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Abstract Static spherically symmetric black holes and particle like solutions with
self interacting minimally coupled scalar field ϕ are analyzed. They are asymptotically
flat or anti-de Sitter (AdS). We express them in terms of a single function ρ which
undergoes simple conditions. If ϕ is nontrivial the ADM mass M has to be positive.
No-hair theorems are generalized to the AdS asymptotic. For both asymptotics the
Killing horizon is nondegenerate and its radius cannot be bigger than 2M . Derivatives
of ρ at singularity determine properties of admissible potentials V (ϕ) as regularity,
boundedness and behavior for maximal values of ϕ. Several classes of solutions with
singular or nonsingular potentials are obtained. Their examples are presented in a form
of plots.

Keywords Black holes · Scalar field · Particle solutions · Spherical symmetry

1 Introduction

The first solution of the Einstein equations with scalar field ϕ was found by Fisher [1].
Then it was rediscovered by several authors [2–5]. Fisher’s solution is static, spheri-
cally symmetric and ϕ is massless. It generalizes the Schwarzschild solution, but its
global structure is completely different. If ϕ is nontrivial singularity and the event
horizon are at the same place [5].

Later studies on the Einstein-scalar equations led to a number of no-hair theorems
on static spherically symmetric solutions representing black holes or particle like
solutions which are asymptotically flat [6–16]. They show that in the case of black
holes potential V of the scalar field cannot be positive definite simultaneously at
all points outside the event horizon. If there is no horizon and V is positive definite
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everywhere a naked singularity must be present. The global structure of the maximally
extended metric is that of the Schwarzschild or Minkowski spacetime. Some of these
results were generalized to asymptotically anti-de Sitter or de Sitter solutions [15,
16] and more involved models of gravity interacting with scalar field, also in higher
dimensions (see [17] for a review). On the other hand examples of black holes and
particle like solutions, which do not undergo the no-hair theorems, were constructed
(see e.g. [16,18–21]). Since the standard energy conditions are often not respected in
modern relativity, these solutions can still be valuable.

In this paper we study exclusively static spherically symmetric solutions of the Ein-
stein equations with minimally coupled scalar field. They are assumed to be asymptot-
ically flat or anti-de Sitter (AdS). We consider two classes of fields: black holes with
the regular Killing horizon and no naked singularities and particle like solutions with
no singularities at all. In the latter case it follows from the Einstein equations that there
is no horizon. In order to avoid numerical analysis we assume that function V (ϕ) is
not a’priori prescribed. In this case the Einstein equations form an underdetermined
system of three equations for four unknowns: ϕ, V and two metric coefficients (other
two can be fixed by means of a coordinate transformation), all depending on a radial
coordinate r . We solve these equations (Sect. 2) and express all fields in terms of a
free function ρ which is monotonically growing, convex, has a zero point and approx-
imates r − 3M when r is large. Given ρ(r) a dependence of the potential V on ϕ is
defined in a parametric way.

This description allows to obtain new results and refine old ones. We generalize the
no-hair theorems to the AdS asymptotic. As in the asymptotically flat case potential
V cannot be positive definite outside the Killing horizon, or everywhere in the case of
particle like solutions, if scalar field is nontrivial in this domain (Sects. 5 and 6). Other
results refer to both asymptotics. Despite of violation of standard energy conditions
(dominant, strong and weak) except the null one, for any potential V (ϕ) the total
ADM mass M has to be positive or ϕ is trivial and metric is flat or AdS (Sect. 6).
Singularity is unavoidable in the case of black holes [15] (see Sect. 4 for a proof). It
occurs at r0 > 0 if necessary properties of the function ρ break down at r0, otherwise
it is at r = 0. There is only one horizon [15]. Its radius rh obeys the Penrose inequality
rh ≤ 2M and the surface gravity is never zero (Sects. 3 and 5).

The representation of solutions in terms of ρ allows also to obtain general properties
of admissible potentials (Sects. 4 and 5). Potential V and its derivative V,ϕ have to
vanish at ϕ = 0. In generic case ϕ is finite at singularity and V is infinite. Regular
potentials V (ϕ) are possible, bounded or unbounded, if singularity is at r = 0 and
derivatives of ρ at this point are properly chosen. Examples of solutions are easy
to construct thanks to the description of necessary and sufficient conditions on the
function ρ(r). They are plotted in Fig. 1.

In Sect. 2 asymptotically flat solutions of the Einstein-scalar equations are repre-
sented in terms of the free function ρ. In Sect. 3 we study maximal extensions of
solutions admitting the nonsingular Killing horizon. Section 4 is mainly devoted to
properties of potentials V (ϕ) as functions of scalar field ϕ. Section 5 contains gen-
eralizations to solutions with the AdS asymptotic. Section 6 deals with particle like
solutions with any of the two asymptotics. Main results are collected in Theorems 1–7
and Remarks 1–4.
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2 Solutions with undefined V (ϕ)

The Einstein equations with scalar field ϕ, potential V (ϕ) and the cosmological con-
stant � take the form

Rμν − 1

2
Rgμν = ϕ,μϕ,ν +

(
� + V − 1

2
ϕ,αϕ,α

)
gμν, (1)

where Rμν is the Ricci tensor of metric gμν and units c = 1, 8πG = 1 are chosen. If
ϕ,μ �= 0 it follows from (1) that the scalar field equation

ϕ
|μ
|μ = −V,ϕ (2)

is satisfied. In Sects. 2–4 we will study black hole solutions of equations (1) and (2)
with � = 0 and in Sects. 5, 6 we will admit � < 0.

Definition 1 We say that a C2 solution of (1) and (2) with � = 0 is a static spherically
symmetric black hole with scalar field if the following conditions are satisfied:

1. Metric g and scalar field ϕ are spherically symmetric and invariant under an addi-
tional complete Killing vector k.

2. Metric is asymptotically flat [22] and ϕ vanishes at infinity.
3. Vector k is timelike in the asymptotic region and becomes null on the Killing

horizon. Metric and scalar field can be continued through the horizon.

Outside the Killing horizon metric tensor can be written in the form

g = g00dt2 + g11dρ2 − r2
(

dθ2 + sin2θdφ2
)

, (3)

where k = ∂t is the timelike Killing field. Functions g00, g11, r and ϕ depend only on
the coordinate ρ. Coordinates t, ρ break down on the Killing horizon where g00 = 0.
Metric can be continued through it if the Eddington–Finkelstein type coordinates exist.
To this end functions g00 and g00g11 should have C2 continuations through the horizon
and condition

g00g11 < 0 (4)

should be preserved. Thus, under the assumptions of Definition 1 functions g00, g00g11
and ϕ are globally defined and condition (4) has to be everywhere satisfied.

We use a notion of the asymptotical flatness based on the conformal compactifica-
tion of spacetime [22]. For our purposes it is sufficient to require that fields have the
following expansions for large values of ρ

g00 = 1 − 2M

ρ
+ 0

(
ρ−2

)
, g00g11 = −1 + 0

(
ρ−1

)
,

r = ρ + 3M + 0
(
ρ−1

)
, ϕ = 0

(
ρ−1

)
. (5)
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The k-derivative of a term 0(ρ−n), k, n = 1, 2, is assumed to behave like 0(ρ−n−k).
The constant M is the total mass and the component 3M in the relation between r and
ρ is introduced for a later convenience.

Thanks to (4) one can choose the coordinate ρ in such a way that outside the horizon
metric reads

g = Fdt2 − F−1dρ2 − r2
(

dθ2 + sin2θdφ2
)
. (6)

In this gauge one of the Einstein equations can be easily solved. After doing this we
will pass to coordinates t, r, θ, ϕ which seem more suitable for analyzing solutions.

If � = 0 Eq. (1) for metric (6) and scalar field ϕ yields

r2 F,ρρ − F(r2),ρρ + 2 = 0 (7)

ϕ′2 = −2r,ρρ

r
(8)

V = 1

r2 − 1

r2 (rr,ρ F),ρ. (9)

Above equations are equivalent to Eqs. (9)–(11) in [16] for d = 2 [note that Eq. (12)
in [16] contains an error]. By virtue of (5) an integration of (7) leads to

r2 F,ρ − F(r2),ρ + 2ρ = 0 (10)

(see Eq. (13) in [16]). The second integration allows to represent F in terms of the
function r

F = 2r2

∞∫
ρ

ρ̃

r4 dρ̃. (11)

It follows from (8) that r,ρρ ≤ 0 and from (5) that r,ρ → 1 if ρ → ∞. Hence
r,ρ ≥ 1 everywhere and we can interchange roles of ρ and r . In coordinates t, r, θ, ϕ

metric tensor reads

g = Fdt2 − F−1ρ′2dr2 − r2
(

dθ2 + sin2θdφ2
)
, (12)

where the prime denotes the derivative with respect to r . Now, formulas (8), (9) and
(11) take the following form

F = 2r2

∞∫
r

ρρ′

r̃4 dr̃ (13)

ϕ′2 = 2ρ′′

rρ′ (14)

V = 1

r2 − 1

r2ρ′

(
r F

ρ′

)′
. (15)
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By virtue of (13) the last equation can be also written as

V = 1

r2 + 2ρ

r3ρ′ + F

rρ′2

(
ρ′′

ρ′ − 3

r

)
. (16)

Condition (8) and (14) impose the following simple constraints on function ρ

1 ≥ ρ′ > 0, ρ′′ ≥ 0. (17)

In order to guarantee that F and ϕ are C2 differentiable we have to assume that ρ ∈ C3

and

(
√

ρ′′)′ ∈ C0 (18)

at points where ρ′′ = 0. Asymptotic conditions (5) reduce to

ρ = r − 3M + 0(r−1) i f r → ∞. (19)

Note that (17) and (19) yield

ρ(r) ≥ r − 3M. (20)

In addition to (13)–(15) the scalar field equation (2) has to be taken into account at
points where ρ′′ = 0 since then ϕ′ = 0 at these points. Let us assume that ρ′′ = 0 at
r = r0 which is a limit of a sequence of points in which ρ′′ �= 0. Equation (2) will be
satisfied at r0 if values of V,ϕ = V ′/ϕ′ at these points have a limit at r0. Here V ′ is
given by differentiation of (16)

V ′ = −4ρρ′′

r3ρ′2 + F

r2ρ′4
(

rρ′ρ′′′ + 7ρ′ρ′′ − 3rρ′′2). (21)

Let S be a set of all other points in which ρ′′ = 0. Each of them possesses a neigh-
borhood where ϕ = const. It follows from (21) that also V =const in this neigh-
borhood. Equation (2) reduces to V,ϕ = 0. It is satisfied provided V ′/ϕ′ → 0 when
one approaches boundary of S from its exterior. Thus, again the continuity of V,ϕ is
required. It follows from (14) and (21) that this property is assured by the already
assumed condition (18). Concluding, Eq. (2) does not generate a new constraint.

Given V as a function of ϕ relations (13)–(15) yield an equation for ρ(r) which
is hard to study in an analytic way. For this reason we will treat V as an unknown
variable. Then formulas (13)–(15) define F, ϕ and V in terms of a free function ρ(r).
We admit only such functions ρ(r) for which ϕ(r) and V (r) correspond to some
potential V (ϕ).

Remark 1 In principle function ϕ′ may change sign at points where ρ′′ = 0 or, more
generally, when r passes an interval on which ρ′′ = 0. If it happens potential V is a
function of ϕ if and only if ρ(r) satisfies in a neighborhood of the interval an involved
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equation containing ρ′, ρ′′ and an inverse function to ρ′′/ρ′. If there is no interval on
which ρ satisfy this equation we refer to ρ as a generic function.

If ρ is generic in the above sense it follows from (14) that scalar field is given by
the monotonic function

ϕ(r) =
∞∫

r

√
2ρ′′
rρ′ (22)

up to the factor ±1. Formulas (16) and (22) define a differentiable potential V (ϕ) in
a parametric way.

3 Maximal extension

Let rh be a position of the Killing horizon, F(rh) = 0. Since ρ′ > 0 everywhere it
follows from (13) that ρ cannot have an uniform sign for r > rh . Thus, there is a
unique point rc such that rc > rh and

ρ(rc) = 0, rc ≤ 3M. (23)

Since ρ < 0 if r < rc it is clear from (13) that (r−2 F)′ > 0 for r < rc. Hence, there
are no more Killing horizons [15].

Using (13) one can calculate the surface gravity of the Killing horizon at rh

κ = |ρ(rh)|
r2

h

. (24)

Thus, the horizon is nondegenerate. Moreover, its radius satisfies the Penrose inequal-
ity

rh ≤ 2M. (25)

In order to prove (25) let us consider the function

f =
∞∫

r

ρρ′

r̃4 dr̃ (26)

which is proportional to F and vanishes at rh . From (17) and (20) one obtains ρρ′ ≥
r − 3M if r ≤ rc, hence

f ≥
rc∫

r

r̃ − 3M

r̃4 dr̃ + f (rc). (27)
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Integrating (26) by parts yields

f = − ρ2

2r4 + 2

∞∫
r

ρ2

r̃5
dr̃ . (28)

Since ρ(rc) = 0 it follows from (28) and (20) that

f (rc) = 2

∞∫
rc

ρ2

r̃5
dr̃ ≥ 2

∞∫
3

ρ2

r̃5
dr̃ ≥ 2

∞∫
3

(r̃ − 3M)2

r̃5
dr̃ =

∞∫
3

r̃ − 3M

r̃4 dr̃ .

Substituting the last relation into (27) and using (13) leads to the inequality

F(r) ≥ 1 − 2M

r
if r ≤ rc. (29)

Since rh < rc, condition (25) follows.
If one of properties (17)–(19) breaks down at r0 such that 0 < r0 < rh the corre-

sponding field configuration is singular at r0. If not, and M �= 0 a singularity of the
Riemann tensor appears at r = 0 (see the next section). Assume for a moment that
M ≤ 0. It follows from (20) that there is no zero point rc of ρ. Hence, there is no room
for the horizon radius rh . Either M = 0 and ρ = r (flat space with ϕ = 0) or there is
naked singularity at r = 0 or at r0 > 0.

Remark 2 Black hole solutions can exist only for M > 0.

A question arises what are sufficient conditions for ρ to define black hole. Of course,
conditions (17)–(19) and (23) should be satisfied but they do not assure vanishing of F
at some value rh > 0. Assume that these conditions are satisfied for all r > 0. In this
case, since ρ(r) is increasing and convex, functions ρ and ρ′ are finite at r = 0 and
ρ(0) < 0. If ρ′(0) > 0 then it follows from (13) that function r−2 F tends to −∞ if
r → 0. Moreover F(rc) > 0 and (r−2 F)′ > 0 for r < rc. Hence, there is exactly one
value rh such that F(rh) = 0. The same result follows for a more general condition
on ρ(r) near singularity

ρ′ ≈ crn, c = const > 0, 0 ≤ n ≤ 3. (30)

Let us consider global structure of the maximally extended black hole solutions. It
is convenient to come back to the form (6) of metric tensor. All extensions of metrics
of this type were given by Walker [23] (see also [24]). They can be composed from
standard building blocks. Since (13) admits only one horizon and it has the first order
zero at r = rh the corresponding maximal extension is obtained by gluing the same
blocks as in the case of the Schwarzschild solution.

We summarize results of this section in the following theorem.
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Theorem 1 • A static spherically symmetric black hole with scalar field corre-
sponds to a function ρ ∈ C3 with properties (17)–(19) and (23). Metric is given
by (12) and (13). Scalar field ϕ and its potential V are given by (22) [or (14), see
Remark 1] and (16).

• The global structure of the maximally extended metric is the same as that of the
Schwarzschild solution, possibly with the singularity shifted to r0 > 0. The radius
rh of the horizon satisfies rh ≤ 2M and rh < rc ≤ 3M. The surface gravity is
nonzero.

• Any C3 function ρ satisfying (17)–(19), (23) and (30) for all r > 0 defines a black
hole solution via relations (12), (13), (16) and (22).

4 Properties of ϕ and V and examples

First, let us consider ϕ and V in the region outside the horizon. From (19), (14) and
(16) it follows that

ϕ = 0(r−1), V = 0(r−3) (31)

for large values of r . By virtue of (2) and (31) one obtains that potential, as a function
of ϕ, satisfies

V → 0, V,ϕ → 0 i f ϕ → 0. (32)

Somewhere between the horizon and infinity potential V should take negative values.
This is the content of the no-hair theorem of Bekenstein [8] (with later generalization).

No-hair Theorem. Static spherically symmetric black hole with nontrivial scalar
field outside the regular horizon cannot have potential V which is positive definite
outside the horizon.
Following [16] we show below how this theorem can be proved in our approach. One
can easily verify that Eqs. (13) and (16) imply the following identity

2rρ′V + ρ′′
(

1 + F

ρ′2

)
=

(
r2ρ′V − rρ′′F

ρ′2

)′
. (33)

Since F(rh) = 0 and (31) implies r2V → 0 if r → ∞ integration of (33) between rh

and ∞ yields

∞∫
rh

[
2rρ′V + ρ′′

(
1 + F

ρ′2

)]
= −r2

hρ′(rh)V (rh). (34)

If V ≥ 0 outside the horizon Eq. (34) is satisfied only if V = 0 and ρ′′ = 0 for
every r ≥ rh . By virtue of the asymptotic condition (19) it follows that ρ = r − 3M
for r ≥ rh . Hence, rh = 2M and one obtains the Schwarzschild metric and trivial
scalar field outside the horizon. This solution may be different under the horizon since
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function ρ = r − 3M can be continued to r < 2M in many different ways respecting
conditions (17) and (18).

The remaining part of this section is mainly devoted to behavior of solutions near
singularity. In order to simplify conclusions we will assume that ϕ is given by formula
(22). Let singularity be at r0 > 0. Since ρ and ρ′ are monotonic and bounded for
r < rc they are finite at r0. Conditions (17), (18) can break down at r0 because ρ′′
is not well defined at r0 (generic case) or ρ′(r0) = 0 or ρ′′(r0) = 0 but

√
ρ′′ is not

differentiable at r0. In the first case with ρ′(r0) > 0 the scalar field ϕ is finite at r0 and
a singular part of V is proportional to −ρ′′. In the case ρ′′(r0) = ∞ potential tends to
−∞ at r0. Potential of this type is also obtained if ρ′(r0) = 0 and 0 < ρ′′(r0) < ∞.
In all other cases a dependence of V on r or ϕ is rather not acceptable, e.g. ϕ and V
are finite at r0 but the derivative V,ϕ is not defined at ϕ0. We conclude this analysis in
the following remark.

Remark 3 In generic case black hole singularity at r0 > 0 corresponds to a singular
potential V (ϕ). If ρ′ > 0 and ρ′′ = ∞ or ρ′ = 0 and ρ′′ > 0 at r0 the scalar field is
finite and V = −∞ at r0.

Let conditions (17)–(18) and (23) be satisfied for all r > 0. Values of ρ and ρ′ at
r = 0 will be denoted by the subscript 0. They are finite and they satisfy

−3M ≤ ρ0 < 0, 0 ≤ ρ′
0 ≤ 1. (35)

From (12) and (13) one obtains

F ≈ 2ρ0ρ
′
0

3r
if r → 0 (36)

and

g11(0) = 0. (37)

It follows from (37) that the Kretschmann invariant diverges at r = 0, hence the
Riemann tensor is singular. In most cases the function V (ϕ) is also singular. For
instance, let us assume that ρ′

0 > 0 and ρ′′
0 > 0 (generic case). Then ϕ takes a finite

value ϕ0 at r = 0 but F and V tend to infinity. Hence, potential V (ϕ) must be singular

V → ∞ i f ϕ → ϕ0. (38)

An example of this kind is presented in Fig. 1 (case 1).
If ρ′

0 > 0 the function ϕ is finite at r = 0. Otherwise ρ′′ would diverge at least
as r−1, but this is incompatible with the existence of ρ′

0. In order to avoid singularity
of V (ϕ) at ϕ0 functions V (r) and V ′/ϕ′ should have limits at r = 0. This implies
condition r2V → 0. By virtue of (16) it yields

⎛
⎝ρ′′ − 3r2

∞∫
r

r̃−3ρ′′dr̃

⎞
⎠ → 0. (39)
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It follows from (39) that ρ′′
0 = 0 or ρ′′ ∼ r−1. Since the latter condition leads to

divergent ρ′ we require ρ′′
0 = 0. Still this condition does not guarantee finiteness of

V . For instance, if ρ′′′ → ρ′′′
0 �= 0 one obtains V → ε∞, where ε = ±1 is the sign

of ρ′′′
0 . To avoid this situation we should assume condition r V → 0 in addition to

ρ′′
0 = 0. Using (16) yields ρ′′′ ∼ r2. Now V is finite at r = 0 but to obtain nonsingular

V ′/ϕ′ we still need stronger conditions near singularity

ρ′′ ≈ c1r5,
(√

ρ′′
)′ ≈ c2r

3
2 , (40)

where c1, c2 are nonnegative constants. Note that condition with c2 can be postponed
if c1 > 0. An example of solution satisfying (40) is presented in Fig. 1 (case 3).

Now, we assume that ρ′
0 = 0. Then φ → ∞ if r → 0 and potential V (ϕ) is

nonsingular. Generically V (r) → ±∞ and V (ϕ) behaves like ± exp (cϕ) if ϕ →
∞, where c =const> 0. An example of this kind with ρ′′

0 > 0 and ρ′′′
0 > 0 is

presented in Fig. 1 (case 2). In this example function V (ϕ) is positive and proportional
to exp (3ϕ/

√
2) for large values of ϕ.

If ρ′
0 = 0 it may happen that function V (ϕ) is bounded. It is the case if ρ admits

up to six derivatives at r = 0 and they satisfy the following conditions

−3M < ρ0 < 0, ρ′′
0 > 0, ρ

(k)
0 = 0, k = 1, 3, 5

ρ
(4)
0 = −3ρ′′2

0

ρ0
, ρ′′2

0 = 4

∞∫
0

rρ0ρ
′′
0 − ρρ′

r4 . (41)

We summarize results of this section in the following theorem.

Theorem 2 If the only singularity is at r = 0 then g11(0) = 0 and the Riemann
tensor is singular at r = 0. Potential V (ϕ) and its derivative V,ϕ vanish at ϕ = 0.
Generically ϕ takes a finite value ϕ0 at r = 0 and V (ϕ) becomes infinite at ϕ0. A
nonsingular potential V (ϕ) can be obtained if either ρ′

0 > 0 and conditions (40)
are satisfied or ρ′

0 = 0. In the latter case ϕ is unbounded and either |V (ϕ)| grows
exponentially or conditions (41) are satisfied and V is bounded.

Examples of black holes (BH) considered in this section are given in Fig. 1 (cases
1–3). In all of them M = 1 and ρ′′ takes the form

ρ′′ = crne−b2(r−a)2
, (42)

where n, a, b and c are parameters. Functions ρ′ and ρ are defined by

ρ′ = 1 −
∞∫

r

ρ′′(r ′)dr ′, (43)

ρ = r − 3 +
∞∫

r

dr ′
∞∫

r ′
ρ′′(r̂)dr̂ . (44)
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g00g11 r

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

1 2 3 4 5

–4

–2

0

2

4

6

8
V r V

–5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

5

0

Fig. 1 Solutions corresponding to (42)–(44) with parameters (n,a,b,c) and � = 0: 1 solid line (0,3,1,.45)
BH with singular V (ϕ), 2 dotted line (0,1,1,.6) BH with nonsingular V (ϕ) bounded from below, 3 solid
line with space (5,1,2.5,.5) BH with nonsingular V (ϕ) bounded from both sides, 4 dashed line (3,3,1,.006)
particle like solution with nonsingular V (ϕ) bounded from both sides, 5 solid line with dot the Schwarzschild
metric

They can be also expressed without integrals in terms of functions exp, Erfc and
powers of r . Figure 1 contains graphs of functions ρ, g00 = F,−g00g11 = ρ′2, ϕ, V
as functions of r and potential V (ϕ) as a function of ϕ. A zero point of F defines
the radius rh of the black hole horizon. Potentials V are negative on some intervals in
agreement with the no-hair theorems.

Case 1 represents the generic class of functions ρ for which ρ′
0 > 0, ρ′′

0 > 0, ϕ0 is
finite and potential V is infinite at r = 0. In the case 2 there is ρ′

0 = 0 and ϕ is infinite
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at r = 0. Function V (r) is singular at r = 0 but V (ϕ) is nonsingular and it grows
exponentially if ϕ → ∞. In the case 3 conditions (40) are realized. Both ϕ and V are
bounded and function V (ϕ) is nonsingular. Case 4 represents a particle-like solution
(to be considered in the next section). Case 5 includes graphs which can be plotted for
the Schwarzschild metric.

5 Asymptotically AdS black holes

Up to now we considered metrics which are asymptotically flat. Not much changes
if they are asymptotically anti-de Sitter with the cosmological constant � < 0. We
will use the term ’AdS black hole with scalar field’ if solution is asymptotically AdS
and satisfies assumptions of Definition 1 except that about � = 0 and asymptotical
flatness. All equations and results of the preceding sections are still true up to the
following modifications. Now, instead of (13) one has

F = 2r2

∞∫
r

ρρ′

r̃4 dr̃ − 1

3
�r2. (45)

The asymptotic condition (19) is unchanged since ρ = r − 3M is still true for the
Schwarzschild–anti-de Sitter solution. Potential V in Eqs. (9), (15) and (16) should
be replaced by V + �. Now, Eq. (15) takes the form

V = 1

r2 − 1

r2ρ′

(
r F

ρ′

)′
− � (46)

and Eq. (29) transforms into

F(r) ≥ FAd S = 1 − 2M

r
− 1

3
�r2 if r ≤ rc. (47)

Hence

rh ≤ rAd S ≤ 2M, (48)

where rAd S is the horizon radius of the AdS metric (zero point of FAd S). Theorem 1
is replaced by the following one.

Theorem 3 • A static spherically symmetric AdS black hole with scalar field cor-
responds to a function ρ with properties (17)–(19) and (23). Metric is given by
(12) and (45). Scalar field ϕ and its potential V are given by (22) [or (14), see
Remark 1] and (16).

• The global structure of the maximally extended metric is the same as that of the
Schwarzschild–anti-de Sitter metric, possibly with a singularity shifted to r0 > 0. A
position rh of the horizon is defined by F(rh) = 0 and it satisfies rh ≤ rAd S ≤ 2M
and rh < rc ≤ 3M. The surface gravity is nonzero.
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• Any C3 function ρ satisfying (17)–(19), (23) and (30) for all r > 0 defines AdS
black hole solution via relations (12), (45), (16) and (22).

For � < 0 estimation (31) changes since potential V vanishes as 0(r−2) at infinity.
Instead of (33) one obtains

2rρ′V + ρ′′
(

1 + F

ρ′2 − �r2
)

=
(

r2ρ′V − rρ′′F
ρ′2

)′
. (49)

Integrating (49) between rh and ∞ yields

∞∫
0

[
2rρ′V + ρ′′

(
1 + F

ρ′2 − �r2
)]

= lim
r→∞

(
r2ρ′V − rρ′′F

ρ′2

)
− r2

hρ′
h Vh

= � lim
r→∞

(
r2

ρ′ − r2ρ′
)

− r2
hρ′

h Vh . (50)

If V ≥ 0 outside the horizon then, because of (17), the r.h.s. of (50) is never positive
and its l.h.s. cannot be negative. Hence, V = ρ′′ = 0 and ρ′ = 1. It follows that
ρ = r − 3M if r ≥ rh . Thus, rh = rAd S and for r ≥ rAd S scalar field is trivial
and metric coincides with the Schwarzschild–AdS solution. This proves an analog of
Bekenstein’s no-hair theorem for a negative cosmological constant.

Theorem 4 Static spherically symmetric AdS black hole with nontrivial scalar field
outside the regular horizon cannot have potential V which is positive definite outside
the horizon.

The analysis of solutions near singularity in Sect. 4 applies to the present case in an
unchanged form with the exception of conditions (41) which need modifications.

Remark 4 Theorem 2 is true for � < 0 provided conditions (41) are appropriately
changed.

Like for � = 0 one can construct examples of solutions for ρ given by (42)–(44).
Corresponding plots are similar to those in Fig. 1 except that now F is dominated by
the term proportional to � for large values of r .

6 Particle like solutions

Finally, let us consider particle like solutions which are asymptotically flat or AdS and
everywhere regular. In this case the Killing horizon is not admitted since otherwise
singularity would be present. Properties (17)–(19) and F > 0 have to be satisfied for
all r > 0. Inspection of the Kretschmann invariant at r = 0 shows that metric should
flatten at r = 0. It follows that

0 < F0 < ∞,
ρ′2

0

F0
= −1. (51)
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This together with (36) yields

ρ0 = 0, ρ′
0 > 0. (52)

In order to avoid singularities of the first and second derivatives of metric with respect
to the Cartesian coordinates related in the standard way to r, θ and φ we should also
assume that

ρ′′
0 = ρ′′′

0 = 0. (53)

To obtain ϕ ∈ C2 and a nonsingular function V (ϕ) we still have to strengthen (53) by
assuming

ρ′′ ≈ 4cr3, (
√

ρ′′)′ ≈ 3c
√

r , c = const > 0 if r → 0. (54)

Theorem 5 • A static spherically symmetric, asymptotically flat or AdS, everywhere
regular solution with scalar field corresponds to some function ρ with properties
(17)–(19), (52) and (54). Metric is given by (12) and either (13) or (45). There is
no horizon. Scalar field and its potential V satisfy (22) [or (14), see Conclusion
2] and (16).

• Any C3 function ρ satisfying (17)–(19), (52) and (54) for all r > 0 defines a
particle like solution via relations (12), (16), (22) and either (13) or (45).

If ρ ∈ C5 conditions (52) and (54) are satisfied by

ρ = c1r + c2r5 f, (55)

where c1 and c2 are positive constants and f is a function such that f → 1 if r → 0.
An asymptotically flat example of this kind is represented by the case 4 in Fig. 1. The
corresponding function V (ϕ) is defined only on an interval and it can be prolongated
in any differentiable way.

Following [16], where the flat asymptotic was considered, we can show for any
� ≤ 0 that potential V has to be somewhere negative if ϕ is nontrivial. Indeed,
integrating of (46) from zero to infinity yields

∞∫
0

r2ρ′V dr = lim
r→∞

⎛
⎝ρ − r F

ρ′ − �

∞∫
r

r̃2ρ′dr̃

⎞
⎠

= −M + 1

3
� lim

r→∞

⎛
⎝r3

ρ′ − r3ρ′ +
∞∫

r

r̃3ρ′′dr̃

⎞
⎠. (56)

Because of (17) the r.h.s. of (56) is never positive. If V ≥ 0 then it follows from this
equation that V = M = 0 and ρ = r . Hence, scalar field is trivial and metric is flat or
AdS. In this way we obtain the following generalization of Theorem 5 in [16].
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Theorem 6 Static spherically symmetric, asymptotically flat or AdS, everywhere reg-
ular solution with nontrivial scalar field cannot have positive definite potential V .

If M < 0 it follows from (20) that condition (52) cannot be satisfied. For M = 0
the only nonsingular configuration (flat or AdS metric with ϕ = V = 0) is given by
ρ = r . As in the case of black holes nontrivial particle like solutions exist only if
M > 0. This observation together with Remark 1 leads to the following statement.

Theorem 7 For M ≤ 0 there are no static spherically symmetric, asymptotically flat
or AdS, black holes or particle like solutions with nontrivial scalar field.

Thus, in case of these solutions one can assume M > 0 without loss of generality.

7 Summary

We have been studying static spherically symmetric solutions of the Einstein-scalar
equations which are asymptotically flat or AdS and have no naked singularities. Our
approach is based on a representation of these solutions in terms of a function ρ(r)

which is monotonically growing, convex and tends to r − 3M if r → ∞. Moreover
it should have a zero point in the case of black holes or to satisfy conditions (52) and
(54) in the case of particle like solutions. Necessary and sufficient conditions for the
function ρ are given in Theorems 1, 3 and 5.

Theorem 7 shows that the total mass of field configurations with nontrivial scalar
field has to be positive. This particular version of the positive energy theorem is
satisfied for any shape of potential V (ϕ). Note that general V (ϕ) does not assure any
reasonable energy condition except the null one.

Theorems 4 and 6 generalize to the AdS asymptotic the no-go theorems for asymp-
totically flat black holes and particle like solutions. They show that potential V has to
be somewhere negative or V = ϕ = 0 everywhere. In agreement with [15] the global
structure of solutions is that of the Schwarzschild or Minkowski metric or their AdS
partners (Theorems 1 and 3). We also show that in the case of black holes horizons are
not degenerate (the surface gravity is nonzero) and the Penrose inequality rh ≤ 2M
or stronger rh ≤ rAd S is satisfied (Theorems 1 and 3).

In our approach an exact form of the function V (ϕ) is not a’priori assumed. It follows
implicitly when function ρ(r) is chosen. Some properties of V (ϕ), like regularity or
boundedness, can be easily related to behavior of ρ near singularity. For generic ρ

potential V (ϕ) becomes infinite at a finite value of ϕ. The simplest way to make
it regular in the case of black holes is to assume that the first derivative of ρ at
r = 0 vanishes. Then V is bounded from below or above and |V | grows exponentially
when ϕ → ∞. To get potential bounded from both sides one has to assume stronger
conditions (40) or (41) (modified in the case of the AdS asymptotic). In the first case
the function ϕ(r) is also bounded. Hence, potential V (ϕ) is given only on an interval
and it can be prolongated in any way. Similar situation takes place in the case of particle
like solutions. Properties of V (ϕ) for black holes are summarized in Theorem 2 and
Remark 3.

Thanks to sufficient conditions on ρ given in Theorems 1, 3 and 5 it is easy to
construct examples of different classes of solutions. Some of them, with a singular
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or nonsingular potential V (ϕ), are presented in Fig. 1. Plots were done by means of
Mathematica 9.
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