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Abstract In our paper we investigate the lower limit of collisional energy of test
particles near the Kerr black hole. In particular we examine the minimal Lorentz factor
between the freely falling particles and the particles orbiting around a black hole. We
consider collisions on the innermost stable circular orbit and examine near-extreme
case, where collisions take place near an event horizon. By fine-tuning the particles’
angular momentum, the Lorentz factor of the collision can always be minimized to
a value dependent on the black hole’s spin. We identified that this minimal value is

always less than 2
√

2−1√
3

and more than
√

12−1√
6

(the limits are the values for an extreme
Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact
objects are expected to be highly energetic near supermassive black holes. In addition,
we show that an interaction between black hole’s and particle’s spins has an influence
on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black
holes. We also discuss the relation between our results and sci-fi movie Interstellar.

Keywords Kerr black hole · Particle collisions

1 Introduction

Collisions in the ergosphere were in the centre of interest, because they are able to
extract rotational energy from the black hole through a collisional Penrose process.
As described by [2], collisional energy of particles near the extreme-Kerr black hole
can be arbitrarily high, although, this does not imply that such collisions can extract
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arbitrarily high amounts of energy from a black hole. [3] showed that the energy of the
particles leaving the ergosphere after a collision and measured by distant observers, is
in fact not significantly higher than the primary energy of infalling particles. Despite
their doubtful application as cosmic accelerators, collisions around black holes are
interesting in light of compact object mergers. For example, collisions of neutron stars
could possibly lead to the birth of a black hole (for numerical simulations see e.g. [5]).

General formulas for the CM energy of collisions (energy in the centre of mass
frame) were shown by [8], collisions on ISCO were investigated by [9], and collisions
of spinning particles by [6]. In these papers the authors showed that an upper bound
of CM collisional energy diverges to infinity for the extreme-Kerr black holes, and [8]
concluded that this would result in the formation of a black hole in case of a NS-NS
collision.

Since upper limits of collisional energy have been investigated in many ways, no
discussion on lower limit of collisional energy has been presented so far. Our paper fills
this gap. Solving this issue leads to a full energy domain of collisions: that would have
an application in studies on compact objects collisions, for example as an initial value
in numerical simulations. We derive the formulas that minimize collisional energy in
case of one particle orbiting around a black hole, and another particle infalling freely
from infinity. Furthermore, we present how the situation changes when an infalling
particle has a nonzero spin - it has been investigated recently by [6] in context of upper
energy limits. We show that effects of interaction between particle’s and black hole’s
spins affects minimal collisional energy in near-extreme Kerr background only.

Resolving the issue of minimal energy is interesting also in light of sci-fi movies,
like Interstellar. Treating a spaceship as a incoming particle and a planet as an orbiting
particle, we can calculate the minimal speed between them. Therefore we can predict
wheather planets near black holes are “available” for a spaceship to land on them.

The second section of our paper introduces notation and describes the motion in
the Kerr space–time domain. The third section presents derivations of formulas for the
minimal Lorentz factor of collisions and discusses the special case of the collisions on
ISCO. The fourth section introduces Mathisson–Papapetrou equations and contains
a discussion of impact of particle’s spin on a situation. The last section gives a brief
summary of an article.

2 Geodesics in Kerr metric

Kerr space–time can be described by the Boyer–Linquist coordinates [4] with a line
element given by:

g = −Δ − a2 sin2 θ

Σ
dt2 − 4aMr

Σ
sin2 θdtdφ

+ (r2 + a2)2 − Δa2 sin2 θ

Σ
sin2 θdφ2 + Σ

Δ
dr2 + Σdθ2, (1)

where Σ = r2 + a2 cos2 θ and Δ = r2 + a2 − 2Mr , where M and a represent
mass and spin of a black hole (M ≥ a), respectively. Range of variables is given by:
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t ∈ (−∞,∞), r ∈ (M + √
M2 − a2,∞), θ ∈ (0, π), φ ∈ [0, 2π). The motion is

considered in the equatorial plane only. Time-translational and rotational Killing fields
are as follows, ξ = ∂t and η = ∂φ . Quantities conserved along geodesics associated
with Killing fields are specified as below,

e = − vμξμ , (2)

l =vμημ , (3)

where vμ indicates 4-velocity of a particle. These constants represent energy at infinity
per unit mass and angular momentum parallel to the z-axis per unit mass, respectively.
Using Eqs. (2) and (3), we obtain:

vt = −gφφe + gtφl

ḡ
, (4)

vφ = gtφe + gtt l

ḡ
, (5)

where ḡ = gtt gφφ − (gtφ)2 = −Δ. We consider motion outside the event horizon, so
ḡ < 0. Another conserved quantity comes from the velocity normalization condition:

vμvμ = −1. (6)

Combining Eqs. (2), (3) and (6) together results in an equality:

ṙ2

2
− M

r
+ a2(1 − e2) + l2

2r2 − M(ae − l)2

r3 = e2 − 1

2
. (7)

This can be interpreted as a sum of a kinetic energy and an effective potential, therefore
the problem reduces to a problem from classical mechanics with a potential:

Vef f (r) = −M

r
+ a2(1 − e2) + l2

2r2 − M(ae − l)2

r3 . (8)

We also provide below another formula that will be useful in the next paragraph of
this article. Combining Eqs. (2), (3) and (6), we find a relation:

gφφe
2 + gtt l

2 + 2gtφel = Δ[1 + grr (v
r )2], (9)

3 Lower limit of collisional energy

3.1 General case

Two particles are considered to be moving along geodesics. Quantities pμ
o = mov

μ
o and

pμ
in = minv

μ
in denotes momenta of the orbiting and the incoming particle, respectively.

The orbiting particle is staying on an orbit at radius r = ro and the incoming particle
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is infalling from infinity (ein ≥ 1). Energy of an incoming particle measured in a
rest-frame of the first particle is given by:

E = −gμνv
μ
o pν

in, (10)

On the other hand, in a locally flat coordinate system, this energy is equal to:

E = minγ, (11)

where γ is a Lorentz factor of the collision. Therefore, using Eqs. (4) and (5), we
obtain (since now, all the metric coefficients are calculated at r = ro):

γ = − 1

g
(gtt gtφvtoein + gtt gtφvtolin − g2

tφvtoein + gtφgttv
t
olin +

+ gtφgφφvφ
o ein + g2

tφvφ
o lin − gφφgtφvφ

o ein − gφφgttv
φ
o lin) + grrv

r
ov

r
in . (12)

Hence, for a particle staying on a circular orbit (vro = 0):

γ = vtoein − vφ
o lin . (13)

This remarkably simple formula is useful especially when components vto and v
φ
o are

fixed quantities, like in our case. However, one needs to remember that ein and lin
have to be chosen in such a way that world lines of colliding particles should have a
common point. In order to minimize γ , we have to choose appropriate ein and lin . The
conditions for γ to be minimal are found in the following way:

(i) Let us find the solution of Eq. (9) with respect to l. This implies that for r �= 2M
lin takes the form (we choose co-rotating case):

lin = −ein
gtφ
gtt

− √
Δ

√
e2
in + gtt + grr gtt (vrin)

2

gtt
, (14)

therefore γ (13) is given by:

γ = vtoein + vφ
o ein

gtφ
gtt

+ vφ
o

√
Δ

√
e2
in + gtt + grr gtt (vrin)

2

gtt
. (15)

For r = 2M the solution of the system of Eqs. (2), (3) and (6) is shown below:

lin,2M = − (ein)2 gφφ − Δ[1 + grr (vrin)
2]

2eingtφ
, (16)

hence

γ2M = vtoein + vφ
o

(ein)2 gφφ − Δ[1 + grr (vrin)
2]

2eingtφ
. (17)
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(ii) It can be easily checked that (15) [and (17)] is minimal for ein = eo and vrin = 0
and is a growing function of ein for ein > eo (eo < 1). However, we imposed one
particle to infall from infinity e.g. ein ≥ 1, therefore we take ein = 1. Condition
vrin = 0 is equivalent to the condition stating that trajectory of an infalling particle
is tangent to the trajectory of an orbiting particle.

Applying condition (ii) to the relation (9), we obtain:

gφφ + gtt l
2
in + 2gtφlin = Δ, (18)

gφφeo + gtt l
2
o + 2gtφeolo = Δ. (19)

Now, together with (2) and (3), minimal γ takes the form:

γmin = 1

gtt

[√
(1 + gtt )

(
e2
o + gtt

) − eo

]
, (20)

which is valid for r �= 2M . For r = 2M minimal γ is given by:

γmin,2M = 1

2

(
eo + 1

eo

)
. (21)

It can be seen that:

lim
r→2M+ γmin = lim

r→2M− γmin = γmin,2M . (22)

Using formulas (14) and (16) we can also find lin corresponding with vrin(r = ro) = 0
and e = 1. For r �= 2M it is given by:

lin,min = −gtφ + √
Δ(1 + gtt )

gtt
, (23)

and for r = 2M :

lin,min,2M = Δ − gφφ

2gtφ
. (24)

We note that formula (20) is valid for Kerr–Newman metric as well. Also, we
point out the fact that minimal Lorentz factor calculated above requires fine-tuning of
incoming particle’s angular momentum (or vrin(r0), equivalently). This requirement
is presented in Fig. 1—in the extreme-Kerr limit any vrin(r0) �= 0 results in infinite
energy.

3.2 Collisions on ISCO

This section considers the first particle to stay on ISCO. The radius of ISCO may be
obtained by deriving the system of the following three equations:
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Fig. 1 Dependence of γ on the radial velocity of incoming particle on ISCO. In extreme-Kerr limit,
particle’s motion has to be fine-tuned in order to have finite value of γ

Table 1 Minimal γ factors for
collisions on ISCO, for some
characteristic values of a. Value
a = 0.998M corresponds with a
maximal spin of astrophysical
black holes predicted by [14]

a(M) risco(M) eisco lin,min(M) γmin

0 6 2
√

2
3 3

√
2

√
2 − 1√

6

2
√

2
3 2

√
2√
3

11
3
√

2
5

2
√

6

0.998 1.237 0.679 2.145 1.039

1 1 1√
3

2 2
√

2−1√
3

Vef f (risco) = e2 − 1

2
, (25)

V ′
e f f (risco) = 0, (26)

V ′′
e f f (risco) = 0. (27)

The first two equations are conditions for the circular motion. The third one imposes
the potential to have an inflection point at ro. The shape of potential implies that this
corresponds with the marginally stable orbit. Explicit formula for risco is to be found in
[1]. Calculating minimal γ can be easily done by substituting ro = risco and eo = eisco
in Eq. (20) [or (21) for r = 2M].

Values of γmin for characteristic spins of a black hole are to be found in Table 1. We
note the fact that for a = M , the ISCO does not exist [9] and the given value should
be understood as lim

a→M− γmin .

For the near-extreme Kerr black holes, γmin can be expressed by an approximate
formula, where ε = √

M2 − a2:

γmin 	 2
√

2 − 1√
3

+
3
√

2
(

2
√

2 − 3
)

√
3

ε2/3 + O(ε5/3). (28)
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4 Spinning particles

Motion of particles with spin is described by a set of Mathisson–Papapetrou equations
[10,11]:

dxμ

dτ
= vμ (29)

Dpα

dτ
= −1

2
Rα

βμνv
β Sμν (30)

DSαβ

dτ
= 2p[αvβ] (31)

where Sμν denotes the spin tensor, vμ 4-velocity, pμ momentum (which is in general
not tangent to the particle’s world line) and D

dτ
is a covariant derivative with respect

to particle’s proper time (e.g. D
dτ

≡ vμ∇μ). These equations are valid for small value
of particle’s spin parameter s (where s2 = −SμνSμν).

In case of motion in equatiorial plane in Kerr space–time, the only nonzero com-
ponents of spin tensor are given by [7]:

Srt = − spφ

mr
, Sφt = spr

mr
, Sφr = − Spt

mr
. (32)

where m = −pμ pμ. It also means that a particle’s spin vector defined as

Sα = 1

2m
√−g

εαβμν pβ Sμν (33)

is perpendicular to the equatiorial plane.
Method of treating Eqs. (29), (30), (31) in equatorial plane is presented by [12].

The result is given by:

Σs�s
dt

dτ
= a

(
1 + 3Ms2

rΣs

)
[L − (a + s)E] + r2 + a2

Δ
Ps, (34)

(
Σs�s

dr

dτ

)2

= Rs, (35)

Σs�s
dφ

dτ
=

(
1 + 3Ms2

rΣs

)
[L − (a + s)E] + a

Δ
Ps, (36)

where

Σs = r2
(

1 − Ms2

r3

)
, (37)

�s = 1 − 3Ms2r [−(a + s)E + L]2

Σ3
s

, (38)
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Fig. 2 Minimal Lorentz factor for collisions on ISCO as a function of incoming particle’s spin. The
dependence is presented for several values of black hole’s spin. Results for s = 0 correspond with results
from sect. 3

Rs = P2
s − Δ

(
Σ2

s

r2 + [−(a + s)E + L]2
)

, (39)

Ps =
(
(r2 + a2) + as

r
(r + M)

)
E −

(
a + Ms

r

)
L . (40)

E and L are constants of motion given by:

E = −
(
pμξν − 1

2
Sαβ∇βξα

)
, (41)

L = pμην − 1

2
Sαβ∇βηα. (42)

These equations may be used to calculate suitable collisional energies. We present
results of numerical calculations of lower bounds of collisional energy. The calcula-
tion was done by solving Eqs. (34)–(36) with respect to dt

dτ
, dr
dτ

and dφ
dτ

(assuming
that incoming particle is at rest at infinity), and calculating the Lorentz factor using
equation:

γ = −gμνv
μ
o
dxν

dτ
. (43)

The orbiting particle was considered to be spinless and to move on ISCO. Results are
presented in Fig. 2. It turns out that for parallel oriented spins of black hole and particle
the minimal Lorentz factor is reduced, whereas in an anti-parallel case Lorentz the
factor may be significantly higher. However, this effect appears to be significant for
fastly-rotating black holes only (what is partially a consequence of a higher value of
ISCO radius for lower spins).
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Fig. 3 Minimal Lorentz factor for collisions on ISCO as a function of black hole’s spin. Minimal Lorentz

factor for the extreme-Kerr limit is denoted by γextr = 2
√

2−1√
3

Fig. 4 Dependence of γmin on the radius of an orbit of an orbiting particle for a = 0.998M

5 Summary

A derivation of the lower bound of the Lorentz factor for collisions on orbits near
rotating black holes is presented in this paper. Such a factor can always be minimized
to a finite value, even for ISCO orbits for the extreme-Kerr limit. In the extremal limit
γmin = 2

√
2−1√
3

	 1.056, what corresponds to a speed of collision vmin 	 0.32c. For

Thorne bound1 (a = 0.998M) minimal γ for ISCO is γmin 	 1.039, vmin 	 0.27c
and for Schwarzschild black hole (a = 0) γmin 	 1.006, vmin 	 0.11c. Dependence
between γmin and a in the full domain of a is presented in Fig. 3.

1 Maximal spin of astrophysical black holes predicted by [14].
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Dependence of γmin on r , where r is a radius of an orbit, is presented in Fig. 4.
Interesting fact is that for some r > risco minimal value of γ is greater than the value
of γmin for ISCO.

Allowing incoming particle to have nonzero spin leads to a slight change of cal-
culated parameters: for parallel spins γmin is lower and for anti-parallel spins γmin

is higher than for non-spinning particles. This kind of additional interaction is no-
negligible for near-extreme Kerr only.

To conclude, we have shown that in addition to the existence of a lower bound of γ

in every case, there cannot exist gentle collisions with ISCO-orbiting particles and all
the collisions occur with a high velocity. Our result can be used as an initial value for
the simulation of head-on neutron stars collisions in order to find out if collapse to the
black holes is likely to happen with such a minimal velocity. In terms of a planet —
spaceship issue discussed in the introduction, we conclude that it would be impossible
to avoid a huge load factor when landing on an ISCO planet. What is more, energy
sufficient to “slow down” near the planet would also be beyond present technological
capabilites of humankind. Of course this reasoning does not take into account the
possibility of adjusting a spaceship’s trajectory using engines or gravitational assist
(i.e. Thorne’s idea to reduce the velocity of an impact [13]).
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