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Abstract We present a new Hamiltonian formulation of the teleparallel equivalent of
general relativity (TEGR) meant to serve as the departure point for canonical quan-
tization of the theory. TEGR is considered here as a theory of a cotetrad field on a
spacetime. The Hamiltonian formulation is derived by means of an ADM-like 3 + 1
decomposition of the field and without any gauge fixing. A complete set of constraints
on the phase space and their algebra are presented. The formulation is described in
terms of differential forms.

Keywords Teleparallel equivalent of general relativity - Hamiltonian formulation -
Canonical quantization

1 Introduction

Among current approaches [1,2] to quantum gravity there is no one based on the
teleparallel equivalent of general relativity (TEGR) (see [3] for the latest review on
the theory). Therefore it is worth to check whether it is possible to quantize gravity in
this formulation. Our project is to check whether it is possible to quantize TEGR in a
background independent (diffeomorphism invariant) manner by means of the method
of canonical quantization or, if necessary, a modification of this method.

As the departure point for canonical quantization of TEGR we would like to use a
canonical formulation of the theory satisfying the following conditions:
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2570 A. Okotéw

1. the formulation is derived without any gauge fixing;

2. the canonical variables are a cotetrad field restricted to a space-like slice of the
spacetime and the momentum conjugate to it;

3. the complete set of constraints is known as well as its division into the first and
second class constraints;

4. the formulation is of the ADM-type, i.e. the non-dynamical degrees of freedom of
the configuration variables are parameterized by the lapse function and the shift
vector field (in the formulation the two latter variables play a role of Lagrangian
multipliers).

Let us now justify these requirements.

Condition 1 corresponds to our wish to construct a quantum model of TEGR pos-
sessing as many symmetries of the classical theory as possible including (spatial)
diffeomorphism invariance.

Regarding Condition 2 let us emphasize that from the point of view of canonical for-
malism TEGR is a constrained system [4-9]. Therefore when quantizing canonically
the theory we have to choose one of the following two strategies: (i) “first quantize, then
solve the constraints” (this is the Dirac strategy) or (ii) “first solve the constraints, then
quantize”. Since we are unable to solve the constraints classically we have to choose
the first strategy, which means in particular that the first step of the quantization is a
construction of kinematic quantum states (here the adjective “kinematic” emphasizes
the fact that these quantum states correspond to all classical states in the phase space of
the theory, that s, to states which satisfy and states which do not satisfy the constraints).
On the other hand at the Lagrangian level TEGR can be described either (i) as a theory
of a cotetrad field and a Lorentz connection of zero curvature—see e.g. [10-13] or
(ii) as a theory of a cotetrad field only—see e.g. [3,14]. Thus the construction of the
kinematic quantum states can be based on canonical variables derived either (i) from
the cotetrad field and the Lorentz connection or (ii) the cotetrad field only. However,
by now there is no method of constructing quantum states for a theory of a connection
with a non-compact structure group (see [15,16])—one consequence of this fact is
that the kinematic Hilbert space of loop quantum gravity (LQG) [17] is based on the
real Ashtekar—Barbero connection [18] (the structure group of it is SU (2)) instead of
the complex Ashtekar-Sen connection [19,20] (the structure group of it is SL(2, C)).
Thus we are left with the second possibility expressed as Condition 2.

Constraints on the phase space have to be incorporated in a way into the structure of a
resulting quantum model. Therefore one should know a complete set of the constraints.
Moreover, at the quantum level one usually treats first class constraints in a different
way than second class ones. Therefore one should know which constraints are of the
first class and which are of the second class. This justifies Condition 3.

Condition 4 was imposed because of our wish to quantize TEGR 1in a diffeomor-
phism invariant manner and, in particular, to apply some ideas developed in LQG which
is a diffeomorphism invariant model of quantum gravity based on an ADM-like Hamil-
tonian formulation of general relativity (GR) (see e.g. review papers [21,22]). First
of all, an ADM-like formulation of GR provides a vector constraint which generates
on the phase space gauge transformations corresponding to spatial diffeomorphisms.
In particular, this fact was used in LQG to “solve” the vector constraint by finding
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quantum states invariant with respect to an action of spatial diffeomorphisms (see e.g.
[23]). Moreover, in recent years there were constructed two very interesting quantum
models of gravity coupled to a matter field: in [24] gravity is coupled to a dust and in
[25] to a scalar field. These models combine the standard LQG methods with so called
relational observables [26,27] and underlying canonical formulations of GR coupled
with matter fields [28,29] are of the ADM-type.

In this paper we present a Hamiltonian formulation of TEGR satisfying all Con-
ditions. The formulation was derived from the following action of TEGR [6,12-
14,30,31]:

S[0A]=/ —%(dof‘ AOB) A x(dOB /\0A)+;1(d0‘4 A0 Ax(dOB AOE). (1.1)

In this action (84) (A = 0, 1, 2, 3) is a cotetrad field on a four-dimensional manifold
i.e. (81) is a collections of differential one-forms which are linearly independent at
every point of the manifold, d is the exterior derivative of differential forms on the
manifold and « is the Hodge operator defined by a Lorentzian metric given by the
cotetrad (#7). To describe the resulting Hamiltonian formulation we used a special
kind of canonical formalism adapted to differential forms patterned on that described
in [6,11,32].

The Hamiltonian formulation obtained form (1.1) is well defined. In this paper we
present a Hamiltonian, a complete set of constraints on the phase space and a constraint
algebra. To the best of our knowledge this is the first Hamiltonian formulation of
TEGR satisfying Conditions 1, 2 and 3 which was derived by means of an ADM-like
3 + 1 decomposition of the cotetrad field. According to this formulation TEGR is
a constrained system with first class constraints only. Among gauge transformations
generated on the phase space by the constraints one can identify an action of spatial
diffeomorphisms generated by a vector constraint and local Lorentz transformations
defined by some other constraints—it is worth to note that the Lorentz transformations
act on the canonical variables in a non-standard way.

Taking advantage of these results we proceeded further with canonical quantization
of TEGR and carried out the first step of the Dirac procedure, that is, we constructed
a space of kinematic quantum states for TEGR [33-36].

The paper is organized as follows: after preliminaries (Sect. 2) we present in Sect.
3 the Hamiltonian description of TEGR, that is, a description of the phase space,
a Hamiltonian, a complete set of constraints on the phase space and a constraint
algebra. Section 3 ends by a discussion of the results and a comparison with earlier
works [6,9]. Next, in Sect. 4 we carry out the Legendre transformation and derive the
Hamiltonian and the constraints (a derivation of the constraint algebra is presented in
an accompanying paper [37]). Let us emphasize that the derivation of the Hamiltonian
and the constraints is rather long and technically complicated. Therefore we reversed
the usual order of the presentation: we placed the results and the discussion right after
preliminaries for the sake of readers not interested in the derivation and placed the
derivation in the last section of the paper (Sect. 4) which plays a role of a technical
appendix.
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2 Preliminaries

Let M be a four-dimensional oriented vector space equipped with a scalar product n
of signature (—, +, +, +). We fix an orthonormal basis (v4) (A = 0, 1, 2, 3) such
that the components (n4p) of n given by the basis form a matrix diag(—1, 1, 1, 1).
The matrix (174) and its inverse (n42) will be used to, respectively, lower and raise
capital Latin letter indices.

Let M be a four-dimensional oriented manifold. We assume that there exists a
smooth map 6 : T M — M such that for every y € M the restriction of  to the
tangent space Ty M is a linear isomorphism between the tangent space and M which
preserves the orientations. The map 6 can be expressed by means of the orthogonal
basis (v4) as

0 =0"Quy,

where (#4) are one-forms on M. It is clear that the one-forms (§4) form a coframe
or a cotetrad field on the manifold.

The map € can be used to pull back the scalar product  on M to the manifold M
turning thereby the manifold into a spacetime. We will denote the resulting Lorentzian
metric by g,

g :=napb” ®65. 2.1)

The metric g defines a volume form € on M and a Hodge dual operator * mapping
differential k-forms to (4 — k)-forms on the manifold (k =0, 1, 2, 3, 4).

2.1 TEGR

In this paper we will treat TEGR as a theory of cotetrad fields on M which means that
the configuration space of the theory will be a set of all the maps @ which satisfy the
assumptions listed above. We choose the action (1.1) as one describing the dynamics
of TEGR (for different but equivalent actions see e.g. [10,11]). Let us emphasize that
the Hodge operator » appearing in (1.1) is given by the metric (2.1) and therefore it is
a function of (84).

The passage from the action (1.1) to a Hamiltonian formulation requires as its first
ste/? a 3+ 1 decomposition of: the manifold M, differential forms on it and a cotetrad
@").

2.2 3 4 1 decomposition of M

To carry out a 3 + 1 decomposition of the action (1.1) we have to impose some
additional assumptions on the manifold M and the map 6. We require that

1. M =R x X, where X is a three-dimensional manifold.
2. the map 6 is such that for every t € R the submanifold ¥; := {t} x ¥ C M is
spatial with respect to g.
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Assumption 1 allows us to introduce a family of curves in M parameterized by
points of ¥—given x € ¥ we define

Rot— (t,x) eRx T =M.

These curves generate a global vector field on M which will be denoted by 9.

Moreover, due to Assumption 1 there exists a function on M which maps a point y
to a number 7 such that y € ;. Let us denote the function by 7. Consider now a local
coordinate frame (x), (i = 1,2, 3), on X. This coordinate frame together with the
function ¢ define a local coordinate frame (x° = ¢, x) = (x*) on M. Throughout the
paper we will restrict ourselves to coordinate frames (x*) on M of this sort assuming
additionally that each frame we are going to use is compatible with the orientation of
the manifold.

Note that the class of coordinate frames just introduced induces an orientation of
3 which since now will be treated as an oriented manifold.

Let us emphasize that in this paper the spacetime indices will be denoted by lower
case Greek letters and will range from 0 to 3 and the spatial indices will be denoted
by lower case Latin letters and will range from 1 to 3.

A set of all cotetrad fields (64) compatible with the orientation of M and satisfying
Assumption 2 will be called restricted configuration space and denoted by ©.

In order to not be troubled by boundary terms in the Hamiltonian formulation we
assume that

3. X is a compact manifold without boundary.

2.3 Decomposition of differential forms

Denote by d the exterior derivative of forms on M and by d the exterior derivative of
forms on ¥. A k-form @ on M can be decomposed with respect to the decomposition
M =R x X as follows [6,11,32]

where

Lo =dt A Do
is its “time-like” part and

o = du(dt Aa)
its “space-like” part. It is convenient to denote

o) = 8[4“.
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Then

L(X:dl‘/\aj_.

a is a k-form on M which naturally defines a family {o,};cr of k-forms on X: if
¢ © X X; C M denotes the natural embedding then

P *
o =g

Moreover, it is possible to restore the original form « from the family {«,},cr: given
the latter one we define

0r oo =0, g()?l,...,)?k) :=gt()?1,...,)?k)

where all vector fields ()} Iy enns X x) are tangent to the submanifold X,. Therefore in
the sequel we will not distinguish between « and the forms {o, };cRr.

There is however a subtlety concerning Lie derivatives of forms « and «,. Let X be
a vector field on M tangent to the foliation {X;};cr. Denote by L the Lie derivative

-

on M with respect to X and by L’;{ the Lie derivative on X with respect to gof*lX .
Then in general £ ;o cannot be identified with the family {[,’;( o, };er. Indeed, if « is
for example a one-form on M then

Lya = (X e, +a,d,X")dx" = a;00X"dt + (X' 0 + ;0 X )dx/ .

and only the last term in this equation can be identified with the family {E’)2 o, }ieR-
However, in the sequel we will never encounter Lie derivatives £ 3« as defined above
but we will do encounter derivatives of forms on X with respect to a vector field on
the manifold. Since we would like our notation to be as simple as possible since now
we will use the symbol £ 3« to denote the derivative E;} a,.

Similarly, o is a form on M, but it can be treated as a one parameter family
{oe)1}rer of forms on X defined by pull-back with respect the natural embeddings
of ¥ into M. Consequently, the k-form o on M can be identified with a family
{a1s, o, }er of, respectively, (k — 1)-forms and k-forms on X. It is easy to see that this
3 4 1 decomposition of forms is equivalent to the standard decomposition carried out
with respect to a coordinate frame (¢, x') adapted to the decomposition M = R x X.

Basic properties of the maps « +— ‘o, @ — «, and o > « read [6,11,32]:

) =", (to) =@ =0, (@ =a,
@AB)=aAB, TaAp)=Ca)ABran(p),  aL=al, 02
9 e =0, @AB)L=aL A+ (—DfanBL, (do)=da,

da), =Lya—da;, do=dt NLyo—dt Nda) +da,

In these formulae o is a k-form and Lj, denotes the Lie derivative with respect to
the vector field 9,. Let us note that there is a slight difference between the formulae
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above and their counterparts in [6,32]: here we use the exterior derivative d acting on
differential forms on ¥ while in these papers the corresponding derivative d acts on
forms defined on M.

2.4 Decomposition of the cotetrad
Since each 84 is a one-form it decomposes as
04 =0'dr + 04 (2.3)

It turns out that Gj‘_ is a function of 6 A and some additional parameters [5,38]:

07 = NeA + N_o%, (2.4)
1

g = — et pep x (07 10 1 0P), 2.5)

N > 0, (2.6)

where

1. Iy is a function on M called lapse;
2. N is a vector field on M called shift. It is tangent at each point to a submanifold
3; passing through the point—in an admissible coordinate system (z, x*)

-

N = N'9;:

3. eapcp is a volume form on M given by the scalar product 7;
4. xis the Hodge operator on X; given by a Riemannian metric ¢ induced on X; by
g:

q = qijdx' @ dx' = gijdx' ® dx’ = nap0” ® 0%,

qgij = UABO?(?? = UABQZAQ?- @7
The functions &4 satisfy the following important conditions [5]:
gl =—1, &9, =0. (2.8)
These two equations imply
ghdEy =0, dg* AB,+E%d8, =0. (2.9)

Fixing the value of the index u we can treat the four components 03 as a function
on M valued in M. The conditions (2.8) mean that for every y € M the vectors
(E4(y), 02()) form a basis of M.

The decomposition of the cotetrad allows us to change the way we parameterize
the restricted configuration space—instead of (OA,QA) we will use (N, N , QA) as
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parameters on this space. This change is obviously motivated by our wish to obtain an
ADM-like Hamiltonian formulation of TEGR and can be seen as a source of difference
between this approach and that of [8,9]—see Sect. 3.3.5 for a comparison between
these two approaches.

2.5 Decomposition of the spacetime metric

Setting to (2.1) the cotetrad %) decomposed according to (2.3) and (2.4) we obtain
the standard 3 + 1 decomposition of the spacetime metric g [39]:

g = (—N?+ N'N/gq;j)dt* + 2N'q;; drdx’ + q, (2.10)

where g given by (2.7) is the Riemannian metric induced on %;. This decomposition
justifies calling the function N the lapse and the vector field N the shift (for a more
precise justification see [38]).

The metric ¢ and its inverse g !,

¢ =q"9,®0;, q'qi =5, (2.11)

will be used to, respectively, lower and raise, indices (here: lower case Latin letters) of
components of tensor fields defined on X. In particular we will often map one-forms
to vector fields on X¥—a vector field corresponding to a one form « will be denoted
by @ i.e. if (locally) & = o;dx" then

a = q”()liaj.

The metric g defines a volume form € on X and the Hodge operator * acting on
differential forms on the manifold.

Let us emphasize finally that [as it follows from (2.7)] the metric g can be defined
explicitely in terms of the restricted forms (QA). Therefore all object defined by ¢ (as

q_l, € and %) are in fact functions of (QA).

3 Hamiltonian description of TEGR

In this section we are going to present the canonical framework of TEGR derived
from the action (1.1). Let us emphasize that to describe the framework we will use the
Hamiltonian formalism adapted to differential forms [11,32] (see also [38]).

Before we will show the results let us simplify the notation—since now we will
denote the “space-like” part of the one-form 84 by 64, i.e.

04 = o4 3.1
and its Lie derivative with respect to 9, by 64 i.e.

Ly,04 =64, (3.2)
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3.1 Hamiltonian and constraints

In the action (1.1) there is no Lie derivative with respect to 9, of the lapse N and
the shift N but there is one of §4. Therefore the two former variables are treated as
Lagrange multipliers, while the latter one as one of the canonical variables. A point
in the phase space of the theory consists of

1. a quadruplet of one-forms (4) on ¥ such that a metric
q =napt” ® 0" (3.3)

on X is Riemannian (i.e. positive definite);
2. aquadruplet of two-forms (p4) on the manifold—p 4 is the momentum conjugate
to 64,

Equivalently, a point in the phase space of the theory consists of

1. amap 6 : TE¥ — M such that for every x € ¥ the restriction of 6 to 7, X is a
linear map and the pull-back 6*n of the scalar product 1 is a Riemannian metric
on X;

2. the conjugate momentum p as a two-form on ¥ valued in M* being the dual space
to M.

The Legendre transformation is given by!

oL |

Ws (3'4)

pa =

where L is the integrand in (1.1). The momentum turns out to be quite complicated
function of the variables N, N 64 and 64:

pa = N*l(e,g A8 A0y — N@EP ANOx —dOP NEa) — L5067 A 64
1 i
_EOA A8 A0 — N(dEB Ao —do® nép) — L5057 A 931), (3.5)
where L5 denotes the Lie derivative on ¥, with respect to N.

The Legendre transformation is not invertible and one encounters the following
primary constraints

ANxdOs +E"pa =0, (3.6)
04 Asxps —E2dOL =0 (3.7)

1 For a definition of the partial derivative 9L | / 964 see [38].
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called here boost and rotation constraints respectively (for a justification of the names
see Sect. 3.3.1). Their smeared versions read

B(a) := /a A O A xdOy +E2pa), (3.8)
p))

R(b) := /b A O Axps —EAAD,), (3.9)
X

where a and b are one-forms on X.
The Hamiltonian

H()::/éA/\pA—LJ_
b))

is unambiguously defined on the image of the Lagrange transformation (that is, on a
subset of the phase space distinguished by vanishing of the primary constraints) and
is of the following form

Hol6*, pp, N, N1= 1 B ay_1 A B

ol0”, pg, N,Nl= [ N 2(17A NOT)Nx(pp N OT) 4(PA/\9 ) A #(ppAET)
)
1 1

—4 Ndpa + E(d@A AOBY A x(dOg A 04 — Z(dHA A O A x(dOg A 93))

—dOA A (Nopa) — (N6 Adpa. (3.10)
It can be extended to the whole phase space by adding the primary constraints:

H[6* pg.N.N.a, bl = Hol0", ps, N, N1+ B(@) + R(b),  (3.11)

where the one-forms a and b play the role of Lagrange multipliers.
The Lagrange multipliers N and N appearing in the Hamiltonian (3.11) generate
the following secondary constraints

1 1
E(pA ANOBY A x(pp A OY) — Z(pA AOMY A x(pp AOBY —EA Ndpy

1 1
+§(d9A AOBY A x(dOp A O — Z(dQA AOYY A x(dBp AOP) =0,

—dOA A (3;pa) — (308 Adpy = 0. (3.12)

called scalar and vector constraints respectively. Smeared versions of the constrains
read
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S(M) :=/ M (%(mw% A *(pBAe%—%(pA AOMYAx(ppAOB)Y—EA Ndpa
>

1 B A 1 A B
+5(d04n0%) A x(dOp 01— (@0ANO") A(dO5AOT) ), (3.13)

V(M) ::/—dGAA(MJpA)— (M_6™) Adpa, (3.14)
D)

where M is a function on ¥ and M a vector field on the manifold.
The Hamiltonian Hy is a sum of the smeared scalar and vector constraints,

Hol6™, ps, N. N1 = S(N) + V(N), (3.15)
and the extended Hamiltonian is a sum of all the constraints:

H[0%, pg, N, N,a,b] = S(N) + V(N) + B(a) + R(b). (3.16)

3.2 Constraint algebra

In this section we present the algebra of constraints derived in the accompanying paper
[37]. The Poisson brackets of the smeared boosts and rotation constrains read:

{B(a). B(d)} = —R(x(a na)),
{R(b), R} = R(x(b A D)), (3.17)
{B(a), R(b)} = B(x(a A D)).

The bracket of the scalar constraints is most complex:
- 1
{S(M), S(M")} = V(m) + B (93 * (m A pp) — 5% (m AEP % dbp)
B 1 B
— % [m A *(0 /\*PB)]—E*(*’”/\Q )% pp
1 B
+§ * [x(m AB7) A xpp]
1
+R (—93 x (m A dog) — 5*(mAgB % pg)
1
+ % [m A %08 A xd6p)] + 5 % Cim A 6%) x dop
1
-5 [x(m A 68) A *d@B])
where
m:=MdM — M'dM. (3.18)
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The brackets of the boost and rotation constraints and the scalar one:

{B(a), S(M)} = —B (M[@B * (p Aa) — %a x (pp AOB) +dEg * (a A *93)])
+R(* (dM/\a)), (3.19)

{R(b), S(M)} = —R (M[@B % (pp A b) — %b x (pp ANOB) +dés % (b A *eA)])
—B(* (dM/\b)). (3.20)

The brackets of the vector constrains:

(V(M), V(M) = V(L M) = VM, M),
{(V(M), S(M)} =S(L M),

{(V(M), B(@)} = B(L;a).

{(V(M), R(b)} = R(L j3b),

(3.21)

where L, denotes the Lie derivative on X with respect to the vector field M.

Thus the Poisson bracket of any pair of the constraints S(M), V(]\71 ), B(a) and
R(b) is a combination of the constraints. Since the Hamiltonian (3.16) is a sum of
the constraints each of the constraints listed above is preserved by the time evolution
hence the list of the constraints is complete. All these mean that the constraints are of
the first class. Note, however, that the constraint algebra is not a Lie algebra—most
of the Poisson brackets are combinations of the constraints smeared with fields being
functions of the canonical variables.

3.3 Discussion

The main conclusion is that the Legendre transformation applied to the action (1.1) as a
functional of cotetrad fields leads to a well defined ADM-like Hamiltonian formulation
of TEGR. It is a constrained Hamiltonian system with first class constraints only. As
a consequence of parameterizing the “time-like” part Oﬁ of the cotetrad by means of
the lapse N and the shift N [see Eq. (2.4)] there appear in this formulation the scalar
and the vector constraints.

Regarding the action (1.1), its integrand L differs from the integrand L g of the
Hilbert-Einstein action for GR—note that L contains only first derivatives of 64),
while L g g is known to contain second derivatives of a metric. Since the metric is
an algebraic function of (#”) both integrands have to differ by an exact four-form
containing second derivatives of the cotetrad field [30]:

Lyg=L+d@4A*do?).

Of course, a derivation of a Hamiltonian formulation of TEGR from the r.h.s. of this
equation would be more complicated since then we would have to deal with second
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derivatives of the cotetrad field. It is too difficult to predict how the Hamiltonian and
the constraints would change if we kept the exact form, perhaps then a quite simple
relation between the action (1.1) and the scalar constraint (3.13) described in Sect.
3.3.3 would be lost.

Let us also comment on Assumption 3 of Sect. 2.2 which states that ¥ is a compact
manifold without boundary. Such an assumption is often encountered in works con-
cerning canonical quantization (see e.g. [21,22]) but for other purposes is too restric-
tive. A comprehensive analysis of boundary terms including non-Dirichlet boundary
conditions (see [40,41]) in the case of ¥ with boundary 0 ¥ would exceed the scope of
this paper. Let us only remark that omitting Assumption 3 and imposing the Dirichlet
boundary conditions (which usually is done tacitly) one obtains a boundary term in
the Hamiltonian (3.16) which originates from exact three-forms on X neglected in the
derivation of the Hamiltonian [see a paragraph just above Eq. (4.48)]. The boundary
term reads

/(NsA + NL0YYpa.
X

3.3.1 Gauge transformations

Since the action (1.1) is invariant with respect to (orientation preserving) diffeomor-
phisms of M one can expect that there exist gauge transformations on the phase
space of the Hamiltonian formulation generated by (orientation preserving) diffeo-
morphisms of the slice £. Moreover, as stated in [14], the action is invariant with
respect to local Lorentz transformations therefore there should exist corresponding
gauge transformations on the phase space.

As shown in [38] the vector constraint (3.14) can be alternatively expressed as

V(M) = / paA (L0 = —/eA ALgpa,s
> >

hence we have
A V(MDY = L6, {pa. V(M)} =Ly pa.

This means that gauge transformations given by the vector constraint V(A71 ) coin-
cide with pull-backs of the canonical variables generated by diffeomorphisms moving
points along integral curves of the vector field M.

Now let us show that local Lorentz transformations on the phase space are generated
by the constraints B(a) and R(b). Note first that the Poisson brackets (3.17) are related
closely to the Lie brackets of the Lie algebra of the Lorentz group. Indeed, there exists
abasis (87, p/) (i, j = 1,2, 3) of the Lie algebra consisting of generators of boosts
(B") and of generators of rotations (p/) such that

(', /1= =& plsy, 10", p/1=&E%plsy, 1B, 0] =& B8y,
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where €9/% is an antisymmetric symbol such that €2 = 1. Defining

B(A):=p'Ai,  p(B):=p'Bi,
we can rewrite the Lie brackets above in the following form

[B(A), BAN] = —p k(A A A)),
[p(B), p(B)] = p(*(B A B)), (3.22)
[B(A), p(B)] = B(x(A A B))

here we regard the numbers (A;) and (B;) as components of one-forms A and B,
respectively, on the vector space R equipped with the standard scalar product &; j and
the Hodge operator * defined by the product.

Taking into account that the metric ¢ defining the Hodge operator in (3.17) is
Riemannian the close relations between (3.17) and (3.22) becomes evident and we
are allowed to conclude that the constraints B(a) and R(b) generate local Lorentz
transformations of the canonical variables—B(a) generates local boosts and R(b)
local rotations.

This conclusion can be strengthen by showing explicitely that at each point x of X
the primary constraints B(a) and R(b) define an action of the Lorentz group on a space
of quadruplets (04 (x)), where (64) runs over all fields allowed by the description of
the phase space placed at the beginning of Sect. 3.1. We thus fix x € X and till Eq.
(3.32) we will consider values of fields only at this x, however, in order to keep the
notation as simple as possible we will not use any special symbols to distinguish
between fields and their values at x i.e. the value 64 (x) will be denoted by 04 etc.

Consider then the following system of differential equations imposed on compo-
nents GiA given by a fixed basis (dx') of T X:

doA SB(a(r SR(b(A

S0 = 16100, Bla() + Rb0)) = (W) + (&)
DA ; pa ;

= a;(MEA) + eF )b (MO (). (3.23)

The components a; (1) and b; (1) depend on X in an arbitrary way. On the other hand,
0{‘ (1) defines via (2.7) a scalar product

qij (%) = nap6 ()67 () (3.24)

on T X, which in turn defines a volume form ¢; (1) on Ty X. By rising the first two
indices of the volume form by the inverse ¢’/ (1) we obtain the tensor €/¥; (1) appearing
atther.h.s. of (3.23). The scalar product (3.24) defines also a Hodge operator x; acting
on forms on 7, ¥ which can be used to express explicitely the function
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Ay L a c
£5(0) = 3,8 Bep % 0P ) A0C0) A 0P ()

- _%g BepeF (W0 )OS B () (3.25)

corresponding to QiA (A) [see (2.5)].

The gauge transformations of 94 defined by the constraints B(a) and R(b) are
given by Eq. (3.23). More precisely, if A GiA (1) is a solution of the equations with
the initial condition

6(0) = 64 (3.26)

then any value GiA () is a result of the transformations acting on O_iA.

Now we fix the initial values (3.26) and will consider only the corresponding solu-
tion of (3.23). Although Eq. (3.23) appear to be highly nonlinear the solution of the
equations can be found by solving a system of linear differential equations. To show
this we note first that the scalar product (3.24) does not depend on A:

B
dgij dof A407
— —0; 0;
+naB an

dn B
= nap (@&t +eM b6 )9}g +na56{ (a; 88+ ;0P =€ jibp+€X b =0.
In other words, the scalar product is constant along the solution and is a function of
the initial values GiA:

qij0) = 148007 = gij.

Consequently, analogous statements are true for all objects constructed from the scalar
product like the volume form ¢; (1) and the Hodge operator *; which since now will
be denoted by €; and *, respectively.

Now let us calculate the derivative of £4()):

d&! 1 4 8,0 d00 L A kB, C ! D
P —58 BCpE” 6; 9/ dn _58 BcpE 0; 9 (akg +€"kbi6,")
1 1 il
= =& s 0f0f as® — Setnen(@'q™" — "0 07 b6y

1 (1
—EsABCDeUke,.Befang =% (—ESABCDQB()») AOCOIEP (M) A a()\)) .

As shown in [38]

1
—ESABCDQB AOCED = %04,
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where * is given by 0. Since the Hodge operator #;, defined by 64 (1) coincides with
% we have for all 4 (1)

—%sABCDeBm AOC)ED () = %61 (1)
On the other hand for any one-form « and any k-form g [38]
* (kB A o) =alp. (3.27)
Using these two results we obtain

azt

= FEOA A a) = a.0” = -"f'ak(,\)ef‘(x). (3.28)

We see now that the derivative of GiA in (3.23) is a linear combination of £4 and 9,?
and the derivative of EA in (3.28) is a linear combination of 6 jA. Let us then consider
the following system of linear differential equations:

ded
di

=K W) A p=0.1,23, (3.29)
where
J 7k
(k) = (Kig(x) K &)) - (a,-(())o eq"fc;ai((%)
It is clear that a solutions Cof‘ (A) of (3.29) with the initial condition
o= 'O =67
where
§h =640

corresponds to G_iA, provides us with the solution HiA (1) of (3.23) given by the initial
condition (3.26) together with the corresponding values of EAM):

A =g, A =0,

This particular solution {Of‘ (%) defines a scalar product on R*

" A B _ (148 IEP) napgt (O] (M)
(hap) 1= (nantit ef 1) = (nABeiA(A)gg(k) Y T

-1 0
= (0 C?ij)’ (3.30)
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which actually does not depend on A. On the other hand the general solution of (3.29)
reads

£ 0) = A’ ()4 0) (3.31)

with the matrix (A,? (1)) independent of the choice of the initial values ¢ f‘;‘ (0). Setting
this to (3.30) we obtain

hap = na Ao’ W O)AL MEE0) = Aa? WAL Whys,

which means that (A,? (1)) preserves the Lorentzian scalar product (3.30). Thus the
matrix (Aq? (1)) is an element of the Lorentz group in a non-standard (unless gij = 8ij)
representation.

Note now that we can choose a basis (dx’) of TrX in such a way that g;; =
dij. Then (AP (1)) is a matrix of the standard representation of the Lorentz group.
Similarly, (K,?) is then a matrix of the Lie algebra of the Lorentz group in its standard
representation:

0 aq [75) as

N |a 0 —b3 b
(K“ )_ a b3 0 —b
as —by b 0

The conclusion is that the gauge transformations of 0/ generated by B(a) and R(b)
correspond to the Lorentz transformations (3.31) which preserve the scalar product

(3.30) and act on the tetrad (£, 6/1) = (¢51(0), ¢4(0)) as follows:

£ A" Aod (W) (&4

The gauge transformations generated by B(a) and R(b) preserve the spacetime
metric g. Indeed, according to (2.10) g is a function of the lapse N, the shift vector
field N and the metric q. On the other hand, the transformations do not act on the lapse
and the shift vector field and preserve the metric ¢g.

We mentioned in the introduction that the local Lorentz transformations generated
by B(a) and R(b) act on the canonical variables in a non-standard way. Let us now
clarify this statement. Since (64) can be treated as a one-form on ¥ valued in the

vector space M equipped with the Lorentzian scalar product 7 it is natural to define
local Lorentz transformations of (94) as follows:

04 > A4 p05, (3.33)
where (A4 p) is a field on X valued in the group of linear isomorphism of M preserving

the scalar product n, that is, valued in the Lorentz group. Comparing the formula above
with (3.32) we see that the local Lorentz transformations generated by B(a) and R(b)
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act in a very different way than the standard transformations (3.33): the former ones
act on the spatial index i and mix components 9;“ and £4 of fixed A while the latter
ones act on the index B related to a basis of M and mix components Gl.B of fixed i.

3.3.2 Hamiltonian formulation of TEGR versus a simple model described in [38]

The action (1.1) can be alternatively expressed as [14]

1 1
S[OA]z—z/daA A *dO 4 — (xd * 07) Ad*GA—E(dﬁA/\GA) Ax(dOB A0p).
(3.34)

Omitting the last two terms at the r.h.s. of this expression we obtain an action
A 1 A
s[0°] = —3 do” A xdl 4 (3.35)

defining the dynamics of a theory called Yang—Mills-type Teleparallel Model (YMTM)
[42] canonical framework of which was studied in [38]. The phase space of that theory
coincides with the phase space of TEGR described in this paper. The Legendre trans-
formation defined by (3.35) turns out to be invertible (there are no primary constraints)
and one obtains the following Hamiltonian:

RO, pa, N, N1 = s(N) + v(N), (3.36)

where

1 1
s(N) = /N (EPA N*PA — %-AdpA + EdQA A *d@A)
p)

is a smeared scalar constraint and v (1\2 Y=V (]l7[ ) is a smeared vector constraint. These
secondary constraints are the only constraints and they are of the first class:

{s(M), s(M")} = v(m),
(M), s(M)} = s(L; M),
(M), v(M")} = v([M, M),

where m is given by (3.18). This means, in particular, that in this model there are no
gauge transformations which could be interpreted as local Lorentz transformations.

Taking YMTM as a reference point we see that the last two terms at the r.h.s. of
(3.34) are responsible for the following features of this formulation of TEGR:

1. the non-invertibility of the Legendre transformation (3.4) hence

2. the presence of the primary constraints B(a) and R(b) hence

3. the existence of gauge transformations interpreted as local Lorentz transforma-
tions;
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4. the more complicated form of the scalar constraint S(N) hence
5. the more complicated form of the Poisson bracket of the scalar constraints.

3.3.3 Structure of the scalar constraints

Let us comment on the structure of the scalar constraints S(M) of TEGR and s(M) of
YMTM.2 Leta = a? ® vy and B = ﬁB ® vp be two-forms on M valued in Ml. Given
cotetrad (§') on the manifold, which via the metric g defines the Hodge operator *,
one can introduce bilinear maps

(@ B) —~ K(e. B) = %(o/‘ NOg) A*(BE A8 — %(a/* NB4) A*(BE ABp),

1 4
—a” A
205 *B 4

(e, B) > k(ee, B) :

valued in four-forms on M. Similarly, let « = o ® v4 and 8 = B ® vp be two-
forms on ¥ valued in M. Given restricted cotetrad (94 = 4 on the manifold, which
via the metric ¢ defines the Hodge operator *, one can introduce bilinear maps

1 A B 1 A B
(a, B) = K(a, B) := 5(01 AOB) Ax(B” ANBOa) — Z(Ol ANBOa) Ax(B” A Op),
(a, B) — k(a, B) := %a*‘ A #Ba

valued in three-forms on X. Note now that the actions (1.1) of TEGR and (3.35) of
YMTM can be written respectively as

S[e4 = —/K(d0,d0), s[04 = —/k(do,do),

where df = d6* ® v4. On the other hand the scalar constraints S(M) and s(M) can
be expressed as

S(M)= / K(p, p)—E%dpa+K(d6,do), s(M)= / k(p, p)—&*dpa+k(db, do)

where df = d08 @ vp.

We see thus that the form of each scalar constraint is closely related to the form of
the corresponding action. Moreover, the relations in both cases of TEGR and YMTM
follow the same pattern.

3.3.4 Comparison with the Hamiltonian formulation of TEGR presented in [6]

The action (1.1) was earlier used by Wallner [6] to derive a Hamiltonian formulation
of TEGR. Since our formulation is based on the same action and uses 3 + 1 decompo-

2 Description of the properties of s (M) presented below comes form [38].
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sition techniques patterned on those by Wallner [6,32] a detailed comparison of both
formulations is needed to reveal differences between them.

Let us begin with a brief description of the 3+ 1 decomposition of differential forms
on M applied in [6]. 3 + 1 decomposition of fields on M requires a prior choice of
a foliation of M. Wallner chooses such a foliation to be local while in this paper we
assume a global foliation, however this difference is not essential and therefore it will
be neglected in further considerations.

To define a foliation of M Wallner assumes that a Lorentzian metric g on M is
given and chooses a time-like one-form n such that dn A n = 0. By the Frobenius
theorem a distribution defined by annihilators of n is integrable and provides a foliation
of M. Then there exists a function ¢ on M such that every leaf of the foliation is
distinguished by a condition ¢ = const. and n = fdt for a function f on M. Without
loss of generality Wallner sets f = —N? where N is the lapse function defined by g
anddr: g~ (dt, dr) = — N2, where g~ ! is ametric inverse to g. Then he decomposes
a k-form « as follows

a=Ta +a , (3.37)

w
where

w
Yo = dt A ogw, aw:=T.a, o = T.(dt A ).

In these formulae 7 is a vector field on M defined by “raising” the index of n by the

inverse metric g~ ':

T:=g '(n,") (3.38)

Obviously, T is orthogonal in the sense of g to the foliation defined by n and 7't = 1.

Let us note that at this point there is no essential difference between the Wallner’s
decomposition (3.37) of forms and one applied in the present paper (see Sect. 2.3).
Indeed, both decompositions are defined by a one-form d¢ and a vector field (T or 9;)
such that the value of the one-form on the vector field is 1 and a particular method of
introducing the one-form and the vector field is irrelevant for the decomposition—if
fact, the one-form dr and the vector field d; used in this paper can be seen as originating
from a metric g on M via the Wallner’s construction outlined above.

However, an essential difference can be seen in 3 4+ 1 decompositions of a cotetrad
(0A). To reveal the difference let us consider the restricted configuration space ®, the
foliation {X;},cR, the function ¢, the vector field 9; and an adapted coordinate frame
(¢, x') all these introduced in Sect. 2.2. Recall that every (04) € O defines via (2.1)
a Lorentzian metric g on M. Its inverse metric g~ ' reads [38]

1 . . . L
g*lzm( — 3 ®+N'0 ®4+N'3 ® %+ (N*q" — N'N/)3; ® 34/)’
(3.39)
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where N, N are the lapse function and the shift vector field given by (2.4) and g%/
are components of the metric (2.11). It is clear that dt is a time-like one-form with
respect to g, hence the foliation {¥;},cr can be thought as one defined by this g and
a time-like one-form n = —N2dt according to the Wallner’s prescription. Note now
that to decompose elements of @ we can use the one-form dr and either

1. fix a vector field 7 transversal to the foliation such that Tr = 1 and decompose
every (0”) € © using this fixed vector field, or

2. given (04) € O, define a Lorentzian metric g via (2.1) and T via (3.38) with n
given by g and dr and then decompose (8*) using this 7'; in other words, we may
decompose (0A) by means of the (0A)—dependent vector field T'.

Clearly, in this paper we apply the first option with 9, being the fixed vector field.
Wallner neither fixes explicitely a vector field to decompose all cotetrad fields nor
states explicitely that each cotetrad (84) is decomposed with respect to the (84)-
dependent 7. Nevertheless, there is a way to arrive at a definite conclusion that he
applies the second option. Note first that, given vector field transversal to the foliation
{X;};cRr, there are many cotetrads in @ which generate metrics “incompatible” with
the vector field, where “incompatibility” of a metric means here that the vector field
is not orthogonal in the sense of the metric to the foliation. It is easy to see that the
formulae (A.19) (except the last one) and the identity (A.20) in [6] are not true if a
metric defining the Hodge operator * (denoted in [6] by *) is incompatible with the
vector field defining the decomposition. Moreover, in such a case a formula for the
first fundamental form 4 of ¥, induced by g:

h=nap0" 6"

presented in [6] between the expressions (A.20) and (A.21) is not true either. Conse-
quently, to ensure validity of all these formulae one should either (i) apply the first
option together with a gauge fixing which excludes those cotetrads for which these
formulae are not true or (ii) apply the second option. Since Wallner derives his formu-
lation without any gauge fixing® we conclude that he applies the second option.

A conclusion is that we decompose cotetrad fields in a different way than Wallner.
Let us then compare both decompositions. By virtue of (3.39) (see also [11])

T = 8; - ﬁ,
hence

0%, =01 — N_64 =01 — N6 = Ne* (3.40)

3 Let us note that a statement to be found at the very beginning of Section II in [6] that the R*-valued
one-form “denotes a one-form basis orthonormal with respect to a metric g” should not be interpreted as
a restriction (gauge fixing) imposed on cotetrads because (i) a similar statement at the beginning of Page
4280 is followed by a remark that “its orthonormality means no restriction to the geometry of M” and (ii)
a restriction to cotetrads defining a fixed metric g would not be compatible with the goal of [6] being a
reexamination of the Ashtekar’s variables. Thus the statement means rather that the one-form basis defines
a metric g via (2.1).

@ Springer



2590 A. Okotéw

[where we used (2.4) in the last step] and
04 = T.(dt A0%) = 0" +diN_ 8" = 0" + diN 8" (3.41)

Now we are able to list some important differences between both Hamiltonian
formulations:

1. the Wallner’s “position” variable (QS) does not coincide with our (84) = (§4);

2. in the Wallner’s formulation the four functions (@ f_w) = (N&%) are non-dynamical
variables, while here the non-dynamical variables are the lapse N and the shift N ;

3. Wallner introduces momenta conjugate to his non-dynamical variables (6 ﬁw) (the
momenta are obviously constrained to be zero), while here we treat the non-
dynamical variables as Lagrangian multipliers; consequently, Wallner works with
the full phase space while we work with a reduced phase space;*

4. in [6] constraints of TEGR and a Hamiltonian (2.17) are not expressed as explicite
functions of canonically conjugate variables—the time derivatives of (Qf) are
not eradicated from a scalar constraint defined as the longitudinal part of (2.9);
moreover in the constraints there appear the non-dynamical variables (0?,,)). In
the present paper all constraints and the Hamiltonian are expressed explicitely in
terms of the canonically conjugate variables (64, p p); moreover, the constraints
do not contain the non-dynamical variables N and N.

5. unlike here, in [6] there is no explicite description of Lorentz gauge transformations
generated by primary constraints; moreover, a constraint generating an action of
spatial diffeomorphisms is not explicitely isolated;

6. unlike here, in [6] a constraint algebra is not presented.

7. the time derivatives in the Hamiltonian field equations (A.43) and (A.44) in [6] are
in fact Lie derivatives with respect to the (§)-dependent vector field T [see the
last formula in (A.13)]. Therefore it is not clear whether the Wallner’s formalism
is able to describe the evolution of (OA) with respect to a vector field which is not
orthogonal to the foliation {X; };cr in the sense of the metric g defined by this ™).
The present formalism describes the evolution of all cotetrads in @ with respect
to the fixed vector fields d;, but since it is fixed arbitrarily any other vector field
transversal to the foliation may be fixed instead of ;. Thus the present formalism
is able to describe the evolution of (0A) with respect to any vector field transversal
to the foliation.

There is also another important difference between the two formulations. Let us
recall that usually while deriving a Hamiltonian formulation of a field theory one not
only decomposes fields with respect to a foliation of a spacetime but also identifies

4 0On Page 4268 Wallner mentions a possibility of reducing the phase space but the reduction is not carried
out—see the description of the next difference.

5 In the first formula in (2.13) in [6] describing the scalar constraint the time derivatives of (Qﬁ) appear
explicitely. In further formulae (2.16a), (2.30) and (2.63) the time derivatives appear implicitly via variables
defined, respectively, by (2.11), (2.29) and (2.31)—it is clear from, respectively, (2.10b), (2.36) and (2.62)
that these variables are not momenta conjugate to (QQ). On the other hand Wallner does not prove that these
variables are functions on the phase space (since the Legendre transformation is not invertible not every
function of the time derivatives of (Qﬁ) is a function on the phase space).
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decomposed fields with time-dependent fields defined on a space (i.e. on a three-
dimensional manifold representing a space). Clearly, such an identification requires
to define a family of diffeomorphisms such that each of them maps the space onto
a leaf of the foliation. In this paper the identification of decomposed forms ¢ and
o with time-dependent forms on the space X is carried out naturally by means of
pull-back given by the diffeomorphisms {¢;},cr (see Sect. 2.3). In the Wallner’s paper
the decomposed forms are not identified with time-dependent fields on a space—his
canonical variables are space-time fields. Let us note that in the case of the Wallner’s
forms 0j‘_w and Qf every identification with time-dependent fields on X defined by
pull-back gives an unsatisfactory result—by virtue of (3.40) and (3.41)
@t*OJA_w = NEA, @t*Qi = @t*QA,
where ¢; : ¥ — % is any diffeomorphism. This means that the resulting forms on
% do not contain the function N_6*. Consequently, this identification is not injective
(distinct cotetrads are mapped to the same fields on %) and results in a gauge fixing
N =0.
Let us finally note that by virtue of (3.40), (3.41) and (2.8)

nas0h0” = Neg©®® +diN %) =0, (3.42)
which means that these variables are not completely independent—in fact, (Of_w)
contains only one degree of freedom (per point) independent of @f). Indeed, if ()} i)s
i =1,2,3,isa(local) frame on X, then the functions (§4) on X, can be alternatively
defined by the first equation of (2.8) and X; JﬁjéA = 0 [see (3.41)]. Taking into
account (3.40) we conclude that the only degree of freedom in (Gf_w) independent
of (Qf) is the lapse function. However, it seems that Wallner overlooked (3.42)—he

treats (Oj‘_w) as four independent variables and using them derives four constraints
(2.9) in [6]. This of course causes a doubt whether the derivation of these constraints
is correct.

To summarize the discussion above we conclude that the Hamiltonian formulation
of TEGR presented in this paper is essentially different from that of Wallner.

Let us also note that the Wallner’s formulation is rather not very well suited for the
Dirac’s procedure of canonical quantization—to deal with constraints at the quantum
level it is highly desirable (if not necessary) to know explicitely (i) the constraints as
functions on the phase space expressed in terms of canonically conjugate variables,
(i1) gauge transformations generated by constraints and (iii) a constraint algebra and
all these are lacking in the Wallner’s analysis. The Wallner’s formulation does not
seem to be well suited for a background independent quantization either since in this
formulation the diffeomorphism invariance of TEGR is rather hidden, in particular, it
is not shown how spatial diffeomorphisms act on the Wallner’s variables which are
still space-time fields. Moreover, well developed methods of background indepen-
dent canonical quantization applied in LQG [21,22] suggest that classical elementary
variables for such a quantization should be associated with some submanifolds of
a space (in LQG classical elementary variables are cylindrical functions associated
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with graphs and fluxes of momentum variables through two-dimensional surfaces).
It is easier to work with elementary variables of this sort if (unlike in [6]) canonical
variables are fields on the space.

3.3.5 Comparison with the Hamiltonian formulation of TEGR presented in [9]

A complete analysis of a Hamiltonian framework of TEGR considered as a theory
of cotetrad fields was presented in [9].° The main difference between the approach
of [9] and that presented in this paper consists in the different way of parameterizing
the non-dynamical part of the configurational degrees of freedom: in [9] it is para-
meterized naturally by 04, here we use the lapse N and the shift N [see Eq. (2.4)].
Moreover, in [9] an other action than (1.1) was used as the starting point of the analy-
sis. Consequently, the resulting Hamiltonian, the set of constraints and the constraint
algebra differ significantly from those derived in this paper. Formulae describing the
secondary constraints C'* in [9] seem to be a bit more complicated than the corre-
sponding formulae (3.12). Moreover, it is difficult to find a similarity between the
structure of the constraints C'* and the structure of the original action analogous to
that described in Sect. 3.3.3. Nevertheless, the constraint algebra presented in [9] is
much simpler than that described here—it is in fact a true Lie algebra—and all the
constraints are of the first class.

Let us note finally that the primary constraints here and those in [9] generate local
Lorentz transformations of the canonical variables. However, the transformations in [9]
are the standard ones (3.33) while here we obtained the non-standard transformations
(3.32). It is a bit surprising that such a seemingly innocent change in parameterization
of the non-dynamical degrees of freedom results in an essential change of the action
of local Lorentz transformations.

4 Derivation of the Hamiltonian

Let us recall that to describe the canonical framework of TEGR we use a Hamiltonian
formalism adapted to differential forms [11,32] (see also [38]).

4.1 3 + 1 decomposition of the action

It was shown in [38] that if «, 8 are k-forms on M and « is the Hodge operator given
by the spacetime metric g [defined by Eq. (2.1)] then

aAxp=—N""dt AL — Noa) A%(BL— NoB) + Ndt Aa Ak, (4.1)

6 More precisely, the authors of [9] consider TEGR with the unimodular condition imposed but it is easy
to read off from their results the Hamiltonian formulation of the standard TEGR.
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where * is the Hodge operator given by the Riemannian metric ¢ [defined by Eq. (2.7)]
on X;, and N and N are, respectively, the lapse and the shift appearing in (2.4).7

To obtain a 3 + 1 decomposition of the action (1.1) we apply the decomposition
(4.1) separately to the first and the second terms under the integral at the r.h.s. of (1.1).
By virtue of (2.2)

(04 AOp)| = (d0Y) N0y +dO* A(B) 1 =Ly 0 N0z —dO)) AO,
+dQA AN@@p)].

and
do* NOp =do* nO,.

In order to make further calculations more transparent we introduce the following
abbreviations:

FAp=do* no,, (4.2)
EA = —d®)) A0y +d0" NOp, — NoFp. 4.3)

Since now we will moreover apply the simplified notation (3.1) and (3.2). Now we
can write

dOA AN Bp) | — N.dOA NOg =64 N0 + ENp.

At this point we can easily decompose the action (1.1) obtaining thereby

- 1 . .
S[64, N, N] = / ﬁdm 64 A0+ EAR) A(O8 A0+ EBY)
N
—gdt AFA5 AxFB 4
1 . .
—mdt ABOAANOL+ EA Q) Ax(O8 N0 + EBp)

N
—|—Zdt AFA4 AxFBp. (4.4)

4.2 Legendre transformation

Note that in the decomposed action (4.4) there is no Lie derivative of N and N with
respect to d;. Therefore since now we will treat the lapse and the shift as Lagrange
multipliers. Consequently, we are left with one-forms (94) as the only configurational
variables which are dynamical. Thus a point in the phase space of the theory is a

7 In fact, to prove (4.1) it is not necessary to assume that the spacetime metric g is defined by a cotetrad—it
is sufficient to assume (2.10) and (2.6).
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collection (64, pe) (A, B=0,1,2,3), where (64) are one-forms on ¥ such that the
metric (3.3) is Riemannian and the momentum p 4 conjugate to # is a two-form on X.

Let us recall that we denoted by L the four-form on M being the integrand in (1.1).
The Legendre transformation reads

3LL_

. 1 .
pFaTA_N—1 (93 A *(93A9A+EBA)—§9A A %68 A 93+EBB)) . (4.5)

and allows us to introduce a Hamiltonian

Hol6*, 6%, N, N1 := /éA Apa—Ly
)

1 . ;
B / W(GA NOg — EYp) Ax(0% A0y + EP y)
)

1 . .
—m(eA AOs— EAN) Ax(08 Ao + EBp)

N N
—i-?FAB/\*FBA—ZFAA/\*FBB. 4.6)

expressed as a functional depending on 84, Lie derivatives 64, the lapse and the shift.
In other words, this Hamiltonian is a functional on the restricted configuration space.
Of course, our goal is to obtain a Hamiltonian defined on the Cartesian product of the
phase space and a space of all Lagrange multipliers, that is, lapse functions and shift
vector fields. As a first attempt to reach the goal we will try to invert the Legendre
transformation (4.5).

Let us start by acting on both sides of (4.5) by the Hodge operator x—using (3.27)
we obtain

Nspa + 6 EP 4 — %éAJEBB = —0.26°% N0 + %éAJ(éB AOg)  (47)
Denoting
ma = Nkpa+60p.E8 5 — %éAJEBB 4.8)
we rewrite the result above in the following form:
aj = 080704 — 0567047 = 0507304 — 0pi05q" 0a;. (4.9)
Note that by virtue of (2.7)
0101 = 6 0arq" = qixg" =67 (4.10)
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Using this identity we obtain from (4.9)
7TA,,'9kA = QB(jé,g — 0568 q .
Contracting both sides of the last formula with ¢/* we get
ma;0% = —20568.
Thus
a1 Ai 5 A
A0 —§7TA1‘9 qijQA(jek). 4.11)

It is evident now that the Legendre transformation is not invertible. The source of
the non-invertibility is twofold:

1. treating éiA of a fixed i/ as a four-component vector we see that in the expression
(4.11) there appear only contractions of éiA with the three linearly independent
vectors {9]/.‘} (j = 1,2,3) while the contraction & AéiA is missing (recall that at
each point of ¥ the values of functions (4, QiA) form a basis of M).

2. only the symmetric part of the tensor 64;60 ]A appears in the expression.

This means that information encoded in 64 is reduced by the transformation. To
analyze the reduction let us fix a point x € ¥ and values of 04, do4, N and N at this
point and treat (4.5) as a map transforming 64 (x) to pa(x). This map can be seen as a
composition / o P of an injection / and a linear projection P. Indeed, P is a map which
maps 12 independent quantities éiA (x) to Ba(; (x)é,g (x) loosing information encoded
in 6 quantities £4(x)6;* (x) and Bap; (x)6] (x). It follows from Egs. (4.9) and (4.8)
that the value 64; (x)é,ﬁ (x) unambiguously gives the value p;j. (x) and this mapping
is what we called I above. On the other hand we see from Eq. (4.11) that once we
have plf‘} (x) we have also 04, (x)élg (x) which means that 7 is an injection. Hence the

image of the map I o P : 64 (x) — pa(x) is 6-dimensional. Therefore there should
be 6 independent constraints imposed on 12 quantities pa;;(x):

1. contracting both sides of (4.7) with £4 and taking into account (4.8) and (2.8) we
obtain

TAEA =0 4.12)

2. extracting the antisymmetric part of both sides of (4.11) we obtain the three remain-
ing constraints

a0 =0 (4.13)
or equivalently

TANOA =0, 4.14)
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Note that the conditions Q4. 12) and (4.14) contain the one-form 74 which depends on
the laps N and the shift N. Therefore at this point it is not obvious that the conditions
define constraints on the phase space.

4.3 Primary constraints

The goal of this section is to remove the lapse N and the shift N from the conditions
(4.12) and (4.14). In other words we will show the conditions are in fact primary
constraints. Moreover, we will prove there that they are no other primary constraint
than those defined by (4.12) and (4.14).

Let us start by stating and proving two auxiliary identities:

68 04 = nAB 4 gAgB, (4.15)
04 A (B4 0) = ka (4.16)

for any k-form o on X.

Proof of (4.15) Using the components of the metric g~! inverse to g to raise the

space-time indices (here: lower case Greek letters) we obtain from (2.1)
0400 =8,

which means that
04,05 =58 4.

Raising the index A we obtain
0,078 =n"".

1

Setting to this equation the components of g~ expressed as [39]

g0 = N2 G0 = NN Gl = i _ NT2NIN
and taking into account that 08 = 0]4_ we obtain
1 - - - -
nAb = —m(ai‘ — N0 08 — N.oB) + 6804 = —£4€B 1+ 0804,
where in the last step we applied (2.4). O
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Proof of (4.16) Using (4.10) we calculate

o ) ] 1
64 A (Bp0) = 07dxT A (Qiaﬂﬁ%]mak e dx“k)
=040/ k i az ay
—91- QAaajaz.,.akdX ANdx? AN ANdx

1 .
= kﬁawzmukdx’ Adx2 A Adx™ = ka.

O
It will be convenient to denote
pa = Nxpa +05.EB 4. (4.17)
Then
1~ B
TA = PA — EQA_’E B. (4.18)

Now let us express all the forms above as explicite functions of 04, pB, N, N. To
this end we set into (4.3) the function 0?_ written as in (2.4). Then with application of
(2.8), (2.9) and (4.15) we obtain in turn

EAg = —£2dN A 0p — N(dEX A0 — do™ A Ep) — Li0% A 0,

Ga B p=N(— @ de*)0p+dp+0s 0" ep) — BaoLig0")0p+Ly0 405,

E4) = —N(dE* A0y —dO* AEx) — Li00 AO4 =2NEAAO) — L5070 A 04,

pAzN(*pA—(échéjc)GA—l—dSA +§CJdech)—(éch:A—,eC)eAJrﬁﬁecécJeA,
(4.19)

where L denotes the Lie derivative on X with respect to the shift N (recall that
Liy=doNi+Niod).
The condition (4.12) can be simplified as follows

0=matt = pa&d = N(EY % pa — 04.d0%) = N % (E4pa + 64 A xdba),

where we have used (3.27), (2.8) and (2.9). Consequently, taking into account (2.6)
we get

04 A xdby +E4pa =0, (4.20)

which coincides with (3.6). On the other hand using (4.15), (4.16), (2.8) and (2.9) we
can transform (4.14) as follows
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0=04 Ampa=0" Apy — EA = NO Aspp+02 AdEg)+0% A (L50C) (1ca+EcEn)
—EA = NOA Axpa+0t AdEg) + 04 A L04 — EAA=NO* Axpp —E4d0™),

hence by virtue of (2.6)
04 Axpa —Eadd? =0 4.21)

which coincides with (3.7).
Letus fix a pointx € ¥ and values of 84 and d64 at x. Then 12 quantities p4;; (x)
can be fully encoded in 12 independent quantities

EY@Gpa)i(x), O Gepa)in(x), 6 () (xpa)iy (x).

Note now that the conditions (4.20) and (4.21) fix values of the former two quantities
[to see this act by * on both sides of (4.20)]. This means that these conditions are
independent. Since there are 6 of them and since they do not contain the lapse and the
shift they are 6 independent primary constraints on the phase space.

Recall that in the previous subsection we concluded that, given values of 04, doA,
the lapse and the shift at x, there are 6 independent constraints imposed on p4;;(x)
being values of the Legendre transformation (4.5). This means that there are no other
primary constraints than (4.20) and (4.21).

Let us finally note that setting to (4.5) the two-forms E4 3 and E? p expressed as
in (4.19) we obtain the formula (3.5).

4.4 The Hamiltonian Hy as a functional of the canonical variables

The non-invertibility of the Legendre transformation means that the Hamiltonian H
(4.6) can be defined only on a part of the phase space being the image of the transfor-
mation, that is, on a part distinguished by vanishing of the primary constraints (4.20)

and (4.21). To replace in Hy the “velocities” 64 by the momenta p 4 let us first show

that the Hamiltonian depends on the “velocities” merely via the combination 6 A(,-é jA).

Let us start by gathering the terms containing 64 in (4.6):

1 . . 1. .
Hp = / N ((9/‘ AOg) Ax(O8 Aoy — 5(9/* ABa) Ax@BF A 93))
p)

1 1 N N
—WEAB/\*EB/H—WEAA A*EBB—#?FAB/\*FBA—ZFAA A*FBg.
(4.22)

Consider now the following map acting on one-forms a4, 82 on X:

(a?, BBy~ G, pB):= ((aA AOg)Ax(BE A QA)—%(aA/\GA) A *(,33/\93)).
(4.23)
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This map can be used to rewrite the first two terms in (4.22) as G(éA, 68 )/2N. Now
let us express G (aA, ,BB ) in terms of the components of the one-forms. Given k-forms
y and y’,

1 .
—Yir.ixV.. Mq”“ gk, (4.24)

yasy=lviyle rlvh =

If « is a one-form then (a A 0p);; = «;0p; — «j0p;. Therefore for one-forms o, B

(@ AOB) Ax(BAOA) = (a AOBIB AOs)e = ((a|B)(OB]0a) — (2|04)(B1OB))e.

From this result we can easily obtain formulae describing the first and the second term
at the r.h.s. of (4.23): (i) to get the first one we set @ = o and g = B2 and assume
summation over A and B, (ii) to get the second one we exchange 6p <> 64, seta = al
and B = A% and assume summation over A and B. Thus

G, p?) = ( ((@18%)(68164) + (@*165)(B”104)) — <aA|9A><ﬁB|93>) ¢
The first two terms at the r.h.s. of the equation above can be rewritten as

(eAia;‘GBk,B[qukqﬂ +9Aj0lAeBkﬂ[qukqj )= 9A(z /)931(/31 q’!

| =

= 9A(i04f)93(kﬂ1)q g’ + 0 )GB[kﬂz]q q’' = QA(iaj)QB(kﬂl)qikqﬂ,
where the last step is based on the following fact:
g*qis;; A =0
ifonly S;; = §;j; and A;; = —A};. Finally,
G, B%) = (q"q" — 4" 4")0aca\OpuBf € (4.25)

and consequently

1 ca . 1

Ho = —(GeA,eB CEAp A%EB 4+ —EM 4 A EB)
0 /ZN ( ) BNk A+2 AN*E"p

)

N N

+3FABA*FBA—ZFAAA*FBB (4.26)

with
GO, 6%) = (q"q"" — 4" 4")0ai607,0846] €. (4.27)
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Note now that by virtue of Egs. (4.11) and (2.7)
5 A a1z A
Oujbi = Oaij | iy — 507 amc)b | -

provided 7, satisfies (4.13) (which is obviously satisfied by (64, pp) belonging to
the image of the Legendre transformation). Thus the term (4.27) can be expressed in
the following form

GO, 6%) = (¢ g’ - qijqkl)QA(i6"1-/4)93@9'/;3 €
o y 1 - 1 -
= @™ ¢’ = 47¢") (04417}, — 5@ )01 (081l — 3@ 7p)8G1)e
1 - 1 -
=G (nA - E(ecﬂc)e/ﬂ B - E(QDJ”D)QB)

which allows us to rewrite (4.26) as

.l 1 1 - 1 -
Hol6%, pa. N, N1 = / " [G (n/‘ ~ @€ ) - 5(9’%@)93)

1 N
—EAg AxEB 4 + zEAA /\*EBB} + EFAB A*FB,
N
—ZFAA/\*FBB, (4.28)

where 774 is a function of 64, pg, N, N given by (4.8).

4.5 An explicite form of the Hamiltonian Hy
Now we begin quite a long series of transformations of the Hamiltonian (4.28) aimed at
expressing it explicitely as a functional of the canonical variables 64 and p 4, the lapse

N and the shift N. Let us start by introducing and proving some auxiliary formulae
which will be repeatedly used in the sequel.

4.5.1 Auxiliary formulae

For any one-forms « and § the following formulae hold:

a A *B = (@p)e, (4.29)
(@ AOBYARBAOY = =) @8 B)e+ (B +E2EP ) AxB.  (4.30)

Proof of (4.29) This formula follows immediately from (4.24) since for every one-
forms (x|B) = alp. O
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Proof of (4.30) Since g is Riemannian the square of the Hodge operator is an identity:
s% = id. Therefore

(@ AOB)Y A%(BAOA) =an **(93 A (B A eA)) — —a A[6BL(B A6

= —a A¥[(0B )02 +a A x(BHB 64 =—(@4 ) @B iB)e+ (A B +E2EB)a A 58
here in the second step we used (3.27), and in the last one (4.29) and (4.15). O
It follows from (4.29) and (4.10) that
04 A %04 = (64 04)€ = 3e. (4.31)
Setting in (4.30) « = a4 and B = Bp and assuming summations over A and B we get

(aa AOB)Y Ax(Bg A O%) = —(04 1aa) (08 JBp)e + aa A x4
+(E aa) A x(EEBp). (4.32)

Similarly, setting in (4.30) « = fBp and B = o4 and assuming summations over A
and B we obtain

(Be A O8) Asx(aa A O%) = —(0 1B5)(0F Jan)e + Ba A xa?
+(EBBB) A x(E2ay). (4.33)

Setting o4 = 64 in (4.32) gives
Oa N OBY A x(Bg AON) = —2(68 1Bg)e = —2B4 A %04 (4.34)

these equalities hold due to (4.31), (4.29) and (2.8). Assume that in the formula just
obtained Bp = 6p. Applying (4.31) we obtain

04 AOBY A %05 ABOY) = —6e. (4.35)

4.5.2 Calculations
Since now till the end of the paper we will so often apply the formulae (2.8) and (2.9)

that it would be troublesome to refer to them each time. Therefore we kindly ask the
reader to keep the formulae in mind since they will be used without any reference.
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We begin the calculations with the first term of the Hamiltonian (4.28):
G(nA - %(éanc)OA, B %(éDJnD)eB)
- ([nA - %(écﬂc)ef‘] A 93) A *([nB - %(éDJnD)eB] A QA)
—%([nf‘ - %(écﬂc)ef‘] A eA) A *([nB - %(éDJnD)eB] A 93)
=@ AN0p) Ax(TB Ay — %(nA AOA) A x(B AOR)
—(6C )0 A O A k(B ABs) + %(écﬁc)zef‘ A Ax(OF ABy).
By virtue of (4.34) and (3.27)

— @€ )0t A O A k(B AB4) = 26 ame)ma A %01
= 2(a A %0 A x(mp A %0F)

Applying (4.35) in the first step, (3.27) and (4.29) in the second one we obtain
%(écﬁc)ze/‘/\eg A %08 A6y) =—§(§CJ7Tc)2€ =—%(71A/\*9A) A x(mg Ax0P).
Thus
G(nA - %(éan’c)QA, B _ %(éDJnD)QB) = (4 A 6p) A (B A B
—%(rrA AOA) A x(B A Bp)
—i—%(rrA A #08) A (g A x08).
Now let us introduce another map acting on pairs of one-forms (a?, f5):
(@, %) Ga", p¥) =G ", ﬂ3)+%(om A#0) A (B Ax0P)=G(a?, B7)
+%<aA|9A><ﬂB|93>e A e = (q”‘qf" - %q”q"’) Oacol\OpaBf e (4.36)
here we used (4.24), the fact that
xe=1 (4.37)
and (4.25). Note that G is built from (i) the same non-invertible linear mapping oelf“ >
OA(ioz}f‘) as G and (ii) the metric GV ¥ = (¢'*gq/! — %qiqul) related to the metric

GUH .= (¢'*ql" — q'ig*!) appearing in (4.25) as follows:
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. o I Y
GY leklmn = (qlkqjl — zq”qkl) (Gkmqin — qkiqmn) = 8'md” .
Thus
1 s -
G(nA — E(QC_UTC)@A, 8- E(eDﬂm)@B) =G, 2P

A
i
GA(,'rrjA). According to (4.8) 74 contains the term —%GAJEBB which vanishes under
the transformation:

Note now that 74 in é(nA, B) undergoes the linear transformation 7/

O SEP p)i = 0 EP pri > 0400 EP gy = E® pijy = 0.
Taking into account Eq. (4.18) we see that

G(nA _ %(écﬂc)e/‘, . %(éDJnD)eB) — G(p”, pP)
and consequently (4.28) can be written as follows:

- 1 /- 1
Holo", ps, N, N1 =/W(G(pA,pB)—EABA*EBA+5EAA A*EP )
)

N N
+3FABA*FBA—ZFAA/\*FBB. (4.38)
Our goal now is to express the terms

~ 1
G(p*, pf) = EAp A+EP 4 + SE* A AxE" 5 = (0" 7 05) A (0" A O4)
1 1
=50 AO2) AT A OB) + S (oa A #0%) A k(g A #07) — B AE 5
1
+§EAA A+EBg (4.39)
as explicite functions of the canonical variables, the lapse and the shift. To transform
the five terms appearing at the r.h.s. of (4.39) we express p4, E Ap and E44 as in

(4.19) and using repeatedly Eq. (4.15), the auxiliary formulae presented in Sect. 4.5.1
and Eq. (4.37) obtain in turn the first term:
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(pa A OP) A x(pp A O™
- (N[*pA — Bede€)0a + dEal — (BeaLg0)0a + cﬁecécJeA) L

A [(N[*pB — (BpodEP)0p + dEg] — OpoL507)05 + ﬁﬁeDéDJeB) A eA]
- NZ(*pA AOB A x(epp AOA) + 264 % pa) (B8 Jdeg)e + 2pa A dEA

—2(68 1deg)Pe + dEs A OF A x(dEg A 9/‘))

N (4(§AJLNGA)(§BJ*pB)e +2kpa A OB A R(L0s A O%)

—6(64dE*) (O L 505)e + 2dEa A *ﬁ/QHA) — 2L 50%) €

+L50a NOB AR(L508 AOD),

the second one:

—%(pA AOYY A x(pp AOB) = —%(N[*pA ANOY +dEa A0+ L5070 A eA)
A (N[*pB AOB 4 dep A OB+ L5608 /\93)
- N2( - %*pA AOA A x(epp AOBY — spa AOA A x(dEp A OP)
—%(dsA 0% A x(dgp A 0%))
+N( —%pa A0 AKR(Ly0p NOP) — (dEa A O™ AX(L508 A 93))
—%z,V@A ANOA A (L505 AOP),
the third one:
%(pA A 6% Ax(pp A *QB)zé(N[*pA A4 =2(Fc d§ el —2@cL6)e )
A (N[*pB A %08 — 2(0pdeP)e] — 2(§DJ£1\79D)6)
= Nz(%pA ANOA A w(pp A 6F) = 20 sxpa) Bc s )e +2(0c ) e)
+N(—2(§AJ*pA)(écjcﬁec)e+4(§wdsc)(§mcﬁ90)e)+2(§cjﬁﬁec)ze,
the fourth one:
_EAg A%EP, = —( — &AdN AOg — N(dED A Og — O™ A &) — Li07 AGB)
A% ( —EBAN N0y — N(dEP A0y —d0P AE) — L608 /\9,4)

= —2NdN A 05 A *(d6P)

@ Springer



ADM-like Hamiltonian formulation of gravity 2605

—|—N2( —dEA A O A K(dEB ABL) — (dOA AER) A (dOB A gA))
+N( —2dEAN N O AR(LOP A O4) +2d0" A Ep AR(LFOP A eA))
—L 0% A0 A(L0% A 04) (4.40)

and, finally, the fifth one:

1 1
SEAAA+E g = 5(2N5Ad9A — L4 A eA) A *(2N.§Bd93 — Li0" A 93)
= N226%d04 A x(EBd0Op) + N(—26%d04 A +(L50% A Op))

1
+§£1;,9A AOs AR(L07 A Bp).

Note now that each of the five terms consists of terms proportional to N2, N and
ones which do not depend on N. Moreover, in (4.40) there is one term proportional to
NdN. Let us now gather the corresponding terms obtaining thereby a decomposition
of (4.39) into terms proportional to N>, N, Nd N and those independent of N.

Gathering the terms we will try to simplify the formulae as much as possible. To
this end we will also use the primary constraints (4.20) and (4.21)—recall that at this
moment we are still working with terms constituting the Hamiltonian Hy which is
defined only for (64, pp) satisfying the constraints.

The term proportional to N> While gathering all the expressions proportional to N2
we see that some terms cancel at once and we get

1
N? ((*pA AOBY A x(xpp A O — E(>|<pA AONY A x(xpp A OB)
1
+5(Pa AOYY A x(pp A OP)
+2pa AdEA — (xpa A O A x(dEp AOB) — (dOA A Ep) A %(dOB A Ey)

+%(§Ad6m A *@BdeB)) (4.41)

To simplify this expression note first that the fifth term in (4.41) can be transformed
as follows

—(kpa ANO™) A x(dEp AOP) = —(0" A xpa) A x(EpdO®)
= —(0" Axpa) A0 Axpp),

where in the last step we used the constraint (4.21). This means that the fifth term is
proportional to the second one. Because £4 is a zero-form the sixth term in (4.41) is
equal to

—(E4dO™) A x(Ed0®)
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which means that it is proportional to the last term in (4.41). By virtue of the constraint
(4.21) the sixth and the last terms are proportional to the second one. Thus the sum of
the second, fifth, sixth and the last term reads

—(xpa A O Ax(xpp AOP)

and consequently (4.41) can be written as
N2((*pA AOBY A s(kpp AOA) — (xpa A OY) A x(xpp AOE)
1
+§(pAA9A)A*(pB ~OBY £ 2pa AdgA>. (4.42)

This expression can be simplified further—applying (4.32) to the first term of (4.42)
and (4.33) to the second one we obtain

(xpa OB Ax(pp AOA) = (xpa AO) Ax(xpp A OB)Y=—(645 % pa)(BF 1% pp)e
+(04 3% pp) (@8 3% pa)e=—O" Apa) AxOF App)+©OF Apa)Ax(64 A pp),

where in the last step we used (3.27) and (4.29). Thus we arrived at a simple form of
the term in (4.39) proportional to N2:

N? ((pAAeB) A*(pp A 9A>—%(pA ANOMY A x(pp AOBY+2pa A ds*‘) .
(4.43)

The term proportional to N Again while gathering all the expressions proportional
to N some terms cancel at once and we get

N(2(5/‘JKNQA)(gBJ*pB)€+2(*pA ANOBY AL 05 A OY) —2(040dEM) (O L 567 )e
+2dEq AHLGON — (kpa AOM) A (L 05 AOB) —2dEN AOR) AR(L5OP AO4)

+2(d0 A Eg) AL 508 A 04) — @dOd NEA) AR(LG0B A 93)) (4.44)

Applying (4.32) to the second term of the expression above we see that the sum of the
first and second terms can be expressed as

20kpa) AK(LGOY) + 2™ % pa) Ax(EgL0") = 2L50% A pa
+2(E" % pa) A x(EpL0"%)

On the other hand the seventh term in (4.44) can be transformed as follows

2(dO* NER) A *(L 508 NOA) =265 L5 05)NO4 A %d0 =25 L5305 AN EA pa)
= —2(5L50%) A*(EM % pa) = —2(E% % pa) A x(EL505)
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here in the second step we used the constraint (4.20). Thus the sum of the first, the
second and the seventh term is simply

2L 560" A pa.

Moreover, the sum of the fifth and the last terms in (4.44) vanishes by virtue of the
constraint (4.21):

—(kpa A O AR(L0p AOB) — (O NEA) A*(L508 A OB)
= —(0" Axpa — EadO™) AR(L50% A 0p) = 0.

Thus we managed to simplify (4.44) to

N(2£56% A pa = 204 1de*)Bp L0 e +2d84 A L0

—2(dEN A Og) AL A eA))

Now it is enough to apply (4.32) to the last term of the expression above to realize that
(4.44) reduces to

ANLGZOM A pa (4.45)

which is the final expression of the terms in (4.39) proportional to N.
The term independent of N Gathering appropriate terms we obtain

. 1
—2(04L50™M) e+ L5040 A OB AR(L05 A eA)—ELﬁeA ANOAAK(L 505 AOP)
F2(0c 1L G0 ) e — L0% A Op A (L0 A 6)

1
—|—§£1;,9A ANOs A¥(L508 A Op) =0

In this way we managed to simplify (4.39) to a sum of the term in (4.40) proportional
to NdN and the expressions (4.43) and (4.45):

. 1
Gag(p?, pP) — EAp AxEB 4 + 5EAA A*EBp = —2NdN AOp A xd6®

1
+N2((pa AOP) A (s AO%) = S(pa A0 Ax(pp A 6%) +2ps A d?)

+2NL0% A pa. (4.46)
Setting this to the Hamiltonian (4.38) we obtain
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_ 1
H[64, pg. N, N] :/—dN AOp A*xdO® + N (E(pA AOBY A x(pp A OY)
)

1 1 1
—7(pa ANO™Y Ax(pp AOP)+pa AdsA+§FAB AxFB, — ZFAA A *FBB)
+L04 A pa. (4.47)

_ What remains to be done is to remove the derivatives of the laps N and the shift
N appearing, respectively, in the first and in the last terms of the Hamiltonian above.
Applying the constraint (4.20) to the first term we obtain

—dN N0 Axd08 = dN AEApy = d(NEA pa) — N(dE4 py)
= d(N&" pp) — Nd™ A pa — NE* Adpa.

On the other hand it was shown in [38] that

(L0 A pa=—d6* A (Nopa) — (N362) Adpa +d(N62) A pa)

Since ¥ is a compact manifold without boundary the terms d(N§ Apa) and
d((N_64) A pa) vanish once integrated over . Rewriting F A as a function of 64
[see (4.2)] we arrive finally at the Hamiltonian Hy expressed explicitely as a function
of the canonical variables, the laps and the shift

. | 1
Hol6%, pp, N, N] = / N (5(“ ANOBY A x(pp A 9A>—Z<pAA9A> A *(ppn0B)
>

1
—4 Ndpa + E(ar@A AOBY A x(dog A O
1
—Z(dGA AOY) A x(dOg A 93))
—d0A A (Nopa) — (NO™) Adpa, (4.48)

which is exactly the Hamiltonian (3.10). In order to extend Hy to the whole phase
space we add to it the smeared primary constraints (3.8) and (3.9) and arrive thereby
at (3.11).

The Hamiltonian (3.11) depends on the Lagrange multipliers N and N. Variations
of the Hamiltonian with respect to the multipliers give us the secondary constraints
(3.12). Expressing the r.h.s. of (3.10) and (3.11) by means of the smeared versions
(3.13) and (3.14) of, respectively, the scalar and the vector constraints gives us (3.15)
and (3.16).
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