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In our paper “A simple property of the Weyl tensor for a shear, vorticity and
acceleration-free velocity field” [1] the sentence: “ ... a contraction with ui gives:
0 = ui∇i Ekm + ϕEkm” in the end of the proof of Theorem 1.1 (page 4) is wrong
(actually, it gives 0 = ui∇i Ekm + (n − 1)ϕEkm).

The error partly changes Theorem 1.1 (stated in page 2) but does not affect Theorem
1.2 and all the other propositions in the paper, as well as the long evaluation in the
Appendix.

The correct statement is:

Theorem 1.1 In a twisted space-time of dimension n > 3:

(i) umC jkl
m = 0 �⇒ ∇mC jkl

m = 0

(ii) ∇mC jkl
m = 0 �⇒ u p∇p(umC jkl

m) = −ϕ(n − 1)umC jkl
m

Proof The proof of statement (i) remains as given in page 4 of [1]. The proof of
statement (ii) is as follows.

Consider the identity (8) for the Weyl tensor C jklmum = uk E jl − u j Ekl , where
Ekl = u jC jklmum . Then: u p∇p(C jklmum) = uku p∇pE jl − u ju p∇pEkl .

The original article can be found online at https://doi.org/10.1007/s10714-018-2398-9.
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If ∇mC jklm = 0 Eq. (15) holds, i.e. u p∇pEi j = −ϕ(n − 1)Ei j . Then:

u p∇p(C jklmu
m) = −ϕ(n − 1)(uk E jl − u j Ekl) = −ϕ(n − 1)C jklmu

m

��
In the special case of generalisedRobertson–Walker space-times the original statement
umC jkl

m = 0 ⇐⇒ ∇mC jkl
m = 0 remains true (Theorem 3.4 of Ref. [2]).
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