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Abstract In the context of gravity’s rainbow, Planck scale correction on Hawking
radiation and black hole entropy in Parikh and Wilczk’s tunneling framework is stu-
died. We calculate the tunneling probability of massless particles in the modified
Schwarzschild black holes from gravity’s rainbow. In the tunneling process, when a
particle gets across the horizon, the metric fluctuation must be taken into account, not
only due to energy conservation but also to spacetime Planck scale effect. Our results
show that the emission rate is related to changes of the black hole’s quantum correc-
ted entropies before and after the emission. In the same time, for the modified black
holes, a series of correction terms including a logarithmic term to Bekenstein–Hawking
entropy are obtained. Correspondingly, the spectrum of Planck scale corrected emis-
sion is obtained and it deviates from the thermal spectrum. In addition, a specific form
of modified dispersion relation is proposed and applied.

Keywords Hawking radiation · Black hole entropy · Gravity’s rainbow · Modified
dispersion relations

1 Introduction

Based on Hawking’s great discovery that black holes have thermal radiations [1,2],
black hole thermodynamics get a solid fundament and then general relativity, quantum
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mechanics, and thermodynamics have a significant link. However, following this, the
information loss paradox emerges [3,4]. It is that, since a thermal spectrum cannot
bring out any information other than only the parameter of temperature, all information
about the matter making up of the black hole will be lost, when a black hole evaporate
away completely. In [3], Hawking argued that, the formation and evaporation of a
black hole are not commanded by quantum mechanics. That is to say, the pure states
of matter forming the black hole evolve into the mixed states of thermal radiation and
then the underlying unitary theory of quantum mechanics is violated. Besides, in the
light of Hawking’s description, black hole evaporation is quantum tunneling effect
[5]. It is to say, due to the vacuum fluctuation near the horizon of a black hole, when
a pair of particles is spontaneously created just inside the horizon, the positive energy
particle can tunnel out the horizon to the infinity. At the same time, the negative energy
particle remains behind the horizon and effectively lowers the mass of the black hole—
the negative energy orbit cannot exist outside the horizon. However, due to lack of the
tunneling barrier, the actual derivation of Hawking radiation does not proceed in the
way of Hawking’s description [6,7]. And that, most of Hawking radiation are based
upon quantum field theory on a fixed background spacetime without considering the
gravity back-reaction of emitted particles and the quantum fluctuation of spacetime.

Recently Hawking has put forward that [4], the information hidden in a black
hole could come out, if Hawking radiation was not exactly thermal through some
corrections. And that, Parikh and Wilczek have presented a semi-classical method
of deriving Hawking radiation by implementing Hawking radiation as a tunneling
process from the horizon of a black hole [8–10], where the emission rate is related to
the changes of the Bekenstein–Hawking (B-H)entropy of the black hole before and
after the emission and the non-thermal spectrum of back-reaction corrected radiation
is obtained. Thus, this method presents a quantum tunneling description on Hawking
radiation and opens a way to a possible resolution of the information loss paradox.
Taking energy conservation into account is the crucial point of the program and thus the
background is allowed to fluctuate because of the particle’s back-reaction. Following
this method, many recent researches have extended this tunneling study to many cases
including static or stationary black holes [11–15], cosmological horizons [16,17] and
different kinds of tunneling particles such as massive and charged particles [12,13].
The results confirm that Hawking radiation is not purely thermal spectrum and the
information conservation of black holes could be possible. However, the quantum
effects of spacetime have not been considered in Parikh and Wilczk’s original work
[8–10] and much less attention in the literatures was paid to the particle’s tunneling
from the quantum horizon [18–20]. Thus, when the quantum correction terms of black
hole entropy are taken into account, whether the tunneling probability is still related
to the change of black hole entropy and the information conservation whether could
still be possible are open problems.

It is remarkable that, for understanding Hawking radiation, black hole entropy, and
the information loss paradox, the Planck scale physics should be useful. In fact, in
a general way, the radiation spectrum of black hole has arbitrarily high frequencies
and their energy can go below Planck energy [19,21,22]. Therefore, in Parikh and
Wilczek’s semi-classical method of investigating Hawking radiation, Planck scale
effects should be taken into account. In this paper, by using Parikh and Wikzek’s
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tunneling framework, we investigate the particle’s tunneling in a Planck scale corrected
spacetime named as gravity’s rainbow [23]. By incorporating Plank scale effects with
Parikh and Wikzek’s tunneling framework, our main aim is to study the relationship
between tunneling probability and quantum corrected entropy of black holes. And that,
Hawking radiation and information conservation of black holes are investigated in a
Planck scale corrected spacetime. In the present tunneling, while a particle tunneling
through the Planck scale corrected horizon, the metric fluctuation must be taken into
account, not only due to energy conservation but also the Planck scale effects of
spacetime. The results of the paper show that, in the gravity’s rainbow, the emission
rate of a massless particle is related to the changes of the quantum corrected entropy of
black holes and information conservation of black hole is possible. In the same time,
the logarithms corrected entropy of the gravity’s rainbow is obtained and the emission
spectrums with Plank scale corrections are presented. Compared with Parikh and
Wikzek’s non-thermal spectrum, the presented emission spectrum is further departure
from pure thermal spectrum.

The paper is organized as follows. In Sect. 2, in the context of a deformed for-
malism of special relativity namely double special relativity (DSR), the modified
Schwarzschild solution from gravity’s rainbow is reviewed and its some thermodyna-
mics quantities are presented. Then in Sect. 3, by using Parikh and Wikzek’s tunneling
framework, the emission rates of massless particles in the modified black holes are
obtained. In Sect. 4, black hole entropy for the modified Schwarzschild spacetime is
calculated and a series of correction items include a logarithmic item to B-H entropy
are obtained. Accordingly, the deviation of the emission spectrum of the modified black
hole to thermal spectrum is investigated. The last part is the summary and conclusion.

2 The modified black holes from the gravity’s rainbow

As one generally believed viewpoint, the existence of a minimally observable length
order of Planck length is a universal feature of quantum gravity [24–27]. Recently,
such character has invoked many researches on the fate of Lorentz symmetry at Planck
scale. The reason is that, the character in principle may contract any object to arbitrarily
small size by Lorentz boost and seemly leads to a apparent confliction with Lorentz
symmetry.

At present, when keeping Planck energy as an invariant scale, namely a universal
constant for all inertial observers, to preserve the relativity of inertial frames, DSR as
a deformed formalism of special relativity has been proposed [28–33]. DSR’s staring
point and main result is that the usual energy momentum relation in special relativity
may be modified in term of the ratio of particle’s energy to Planck energy. And that,
the modified dispersion relations (MDR) can be expressed as [28–30]

E2 f 2
1 (E; λ) − p2 f 2

2 (E; λ) = m2
0, (1)

where f1and f2 are two energy functions from which a specific formulation of boost
generator can be defined, in which λ is a parameter of order Planck length. The
equation indicates that, MDR is energy dependent. It is to say, particles with different
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energies have different energy–momentum relations. In addition, it should be pointed
out, MDR can be presented by different ways [34–36] and can be used to explain a
rich and energetic phenomenology [29–32].

In the same time, great efforts also have been devoted to DSR and its implications
[23,32,33,37–49]. Where, the deformed spacetime geometry from DSR has been
investigated by different proposals [23,41–45]. In [23,41], it has been put forward
that flat spacetime has energy dependent metric, namely rainbow metric. In other
words, the DSR spacetime is endowed with an energy dependent quadratic invariant
[23,41], namely

ds2 = −dt2

f 2
1

+ dr2

f 2
2

+ r2

f 2
2

d�2. (2)

Furthermore, DSR has been extended to deformed general relativity and the rainbow
metric has been extended to gravity’s rainbow [23]. Similar to rainbow metric, the
geometry of gravity’s rainbow is described by one parameter family of metric as a
function of particle’s energy observed by an inertial observer. And that, the modified
Schwarzschild solution from the gravity’s rainbow has been demonstrated in terms
of energy independent coordinates and the energy independent mass parameter [23],
namely

d S2 = −
(
1− 2G M

r

)

f 2
1

dt2
s + 1

f 2
2

(
1− 2G M

r

)dr2 + r2

f 2
2

d�2. (3)

The metric concretely indicates that, the spacetime of gravity’s rainbow depends
on the energy of particle moving in it. That is, if a given observer probes the spacetime
using the quanta with different energies, he will conclude that spacetime geome-
tries have different effective descriptions. Here, the particle’s energy denotes the total
energy measured at infinity from the black hole. By this, the present spacetime is
endowed with Plank scale effects shown as energy dependence.

From the metric Eq. (3), it is seen the horizon r+ = 2G M is universal for all
observers and at the usual place as the usual Schwarzschild black hole. However, the
horizon area

A = 16πG2 M2

f 2
2

(4)

is different from the usual value and depends on particle’s energy. This should have
some modification on black hole thermodynamics.

Besides, the surface gravity on the horizon of the modified black hole can be defined
by [46]

κ = −1

2
lim

r−r+

1

gtt

√
−grr

gtt

∂gtt

∂r
, (5)
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and obtained as

κ = f2

f1

1

4G M
. (6)

Thus, the temperature of the modified black hole is obtained as

T = κ

2π
= f2

f1

1

8πG M
. (7)

It shows that the temperature of the gravity’s rainbow has the dependence upon the
energy of probe particle. That is, using the quanta with different energy, an observer at
infinity will probe different effective temperature for the Plank scale corrected black
hole.

In addition, from Eqs. (3) and (2), we can see the modified Schwarzschild solution
is asymptotically DSR. And that, it has been pointed that the asymptotically DSR
spacetime has equality with the usual asymptotically flat spacetime [47]. Then, using
the Komar integrals, we define the total Arnowitt–Deser–Misner (ADM) mass MADM
of the Plank scale corrected spacetime as

MADM = − 1

8πG

∫

s

εabcd∇cξd = M

f1 f2
. (8)

We find that, for the modified Schwarzschild black holes, the ADM mass is not equal
to the mass parameter M . And that, the total energy of the spacetime depend on the
energy of probe particle.

It is easy verified that, in the modified Schwarzschild black holes from the gravity’s
rainbow, the energy dependence of thermodynamics quantities should arise from the
energy dependence of the Planck scale corrected spacetime. In other word, the cha-
racter of energy dependence should be the exhibition of the Planck scale effects of the
spacetime. So, the analysis on the character is necessary for us to investigate Hawking
radiation and black hole entropy in the Planck scale corrected spacetime.

3 Tunneling probability in modified black holes

DSR and gravity’s rainbow can be seen as a low energy effect of quantum gravity. It is
that, the modified black hole of Eq. (3) is a coarse grained model of quantum spacetime
at semi-classical level. Here, we assume that Parikh and Wilczk’s quantum tunneling
program of investigating Hawking radiation still holds for the large modified black
holes in the gravity’s rainbow. Therefore, in this section, following Parikh and Wilczk’s
tunneling framework, we calculate the tunneling probability of massless particles in
the modified black hole. The novel point of the present tunneling investigation is that
the Planck scale effect of geometry is considered in the tunneling process.

In Parikh and Wilczk’s tunneling scheme, the particles behind horizon can tunnel
out along a classically forbidden trajectory and the tunneling probability is given by

123



1904 C.-Z. Liu, J.-Y. Zhu

means of WKB approximation. That is, the emission rate can be expressed as the
imaginary part of the action for the trajectory [8–10], namely

� ∼ exp(−2 Im I ). (9)

For calculating the action I in the modified black holes shown as Eq. (3), the coordi-
nate singularity at the horizon must be removed. Here, following Painleve coordinate
transformation [50], we introduce a new time coordinate t . Letting

dts = dt − F (r) dr, (10)

and

1

f 2
2

(
1− 2G M

r

) −
(
1− 2G M

r

)

f 2
1

F2 (r) = 1, (11)

then we have

ds2 = −
(
1− 2G M

r

)

f 2
1

dt2 + 2

f1 f2

√

1 − f 2
2

(
1−2G M

r

)
dtdr

+ dr2 + r2

f 2
2

(
dθ2 + sin2 θdϕ2

)
. (12)

It is easy to find that, for us to implement the calculation on the emission rate of
particles tunneling through the Planck scale corrected horizon, the Painleve-like metric
of the modified black holes has some advantages. Firstly, none of the components or
the inverse of the metric diverges at the horizon. Secondly, the coordinate system has
Killing vector ∂/∂t . In addition, as expected, the metric has Planck scale effects shown
as the energy dependence. This denotes that, even if the black hole has a fixed mass
parameter M , the emitted particles with different energy will be affected by different
metric.

It is assumed that a massless particle with energy E = 1
f1 f2

ω measured at infinity
tunnels outside the horizon of the modified black hole. For the massless particle, its
motion equation can be given by the radial null geodesics of the geometry Eq. (12).
Let ds2 = 0, in the presence of Planck scale effects, we have the radial null geodesic
as

ṙ = dr

dt
= 1

f1 f2

[

±1−
√

1 − f 2
2

(
1 − 2G M

r

)]

, (13)

where “+” corresponds to outgoing particles, “−” corresponds to ingoing particles.
However, if we enforce energy conservation, when the particle tunnels out the

horizon, the mass of the modified black hole should vary. That is, the back-reaction
of emitted particles should affect the background geometry. Here, the particle can
be treated as an s-wave, i.e., an energy shell. In spherical symmetry spacetime, the

123



Hawking radiation and black hole entropy 1905

back-reaction effects of emitted shell have been investigated in [51]. So, we can obtain
that, when the particle radiates outside the horizon of the modified black hole, due to
the particle’s self-gravitation, the mass parameter M in the metric Eq. (12) should be
replaced with M − ω [8–10,51]. Therefore, we get the geometry between the horizon
and the spherical shell as

ds2 = −
(

1− 2G(M−ω)
r

)

f 2
1

dt2 + 2

f1 f2

√

1 − f 2
2

(
1−2G (M − ω)

r

)
dtdr

+ dr2 + r2

f 2
2

(
dθ2 + sin2 θdϕ2

)
. (14)

In fact, the above back-reaction effect of particles is consistent with Birkhoff’s theo-
rem. The theorem tells us that, in spherical symmetry spacetime, the only effect on
geometry due to spherical shell is to provide a junction condition for matching the
total mass inside and outside the shell.

Then, we can see the locations of the horizon before and after the particle’s emission
are ri = r+ (M) = 2G M and r f = r+ (M−ω) = 2G (M − ω), respectively. Thus,
due to energy conservation and the shrinking of the black hole, the tunneling barrier is
created by the emitted particle itself. And, the set of the potential barrier is not affected
by the Planck scale effects of the black hole-emitted particle system. This should be
investigated further.

Thus, considering the background dynamical effects arise from energy conserva-
tion and the Planck scale effects of the spacetime, the radial motion equation of the
tunneling particle should be modified as

ṙ = dr

dt
= 1

f1 f2

(

1−
√

1 − f 2
2

(
1 − 2G (M − ω)

r

))

. (15)

In addition, for the tunneling process, a canonical Hamiltonian treatment gives a
simple result for the total action of the black hole-particle system [51], namely

I =
∫

dt

(
pt + dr

dt
pr

)
, (16)

where pt and pr are the conjugate momentum corresponding to Painleve’s coordinates
t and r , respectively. Here, only the second term in Eq. (16) contributes to the imaginary
part of the action and it is

Im I = Im

t f∫

ti

dt
dr

dt
pr = Im

r f∫

ri

pr dr = Im

r f∫

ri

pr∫

0

dp′
r dr, (17)

where ti and t f are the Painleve coordinate times corresponding ri and r f , respectively.
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To proceed with an explicit computation, we now apply the Hamilton’s equation

·
r= d H

dpr
= d M ′

ADM

dpr
, (18)

there M ′
ADM = 1

f1 f2
M ′ is the ADM mass of the modified black hole after emitting a

particle with energy E ′ = 1
f1 f2

ω′. Substituting Eq. (18) into Eq. (17), and switching
the order of the integral, we have

Im I = Im

r f∫

ri

pr∫

0

d M ′
ADM
·
r

dr= Im

M−ω∫

M

d M ′
ADM

r f∫

ri

dr
·
r

= Im

M−ω∫

M

r f∫

ri

f1

f2

r

(
1 +

√
1 − f 2

2

(
1 − r ′+

r

))

r − r ′+
drd

M ′

f1 f2
, (19)

where r ′+ = 2G M ′ is the horizon location after emitting the particle. Here, for cal-
culating the action, the radiation of particle with energy ω is treated as a process of
emitting energy from 0 to ω [8–10]. Then, in Eq. (19), f1and f2 should be treated as
variables.

Considering the particle tunneling through the horizon, we can see that r ′+ is a
single pole in Eq. (19). Then the integral can be evaluated by deforming the contour
around the pole. In this way, we finished the integral over r and get

Im I = −4πG

M−ω∫

M

f1

f2
M ′d M ′

f1 f2
. (20)

Now, for the modified black hole in the tunneling process, we apply the first law of
black hole thermodynamics

d M ′
ADM = T ′d S′. (21)

In fact, many previous works [13–15] in the literature have confirmed that the first
law of black hole thermodynamics holds in the tunneling process. Then, inserting the
temperature expression Eq. (7) into Eq. (21), we have

4πG
f1

f2
M ′d M ′

f1 f2
= 1

2
d S′, (22)
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and

Im I = −1

2

S+�S∫

S

d S′ = −1

2
�S, (23)

where �S = S (M − ω) − S (M) is the difference of the black hole entropies before
and after the emission.

Thus, Substituting Eq. (23) into Eq. (9), the tunneling probability of massless par-
ticle from the modified Schwarzschild black hole in gravity’s rainbow is obtained
as

� = exp (−2 Im I ) = exp (�S) . (24)

We find that, in the Planck scale corrected spacetime, the tunneling probability is
related to the change of the entropies of the modified black hole. This is consistent
with the result obtained from the usual Schwarzschild black hole [8–10]. However, the
present black hole entropy should have Planck scale correction to B-H entropy. This
is a radical difference with Parikh and Wilczk’s original results, in which, black hole
entropy is obtained and applied as B-H entropy. Accordingly, the emission spectrum of
the modified black hole should has Planck scale corrections to the only back-reaction
corrected emission spectrum obtained from the usual black hole. In the next section,
by calculating the Eq. (22), we obtain the Planck scale corrected entropy and emission
spectrum for the modified black hole.

4 Entropy and radiation spectrum of the modified black holes

In the present tunneling investigation, to calculate the Eq. (22) and then to obtain the
entropy and the radiation spectrum for the modified black hole, we need the explicit
DSR, i.e., specific energy functions f1 and f2. Some researches has been devoted to
the investigation on the explicit MDR models and different correction functions f1
and f2 have been proposed [30,37]. In low energy realm, i.e., E/E p � 1, where
E p ≡ 1/

√
8πG is Planck energy, the correspondence principle requires that f1 and

f2 both approach to unit. However, as so far, the standard form of f1 and f2 has not
been given and the further investigations are necessary. Here, for convenience, we take

f1 = f =
(

1 − E2/E2
p

)− 1
2
, f2 = 1. (25)

Then, based on the specific MDR, from the Eqs. (4) and (7), the horizon area and
the temperature of the modified black holes are, respectively,

A = 16πG2 M2, (26)

T 2 = 1

f 2

1

(8πG M)2 . (27)
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And that, from Eq. (22), we can obtain the differential form of the black hole entropy.
That is

d S = 8πG M f d

(
M

f

)
= 4πGd M2 − 8πG M2 d f

f
. (28)

We find that, for the modified black hole in the gravity’s rainbow, the entropy
equation depends on particle’s energy. It is to say, the effective black hole entropy
have the dependence on the energy of probe particle. Now, for large modified black
holes, we use the characteristic temperature by identifying the energy of particles
emitted from the black holes with the black hole’s temperature [46,49,52,53], namely

E = T . (29)

This can be understood as a statistical treatment of obtaining the black hole entropy.
Supposing all the emitted particles form an ensemble outside the black hole, then the
average energy of the particles is equal to the temperature of the black hole. In other
words, we use the particle with energy T to probe the black hole entropy and ascertain
it as the intrinsic entropy, i.e., the black hole entropy. Thus, from Eqs. (25) and (29),
we have

f =
(

1 − T 2/E2
p

)− 1
2
,

d f

f
= 1

2

dT 2

E2
p − T 2 . (30)

And that, substituting Eq. (30) into Eq. (27), we have

T 2 = 1

f 2

1

(8πG M)2 =
(

1 − T 2

E2
p

)
1

(8πG)2 M2
= 1

(8πG)2 M2
− 1

8πG M2 T 2.

(31)

Solving Eq. (31) and considering Eq. (26), we obtain

T 2 = 1

4π A + 8πG
. (32)

Then, substituting Eq. (32) into Eq. (30), we have

d f

f
= 1

2

dT 2

E2
p − T 2 = −1

2

d A

E2
p (4π A + 8πG) A

. (33)

Next, substituting Eq. (33) into Eq. (28), we obtain

d S = d

(
A

4G

)
+ 1

2
d ln

(
A

4G
+1

2

)
. (34)
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So, we have

S = A

4G
+ 1

2
ln

(
A

4G
+ 1

2

)
+ const = A

4G
+ 1

2
ln

A

4G
+1

2
ln

(
1 + 2G

A

)
+ const.

(35)

For large black hole with A � 2G, we taking Taylor expansion on Eq. (34) and get

S = A

4G
+ c0 ln

A

4G
+cn

(
A

4G

)−n

+ const, (36)

where, c0 = 1
2 , cn = (−1)n−1 1

n 2−(n+2).
It is worth to point out that, the present black hole entropy has a series of corrected

terms to B-H entropy and the result is consistent with many other research’s results
on quantum corrected entropy of black holes (for a review of the correspondence see
[54]). That is to say, the leading order correction to B-H entropy goes as the logarithm
of black hole area and the other terms go as the inverse of the area and high order area,
respectively. Therefore, we may say that, in the modified black hole from the gravity’s
rainbow, the emission rate of massless particle is related to the change of the quantum
corrected entropy of black holes.

Next, substituting Eq. (36) into Eq. (24) and thinking of Eq. (26), we can obtain
the radiation spectrum of the modified black holes as

� ∼ exp (S(M − ω) − S (M))

=
⎛

⎜
⎝

(
1 − ω

M

)2 +
(

Mp
M

)2

1 +
(

Mp
M

)2

⎞

⎟
⎠

1
2

× exp
(
−8πG Mω

(
1 − ω

2M

))
. (37)

Compared with the usual self-gravitation correction radiation spectrum from the usual
black holes derived in [8–10], namely,

� ∼ exp
(
−8πG Mω

(
1 − ω

2M

))
, (38)

we find the present radiation spectrum has a series of Planck scale modification factors
and it further depart from pure thermal spectrum. But, If we do not consider the cor-
rections from the Planck scale effects of the spacetime, i.e., neglecting the logarithmic
correction term and the inverse area items in the black hole entropy, the factor of the
final exponential in Eq. (37) equals to unit and the radiation spectrum has the same
type of non-thermal form shown as Eq. (38). And that, if we further overlook the effect
of emitted particle’s back-reaction by neglecting ω/M in the expression Eq. (37), the
present tunneling rate takes the form of Boltzmann factor e−βω(β ≡ 1/T = 8πG M)
and the Hawking’s thermal formula is obtained.
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5 Summary and discussions

In the present work, in Parikh and Wikzek’s tunneling framework [8–10], Hawking
radiation and black hole entropy in the modified Schwarzschild black hole from gra-
vity’s rainbow are investigated. In the tunneling process, the Planck scale effects of
spacetime shown as energy dependence are taken into account. Thus, while the par-
ticles tunnel across the horizon of the modified black hole, the background metric is
dynamical, due to not only energy conservation but also the Planck scale effects of
geometry. We find that, incorporating Planck scale effects with the tunneling program,
the tunneling probabilities of massless particles are related to the changes of the quan-
tum corrected entropy of black holes and information conservation in the gravity’s
rainbow is possible.

For the modified Schwarzschild black hole from the gravity’s rainbow, by analyzing
its some thermodynamics quantities and using the first law of black hole thermody-
namics, the black hole entropy with a series of correction terms to B-H entropy is
obtained. Here, the leading order correction item is the logarithm of the black hole
area and the expression of black hole entropy is consistent with the standard form of
quantum corrected black hole entropy [54]. Accordingly, the Planck scale corrected
emission spectrum in the modified black hole is obtained and it deviates from thermal
spectrum. Meanwhile, for calculating the black hole entropy in the gravity’s rainbow,
a specific MDR of Eq. (25) is proposed and the obtained result of entropy formula
Eq. (36) support the choice. It is remarkable that, black hole entropy is an important
landmark to Planck scale physics. As a low-energy quantum gravity effect, different
models of MDR with some underlying meaning in the quantum gravity should be
tested with black hole entropy.

The research here not only provides further evidence to support Parikh and
Wikzek’s tunneling program, which gives an explicit calculation to investigate
Hawking radiation, but also gives an extension for the tunneling program from classi-
cal spacetime to a Planck scale corrected black hole. And, the work should be extended
to other modified black holes from gravity’s rainbow. On this issue, further work is in
progress.
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