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Abstract Durables like cars or houses are a substantial component in the balance

sheets of households. These durables are exposed to risk and can be insured in the

market. We build a dynamic model in which agents have three possibilities to cope

with the risk exposure of the durable stock: (i) purchase of market insurance, (ii)

buffer-stock saving of the riskless asset or (iii) adjustment of the durable stock. We

calibrate our model to the US economy and find a small role for market insurance.

Keywords Consumption � Durables � Uncertainty � Insurance �
Buffer-stock wealth

JEL Classification D81 � E21 � G22

1 Introduction

Durables are very important in the balance sheets of households. In terms of flows,

durable consumption accounts for 12–28% of total consumption in the US in the

period 1990–2002 (depending on whether durable consumption includes housing

services; see also Attanasio [1999]). In terms of stocks, the current-cost net stock of
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private fixed assets amounts to 130% of disposable income where alone the stock of

consumer durables accounts for 40% of this income.1

The stock of durables is exposed to risk: houses can be broken into or destroyed by

natural catastrophes and cars can be stolen. We propose a dynamic model that allows

the agent to manage this risk in three different ways through (i) purchase of market

insurance, (ii) buffer-stock saving of a riskless asset or (iii) adjustment of the durable

stock. The goal of this paper is to analyze the qualitative interplay and quantitative

importance of these three ways in which the consumer can manage his risk.

Compared with previous research that did not allow for endogenous adjustment

of the durable stock and thus an endogenous size of the loss [Gollier, 2003], we find

that the policy function for market insurance can be interestingly non-monotonic in

the agent’s resources. The reason is that two opposite forces are at work which are

endogenous in our model: the size of the loss and self-insurance through buffer-

stock saving. An intuitive explanation for the non-monotonicity is that the

covariance between the marginal utility of non-durable consumption and the loss is

small for a small durable stock (and thus a negligible loss) as well as for a large

durable stock if the agent holds enough risk-free assets to self-insure. It is in the

intermediate range that market insurance plays a role.

Another contribution of this paper is that we check whether endogenous interest

rates in a closed economy alter the results on the role of market insurance. This is

important quantitatively because buffer-stock saving becomes more relevant

compared with market insurance if the difference between the discount and interest

rate is small. This difference measures the cost of saving for the impatient agent.

We calibrate our model to the US economy and find that market insurance only

plays a small role for consumer welfare unless insurance is important in permitting

the use of durables as collateral. Even in this case, however, the deductible or

retention ratio is an order of magnitude higher than observed in reality.

Our paper builds on the literature that has explored market insurance mostly in a

static framework. For example, Ehrlich and Becker [1972] show that market

insurance and actions of agents that decrease the size of the loss are substitutes.

Instead, Eeckhoudt et al. [1997] show that market insurance is more desirable if the

share of a risky asset in the portfolio increases (if the utility function has the

property of decreasing absolute risk aversion). Moreover, Eeckhoudt et al. [1991],

Proposition 2, find that market insurance and precautionary savings are substitutes

for a particular increase in risk.

Although these static results have been very helpful to understand particular

interactions between market insurance and other policies, they cannot be used to

address the question whether there is a role for market insurance in the first place

within a simple dynamic neoclassical framework. The most important contributions

in the literature in this respect are by Gollier [1994, 2003] who investigates dynamic

interactions between market insurance and the accumulation of risk-free assets as

buffer stock. Whereas Gollier [1994] derives a closed form solution for CRRA

utility and no liquidity constraints in a continuous-time model, Gollier [2003]

1 The figures are obtained from the national income and product accounts of the Bureau of Economic

Analysis, U.S. Department of Commerce.
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provides a numerical solution to the more general problem. He finds that time

diversification through buffer-stock saving reduces the scope for market insurance

substantially. As mentioned above, we show in this paper that his assumptions of an

exogenous insurable risk and an exogenous interest rate are important and matter for

some of the qualitative as well as quantitative results.

The rest of the paper is structured as follows. In Section 2, we present and discuss

the model and its optimality conditions. In Section 3, we present the numerical

solution for the small-open economy with an exogenous interest rate. We calibrate

our model to match some target statistics in the US and show how the equilibrium

changes if we vary important model parameters. In particular, we show how the use

of secured durables as collateral or stochastic permanent labor income affect the

equilibrium. Finally, we mention that market insurance is even less important if we

allow for an endogenous interest rate in a closed-economy. In Appendix A we

provide an analytic approximation of the policy functions for the special case of

abundant financial wealth and in Appendix B we explain our numerical solution

procedure which takes into account that wealth constraints may be binding.

2 The model

Agents are risk-averse and have an infinite horizon. They derive utility from a

durable good v and a non-durable good c. The instantaneous utility is given by

Uðc; vÞ ¼ uðcÞ þ /wðvÞ where u(.) and w(.) are both strictly concave, and u is the

weight assigned to utility derived from the durable. We assume that the marginal

utility w0(v) is well defined at v = 0 so that our model is able to generate agents with

no durable stock in at least some states of the world, as is realistic. A possible

functional form is wðvÞ ¼ ðv þ vÞs, with s � 1 and v � 0. The asymmetry in the

utility function with respect to non-durable and durable consumption is justified in

the sense that durables are less essential than non-durable consumption such as food.

In specifying utility as above, we have made a number of simplifying

assumptions. We assume v to be a homogenous, divisible good. Moreover, utility

is separable over time and at each point in time it is separable between durables and

non-durables. Both assumptions are made for tractability and clarity given that it is

more realistic to assume that durables are a bundle of characteristics and that utility

derived from durables depends on non-durable consumption in non-trivial ways.

Instead, as in much of the literature, we assume that the service flow derived from

durables is proportional to the stock where we have normalized the factor of

proportionality to 1 (see Waldman [2003] for a critical review). We discuss these

assumptions further in light of the results presented below.

We specify our model in discrete time. At the beginning of each period, financial

wealth at, the durable stock vt and its insurance coverage denoted by Dt, the loss lt
and labor income yt are predetermined. Given these state variables, the agent

chooses non-durable consumption ct, investment into the durable dt, and insurance

coverage for the next period Dt+1 subject to constraints which we mention below.

Finally, the durable stock depreciates at rate d. This depreciation rate could be

negative, in which case the value of the durable appreciates. Below, however, we
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focus on the case in which the durable depreciates as in most of the literature. As we

will see, sensible changes in the depreciation rate are not important for the result

that the role for market insurance in our model is small.

Since the durable stock vt is predetermined, utility is derived from the durable

stock net of the loss. We implicitly assume that the insurance company does not

replace the durable but reimburses the insured loss in cash which can then be

transformed into durables only in the next period. In other words, we assume that

the insurance company cannot adjust agents’ durables more quickly than agents

themselves. Thus, the consequences of one loss in terms of utility depend on the

length of the period before durable adjustment may take place, which we calibrate

as a quarter in our numerical solution. Although we think that this is a realistic

assumption in terms of adjustment speed, below we mention the robustness of our

results for a shorter period length of a month.

Before we lay out the dynamic program, let us characterize the insurance

contract. A risk neutral insurer offers an actuarially unfair one-period insurance

contract with a loading factor l>1. Such a contract is closest to the one-period

saving technology and thus interesting to analyze in our framework. It is well-

known that in this case the optimal insurance contract has a deductible [Raviv,

1979]. Since we assume that the loss distribution has only two states (no loss or loss

l), the choice of the deductible is equivalent to choosing the retention ratio D. This

ratio is defined as the proportion of the loss l which is not insured. Thus, should a

loss occur, the agent receives the following payment from the insurance company

maxðl � Dl; 0Þ ¼ l � maxð1 � D; 0Þ ¼ l � ð1 � DÞ;

where the last equality holds since D 2 ½0; 1�. Defining vð:Þ as the value function,

the dynamic program is

vðat; vt;Dtjlt; ytÞ ¼ max
atþ1;vtþ1;Dtþ1

uðctÞ þ /wðvt � ltÞ þ bEtvðatþ1; vtþ1;Dtþ1jltþ1; ytþ1Þ½ �

ð1Þ

s.t.

atþ1 ¼ ð1 þ rÞat þ yt þ ð1 � DtÞlt

zfflfflfflfflfflffl}|fflfflfflfflfflffl{

insurance claim

� ct � dt �
l

1 þ r
ð1 � Dtþ1ÞEltþ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

insurance premium

vtþ1 ¼ ð1 � dÞvt � lt þ dt

as � a; s � t

vs � 0; s � t;

Ds 2 ½0; 1�; s � t;

where b is the discount factor, r is the interest rate, and d is the depreciation rate

which we assume to be constant for simplicity. The expectation operator is E where

a subscript t denotes that expectations are conditional on information available at

time t. For the case of deterministic income yt = y where y is non-random. We now

discuss the constraints in some detail.
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The first constraint is the budget constraint. We implicitly assume that durables

can be transformed into non-durable consumption with a linear technology so that

the relative price is unity. The amount of assets tomorrow then depends on the

amount of assets today plus the interest, the amount of durable and non-durable

consumption, and labor income. Moreover, it depends on the amount of insurance

demanded in period t, ðl=ð1 þ rÞÞð1 � Dtþ1ÞEltþ1, and the money received from the

risk-neutral insurance company if damage occurred, ð1 � DtÞlt. Note that insurance

is actuarially unfair, l>1, so that risk-averse agents do not necessarily insure fully.

Furthermore, premiums are discounted to the present since a premium payment

today only provides coverage tomorrow. In the meanwhile the insurance company

earns the market interest rate r on the paid premium.

The second constraint is the law of motion of the durable stock. The size of the

durable stock tomorrow depends on its size today net of depreciation minus the loss

plus the investment today. In order to economize on notation in the equations, we

assume that the loss is exogenous in this section. In the numerical part of the paper,

the loss is endogenous, proportional to the size of the durable stock. Note also that

we abstract from adjustment costs. What is important for our results is that there is

no advantage in the adjustment of the durable if the agent purchases market

insurance instead of self-insuring with financial assets. This would be the case, for

example, if insurance companies directly reimbursed the agent in terms of durables.

As we discussed above, we do not think that it is a plausible assumption that

insurance companies can adjust durables faster than agents. In general, adjustment

costs certainly would imply more realistic adjustment flows but have ambiguous

predictions on the durable stock and hence on the risk which is borne by agents. For

plausible parameters in dynamic models with durables like Luengo-Prado [2006],

the effect of adjustment costs on the durable stock is quite small quantitatively so

that we choose to abstract from adjustment costs as a starting point. For an analysis

of durable investment under uncertainty with adjustment costs see also Bertola et al.

[2005] or Lam [1991].

The third constraint is the solvency constraint. It implies that the agent cannot

borrow more than a which guarantees repayment of the debt. Aiyagari [1994]

derives in a model with non-durable consumption that a ¼ � yl

r , where yl is the

smallest y attainable on the support of the distribution. For the numerical part of

this paper we will assume a ¼ 0, a tighter borrowing constraint unless yl = 0.

Reducing a does not change our main numerical result since it only shifts financial

assets down implying a wealth effect which is quantitatively small. Note further

that the agent cannot use durables as collateral in this formulation. We relax this

assumption in Section 3.1.2 where we allow agents to use their secured durable

stock as collateral.

The fourth and fifth constraint imply that the agent cannot go short in the durable

or sell insurance. Finally, for both state variables a and v a transversality condition

has to be satisfied, respectively.

To gain intuition, let us ignore the constraints as � a; vs � 0 and Ds 2 ½0; 1�, in

which case problem (1) yields the following Euler equations for the controls ct; dt

and Dtþ1, respectively:
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u0ðctÞ ¼ bð1 þ rÞ Etu
0ðctþ1Þ; ð2Þ

u0ðctÞ ¼ b ð1 � dÞEtu
0ðctþ1Þ þ /Etw

0ðevtþ1Þ½ � ð3Þ

and

u0ðctÞlEltþ1 ¼ bð1 þ rÞEtfu0ðctþ1Þltþ1g; ð4Þ

where primes denote first-order derivatives of the functions with respect to the

variables in brackets and ev is the durable stock net of the loss. Equations (2) and (3)

can be used to solve for the intertemporal behavior of ev:

Etw
0ðevtþ1Þ ¼ bð1 þ rÞEtw

0ðevtþ2Þ: ð5Þ

We now provide some intuition for these intertemporal optimality conditions.

Equation (2) is standard and relates non-durable consumption intertemporally.

Equation (5) is the equivalent for the durable stock. More interestingly, on the

left-hand side of equation (3) are the costs for one unit of durable investment d,

in terms of utility derived from non-durable consumption. These have to equal

the benefits on the right-hand side of equation (3). The benefits are the

discounted expected utility afforded by the increase of the durable stock,

/Etw
0ðevtþ1Þ, plus the expected utility of non-durable consumption resulting from

selling one unit of the durable stock after depreciation in the next period.2 Note

that it is important that the agent derives utility from the durable in our model.

Otherwise, the agent would not invest in the durable since it is risky and return-

dominated by the risk-free asset.3

Equation (4) is the intertemporal optimality condition for insurance demand.

Again, marginal costs on the left-hand side of the equation equal marginal

benefits which are on the right-hand side. The marginal benefits are that the

agent can consume more tomorrow in bad states of the world if he buys

insurance today because in expectation more resources are available due to

insurance payments. Since Etfu0ðctþ1Þltþ1g ¼ Etu
0ðctþ1ÞEltþ1 þ covðu0ðctþ1Þ; ltþ1Þ,

the agent wants to buy more insurance if large realizations of ltþ1 occur in states

of the world in which the agent’s non-durable consumption is already small. In

terms of equation (4), a higher covðu0ðctþ1Þ; ltþ1Þ implies a higher u0ðctÞ: the

marginal cost on the left-hand side is relatively higher because agents are willing

to forego more non-durable consumption to buy more insurance. In order to

understand the policy function for D which we obtain in our numerical solutions,

it is important to keep in mind that the attractiveness of insurance crucially

depends on covðu0ðctþ1Þ; ltþ1Þ. As we will see below, the amount of risk-free

assets a and the size of the durable stock v are both important for this covariance

2 With an endogenous loss proportional to the durable stock, equation (3) is modified as follows: on the

left-hand side of the equation an additional term captures the costs resulting from higher insurance

payments because of a higher loss; on the right-hand side the expectation of the future durable stock takes

into account that the size of the loss increases if the agent invests.
3 Compared to standard portfolio-choice models, it is noteworthy that in our model utility functions with

constant-relative-risk aversion do not imply that a constant share of wealth is invested in the risky asset.
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since they matter for the variability of u0ðctþ1Þ and the size of the loss ltþ1. In

particular, we will assume that the size of the loss is proportional to the durable

stock with proportionality factor g so that

ltþ1 ¼ gvtþ1:

In this case, the amount of resources available to the household changes the

size of the loss through the choice of the durable stock vt+1.

Before we continue to solve the model numerically, let us mention that in our

model precautionary motives arise even if the agent has abundant financial wealth.

As mentioned above, this is because utility is derived from the durable stock net

of the loss. Thus, the agent cannot smooth immediately the fluctuations in the

durable stock. We show this explicitly in Appendix A where we provide an

approximation of the model to gain intuition. The numerical solution does not rely

on this approximation (see Appendix B).

3 Numerical solution

In this section we first solve the model numerically for the small-open economy in

which the interest rate is exogenous and profits accrue to foreign insurers (the

latter assumption is not important but simplifies the exposition). After we have

shown how the solution of the model depends on the most important parameter

values, we mention how our quantitative results change if we assume a closed

economy so that the interest rate is endogenous and insurance profits are part of

the domestic budget constraint.

3.1 The small open economy

Before we solve the model numerically we rewrite the maximization problem

in terms of resources ‘‘cash-on-hand’’ xt which is commonly done in the

literature to reduce the state-space. Cash-on-hand at the beginning of period t is

defined as

xt � ð1 þ rÞat þ yt þ ð1 � d � DtgItÞvt;

the sum of risk-free assets and their returns, labor income, and the cash value of

the durable asset after depreciation and net of the loss which remains after

accounting for the retention rate Dt and the insurance payments. Note that we

assume that the loss lt ¼ gItvt depends on the durable stock vt with a propor-

tionality factor g. Whether a loss occurs or not is summarized by the indicator

variable It. This variable takes the value 1 if a loss of size gvt occurs which

happens with probability k, and the value 0 if no loss occurs. Recalling that

evt ¼ ð1 � gItÞvt is the durable stock net of the loss, we can rewrite the value

function as
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Vþðxt; evtÞ ¼ max
atþ1;vtþ1;Dtþ1

h

uðxt � atþ1 � vtþ1 �
l

1 þ r
ð1 � Dtþ1Þgkvtþ1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ct

Þ

þ /wðevtÞ þ bEtV
þðxtþ1; evtþ1Þ

i

:

We can further simplify the problem by noting that evt is predetermined in period

t and that the additive separable term /wðevtÞ does not affect the optimal choices of

the consumer. Subtracting the additively separable term /wðevtÞ from the value

function Vþ xt; evtð Þ, we can define a transformed value function that does no longer

depend on evt:

V xtð Þ � Vþ xt; evtð Þ � /w evtð Þ:

The transformed maximization problem is then

V xtð Þ ¼ max
atþ1;vtþ1;Dtþ1

"

uðxt � atþ1 � vtþ1 �
l

1 þ r
ð1 � Dtþ1Þgkvtþ1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ct

Þ

þ b/Etw evtþ1ð Þ þ bEtV xtþ1ð Þ
#

ð6Þ

s.t.

as � a; vs � 0; Ds 2 ½0; 1�; xs ¼ ð1 þ rÞas þ ys þ ð1 � d � DsgIsÞvs

with s � t þ 1:

It is easy to verify that the problem (6) satisfies Blackwell’s sufficient conditions

for a contraction mapping. This allows us to solve numerically for the optimal value

function V and the corresponding policy functions using Chebychev polynomials to

approximate the functions. In our algorithm we first search for an upper bound of

cash-on-hand x at which the optimal policies fatþ1; vtþ1;Dtþ1g imply that the

maximal attainable cash-on-hand without a durable loss, xmax
tþ1 , is smaller than this

upper bound:

xmax
tþ1 ¼ 1 þ rð Þatþ1 þ y þ 1 � dð Þvtþ1<x:

Since we assume a ¼ 0, the lower bound x ¼ y gives us a compact state

space. More details on the numerical solution of the problem are provided in

Appendix B.

Table 1 displays the benchmark parameter values that we use to solve the model

numerically. We calibrate one period as one quarter of a year so that the parameter

values imply an annual risk-free interest rate of .01 [Mehra and Prescott, 1985] and

a discount factor of .95 or a discount rate of .053 [Aiyagari, 1994]. Thus, agents are

quite impatient in the benchmark of our computations for the small-open economy.
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It is well-known that b<1=ð1 þ rÞ is necessary in models with incomplete markets

for the stock of risk-free assets to be finite. Indeed, if marginal utility is convex,

uninsured risk gives rise to a precautionary savings motive and the additional

savings imply an interest rate below the discount rate in a closed production

economy [Aiyagari, 1994]. Since holding the durable stock is costly, d>0, the

results in Deaton and Laroque [1992] imply that cash-on-hand is finite in our model.

Thus, in our computations for the small open economy, we choose values for the

interest rate that are consistent with impatience and check in the next subsection

which interest rates prevail in the closed economy.

Concerning the other parameter values, the annual depreciation rate implied by

Table 1 is 15% which is consistent with micro evidence on cars provided by Alessie

et al. [1997]. The probability of a loss per quarter, k ¼ :05, is an upper bound based

on claim rates for property and casualty insurance in the US provided by the

Insurance research council (http://www.ircweb.org). The loading factor (mark-up)

for insurance is set to l ¼ 1:3; as in Gollier [2003], which is consistent with

evidence on direct written premiums and claims for the US [Financial Services Fact

Book, 2004].

We normalize labor income y to 1, and parametrize the utility functions

uðcÞ ¼ c1�r1 � 1

1 � r1

and wðvÞ ¼ v þ vð Þ1�r2�1

1 � r2

;

where as mentioned in the previous section, v>0 allows the consumer to hold no

durable stock. We set risk aversion for the non-durable and durable good

r1 ¼ r2 ¼ 2 which is well within the range of commonly used values, and assume

v ¼ :1 which is rather small. Indeed, it turns out that this parameter is not important

and can be set to negligibly small values without changing the quantitative results

much. This is because the region of v close to zero is not important in our

simulations. Since we do not have any information on the remaining two

parameters g and u, we set g = .6 and u = 1.5 so that we match three target

statistics:

(i) a durable stock between 40% and 130% of disposable income, depending on

whether we consider consumer durables or all private fixed assets (see the data

of the Bureau of Economic Analysis mentioned in Section 1). In the

calibration, we target the average of these values.

(ii) a flow of durable consumption between 12% and 28% of total consumption in

the US in the period 1990–2002 (depending on whether durable consumption

Table 1 Benchmark parameters

r ¼ :0025 b ¼ :9873 d ¼ :0355 k ¼ :0543

g ¼ :6 l ¼ 1:3 / ¼ 1:5 v ¼ :1

r1 ¼ 2 r2 ¼ 2 y ¼ 1
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includes housing services; the source of the data is again the BEA). As above

we target the average.

(iii) an expenditure on household property and casualty insurance including

motor-vehicle insurance, of 2% of disposable income (see the Financial

Service Fact Book, 2004).

Figure 1 displays the implied value function as a function of risk-free assets at

and the durable stock vt.
4 Not surprisingly the value function is increasing and

concave in both at and vt. More interestingly, Fig. 2 plots the policies as a function

of cash-on-hand for our benchmark case. All variables but the retention ratio are

expressed as percent of annual disposable income defined as the sum of quarterly

interest and labor income i � ra þ y multiplied by 4.

Figure 2b and d show that the planned durable stock and non-durable

consumption are concave functions of cash-on-hand x. Both functions are quite

steep as long as agents do not hold any risk-free assets and the marginal propensity

to consume declines substantially as soon as agents hold a buffer stock of risk-free

assets (see Fig. 2a). This shape of the consumption functions is similar as in the

classic models of non-durable consumption with uninsured labor income risk and/or

liquidity constraints [see Deaton, 1991; Carroll and Kimball, 1996, 2001]. Note that

the agent only holds a positive amount of risk-free assets in our model because the

durable stock is exposed to risk. If that were not the case, agents would consume all

their resources and never hold a positive amount of risk-free assets since the rate of

return on the risk-free asset is lower than the rate of time preference.

The main new result in our model is the policy function for the retention ratio D
that captures the importance of market insurance (see Fig. 2c). Whereas the

expected deductible kgvD is increasing in cash-on-hand (see Fig. 2b), the retention

Fig. 1 Value function for the benchmark case. Note: the units of the durable stock and liquid assets are %
of disposable income

4 Note that we iterate over V(xt) and then back out the implied value function over at and vt after the

algorithm has converged since this plot is slightly more informative.
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ratio is interestingly non-monotonic as a function of cash-on-hand in our calibration.

This is different to the results in Gollier [2003] where the retention ratio as well as

the deductible monotonically increase as a function of cash-on-hand. The reason is

that in our model the risk is endogenous and the durable stock is a part of total

wealth x. The loss depends on the size of the durable and thus can be influenced by

choices of the agent.

Notice first that market insurance is not desirable for high values of cash-on-hand

if a sizeable amount of risk-free assets allows the agent to self-insure losses of the

durable good. This mechanism implies that the retention ratio increases with cash-

on-hand as in Gollier [2003]. In our model, however, more cash-on-hand also

implies a larger amount of the durable stock which increases the exposure but also

makes any loss less important in terms of marginal utility. This effect reinforces that

the retention ratio approaches 1 for large values of cash-on-hand. Low values of

cash-on-hand instead imply a small amount of risk-free assets so that losses of the

durable cannot be replaced quickly.

An important difference to Gollier [2003] is, however, that a small value of cash-

on-hand implies a small value of the durable stock and thus smaller losses. In fact

the loss is negligibly small as v approaches 0. In this case market insurance serves

no purpose so that the retention ratio also approaches 1 if cash-on-hand becomes
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Fig. 2 Policies as a function of cash-on-hand xt for the benchmark parameters. Note: All variables but
the retention ratio are in % of disposable income
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sufficiently small. Moreover, the cost of insurance in terms of marginal utility of

forgone non-durable consumption is high for small values of cash-on-hand.

Formally, the desirability of market insurance depends on the covariance of the

marginal utility of non-durable consumption and the loss. The optimality condition

(4) implies that for an endogenous loss

u0ðctÞlgkvtþ1 ¼ bð1 þ rÞ gkvtþ1Etu
0ðctþ1Þ þ covðu0ðctþ1Þ; gItvtþ1Þ½ �:

Market insurance is more attractive if the covariance is larger since in this case a

loss implies a higher marginal utility of non-durable consumption u0(ct+1). This can

be seen heuristically from the equation above: a larger covariance (a larger right-

hand side of the equation) makes agents more willing to spend one more unit in

insurance and forgo consumption in period t so that the marginal utility u0(ct)

increases until the equation again holds with equality. As explained above the

covariance is small for large values of cash-on-hand if the agent accumulates a

substantial amount of risk-free assets (in this case a loss leaves the marginal utility

of non-durable consumption essentially unchanged). Moreover, the covariance also

decreases substantially as v becomes negligibly small.5 This is illustrated in Fig. 2c

which plots both the retention ratio and the covariance as a function of cash-on-hand

(the scale of the covariance is displayed on the right). The covariance is calculated

by setting Dtþ1 ¼ 1 but keeping all other policies at their previous optimal values.

This is the counterfactual covariance between u0ðctþ1Þ and gItvtþ1 had the agent not

chosen to insure himself in the next period.

Finally, in Fig. 2a–c we plot the first-order conditions (FOC) for the three choice

variables atþ1; vtþ1, and Dtþ1 as a further check for the accurateness of our

computations. Indeed, the figures show that the respective FOC is zero as soon as

interior optima are attained.6

We use the policy functions to simulate the model for 1,000 periods. Figure 3

displays the results for the variables of interest for an arbitrary interval of 150 periods

within the last 900 periods of the simulation in which the initial conditions are

irrelevant. If no shock occurs, the consumer accumulates a substantial amount of the

risk-free asset (up to 50% of disposable income in Fig. 3b). If a loss occurs these risk-

free assets are used to adjust the durable stock close to its old level (see Fig. 3a), unless

risk-free assets have been depleted by previous shocks and durable expenditure

crowds out non-durable consumption. In this case the durable expenditure is smoothed

over a number of periods (see Fig. 3e). This implies that durable consumption has

spikes in periods after a durable loss occurs whereas non-durable consumption is quite

smooth and changes only slightly in the aftermath of a shock as long as risk-free assets

are sufficient to smooth out some of the durable loss (see Fig. 3d). The fall of the

retention ratio in times with a small amount of risk-free assets is not enough to

compensate for the lack of financial resources (see Fig. 3c). The retention rate

5 Non-separable utility of durable and non-durable consumption does not change this qualitative insight

as long as the variability of the marginal utility of non-durable consumption is higher for small values of

cash-on-hand.
6 Note that cash-in-hand xt � 1 because labor income y ¼ 1. Thus, vtþ1>0 for all values of cash-in-hand

for which we plot the policies so that the corresponding FOC always holds with equality.
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fluctuates substantially between .6 in the aftermath of a shock when the agent is

liquidity constrained, and 1 in periods in which the stock of risk-free assets is

substantial. As a result also insurance expenditure fluctuates between 0% and 5% (see

Fig. 3f). Rather short-time horizons of 15 quarters without a loss are sufficient to

accumulate enough financial assets for market insurance to become irrelevant. Since

time diversification across such periods is likely to matter for real-life consumer

decision-making, we can expect our model to match average statistics observed in the

US.

Table 2, column 1, displays the averages of the last 900 periods of the

simulations for the stocks and flows. Moreover, we compute the relevant measures

to be compared with the target statistics where as before we define disposable

income as the sum of interest and labor income i � ra þ y and convert flows to an

annual frequency. In the benchmark case agents hold a durable stock that amounts

to 80% of disposable income, durable consumption is 23% of total consumption and

the insurance expenditure is 2.4% of disposable income. These values are in line
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Fig. 3 Simulation of the main variables of interest for 150 quarters. Note: Simulations have been
performed for 1,000 quarters of which the first 100 quarters have been discarded so that initial conditions
do not matter. All variables but the retention ratio are in % of disposable income
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with our target statistics as we have chosen g and u accordingly. Moreover, buffer-

stock saving is important since agents hold risk-free assets that amount to 14% of

disposable income. However, the average retention ratio D = .81 is an order of

magnitude larger than observed in real world insurance contracts (for example, as

mentioned by Gollier [2003] insurance contracts for cars often have retention ratios

of .025: a car with a value of $20,000 would have a deductible of $500 in a typical

insurance contract; see also Drèze [1981]). Quantitatively, the retention ratio in our

model is higher than in Gollier [2003] who finds D = .63 for similar parameter

values. The difference is not surprising. Whereas in the model of Gollier the agent

has only the choice between self-insurance with risk-free assets and market

insurance, in our model the agent also can adjust the durable stock to manage the

risk. This decreases the need for market insurance further.

We assess the welfare gains of granting the consumer access to market insurance

in addition to the risk-free asset. We compute the value function for the restricted

problem Vr(.) without market insurance and compare it with the unrestricted value

function V(.) at the steady-state cash-on-hand of the restricted problem, xr. We then

perform the following thought experiment: how much additional cash-on-hand x*

does the consumer need to receive in the restricted case, in order to be compensated

for not having access to market insurance? Formally this can be computed as

Vrðxr þ x�Þ ¼ VðxrÞ:

Note that the unrestricted value function V(.) is also evaluated at the steady state

of the restricted problem because the welfare effect of market insurance includes the

transition period to the new steady state. We find that market insurance is worth an

additional 2.3% in the stock of cash-on-hand or, expressed in certainty-equivalent

flows, an additional 0.12% flow of non-durable consumption if we hold the durable

stock constant at its steady-state value evðxrÞ. Since the retention ratio in the

unrestricted equilibrium is higher in our model than in Gollier [2003], it is not

surprising that our welfare effect is substantially lower than the 0.66% increase of

non-durable consumption reported in Gollier [2003], Table 1, as mentioned above),

this welfare effect of market insurance is substantially lower than the 0.66%

increase of non-durable consumption in Gollier [2003], Table 1. Thus, allowing for

an endogenous risk not only matters for the qualitative shape of the policy function

for the retention ratio but also for the quantitative importance of market insurance.

3.1.1 Sensitivity analysis

We now provide a sensitivity analysis for different parameter values in order to

investigate whether the result of a high retention ratio is robust. We change one

parameter at a time, displaying the new changed parameter value at the top of each

column in Table 2.

In column 2 we decrease the discount factor (to an annual value of .935). This

increases the spread between the discount rate and the interest rate and makes

buffer-stock saving more costly so that the stock of risk-free assets falls to 4.5% of

disposable income. Market insurance instead becomes more attractive and the
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retention ratio falls to D ¼ :69. More impatience also makes durable consumption

less attractive since utility can only be derived from it next period. However, the

durable stock falls only slightly so that insurance expenditure increases to 4.1% of

disposable income. Qualitatively similar is the effect of lowering the cost of

insurance in column 3. An unrealistically low loading factor of l ¼ 1:1 is necessary

however, in order to lower the retention ratio to more plausible values, D ¼ :27.

Moreover, in this case, the insurance expenditure of 8.6% of disposable income is

much above its empirically observed value.

In columns 4 and 5 we lower the probability of the loss and increase the size of

the loss, respectively. Both make market insurance more attractive. A small

probability of the loss implies that insurance premiums become relatively cheaper

(although market insurance is actuarially unfair this matters less for premiums if the

probability of the loss is small). Letting the probability of a loss fall to k ¼ :01

implies a retention ratio D ¼ :59, and increases the durable stock and thus the risk

exposure. Although market insurance becomes more attractive so that the agent no

longer holds risk-free assets, the much lower probability of the loss decreases

insurance premiums so that insurance expenditure falls to 1.3% of disposable

income. Instead, increasing the size of the loss from 60% of the durable stock to

80%, implies a lower retention rate D ¼ :69, increases insurance premiums and thus

insurance expenditure to 5%, and the stock of risk-free assets to 18% of disposable

income. Both non-durable consumption and the durable stock are smaller.

In column 6 we lower the depreciation rate to an annual value of 10% (from

previously 15%). This makes it less costly to accumulate the durable so that the

durable stock increases. Since this also increases the exposure, the buffer stock of

risk-free assets slightly increases whereas the retention ratio falls only slightly from

D ¼ :81 to D ¼ :80.

We also experimented with a monthly instead of quarterly frequency (results are

not reported in Table 2). A shorter frequency decreases the consequences of a

durable loss in marginal-utility terms since agents can readjust their durable stock

more quickly. This increases the retention rate even further to D ¼ :88.7

Furthermore, relaxing the liquidity constraint so that agents can borrow makes

little difference since the stock of cash-on-hand adjusts downward and the wealth

effect resulting from interest payments is quantitatively small.

We now investigate in columns 7–11 whether changes in the parameters of the utility

function can achieve more realistic values for the retention ratio. In columns 7 and 8, we

change the marginal utility the agent derives from durables. A smaller / ¼ 1:3 implies

a lower marginal utility for the durable, ceteris paribus, so that the durable stock and the

exposure is smaller, the retention rate increases slightly and the insurance expenditure

falls. Analogously, a smaller v ¼ :001, increases the marginal utility which has the

opposite effect. Note that setting v to a negligibly small value is innocuous

quantitatively. This parameter does not play a big role in our numerical results.

Finally, we experiment with higher values of risk aversion. We first symmet-

rically set r1 ¼ r2 ¼ 9 in column 9, before we change one parameter at a time in

7 A shorter frequency also changes the intertemporal elasticity of substitution and thus the optimal ratio

of non-durable to durable consumption.
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columns 10 and 11, respectively. Not surprisingly higher risk aversion decreases the

retention ratio and the durable stock. Market insurance becomes relatively more

attractive as the buffer stock of risk-free assets falls. Of course, substitution away

from the durable stock towards non-durable consumption would even occur in the

certainty case. To provide a heuristic argument, let us assume for simplicity that

d ¼ 1, v ¼ 0 and no durable loss in which case the first-order condition (3) implies

c

v
¼ 1

b/

� �1
r

:

Since b/>1 for the used parameters, a larger r ¼ r1 ¼ r2 implies that c=v
increases. Moreover, a higher r also implies a lower intertemporal elasticity of

substitution (which we cannot disentangle from risk-aversion using a CRRA utility

function). Thus, one could expect that a smaller planned durable stock is chosen to

lower intertemporal fluctuations (because the loss increases in the size of the durable

stock). However, the simulations reveal that the realized durable stock is adjusted

relatively more quickly to its previous level in the aftermath of a shock so that its

average value increases, ceteris paribus. Comparing column 9 in which r1 ¼ r2 ¼ 9

and column 11 in which r1 ¼ 9 and r2 ¼ 2, with our benchmark of r1 ¼ r2 ¼ 2

suggests that quantitatively the intertemporal elasticity of substitution of the durable

alone is not crucial for a sizeable drop of the average durable stock.

More interestingly, our computations show that both r1 and r2 need to increase

for the retention rate to fall substantially to D = .38 in column 9. Nonetheless,

quantitatively even a sizeable increase in risk aversion to r1 = r2 = 9 is not enough

to generate retention ratios that are consistent with the low levels observed in real-

world insurance contracts.

For commonly used values of risk aversion, a simple dynamic neoclassical model

does not manage to replicate the low retention ratios observed in real-world data. This

‘‘insurance’’ puzzle is reminiscent of the well-known equity premium puzzle [see

Mehra and Prescott, 1985; Gollier, 2003]. In reality, agents are ‘‘puzzlingly’’

unwilling to invest in risky assets (notwithstanding their much higher expected

returns) similarly as they are unwilling to bear more exposure of the durable stock.

However, there are some important differences in our model since agents derive utility

from the risky durable stock (which makes them hold the durable in the first place) and

agents can insure the risk of the durable in the market.

We now check the robustness of our result further for two extensions which can

be expected to increase the importance of market insurance in our model. We first

relax the assumption of an exogenous borrowing constraint and allow agents to use

their secured durables as collateral. This is in line with the empirical observation

that mortgage lenders often require agents to insure their property in order to secure

the collateral. Second, we relax the assumption of a certain labor income. We

explore how income risk as a source of background risk affects the agent’s

insurance decision. An alternative would be to allow for persistent shocks to the

durable which are likely to make buffer-stock saving a less perfect substitute for

market insurance. Since i.i.d. shocks seem a realistic assumption for most property
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and liability damages associated with durables, however, we decided to allow for

persistent labor income shocks in our model.

3.1.2 Collateral loans

If agents can use their secured durable stock as collateral, insurance has the

additional role of securing more of the durable stock and thus relaxing the

borrowing constraint. We model this extension by changing the constraint as � 0 to

1 þ rð Þas þ ð1 � d � DsgÞvs � 0; s � t þ 1:

The constraint implies that the agent can take on financial debt as long as this

debt and its interest are secured by durable collateral. Only the part of the durable

stock, however, which is not exposed to risk can be used as collateral. Note that how

much the agent can borrow now depends on the consumer’s choices of D and v.

Insurance, a lower retention rate D, relaxes the collateral constraint by increasing

the part of the durable stock which can be used as collateral. This creates an

additional insurance motive which is frequently observed in reality: banks often

require consumers to insure their property if consumers apply for a mortgage. This

additional insurance motive is important for low values of cash-on-hand. Hence, the

non-monotonicity of the retention ratio as a function of cash-on-hand vanishes in

our calibration so that the retention ratio is an increasing function of cash-on-hand

in the computations which we present now.

Table 3 displays the results. Column 1 repeats the benchmark result to facilitate

comparisons. In column 2, we introduce the new constraint without changing the

parameters of the benchmark case. The main difference, compared with the

benchmark case, is that the agents hold more financial debt and choose a lower

retention ratio of 0.52. Since also the durable stock increases slightly, the insurance

expenditure is three times higher than in the benchmark case. In order to match the

observed insurance expenditure of 2% of disposable income, we decrease the size of

the loss to g ¼ 0:2 in column 3. The retention ratio is then 0.63 which is still much

lower than in the benchmark case. Compared with the values of the retention ratio

observed in reality, however, these values remain an order of magnitude too high.

Table 3 Endogenous collateral constraint

Variables Benchmark Collateral Collateral, g ¼ 0:2
(1) (2) (3)

Financial asset a 13.9 �49.4 �86.6

Durable stock v 80.7 82.2 104.2

Durable consumption d 23.0 20.9 19.1

Non-durable consumption c 77.1 76.0 79.2

Retention ratio D 81.5 52.0 62.5

Durable/total consumption 23.0 21.6 19.5

Insurance expenditure 2.4 6.4 2.1
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In order to quantify the importance of market insurance with endogenous

collateral constraints, we perform the same thought experiment as above. We

compare the value function of Table 3, column 3, with the counterfactual value

function and steady state if we restrict the consumer to have access to the financial

asset but not to market insurance. We evaluate both value functions at the

steady state of the restricted problem so that our comparison includes the transition

to the new steady state. We find that a consumer would be indifferent between

gaining access to market insurance or a 1.3% higher steady-state non-durable

consumption flow. Thus, market insurance is 10 times as important compared with

the benchmark case.

3.1.3 Permanent income risk

We now return to our benchmark model with the exogenous borrowing limit and

allow for an additional source of background risk. We assume that labor income is

risky and that this risk and the durable risk are independently distributed. Labor

income now follows the process

ytþ1 ¼ ytet;

where et has the support feb; 1; egg with the corresponding probabilities

fpb; 1 � pg � pb; pgg. In order to ensure comparability with the previous results

we do not allow for a change in the mean so that the expected value of income is 1.

Moreover, we assume that the standard deviation of permanent income shocks is

.1% per year based on estimations for the PSID in the US [see Carroll, 1997]. These

restrictions on the first and second moment allow us to retrieve pg and pb once we

have chosen eg ¼ 1:1 and eb ¼ :75: a permanent good shock increases labor income

by 10% whereas a bad shock decreases it by 25%. These are quite sizeable shocks

which help us to find out whether empirically plausible permanent income risk can

make market insurance more important.

All other parameters are as in the benchmark case but for v ¼ 0. In this case, we

can exploit that the value function is homogenous of degree 1 � r; r ¼ r1 ¼ r2, so

that permanent income shocks do not add another state variable to the value

function [see, for example, Haliassos and Michaelides, 2001]. The independence of

the two risks allows us to write

EVðxt; evt; ytÞ ¼ ElEyjlVðxt; evt; ytÞ

and homogeneity then implies

EyjlVðxt; evt; ytÞ ¼ Eyjl e1�r
t

eV ðxt; evtÞ
� �

;

which simplifies the computations substantially.

Before we turn to the results let us mention that labor income risk will induce

buffer-stock saving even without any durable risk. This has been shown in the

seminal papers on precautionary savings in models with non-durable consumption
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and liquidity constraints (see the partial-equilibrium model of Deaton [1991], and

the general-equilibrium model with heterogenous agents of Aiyagari [1994]). Diaz

and Luengo-Prado [2005] and Gruber and Martin [2003] have extended this work by

adding durable goods with adjustment costs to the model. They find that it is

ambiguous in general whether the importance of the precautionary motive increases

in dynamic models with durable and non-durable consumption. In these models,

durables let current utility depend on past expenditure so that the precautionary

savings motive is smaller ceteris paribus. An important difference in our model is

that the risk associated with the durable stock strengthens the precautionary motive

for the durable good (see also the analytic approximation of the policy functions in

Appendix A, for the special case in which financial wealth is abundant).

The results are summarized in Table 4. In the first column we display the

equilibrium values for our benchmark case without permanent labor income risk but

with v ¼ 0. In Table 4, column 2 we add permanent labor income risk with a

standard deviation of .1%. This leaves the quantitative results nearly unchanged.

Finally, we increase the permanent income risk to 10% in column 3. This increases

the buffer stock of risk-free assets to 20% of disposable income and slightly reduces

non-durable consumption. The higher level of risk-free assets makes market

insurance even less important so that the retention ratio increases to .84. The durable

stock increases slightly but insurance expenditure falls due to the lower retention

ratio. Thus, in the new steady state with a larger stock of durables and risk-free

assets, market insurance is even less important although ceteris paribus insurance

payments are more valuable if the bad income shock is accompanied by a loss of the

durable.

3.2 The closed economy

We have shown so far that a dynamic neoclassical model of market insurance has

difficulties to match realistic values of retention ratios even if insurance

endogenously relaxes the collateral constraint or agents face additional uninsurable

permanent labor income risk. We now briefly mention that this conclusion does not

change if we allow for an endogenous interest rate in the closed economy. This is

Table 4 Permanent labor income risk

Variables Benchmark, v ¼ 0; sd ¼ 0 sd ¼ :1% sd ¼ 10%
(1) (2) (3)

Financial asset a 14.39 14.44 19.77

Durable stock v 82.87 82.91 83.68

Durable consumption d 23.60 23.61 23.85

Non-durable consumption c 76.43 76.42 76.39

Retention ratio D 79.67 79.72 84.39

Durable/total consumption 23.59 23.60 23.79

Insurance expenditure 2.69 2.67 2.03

Note: sd: standard deviation of permanent income
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important because buffer-stock saving becomes more relevant compared with

market insurance if the difference between the discount and interest rate is small.

This difference measures the cost of saving for the impatient agent and we now

determine how big this cost has to be if the interest rate is market clearing.

In order to analyze market insurance in the closed economy we have to adapt our

maximization problem slightly. In our model insurance companies make profits

since they charge a mark-up and in the closed economy these profits are part of the

consumer’s budget constraint. The ‘‘new’’ budget constraint for the average agent

reads

atþ1 ¼ð1 þ rÞat þ yt þ ð1 � DtÞElt

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

insurance claim

� ct � dt �
l

1 þ r
ð1 � Dtþ1ÞEltþ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

insurance premium

þ pt
z}|{

insurance profits

where

pt ¼ ð1 þ rÞ l
1 þ r

ð1 � Dt�1ÞElt � ð1 � Dt�1ÞElt:

Note that we use the law of large numbers so that the average loss over a large

cross-section of individuals is equal to the expected value.

Using this expression for pt in the budget constraint and defining

bt �
l

1 þ r
ð1 � Dt�1ÞElt

we get

atþ1 þ btþ1 ¼ ð1 þ rÞðat þ btÞ þ yt � ct � dt:

Aggregate assets in the economy, at þ bt, are risk-free assets a and the insurance

premiums which the insurers invest at interest rate r. With this slight modification,

we can solve the model numerically as before for a given interest rate r. This will

give us the aggregate ‘‘supply’’ of capital.

In order to find out which interest rate is market clearing, we specify a standard

Cobb–Douglas production function with constant returns and a capital-labor ratio k.

In intensive form this function is given by

f ðkÞ ¼ Aka

with a = .36. We normalize with the endogenously computed wage income and

exploit the homogeneity of the value function as before. Assuming that factors are

paid their marginal product then implies a ‘‘demand’’ for capital8

8 The first-order conditions are Aaka�1 ¼ r þ n and Að1 � aÞka ¼ w. Dividing both conditions and

setting w = 1 results in the expression in the text.
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k ¼ a
ð1 � aÞðr þ nÞ

where n is the physical depreciation of capital and we assume an annual

depreciation rate of n = .08. For each ‘‘supply’’ of assets computed for given r, we

can use the equation for the ‘‘demand’’ for capital to update the interest rate and

restart the algorithm until convergence. This method is essentially as in Aiyagari

[1994]. It turns out that the interest rate r which would clear the market for our

parameter values is so close to the discount rate that there is no role for market

insurance at all. For example, at an annual interest rate of r = .048 (which is close to

the annual discount rate of 5.25% in our model) the supply for capital in our model

is only one quarter of the demand. Since we know from Aiyagari [1994], that the

assets held by the agent (capital ‘‘supply’’) approach infinity as the interest gets ever

closer to the discount rate from below, the market clearing interest rate is even

higher. We find that already at an interest rate of r ¼ :048, the retention rate is .9961

so that market insurance is negligible.

The small quantitative role of market insurance remained robust for many

alternative parameter combinations that we have tried. Recalibrating the parameters

g and u (which were chosen above to match target statistics for r = .01) did not

make market insurance much more important. As can be seen in the sensitivity

analysis of Table 2, increasing the size of the loss to .8 (column 5) does not reduce

the retention rate enough while increasing the stock of risk-free assets; and choosing

a larger u to increase the stock of risk-free assets and to reduce the retention ratio

would imply unrealistic spending patterns of durable compared with non-durable

consumption (column 7).

4 Conclusion

We set up and solve numerically a dynamic neoclassical model of market insurance

in which agents derive utility from a durable and non-durable good. The durable

good is exposed to risk and can be insured. We analyze the role of market insurance

if agents also have access to a risk-free asset. We provide intuition for our results

using first-order conditions, and a second-order approximation for the special case

of abundant financial wealth.

We find that the retention ratio (the fraction of the durable that is not insured) can

be a non-monotonic function of cash-on-hand. This differs from previous results by

Gollier [2003] and can be explained with the endogenous loss associated with the

durable stock. Calibrating our model to the US economy, we find that the average

retention ratio is an order of magnitude larger than observed in reality. This result

remains unchanged if we allow consumers to use secured durables as collateral, add

permanent labor income risk or allow for endogenous interest rates. This

‘‘insurance’’ puzzle is reminiscent of the equity-premium puzzle although our

model is different in a number of respects.
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Future research could relax some of the simplifying assumptions in our model

such as the perfect divisibility of durable goods, the separability of the utility

function or introduce adjustment costs for durables in order to be more confident

about the results. One could also allow for more institutional detail on insurance

contracts. Regulation on insurance contracts might restrict agents in their choice

of retention ratios although in reality mandatory insurance is hard to enforce [see

Smith and Wright, 1992]. Finally, more complex models with life-cycle patterns

of durable and non-durable consumption might help to increase the importance of

market insurance. If agents accumulate durables early in life to relax collateral

constraints [see Fernandez-Villaverde and Krueger, 2002], this makes a loss of

the durable especially costly so that market insurance might become more

desirable.

Appendices

Appendix A: Approximation of the policy functions for abundant financial

wealth

The model presented in the text does not have a closed-form solution in general. We

present the results of a second-order approximation of the policy functions and laws

of motion to develop some intuition (the numerical solution is described in

Appendix B). We do the approximation for the model with two sources of risk in

labor income and the durable stock, keeping the interest rate constant. The main

point of this exercise is to show that in our model precautionary motives are

important even if agents own abundant financial wealth because durables are a state

variable and directly enter the utility function.

To approximate the solution we employ the perturbation method which is

explained in detail in Schmitt-Grohé and Uribe [2001] using the Euler equations

(2)–(4) and the two laws of motion for a and v. We first provide the solution of

the approximation and some intuition before we get to the derivation. Because

we do allow the state variables to be at interior optima only, for the purpose of

the approximation, the results simplify considerably and can be used to develop

intuition on the mechanics of the model. That is, we assume that the agent’s

stock of risk-free assets is sufficient to buffer income shocks and allow the

durable stock to return to the steady state after one period through the appropriate

durable investment if a loss occurs. The policy functions can then be

approximated by

c ¼ css

d ¼ dss � ð1 � dÞðv � vssÞ þ 1
2
cr2

l

D ¼ Dss

a ¼ ass þ ð1 þ rÞða � assÞ � ð1 � dÞðv � vssÞ � 1
2
cr2

l

v ¼ vss þ 1
2
cr2

l ;

Geneva Risk Insur Rev (2007) 32:61–90 83

123



where

c � �w000ðvssÞ
w00ðvssÞ

:

The steady state is obtained solving the model without uncertainty. Hence, no

market insurance is demanded, i.e., Dss ¼ 1. Note that the steady state of risk-free

assets ass is such that the steady state non-durable consumption css and durable

investment dss ¼ dvss are feasible.

We also derived the approximation for the more general case in which

households do not have abundant financial wealth. However, expressions become

very messy so that they do not help much to develop intuition on the mechanics of

the model. Hence, we focus on this special but important case. We now discuss the

solution in detail.

First-order deviations

The first-order deviations of a or v from the steady state do not affect non-durable

consumption or the durable stock. Shocks occurring to the durable stock are offset

after one period (net of the depreciation rate) by durable investment which is fully

financed by risk-free assets. Shocks occurring to risk-free assets do not result in any

reaction of the controls but only change risk-free assets by the same amount and the

interest income.

Second-order deviations and variances

Neither the second-order deviations of risk-free assets from the steady state nor the

one of the durable stock do matter if agents have abundant financial wealth. Instead,

the variance of the durable shock turns out to be important whereas the variance of

income does not affect the solution. The asymmetric effect of the variances is

resulting from the model’s structure: since v enters the utility function, the

fluctuations of v directly result in variation of utility whereas this is not the case for

fluctuations of a.

The importance of the variance of the loss depends on c, a measure of prudence

with respect to the durable stock, �w000ðvssÞ=w00ðvssÞ, defined according to Kimball

[1990]. Since agents derive utility from the durable stock, they invest more into

durables if durables are more exposed to risk. Thus, the durable stock rises and

financial wealth falls. This is in contrast to investment behavior for risky assets from

which agents do not directly derive utility but only indirectly since more assets

afford more units of non-durable consumption. We now present the derivation of the

approximation in some detail.

Derivation

Consistent with the notation used in Schmitt-Grohé and Uribe [2001], we define the

matrix F as
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F �

u0ðctÞ � bð1 þ rÞEtu
0ðctþ1Þ

u0ðctÞ � b ð1 � dÞEtu
0ðctþ1Þ þ /Etw

0ðevtþ1Þ½ �
bð1 þ rÞEtfu0ðctþ1Þltþ1g � u0ðctÞlEltþ1

atþ1 � ð1 þ rÞat þ ct þ dt þ l
1þr ð1 � Dtþ1ÞEltþ1 � ð1 � DtÞlt � yt

vtþ1 � ð1 � dÞvt � dt þ lt

2

6

6

6

6

4

3

7

7

7

7

5

;

where F ¼ 0. We define the controls as f ¼ ðc; d;DÞ0 and the state variables as

x ¼ ða; vÞ0. The shocks can be rewritten as

l ¼ ml þ rlel

and

y ¼ my þ ryey;

where ei � Nð0; 1Þ; i ¼ l; y and my ¼ Ey, ml ¼ El. The shocks are assumed to be

i.i.d.

We know that the solution will take the form ft ¼ gðx0t; r0Þ and

xtþ1 ¼ hðx0t; r0Þ þ get, where et ¼ ðelt; eytÞ0. The 2 	 2 matrix g and r ¼ ðry; rlÞ0
are known. In our model

g ¼ ð1 � DÞrl ry

�rl 0

� �

:

Note that yt and lt are i.i.d. distributed shocks and we take D (the first element of

the matrix g) as a given parameter. This simplifies the algebra since we do not have

to consider 3 state variables and is innocuous since we will focus on the case of

abundant financial wealth. To perform a second-order approximation, first and

second derivatives of the functions g(.) and h(.) need to be determined. As explained

in more detail in Schmitt-Grohé and Uribe [2001] this is done by taking first and

second derivatives of F with respect to x and exploiting the fact that these

derivatives are 0.

We find that

Fx ¼

�bð1 þ rÞEtu
00ðctþ1Þ gc

aha
a þ gc

vhv
a

� �

þ u00ðctÞgc
a

�bð1 � dÞEtu
00ðctþ1Þ gc

aha
a þ gc

vhv
a

� �

þ u00ðctÞgc
a � b/Etw

00ðevtþ1Þhv
a

oFð3;1Þ
octþ1

gc
aha

a þ gc
vhv

a

� �

� l
1þr Eltþ1u00ðctÞgc

a þ
oFð3;1Þ
oDtþ1

gD
a

gc
a þ gd

a �
l

1þr Eltþ1gD
a þ ha

a � ð1 þ rÞ
�gd

a þ hv
a

�bð1 þ rÞEtu
00ðctþ1Þ gc

aha
v þ gc

vhv
v

� �

þ u00ðctÞgc
v

�bð1 � dÞEtu
00ðctþ1Þ gc

aha
v þ gc

vhv
v

� �

þ u00ðctÞgc
v � b/Etw

00ðevtþ1Þhv
v

oFð3;1Þ
oDtþ1

gc
aha

v þ gc
vhv

v

� �

� l
1þr Eltþ1u00ðctÞgc

v þ
oFð3;1Þ
oDtþ1

gD
v

gc
v þ gd

v �
l

1þr Eltþ1gD
v þ ha

v

�gd
v þ hv

v � ð1 � dÞ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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where derivatives of F with respect to a are in rows 1–5 and derivatives with respect

to v are in rows 6–10. The notation ga
c denotes the derivative of non-durable

consumption c with respect to a and F(3,1) is the element in the third row and first

column of F. Expressions for
oFð3;1Þ
octþ1

and
oFð3;1Þ
oDtþ1

can be derived using the fact that

Eab ¼ EaEb þ covða; bÞ, but are lengthy so that we use shorthand notation. Fx is a

system of 10 equations in 10 unknowns gi
j; hk

j with i ¼ c; d;D; j ¼ a; v and k ¼ a; v.

It turns out that one solution of the system of equations is

gc
a ¼ gc

v ¼ gd
a ¼ gD

a ¼ gD
v ¼ hv

a ¼ hv
v ¼ 0;

ha
a ¼ 1 þ r;

gd
v ¼ �ð1 � dÞ;

ha
v ¼ 1 � d:

This is the case of abundant financial wealth when D ¼ Dss and c ¼ css. The

solution for the general case is messy and does not add to the intuition.

We calculate Fxx which gives us 20 equations to determine 20 second-order

derivatives. Using that some of the first-order derivatives are zero, we get that

Fxa ¼

�bð1 þ rÞEtu
00ðctþ1Þgc

aa ha
a

� 	2þu00ðctÞgc
aa

�bð1 � dÞEtu
00ðctþ1Þgc

aa ha
a

� 	2þu00ðctÞgc
aa � b/Etw

00ðevtþ1Þhv
aa

oFð3;1Þ
octþ1

gc
aa ha

a

� 	2� l
1þr Eltþ1u00ðctÞgc

aa þ
oFð3;1Þ
oDtþ1

gD
aa

gc
aa þ gd

aa �
l

1þr Eltþ1gD
aa þ ha

aa

�gd
aa þ hv

aa

�bð1 þ rÞEtu
00ðctþ1Þgc

aaha
aha

v þ u00ðctÞgc
va

�bð1 � dÞEtu
00ðctþ1Þgc

aaha
aha

v þ u00ðctÞgc
va � b/Etw

00ðevtþ1Þhv
va

oFð3;1Þ
octþ1

gc
aaha

aha
v �

l
1þr Eltþ1u00ðctÞgc

va þ
oFð3;1Þ
oDt

gD
va

gc
va þ gd

va �
l

1þr Eltþ1gD
va þ ha

va

�gd
va þ hv

va

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

for the derivatives with respect to aa in rows 1–5 and derivatives with respect to va
in rows 6–10 and

Fxv ¼

�bð1 þ rÞEtu
00ðctþ1Þgc

av ha
v

� 	2þu00ðctÞgc
vv

�bð1 � dÞEtu
00ðctþ1Þgc

av ha
v

� 	2þu00ðctÞgc
vv � b/Etw

00ðevtþ1Þhv
vv

oFð3;1Þ
octþ1

gc
av ha

v

� 	2� l
1þr Eltþ1u00ðctÞgc

vv þ
oFð3;1Þ
oDtþ1

gD
vv

gc
vv þ gd

vv �
l

1þr Eltþ1gD
vv þ ha

vv

�gd
vv þ hv

vv

�bð1 þ rÞEtu
00ðctþ1Þgc

avha
vha

a þ u00ðctÞgc
av

�bð1 � dÞEtu
00ðctþ1Þgc

avha
vha

a þ u00ðctÞgc
av � b/Etw

00ðevtþ1Þhv
av

oFð3;1Þ
octþ1

gc
avha

vha
a �

l
1þr Eltþ1u00ðctÞgc

av þ
oFð3;1Þ
oDtþ1

gD
av

gc
av þ gd

av �
l

1þr Eltþ1gD
av þ ha

av

�gd
av þ hv

av

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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for the derivatives with respect to vv in rows 1–5 and derivatives with respect to av
in rows 6–10. It follows from Fxa ¼ Fxv ¼ 0 that all second-order derivatives equal

zero.

It remains to derive Fri
, i ¼ l; y. Using the results for the first derivatives gi

j; hk
j

with i ¼ c; d;D; j ¼ a; v and k ¼ a; v, and Etel ¼ Etey ¼ 0, we find

Frl
¼

�bð1 þ rÞEtu
00ðctþ1Þgc

rl
þ u00ðctÞgc

rl

�bð1 � dÞEtu
00ðctþ1Þgc

rl
þ u00ðctÞgc

rl
� b/Etw

00ðevtþ1Þhv
rl

oFð3;1Þ
octþ1

gc
rl
� l

1þr Eltþ1u00ðctÞgc
rl
þ oFð3;1Þ

oDtþ1
gD

rl

gc
rl
þ gd

rl
� l

1þr Eltþ1gD
rl
þ ha

rl
� ð1 � DtÞEtel

�gd
rl
þ hv

rl
þ Etel

2

6

6

6

6

6

4

3

7

7

7

7

7

5

and

Fry
¼

�bð1 þ rÞEtu
00ðctþ1Þgc

ry
þ u00ðctÞgc

ry

�bð1 � dÞEtu
00ðctþ1Þgc

ry
þ u00ðctÞgc

ry
� b/Etw

00ðevtþ1Þhv
ry

oFð3;1Þ
octþ1

gc
ry
� l

1þr Eltþ1u00ðctÞgc
ry
þ oFð3;1Þ

oDtþ1
gD

ry

gc
ry
þ gd

ry
� l

1þr Eltþ1gD
ry
þ ha

ry
� Etey

�gd
ry
þ hv

ry

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

Since Frl
and Fry

are linear and homogenous in gj
rl

and hk
rl

, Frl
¼ Fry

¼ 0

implies that hk
rl
¼ 0 and gj

rl
¼ 0 with j ¼ c; d;D; i ¼ l; y and k ¼ a; v.

For the second-order derivatives we get

Frlrl
¼

�bð1þrÞEtu
00ðctþ1Þgc

rlrl
þu00ðctÞgc

rlrl

u00ðctÞgc
rlrl

�b /Etw
000ðevtþ1ÞEt e2

l

� 	

þð1�dÞEtu
00ðctþ1Þgc

rlrl
þ/Etw

00ðevtþ1Þhv
rlrl

h i

oFð3;1Þ
octþ1

gc
rlrl

� l
1þrEltþ1u00ðctÞgc

rlrl
þoFð3;1Þ

oDtþ1
gD

rlrl

gc
rlrl

þgd
rlrl

� l
1þrEltþ1gD

rlrl
þha

rlrl

�gd
rlrl

þhv
rlrl

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

and

Fryry
¼

�bð1 þ rÞEtu
00ðctþ1Þgc

ryry
þ u00ðctÞgc

ryry

u00ðctÞgc
ryry

� b ð1 � dÞEtu
00ðctþ1Þgc

ryry
þ /Etw

00ðevtþ1Þhv
ryry

h i

oFð3;1Þ
octþ1

gc
ryry

� l
1þr Eltþ1u00ðctÞgc

ryry
þ oFð3;1Þ

oDtþ1
gD

ryry

gc
ryry

þ gd
ryry

� l
1þr Eltþ1gD

ryry
þ ha

ryry

�gd
ryry

þ hv
ryry

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:
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Fryry
is linear and homogenous in gj

ryry
and hk

ryry
, gj

ryry
¼ hk

ryry
¼ 0. The same holds

for Fryrl
because Eteley ¼ 0; and for Fxri

, i ¼ l; y. Instead, given that Ete2
l ¼ 1,

Frlrl
¼ 0 implies

ha
rlrl

¼ �hv
rlrl

¼ �gd
rlrl

¼ w000ðvssÞ
w00ðvssÞ

;

where the other second-order derivatives are found to be zero.

Appendix B: Description of numerical algorithm

We solve the problem using value function iteration. First, we guess upper bounds v
and a for the durable stock and risk-free assets, respectively, which imply an upper

bound for cash-on-hand x ¼ 1 þ rð Þa þ ð1 � dÞv þ y. The additional constraints

as � a and vs � v help us to generate a compact state space. We then solve the problem

given these constraints as described below. If either constraint is binding in the solution

of the constrained problem, we increase v and a and iterate again. We proceed

analogously for the lower bound which is given by the constraints as � a and vs � 0.

We approximate the value function with a high-order Chebychev polynomial. A

high-order polynomial is necessary because the value function becomes steep in the

region of the state space where agents do not hold any risk-free assets, i.e., for small

x. We check the precision on a fine grid x between the evaluation nodes. We

compare Vcheb xð Þ to V(x) with

V xtð Þ ¼ maxDtþ1;vtþ1;atþ1
u ctð Þ þ bEt Vcheb xtþ1ð Þ þ /w evtþ1ð Þ

� 	
 �

:

For the benchmark parameter values, we started with a polynomial of order 29

with 30 evaluation nodes which resulted in max jVchebðxÞ � VðxÞj<:0001. Building

on this precise approximation, we were able to reduce the order of the polynomial to

10 and the number of nodes to 15 for computations with other parameter values,

achieving the same precision. We also experimented with cubic splines, but found

that computational time increased for similar levels of accuracy.

We solve the maximization problem calling the Matlab routine fminsearch,

which uses the Nelder-Mead simplex method. To ensure that we find the global

maximum, we evaluate

K � u ctð Þ þ bEt Vcheb xtþ1ð Þ þ /w evtþ1ð Þ
� 	

on a fine grid of values of k ¼ ½Dtþ1; vtþ1; atþ1� and pick the five values of fkini
j gj¼1:5

that yield the highest values of K. We use these values to initialize the Nelder-Mead

simplex method and retrieve the solution fksim
j gj¼1:5. We then choose the value of

fksim
j gj¼1:5 that maximizes the value function. If any of the elements of fksim

j gj¼1:5

are within a specified (small) distance of the respective constraints, we additionally

check whether setting the respective element equal to the constraint and

reoptimizing the other elements yields an improvement.
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For each iteration step i, we calculate the maximum iteration errors

eV � jVi � Vi�1j, ea � jai
tþ1 � ai�1

tþ1j, ev � jvi
tþ1 � vi�1

tþ1j, and eD � jDi
tþ1 � Di�1

tþ1j on

the grid of the evaluation nodes. The iteration procedure is terminated when all

errors are less than .001. We further check the accuracy of the solution by

calculating the analytical first-order conditions. As one can observe in Fig. 2a–c, the

FOC are satisfied up to a tolerance of .001 when the constraints are not binding.

To calculate the expected values of a; v;D; d; c, and insurance expenditure, we

simulate the model for 1,000 periods, discard the first 100 observations and take

averages. The results are insensitive to the initial conditions used in the simulation.

Except for the retention ratio, all values reported in the table and figures are in

percentages of annual average income.
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DRÈZE, J.H. [1981]: ‘‘Inferring Risk Tolerance from Deductibles in Insurance Contracts,’’ The Geneva
Papers on Risk and Insurance, 6, 48–52.

EECKHOUDT, L., GOLLIER, C., and SCHLESINGER, H. [1991]: ‘‘Increases in Risk and Deductible

Insurance,’’ Journal of Economic Theory, 55, 435–440.

EECKHOUDT, L., MEYER, J., and ORMISTON, M.B. [1997]: ‘‘The Interaction between the Demands

for Insurance and Insurable Assets,’’ Journal of Risk and Uncertainty, 14, 25–39.

EHRLICH, I. and BECKER, G.S. [1972]: ‘‘Market Insurance, Self-Insurance, and Self-Protection,’’

Journal of Political Economy, 80, 623–648.

FERNANDEZ-VILLAVERDE, J. and KRUEGER, D. [2002]: ‘‘Saving Over the Life Cycle: How

Important are Consumer Durables?,’’ in Proceedings of the 2002 North American Summer Meetings
of the Econometric Society: Macroeconomic Theory.

FINANCIAL SERVICES FACT BOOK [2004]: Insurance Information Institute, New York.

GOLLIER, C. [1994]: ‘‘Insurance and Precautionary Capital in a Continuous-Time Model,’’ The Journal
of Risk and Insurance, 61, 78–95.

GOLLIER, C. [2003]: ‘‘To Insure or Not to Insure?: An Insurance Puzzle,’’ Geneva Papers of Risk and
Insurance Theory, 28, 5–24.

GRUBER, J.W. and MARTIN, R.F. [2003]: ‘‘Precautionary Savings and the Wealth Distribution with

Illiquid Durables,’’ Board of Governors of the Federal Reserve System, International Finance

Discussion Papers No. 773.

Geneva Risk Insur Rev (2007) 32:61–90 89

123



HALIASSOS, M. and MICHAELIDES, A. [2001]: ‘‘Calibration and Computation of Household Portfolio

Models,’’ In: Household Portfolios, L. Guiso, M. Haliassos, and T. Jappelli (Eds.), Cambridge: MIT

Press, pp. 55–102.

KIMBALL, M.S. [1990]: ‘‘Precautionary Savings in the Small and in the Large,’’ Econometrica, 58,

53–73.

LAM, P.-S. [1991] ‘‘Permanent Income, Liquidity, and Adjustments of Automobile Stocks: Evidence

from Panel Data,’’ Quarterly Journal of Economics, 106, 203–230.

LUENGO-PRADO, M.J. [2006]: ‘‘Durables, Nondurables, Down Payments and Consumption Excesses,’’

Journal of Monetary Economics, 53, 1509–1539.

MEHRA, R. and PRESCOTT, E.C. [1985]: ‘‘The Equity Premium: a puzzle,’’ Journal of Monetary
Economics, 15, 145–161.

RAVIV, A. [1979]: ‘‘The Design of an Optimal Insurance Policy,’’ American Economic Review, 69,

84–96.
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