^2 + \frac{1}{\left( 1-\frac{2\, M}{r}\right) }dr^2 + r^2(d\theta ^2 + (\sin \theta )^2 d\varphi ^2)\Big ), \end{aligned}$$

                    (C.1)
                

and circular uniform timelike trajectories \((t,r_0,\frac{\pi }{2},\omega \, t)\) outside the event horizon, \(r_0>2\,M\). In terms of proper time s, the velocity vector is \(V = \dot{t}(s) (1,0,0,\omega )\) and the requirement \(V^2=-1\) yields \(\displaystyle \dot{t} = (1-\frac{2\, M}{r_0}-r_0^2\omega ^2)^{-\frac{1}{2}}\) which sets the bound for \(\omega \),
$$\begin{aligned} \displaystyle \omega ^2 < \frac{r_0-2\, M}{r_0^3}, \end{aligned}$$

                    (C.2)
                

to keep the trajectory timelike. Using the definitions in Sect. 6, extended through Sect. 2.5 to curved spacetime, it is easy to compute the curvature scalars. We get
$$\begin{aligned} \kappa _1= \frac{\sqrt{r_0-2 M} \left| M-r_0^3\, \omega ^2\right| }{r_0^{\frac{3}{2}}(r_0-2\, M -r_0^3\, \omega ^2)},\quad \kappa _2= \frac{\omega \left| r_0-3 M\right| }{(r_0-2\, M -r_0^3\, \omega ^2)},\quad \kappa _3=0. \end{aligned}$$

                    (C.3)
                

The condition \(\kappa _1= 0\), that is, \(r_0^3\, \omega ^2=M\), identifies geodesic motion for our circular orbits. In this case, since \(\omega \) already satifies (C.2) we end up with the well known condition \(r_0>3 \,M\) for the existence of timelike geodesics in circular motion (the circular geodesic becomes lightlike for \(r_0=3\,M\), the photosphere). Now we have the aditional information that the second curvature invariant vanishes for circular orbits at \(r_0=3\,M\). For these orbits at \(r_0=3\,M\) to be timelike it suffices to require \(\displaystyle \omega ^2< \frac{M}{r_0^3}\). Thus these circular orbits, with constant \(\kappa _1\) and vanishing \(\kappa _2\) correspond to our most restrictive version of uniformly accelerated observers.
Let us turn to the less restrictive version considered in Sects. 2.3 and 6.1, so that we require \(\kappa _1\) and \(\kappa _2\) to be constant but with \(\displaystyle \kappa _2<\kappa _1\). Let us compute the quantity (with \(X := r_0^3\, \omega ^2 < r_0-2\, M\))
$$\begin{aligned} Q=\Big (\frac{\kappa _2}{\kappa _1}\Big )^2 = \frac{X (r_0-3\,M)^2}{(r_0-2\, M) (M-X)^2}, \end{aligned}$$

and ask for values of X, compatible with \(X < r_0-2\, M\), such that \(Q<1\). We find
$$\begin{aligned}&\mathbf{(a)} \ \mathrm{for} \ r_0 > 3\,M, \ \mathrm{any}\ X< \frac{M^2}{r_0-2\, M},\\&\mathbf{(b)} \ \mathrm{for} \ 2\,M< r_0 \le 3\,M, \ \mathrm{any}\ X <r_0-2\, M. \end{aligned}$$

Note that in both cases \(X<M\) (recall that \(X=M\) is geodesic motion, which in fact is unreachable in the case (b) for time like trajectories). \(X<M\) means that the angular velocity \(\omega \) is kept below the value that makes the motion geodesic. The (b) case is quite understanable: \(\omega \) is allowed to have any value compatible with the speed of light bound \(X <r_0-2\, M \). Instead, the requirement \(\displaystyle X < \frac{M^2}{r_0-2\, M} \) for the case (a) could make us think that something special happens at the “critical” value \(\displaystyle X=\frac{M^2}{r_0-2\, M} \); we do not see anything special at this value for X, which makes \(\displaystyle \kappa _2=\kappa _1= \frac{M \sqrt{r_0-2 M}}{r_0^{3/2} (r_0-M)}\). Thus if this “critical” value has no meaning other than that, it would seem more natural to adopt the most restrictive version of the notion of the uniformly accelerated observer, that is, the vanishing of \(\kappa _2\) and constancy of \(\kappa _1\). This singles out, in the case of circular orbits, those at the photosphere, \(r_0 = 3\,M\).
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