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Abstract
We study the conformal structure of exotic (non-big-bang) singularity universes using
the hybrid big-bang/exotic singularity/big-bang and big-rip/exotic singularity/big-rip
models by investigating their appropriate Penrose diagrams.We show that the diagrams
have the standard structure for the big-bang and big-rip and that exotic singularities
appear just as the constant time hypersurfaces for the time of a singularity and because
of their geodesic completeness are potentially transversable. We also comment on
some applications and extensions of the Penrose diagram method in studying exotic
singularities.

Keywords Weak singularities · Penrose diagrams · Conformal structure

1 Introduction

One of the main obstacles in general relativity are the singularities which were
described in the most general way by the notion of geodesic incompleteness [1]. The
nature of singularities is, however, more sophisticated and various tools to study them
were suggested. Among them the integral definitions of the weak and strong singulari-
ties given by Tipler [2] and Królak [3]. Their practical use was not very much explored
until the discovery of dark energy [4–10] and in particular the phantom, which leads to
a strong singularity—a big-rip [11–21]—in that sense similar to a big-bang. Growing
interest in various forms of dark energy uncovered other types of singularities—most
of them of a weak nature. The very paper of Barrow [22] presented the sudden future
singularity (SFS) of pressure (also called a big-brake and in fact being a subcase of an
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SFS [23]) which was given some observational studies [24–27]. Many other studies
of these singularities followed [28–33].

More weak singularities were first investigated in Ref. [34] (finite scale factor sin-
gularity, big-separation)—classified as types I–IV, and later appended in Refs. [35–38]
(w-singularity, little-rip, pseudo-rip). The full classification of the standard and exotic
singularities in homogeneous and isotropic Friedmann universes was presented in
Refs. [39,40] (for the discussion of non-homogeneous models with exotic singulari-
ties see e.g. [41]). One of the issues is whether the weak exotic singularities can be
transversable in the sense of geodesic parameter [42–46]. Recently, even the discussion
of the transition through strong (big-bang) singularities was performed [47,48].

In this paper we investigate the conformal structure of the spacetimes with weak
exotic singularities by using themethod of Penrose diagrams.We follow the discussion
of Ref. [49] for strong singularities such as the big-bang and the big-rip.

2 Conformal transformations and Penrose diagrams

We use the Penrose diagram method and start with Friedmann (k = 0) metric:

ds2 = −c2dt2 + a2 (t)
[
dr2 + r2

(
dθ2 + sin2θdφ2

)]
, (1)

which after the application of the conformal time

η =
∫

cdt

a (t)
(2)

can be transformed into

ds2 = dŝ2a2 (η)

= a2 (η)
[
−dη2 + dr2 + r2

(
dθ2 + sin2θdφ2

)]
, (3)

where
dŝ2 = −dη2 + dr2 + r2

(
dθ2 + sin2θdφ2

)
(4)

is theMinkowskimetric.Using the following coordinate transformations (0 ≤ r ≤ ∞)

t ′ = arctan (η + r) + arctan (η − r), (5)

r ′ = arctan (η + r) − arctan (η − r). (6)

one maps the Minkowski metric (4) onto the Einstein static universe with the radius
rE = sin r ′ i.e.

ds̆2 = −dt ′2 + dr ′2 + sin2 r ′ (dθ2 + sin2θdφ2
)

. (7)

When the projection of a model is given, then one is able to draw the Penrose diagram
[1].
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Fig. 1 The scale factor for the model (10) with n = 1/2. The evolution starts with a big-bang, reaches an
exotic singularity, and finally ends at a big-crunch

3 Conformal structure of weak exotic singularities

3.1 Hybrid big-bang/exotic singularity models

The following scenario for the universe evolution was suggested in Ref. [50]: it starts
with a big-bang, reaches an exotic singularity, and then continues to a big-crunch. The
scale factor is composed of the two branches (cf. Fig. 1) and reads as

aL,R(t) = as

[
δ +

(
1 ± t

ts

)m

(1 − δ) − δ

(
∓ t

ts

)n]
(8)

with a big-bang aL(−ts) = 0, a sudden future singularity aL(0) = aR(0) = as , and
a big-crunch time, aR(ts) = 0, and as, δ,m = const., 1 < n < 2. A different form
of the scale factor (8) was proposed in Ref. [51]. After appropriate shift of the exotic
singularity it can be written down as

aL,R (t) = a0

(±t

ts
+ 1

)m

exp

[(∓t

ts

)n]
, (9)

where the big-bang/big-crunch appears at t → ∓ts , and an exotic singularity in t → 0.
By an appropriate choice of the parameter n the scale factor (9) describes a sudden
future singularity (1 < n < 2), a finite scale factor singularity (0 < n < 1), a
big-separation (2 < n < 3), and a w−singularity (3 < n < 4) [51].

The description of a transition from (1) to (7) with the scale factors (8) and (9) is
impossible analytically. So following the approach of Ref. [50] in order to investigate
the conformal structure of these models, we apply a simpler form of the scale factor
which allows both an exotic singularity (depending on the value of the parameter n)
and a standard big-bang singularity which reads as

aL,R (t) = a0
[
ts − (∓t)n

]
, (10)
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where the minus sign applies for the times t < 0 described by aL and the plus sign
for the times t > 0 described by aR (see Fig. 1).

In this scenario, the universe begins with a big-bang singularity at ts = (−t)n for
−ts < t < 0, faces an exotic singularity at t = 0 (its type depends on the parameter
n), then evolves towards a big-crunch singularity at ts = tn for 0 < t < ts (one can
also write a big-bang and a big-crunch times as t = (∓ts)1/n).

The energy density and pressure for the scale factor (10) read as

ρL,R = 3

8πG

[
n2(∓t)2n−2

[
ts − (∓t)n

]2
]

, (11)

pL,R = − c2

8πG

[
2
n (1 − n) (∓t)n−2

[
ts − (∓t)n

] + n2 (∓t)2n−2

[
ts − (∓t)n

]2
]

. (12)

Using (11) and (12) one can write the effective equation of state (though with an
unseparable time) as follows

pL,R = −c2
[
ρ

3
± n − 1√

6πG

√
ρ

t

]
. (13)

From (13) we immediately notice that in the limit n = 1 we obtain the Friedmann
universe with an equation of state for the cosmic strings fluid p = −1/3ρ [52] with
the Penrose diagram covering the same region of the Einstein cylinder (7) as the
Minkowski metric (4). This was presented in Fig. 3b of the Ref. [49].

Now, we discuss two cases which are on both sides of the limit n = 1: Finite Scale
Factor Singularity (FSFS) and Sudden Future Singularity (SFS).

3.2 Finite Scale factor singularity—FSFS

For 0 < n < 1 we have FSFS at t = 0 for the scale factor (10) which for n = 1
2 leads

to the conformal time (2) given by

ηL,R = ± 2

a0

[√∓t − ts ln (ts − √∓t)
]
. (14)

In more detail, we have for the left branch −ts2 ≤ t ≤ 0 that

− ∞ ≤ ηL ≤ 2ts ln (ts)

a0
= b, (15)

and for the right branch 0 ≤ t ≤ ts2 that

− b ≡ −2ts ln (ts)

a0
≤ ηR ≤ ∞. (16)
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Fig. 2 Penrose Diagram for the right branch aR of the model (8) which begins with FSFS at the t = 0
(η = −b) hypersurface. Big-bang singularity η = ∞) is isotropic J+. Misner–Sharp horizon (20) is on
the left. ES is an exotic singularity

For the common time for both solutions t = 0, there is an FSFS with a(0) = a0ts ,
for t = −t2s we have a big-bang singularity with a = 0, while for t = ts2 we have a
big-crunch singularity again with a = 0.

Analysing the ranges of the conformal time η one can say that the first part of the
left brach of our model (10) is mapped onto a piece of the Minkowski diagram with
an initial big-bang singularity at t = −t2s , η = −∞ which is isotropic and with a
cut-off at the FSFS hypersurface t = 0, η = b > 0 which is spacelike. The right
branch of (10), on the other hand, is mapped onto another piece of the Minkowski
diagram starting with an FSFS hypersurface t = 0, η = −b > 0 which is spacelike,
and then evolving towards the final big-crunch singularity at at t = t2s , η = ∞, which
is isotropic (see Fig. 2). The areas for left and right branches overlap in the region
−b < η < b and they have only one common hypersurface when ts = 1. In such a
case, the left branch is identical with a lower half of the Minkowski Penrose diagram,
and the right branch is identical with an upper half of the Minkowski diagram as in
Figs. 3 and 4.
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Fig. 3 Penrose Diagram for the right branch aR of the model (8) with FSFS which begins at the t = 0
(η = 0) hypersurface and for the parameter ts = 1. Big-bang singularity (η = ∞) is isotropic J+.
Misner–Sharp horizon (20) is on the left

One is able to invert the relation (14) to get

t(η) = ±ts
2
[
1 + W

[
− 1

ts
exp

(
−1 − a0η

2ts

)]]2
, (17)

where W (z) = z exp (z) is the Lambert function. Using the definition of an affine
parameter one gets then

λ(t) =
∫

a2 (η) dη =
∫

a (t) dt,

= a0t

[
ts − 2

3
(∓t)

1
2

]
, (18)

so that at singularities λ(0) = 0, and λ(±t2s ) = (1/3)a0t3s , which means that the
parameter is finite. It is also useful to calculate the Misner–Sharp mass [49,53] which
in our case gives

2m

a(t)
= a20r

2

4t
, (19)

and so the past/future trapping regions are for

r > ±2ts
a0

[
1 + W

[
− 1

ts
exp

(
−1 − a0η

2ts

)]]
. (20)
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Fig. 4 Penrose Diagram for both branches of the model (8). It begins with a big-bang (η = −∞), then
evolves to an FSFS at the t = 0 (η = 0) hypersurface (ts = 1), and ends in big-crunch singularity (η = ∞).
Both big-bang and big-crunch singularities are isotropic. Misner–Sharp horizons (20) are on the left

3.3 Sudden future singularity—SFS

For 1 < n < 2 we have an SFS. Let us take n = 3
2 as an example. In this case one

gets the conformal time as

ηL,R = 1

3a0ts
1
3

[
−2

√
3 arctan

(
1 + 2

√∓t√
3ts

1
3

)

− 2 ln
(
ts

1
3 − √∓t

)
+ ln

(
ts

2
3 ∓ t + √∓t

)]
. (21)
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Fig. 5 The scale factor for the model (24) with n = 1/2. The evolution starts with a big-rip, reaches an
exotic singularity, and finally ends at another big-rip

For the right branch at t = 0 we have

η = − π

3
√
3a0ts

1
3

, (22)

and for t = ts
2
3 we have η = ∞. For the left branch we have for t = 0 that

η = π

3
√
3a0ts

1
3

(23)

and for t = −ts
2
3 we have η = −∞. The parameter b is replaced onto −b.

The Penrose diagram is similar as in the case of FSFS.

3.4 Hybrid big-rip/exotic singularity models

We can also select the model in the form

aL,R (t) = a0
ts − (∓t)n

, (24)

which starts at the big-rip for t = −ts1/n , continues to an exotic singularity at t → 0,
and ends at another big-rip (anti-big-rip) at t = ts1/n as in Fig. 5. The density and the
pressure functions are as follows:

ρL,R (t) = 3

8πG

[
n2(∓t)2n−2

ts − (∓t)2

]
, (25)

pL,R (t) = nc2

8πG

[
(2 + 3n) (∓t)2n−2 + (n − 1) (∓t)n−2ts

ts − (∓t)2

]
. (26)

123



Non-exotic conformal structure of weak exotic singularities Page 9 of 13 160

Fig. 6 Penrose diagram for the model (24) with a0 = 1, ts = 1 and n = 1/2 . The evolution begins with
a big-rip singularity on a constant time hypersurface t = −t2s , evolves to an exotic singularity (here FSFS)
to finally reach another big-rip (anti-big-rip) on a constant time hypersurface t = t2s . The Misner–Sharp
horizons are on the left

The effective equation of state takes the form:

pL,R = −c2ρ

3n

[
3n + 2 + (2n − 2)

ts
(∓t)n

]
(27)

Conformal time for (24) is:

ηL,R(t) = ts
a0

[
t ± (∓t)n+1

(1 + n) ts

]
. (28)

For t = 0 the conformal time η = 0 (exotic singularity), while for t = (∓ts)1/n ,
η = ∓nt (1+n)/n

s / [a0 (1 + n)] (big-rip). The formula (28) can be inverted for n = 1/2
as follows

t (η) = 1

8

⎡
⎣∓6ts

2 ∓
3

2
3

(
1 − i

√
3
) (

8a0tsη ± 3ts4
)

X
1
3

− 3
1
3

(
1 + i

√
3
)
X

1
3

]
(29)

where

X = ∓9ts
6 − 36a0ts

3η ∓ 24a0
2η2

+8
√
3a03η3

(
3a0η ± ts3

)
. (30)
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In this case for η = 0 we have t = 0, while for η = ∓t3s /3a0 ≡ ∓d, we have
t = (∓ts)2. In the n = 1/2 model which corresponds to an FSFS we have the affine
parameter

λ(t) =
∫

a2 (η) dη =
∫

a (t) dt,

= 2a0
(
ts − √

t − ts ln | ts − √
t |

)
, (31)

so that at an exotic singularity λ(0) = 2a0ts(1− ln ts), and at big-rip λ(∓t2s ) = ∓∞,
which proves geodesic incompleteness of the latter.

The Misner–Sharp mass reads as

2m

a(t)
= a02n2r2(∓t)2n−2

[ts − (∓t)]4
(32)

and the condition for the trapping horizon is

r > ± (±t)1−n[(±t)n − ts
]2

a0n
. (33)

The Penrose diagram for the model (24) with a0 = 1, ts = 1 and n = 1/2 is plotted in
Fig. 6. The evolution begins with a big-rip singularity on a constant time hypersurface
t = −t2s , evolves to an exotic singularity (here FSFS) to finally reach another big-rip
(which we call an anti-big-rip in order to make a difference with an ”initial” big-rip
in full analogy to big-bang/big-crunch differentiation).

3.5 Big-separation andw-singularity

For 2 < n < 3 in (10) one obtains a big-separation (BS) singularity, while for
3 < n < 4 a w-singularity. The conformal diagrams are analogous. There is a duality
between the SFS, BS, and w-singularity models and FSFS, and big-rips models and
the dividing line is n = 1. It can be considered ”phantom duality” type symmetry
[11–21].

3.6 Classical analogues

There is a nice analogy between an SFS singularity of pressure and an acceleration
singularity at the start of a car at car-drag races (cf. footnote 1 of Ref. [54]). We may
extend such an analogy into other exotic singularities assuming that the power scales
as follows (in Ref. [54] only the case p = 0 is considered):

P = vv̇ ∼ t p, (34)

123



Non-exotic conformal structure of weak exotic singularities Page 11 of 13 160

where v is the velocity, v̇ = a is the acceleration, and p = const. After integrating we
have

v ∝ t
1
2 (s+1), a ∝ t

1
2 (s−1). (35)

We can also define a derivatives of acceleration (being like jerk and snap in cosmology
[55,56]) as

ȧ =∝ t
1
2 (s−3), ä ∝ t

1
2 (s−5). (36)

The following conclusions can be deducted from (35) and (36). The velocity is singular
provided s < −1, while the acceleration is singular provided v < 1 etc. The former
case is an analogue of a density singularity in general relativity, while the latter is
an analogue of a pressure singularity etc. In conclusion one can say that a classical
analogue of an FSFS singularity is when s < −1 (which corresponds to 1 < n < 2 in
(8)), of an SFS singularity when −1 < s < 1 (0 < n < 1), of a BS singularity when
1 < s < 3 (2 < n < 3), and of a w-singularity when 3 < s < 5 (3 < n < 4).

3.7 Raychaudhuri averaging

Following [50] we can calculate the acceleration scalar for any Friedmann model as

χ = θ,μu
μ = 3H2 (q + 1) (37)

where θ is the expansion scalar, uμ the four-velocity of a comoving observer, H = ȧ/a
the Hubble parameter and q = −äa/ȧ2 the deceleration parameter.

Then, we may calculate the so-called Raychaudhuri averaging [57] of such an
average acceleration scalar in flat Friedmann background to get

〈θ̇〉 =
3
∫ t1
t0

ȧ2

a2

(
− äa

ȧ2
+ 1

)
dt

∫ t1
t0
a3dt

(38)

For scale factor (8) and n = 3/2 which corresponds to an SFS we obtain (for both
branches aL and aR)

〈θ̇〉 =
3
∫ ts2

0
ȧ2

a2

(
− äa

ȧ2
+ 1

)
dt

∫ ts2

0 a3dt
= − 165

14ts
4
3

= const ., (39)

which means that this average is finite. The same is true for a BS and a w-singularity
while for an FSFS 〈θ̇〉 blows up to infinity and so it can be considered as ”strong”
singularity in view of Raychaudhuri averaging. The same is the case for a big-rip
singularity (given for example by the scale factor (24) which is then stronger in the
sense of Raychaudhuri averaging than a big-bang for which the average is finite [50].
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4 Conclusion: beyond singularities

We have investigated the conformal structure of exotic singularity universes and pre-
sented their appropriate Penrose diagrams.We have found that the conformal structure
of these exotic singularities is not very much ”exotic” since they are just constants
time hypersurfaces in the diagrams.

Our discussion of the Penrose diagrams of the weak exotic singularities suggests
that they are transversable since there is no geodesic incompleteness. This happens
despite there are discontinuities of energy density, pressure, derivatives of pressure,
or other physical quantities [42,58] not only in homogeneous configurations, but also
in anisotropic and inhomogeneous backgrounds [54]. By using the method of Penrose
diagrams one is able to study the transversability quite systematically. Our method
relies on the fact of geodesic completeness and nicely allows to present both (left—
before singularity, and right—after singularity) phases of the evolution of the universes
which possesses both weak (e.g. SFS) and strong (e.g. big-rip) singularities. One of a
possible application could be gluing hybrid big-bang to weak exotic singularity (half-
)diagram with a weak exotic singularity to an inhomogeneous big-bang singularity
model which allows spatial pressure singularities [59]. Such a possibility would allow
a timelike singularity of pressure (an SFS) being converted at a transition into a Finite
Density singularity of pressure which is present in some spatial regions of the universe
through the whole second piece of the hybrid evolution. In fact, in such a model there
would be an interesting effect of a “leakage” of pressure infinity through some “spatial
holes” only while transiting a weak singularity and then evolving towards another big-
bang. The detailed studies of such exotic options in less symmetric geometries will
be the matter of future studies.
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