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Abstract This study develops an optimal insurance contract endogenously under a
value-at-risk (VaR) constraint. Although Wang et al. [2005] had examined this prob-
lem, their assumption implied that the insured is risk neutral. Consequently, this study
extends Wang et al. [2005] and further considers a more realistic situation where the
insured is risk averse. The study derives the optimal insurance contract as a single
deductible insurance when the VaR constraint is redundant or as a double deductible
insurance when the VaR constraint is binding. Finally, this study discusses the opti-
mal coverage level from common forms of insurances, including deductible insurance,
upper-limit insurance, and proportional coinsurance.
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1 Introduction

This study aims to develop an optimal insurance contract endogenously under a value-
at-risk (VaR) constraint, where VaR is defined as the worst expected loss over a given
horizon at a particular confidence level [Jorion, 2001]. Although Wang et al. [2005]
had examined this problem, their assumption implied that the insured is risk neutral.
Consequently, this study extends Wang et al. [2005] and further considers a more
realistic situation where the insured is risk averse.1

H.-H. Huang (�)
Department of Business Administration, Southern Taiwan University of Technology, No. 1,
Nan-Tai Street, Yung-Kang, Taiwan
e-mail: d86723002@ntu.edu.tw
1 The reasons why VaR is considered in the optimal insurance contract problem had been presented in Wang
et al. [2005]. Since this paper is a mere extension of Wang et al. [2005], these reasons are dropped here.
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Previous studies on insurance demand primarily include two classes. The first
class only attempts to determine the optimal coverage, given that the insurance con-
tracts have the common forms (including deductible insurance, proportional coin-
surance, and upper-limit policy), for example: Schlesinger [1981], Doherty and
Schlesinger [1983a,b], and Huberman et al. [1983]. Meanwhile, the second class
attempts to identify the optimal insurance contract endogenously, for example: Ra-
viv [1979], Gollier [1987, 1996], Spaeter and Roger [1997], Ermoliev and Flam
[2001], and Wang et al. [2005]. Actually, the solution processes for the insurance
demand in the two classes are not the same. The first class solution only requires
one stage and may be solved by fundamental calculus, while the second class re-
quires two stages. Meanwhile, the first stage in the second class frequently uses
variation of calculus to find the optimal indemnity schedule given a fixed pre-
mium. The second stage then uses the fundamental calculus to yield the optimal
premium.

If the insurance contract must meet the VaR constraint, the first stage in the sec-
ond class cannot use the standard variation of calculus to find the optimal indemnity
schedule (see Section 2). Accordingly, Wang et al. [2005] adopted a logical analy-
sis approach and directly derived an optimal indemnity schedule. Although the VaR
constraint in this study is similar to that used by Wang et al. [2005], our objective
function is to maximize expected utility rather than expected wealth in Wang et al.
[2005]. Due to the added complexity for utility specification, the optimal indem-
nity schedule presented in this study cannot be obtained by the same approach as
that in Wang et al. [2005]. Instead, first a potential candidate is selected among all
feasible indemnity schedules. This candidate is identified as the optimal indemnity
schedule, if the candidate is not dominated by all the others. The results demonstrate
that the optimal insurance is single deductible insurance when the VaR constraint is
redundant or double deductible insurance when the VaR constraint is binding (see
Section 3).

The remainder of this paper is organized as follows. Section 2 introduces the as-
sumptions and the optimality problem of the insured. Next, Section 3 derives the
optimal retained loss schedule. Section 4 then describes the selection about insurance
premiums and contractual forms, since insurance premiums and contractual forms
have mutual effects on one another. Subsequently, Section 5 discusses the optimal
coverage from the commonly existing forms of insurance, including deductible in-
surance, upper-limit insurance, and proportional coinsurance. Finally, conclusions are
presented in Section 6.

2 The model

Similar to Raviv [1979], Gollier [1996], and Wang et al. [2005], this study makes
the following assumptions. An insured with initial wealth W0 faces a risk of loss X ,
where X is a continuous random variable with probability density function f (x) and
cumulative distribution function F(x). X is non-negative and no more than the upper
bound T , hence its sample space S = {x |0 ≤ x ≤ T }. The insured has the opportunity
to purchase insurance which costs a premium P and pays an indemnity schedule I (x),
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0 ≤ I (x) ≤ x for all x . Additionally, the premium P is assumed to be as follows.2

P = C( Ī ), C(0) = 0, and C ′( Ī ) > 1, C ′′( Ī ) > 0 for all Ī > 0 (1)

where Ī = E [I (X )] denotes the expected indemnity, C ′( Ī ) > 1 represents that the
marginal premium exceeds the marginal expected indemnity, and C ′′( Ī ) > 0 indi-
cates that the insurer is likely to be risk averse. Accordingly, the final and expected
final wealth of the insured are W = W0 − P − X + I (X ) and W̄ = W0 − P − x̄ + Ī
respectively, where x̄ = E [X ] denotes the expected loss.

For regulation or risk management, sometimes W must meet the VaR constraint.
As defined in Section 1, the VaR constraint means that Pr {W ≥ W̄ − v} ≥ 1 − α,
where v ≡ VaR and 1 − α denotes the confidence level. The insured is risk averse
with a utility function U (W ), U ′(·) > 0 > U ′′(·). Following Raviv [1979] and Gollier
[1996], the objective of the insured is to choose a couple (P, I (x)) to maximize the
expected final wealth utility E [U (W )] under the VaR constraint. Compared with
I (x), the retained loss schedule R(x) ≡ x − I (x) is more convenient for deriving
the result in this study, and thus the couple is changed to (P, R(x)). Since W =
W0 − P − X + I (X ), the VaR constraint Pr {W ≥ W̄ − v} ≥ 1 − α is equivalent to

Pr {X − I (X ) ≤ v + x̄ − Ī} ≥ 1 − α (2)

Consequently, the optimality problem of the insured is as follows.

Maximize
P≥0, 0≤ R(x)≤ x

E [U (W )] = E [U (W0 − P − R(X ))] (3)

subject to

P = C( Ī ), C(0) = 0, C ′( Ī ) > 1, C ′′( Ī ) > 0 (3a)

Ī = E [I (X )] = E [X − R(X )] (3b)

Pr {R(X ) ≤ K} ≥ 1 − α, K ≡ v + x̄ − Ī (3c)

Using integral representations, expression (3) likely appears to be a continuous
optimal control problem, which is frequently solved using the Lagrangean approach,
Hamiltonian approach, and the variations of calculus [Fryer and Greenman, 1987].
However, owing to the VaR constraint in expression (3c), expression (3) cannot form

2 The premium setting in this study resembles that of Gollier [1996]; that is, the premium is based
upon the expected indemnity: P = C(E [I (X )]). Notably, a number of studies simply assume P =
(1 + l) (E [I (X )]), 0 < l < 1 is constant; for example, Doherty and Schlesinger [1983a,b] and Wang et al.
[2005].

Springer



94 Geneva Risk Insur Rev (2006) 31:91–110

a standard control problem.3 Consequently these traditional methods are difficulty to
apply, and a new approach must be developed for solving the optimality problem of
the insured.

Define A is the 100 (1 − α)th percentile of X , F(A) = 1 − α or A = F−1(1 − α),
where F−1(·) denotes the inverse function of F(·) and analogous representations are
contained throughout this study. For convenience, this study additionally assumes

Both α and v are small enough such that v + x̄ < A (4)

In practice, α is frequently set to 5% or less and v is small compared with the expected
loss. Hence, the relation v + x̄ < A meets the most practical situation.

3 Optimal retained loss schedule

As in Raviv [1979], Gollier [1987, 1996], and Wang et al. [2005], expression (3) is
solved via two steps. First, the premium P is assumed to be fixed and the optimal
retained loss schedule R(x) is found as a function of P . Second, the optimal P and
the corresponding insurance contract are selected. To describe the main result, the
single deductible insurance and the double deductible insurance is defined as follows.
Additionally, a preliminary result of this study is obtained in Theorem 1 below.

Definition 1. A single deductible insurance indicates that the insurance has a single
deductible D such that the retained schedule R(x) = min{x, D} for all loss x .

Definition 2. A double deductible insurance indicates that the insurance contains two
deductibles, a lower deductible D, a upper deductible D̄, and a threshold x̂ such that
the retained schedule R(x) = min{x, D} for losses x ≤ x̂ and R(x) = min{x, D̄} for
losses x > x̂ .

Theorem 1. If the VaR constraint is redundant, the optimal insurance forms a single
deductible insurance. Restated, the optimal retained schedule

R∗(x) =
{

x for 0 ≤ x < D∗

D∗ for D∗ ≤ x ≤ T
(5)

3 If there is no VaR constraint and simply P = C( Ī ) = (1 + l) Ī , 0 < l < 1 is constant, then this problem
forms a standard optimal control problem and can be solved by maximizing the Hamiltonian, as follows.

maximize
R(x), λ

H = {U (W0 − P − R(x)} + λ {P − (1 + l) [x − R(x)]} f (x) for all x

where λ is constant with respecte to x . However, if this problem adds a VaR restriction of expression (3c),
then the Hamiltonian cannot be represented and expression (3) cannot form a standard optimal control
problem. Additionaly, even though no VaR constraint exists, if C( Ī ) is not linear in Ī then the Hamiltonian
also cannot be found. The related discussions are presented in Fryer and Greenman [1987], Raviv [1979],
and Spaeter and Roger [1997].
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Fig. 1 Single deductible
insurance

where D∗ represents the optimal deductible such that

∫ D∗

0
x f (x) dx + D∗

∫ T

D∗
f (x) dx = E [R(X )] = x̄ − Ī (6)

The proof process of Theorem 1 is analogous to that presented by Bowers et al.
[Chapter 1, 1986]. Actually, a single deductible insurance is commonly called a de-
ducible insurance in Raviv [1979] and the traditional insurance literature. When the
VaR constraint is released, the optimality problem of the insured is reduced to the
model in Raviv [1979] and thus a single deductible insurance would be optimal. Al-
though the result of Theorem 1 is not surprising, the condition that the VaR constraint
is redundant is interesting and hence is discussed below. Based on expressions (3c) and
(4), we obtain the relation D∗ ≤ K ≤ A. Accordingly, the single deductible insurance
would resemble the graph in Fig. 1.

This study now discusses the second case in which the VaR constraint is binding
and thus influences the selection of R(x).

Theorem 2. Assume that S is the sample space of random variable X; S1 and S2

partition S: S1 ∪ S2 = S and S1 ∩ S2 = φ; R(x) denotes the retained loss and

R(x) =
{

R1(x) for x ∈ S1

R2(x) for x ∈ S2
(7)

Constraining R1(x) = Rc
1(x) for x ∈ S1 and E [R(X )] = R̄, then the optimal retained

loss R2(x) = R∗
2 (x) takes the form

R∗
2 (x) =

{
x for x < D∗, x ∈ S2

D∗ for x ≥ D∗, x ∈ S2
(8)
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where the deductible D∗ is the solution of∫
x<D∗
x∈ S2

x f (x) dx + D∗
∫

x≥D∗
x∈ S2

f (x) dx = R̄ −
∫

x∈ S1

Rc
1(x) f (x) dx (9)

Proof: See Appendix 1. �

Without further constraints, Theorem 1 shows that the Pareto optimal insurance
takes the form of a single deductible insurance. When a risk has been insured against a
specific loss interval, Theorem 2 shows that the optimal supplement insurance is also
a form of single deductible insurance for covering the remaining loss interval.

To obtain Theorem 3 below, this study first considers Fig. 2, in which the corre-
sponding premium is P = Pmin on Panel A, Pmin < P < PA on Panel B, P = PA on
Panel C, and PA < P < PK on Panel D, respectively. Additionally, Pmin < PA < PK

and these three values are respectively defined as follows.

Pmin ∈ arg
P

∫ A

K
(x − K ) f (x) dx − Ī = 0, K = v + x̄ − Ī , Ī = C−1(P). (10)

PA ∈ arg
P

∫ A

K
(x − K ) f (x) dx +

∫ T

A
(x − A) f (x) dx − Ī = 0,

K = v + x̄ − Ī , Ī = C−1(P). (11)

PK ∈ arg
P

∫ T

K
(x − K ) f (x) dx − Ī = 0, K = v + x̄ − Ī , Ī = C−1(P). (12)

Based on Definition 2, Panels A, B, C, and D in Fig. 2 display the double deductible
insurance with a common threshold A. Additionally, expressions (10) and (11) are
referred to Panels A and C respectively. And, PK denotes the insurance premium for
the deductible insurance with a deductible K . Moreover, the following lemma shows
that Pmin, PA, and PK are uniquely determined.

Lemma 1. Each solution of expressions (10), (11), and (12) is unique; that is, Pmin,
PA, and PK are uniquely determined.

Proof: See Appendix 2. �

Theorem 3. If P < Pmin, then no available insurance meets the VaR constraint. If
P ≥ PK , then the optimal insurance is a single deductible insurance. Otherwise, if
Pmin ≤ P < PK , then the optimal form of insurance is a double deductible insurance
with a threshold A. Additionally, when the double deductible insurance is optimal,
then the optimal retained loss schedule is as follows.

R∗(x) =
{

min{x, K } for 0 ≤ x ≤ A

min{x, D̄∗} for A < x ≤ T
if Pmin ≤ P < PK (13)
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Fig. 2 Double deductible insurance

where the threshold and the lower deductible exactly equals A and K respectively,
and D̄∗ represents the upper deductible such that

∫ A

0
min{x, K } f (x) dx +

∫ T

A
min{x, D̄∗} f (x) dx = x̄ − C−1(P) (14)

Proof: See Appendix 3. �

The deductible for a single deductible insurance does not exceed K when P ≥ PK

and thus the VaR constraint is redundant. Consequently, by Theorem 1, the single
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Table 1 Insurance premium and optimal contractual form∗

P Pmin ≤ P ≤ PA PA < P < PK PK ≤ P

Insurance Double deductible insurance Double deductible insurance Single deductible insurance
form

RP (x)

{
min{x, K } for 0 ≤ x ≤ A

min{x, D̄} for A < x ≤ T

{
min{x, K } for 0 ≤ x ≤ A

D̄ for A < x ≤ T
min{x, D∗} for 0 ≤ x ≤ T

∗The single deductible insurance is based on Theorem 1 and the double deductible insurance is based
on Theorem 3. A = F−1(1 − α), K = x̄ + v − C−1(P), P = C( Ī ). A ≤ D̄ ≤ T for Pmin ≤ P ≤ PA , and
K < D̄ < A for PA < P < PK . D∗ and D̄ are solved from the equation: E[RP (X )] = x̄ − Ī = x̄ −
C−1(P) ·Pmin, PA , and PK are defined by expressions (10), (11), and (12), respectively. If P < Pmin then
no insurance contract can meet the VaR constraint; that is, no insurance contract is available.

deductible insurance is optimal. Particularly, when P = Pmin, the optimal insurance
is the same as in Wang et al. [2005].4

4 Selections about insurance premium and contractual form

This study divides the optimal insurance problem into two parts. Section 3 analyzed
the first part, find the optimal R(x) under fixed P . This section discusses the second
part, determine the optimal P . The preceding discussion demonstrates that R(x) only
depends on P for all increasing and concave utility functions. Restated, R(x) can
immediately be determined if P is given, regardless of the preference of the insured.
However, this result cannot indicate that R(x) is not related to the utility function U (·).
Indeed, R(x) is a function of P and P is a function of U (·).

Let RP (x) denote the particular R(x) corresponding to a specific P . Incorporating
the results of Theorems 1 and 3, RP (x) are listed in Table 1. Meanwhile, D̄ ≥ A for
Pmin ≤ P ≤ PA and D̄ < A for PA < P < PK . Additionally, the optimality problem
of expression (3) can be restated as follows.

Maximize
P≥Pmin

E [U (W )] = E [U (W0 − P − RP (X ))] (15)

subject to RP (x) is defined by Table 1
Since if P < Pmin then no insurance contract can meet the VaR constraint, P ≥ Pmin

is a feasible premium. Without further specifying the distribution of Xand the utility
function U (·), it is difficult to explicitly solve P . Fortunately, the numerical solution
is easy to find. For instance, we can first select a sufficiently large premium, Pmax.
Various premiums on interval [Pmin,Pmax] are then included in expression (15) and an
optimal P∗ which maximizes expression (15) is selected.

4 The problem of Wang et al. [2005] is to maximize E [W ] subject to the VaR constraint. Since E [W ] is
decreasing in P owing to the loading fee, the optimal premium is the minimum premium Pmin that just
enough meets the VaR criterion.
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5 Deductible insurance, upper-limit insurance, and proportional
coinsurance

In practice I (x) is often limited in certain contractual forms, such as deductible insur-
ance, upper-limit insurance, and proportional coinsurance, although these restrictions
are unlikely to guarantee a Pareto optimum. Accordingly, with reference to the above
methodology, this section demonstrates how the optimal coverage level is determined
in these cases.

Example 1: Deductible insurance

Assume the indemnity schedule is limited to the form I (x) = max{x − D, 0}, or
equivalently R(x) = min{x, D}, where D denotes the deductible. Accordingly, the
optimality problem is revised as follows.

Maximize
0≤D≤T

E [U (W )] = E [U (W0 − P − min{X, D})] (16)

subject to

P = C( Ī ), C(0) = 0, C ′( Ī ) > 1, C ′′( Ī ) > 0 (16a)

Ī = E [I (X )] = E [X − min{X, D}] =
∫ T

D
(x − D) f (x) dx (16b)

Pr {min{X, D} ≤ K} ≥ 1 − α, K ≡ v + x̄ − Ī (16c)

Expression (16c) implies that Pr {min{X, D} ≤ K } = 1 ≥ 1 − α if D ≤ K and
Pr {X ≤ K } ≥ 1 − α if D > K . But Pr {X ≤ K } ≥ 1 − α implies K ≥ F−1(1 −
α) = A and hence violates expression (4). Thus expression (16c) is equivalent to
the relation D ≤ K . Additionally, D ≤ K means that

Hd (D) ≡ v + x̄ −
∫ T

D
(x − D) f (x) dx − D ≥ 0 (17)

From expression (17),

Hd (T ) = v + x̄ − T < 0, Hd (0) = v > 0, H ′
d (D) = −F(D) < 0 (18)

Expression (18) implies that a unique critical point D̄ is contained in interval [0, T ]
such that Hd (D̄) = 0. Restated,

D̄ = arg
D

Hd (D) ≡ v + x̄ −
∫ T

D
(x − D) f (x) dx − D = 0 (19)

Consequently, the optimality problem of expression (16) can be revised as follows.

Maximize
0≤ D ≤D̄

E [U (W )] = E [U (W0 − C( Ī ) − min {X, D})] (20)
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with

Ī =
∫ T

D
(x − D) f (x) dx (20a)

In this situation the optimality problem is that the insured selects the optimal de-
ductible from interval [0, D̄] to maximize expression (20). Generally, the solution can
be obtained using the fundamental calculus or the numerical method in the absence
of an explicit solution.

Example 2: Upper-limit insurance

Assume the indemnity schedule is limited to I (x) = min{x, M} or equivalently
R(x) = max{0, x − M}, where M denote the upper-limit. Accordingly, the optimality
problem is revised as follows.

Maximize
0≤ M ≤ T

E [U (W )] = E [U (W0 − P − max {0, X − M})] (21)

subject to

P = C( Ī ), C(0) = 0, C ′( Ī ) > 1, C ′′( Ī ) > 0 (21a)

Ī = E [I (X )] = E [min{X, M}] =
∫ M

0
x f (x) dx + M

∫ T

M
f (x) dx (21b)

Pr {max {0, X − M} ≤ K} ≥ 1 − α, K ≡ v + x̄ − Ī (21c)

Since the relation max {0, X − M} ≤ K clearly equals X ≤ K + M , expression
(21c) is the same as K + M ≥ F−1(1 − α) = A. Additionally, K + M ≥ A means
that

Hu(M) ≡ v + x̄ −
∫ M

0
x f (x) dx − M

∫ T

M
f (x) dx + M − A ≥ 0 (22)

From expression (22),

Hu(0) = v + x̄ − A < 0, Hu(T )=v + T − A > 0, and H ′
u(M)=F(M)>0 (23)

Expression (23) implies that a unique critical point M can be identified in interval
[0, T ] such that Hu(M) = 0. Restated,

M = arg
M

Hu(M) ≡ v+ x̄−
∫ M

0
x f (x) dx − M

∫ T

M
f (x) dx + M − A = 0 (24)

Consequently, the optimality problem of expression (21) can be revised as follows.

Maximize
M ≤ M ≤ T

E [U (W )] = E [U (W0 − C( Ī ) − max {0, X − M})] (25)
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with

Ī =
∫ M

0
x f (x) dx + M

∫ T

M
f (x) dx (25a)

Based on the similar approach in the deductible insurance, the insured would select
the optimal upper-limit from interval [M, T ] to maximize expression (25).

Example 3: Proportional coinsurance

Assume that the indemnity schedule is limited to proportional coinsurance, I (x) =
θ x or equivalently R(x) = (1 − θ ) x , where θ represents the coinsurance proportion.
Accordingly, the optimality problem is revised as follows.

Maximize
0≤ θ ≤ 1

E [U (W )] = E [U (W0 − P − (1 − θ )X )] (26)

subject to

P = C( Ī ), C(0) = 0, C ′( Ī ) > 1, C ′′( Ī ) > 0 (26a)

Ī = E [I (X )] = E [θ X ] = θ x̄ (26b)

Pr {(1 − θ ) X ≤ K} ≥ 1 − α, K ≡ v + x̄ − Ī (26c)

Expression (26c) implied that

θ ≥ 1 − v / [A − x̄] = θ (27)

where 0 < θ < 1 since A > v + x̄ . Consequently, the optimality problem of expres-
sion (26) can be revised as follows.

Maximize
θ ≤ θ ≤ 1

E [U (W )] = E [U (W0 − C(θ x̄) − (1 − θ ) X )] (28)

Defining J (θ ) = d E [U (W )]/dθ , then

J (θ ) = E [(X − x̄C ′(θ x̄)) U ′(W0 − C(θ x̄) − (1 − θ )X )] (29)

J ′(θ ) = E [(X − x̄C ′(θ x̄))2 U ′′(W0 − C(θ x̄) − (1 − θ )X )]

+ E [−x̄2C ′′(θ x̄) U ′(W0 − C(θ x̄) − (1 − θ )X )] < 0 (30)

Expression (30) indicates that E [U (W )] is globally concave with respect to θ .
Accordingly, the optimal coinsurance proportion: θ∗ = θ if J (θ ) ≤ 0 and θ∗ = 1 if
J (1) ≥ 0, otherwise J (θ∗) = 0. However, J (1) < 0 since C ′(·) > 1. Consequently, θ∗

is as follows. {
θ∗ = θ = 1 − v / (A − x̄) if J (θ ) ≤ 0

J (θ∗) = 0 otherwise
(31)

Springer



102 Geneva Risk Insur Rev (2006) 31:91–110

where θ represents the corner solution and the inner solution satisfies J (θ∗) = 0. The
proportional coinsurance can obtain a more explicit result rather than in the deductible
insurance and the upper-limit insurance cases.

In sum, if the contractual form is given, then the optimal coverage levels (deductible
size, upper-limit size, and coinsurance proportion) can be uniquely determined. Ad-
ditionally, the solution process only involves one stage and frequently can be solved
by fundamental calculus rather than variations of calculus.

6 Conclusion

This study aims to develop an optimal insurance contract endogenously under a VaR
constraint, where the contract is obtained by maximizing the expected utility of the
insured. Although Wang et al. [2005] had examined a similar topic, their assumptions
implied that the insured was risk neutral. Consequently, this study extends Wang
et al. [2005] and further considers a more realistic situation in which the insured is
risk averse. The result demonstrates that the optimal insurance contract is a single
deductible insurance when the VaR constraint is redundant or a double deductible
insurance when the VaR constraint is binding.

To derive the above result, this study additionally obtains a preliminary theorem:
when a risk has been insured against a specific loss interval, the optimal supplemen-
tary insurance also becomes a single deductible insurance for covering the remaining
loss interval. Finally, the study specifically discusses the optimal coverage from the
commonly existing forms of insurance, including deductible insurance, upper-limit
insurance, and proportional coinsurance.

Appendix 1: Proof of Theorem 2

The optimal retained loss schedule is claimed to be

R∗(x) =
{

Rc
1(x) for x ∈ S1

R∗
2 (x) for x ∈ S2

(A1)

This means that R∗(x) is not dominated by any R(x), where E [R∗(X )] = E [R(X )]
and thus their premiums are equivalent based on expression (1). Mathematically,

E [U (W0 − P − R∗(X ))] ≥ E [U (W0 − P − R(X ))] (A2)

From expressions (7), (8), and (A1), expression (A2) is expressed as∫
S1

U
(
W0 − P − Rc

1(x)
)

f (x)dx +
∫

S2

U (W0 − P − R∗
2 (x)) f (x)dx

≥
∫

S1

U
(
W0 − P − Rc

1(x)
)

f (x)dx +
∫

S2

U (W0 − P − R2(x)) f (x)dx (A3)
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Simplifying expression (A3) yields∫
S2

U (W0 − P − R∗
2 (x)) f (x)dx ≥

∫
S2

U (W0 − P − R2(x)) f (x)dx (A4)

Since U ′′(·) < 0, then

U (W0 − P − R2(x)) − U (W0 − P − R∗
2 (x))

≤ [R∗
2 (x) − R2(x)] U ′(W0 − P − R∗

2 (x)) for x ∈ S2 (A5)

It can be proved that

[R∗
2 (x)−R2(x)] U ′(W0−P−R∗

2 (x)) ≤ [R∗
2 (x) − R2(x)] U ′(W0 − P − D∗) (A6)

The two cases x ≥ D∗ and 0 ≤ x < D∗ are considered separately. If x ≥ D∗, then
R∗

2 (x) = D∗ and hence

[R∗
2 (x)−R2(x)] U ′(W0−P−R∗

2 (x)) = [R∗
2 (x) − R2(x)] U ′(W0 − P − D∗) (A7)

If 0 ≤ x < D∗, then R∗
2 (x) = x < D∗ and hence

U ′(W0 − P − R∗
2 (x)) < U ′(W0 − P − D∗) (A8)

Since 0 ≤ R2(x) ≤ x , then

R∗
2 (x) − R2(x) ≥ 0 (A9)

Incorporating expressions (A8) with (A9) yields

[R∗
2 (x)−R2(x)] U ′(W0−P−R∗

2 (x)) ≤ [R∗
2 (x) − R2(x)] U ′(W0 − P − D∗) (A10)

Expression (A6) has been proved based on expressions (A7) and (A10). Based on
expressions (A5) and (A6), the following can be obtained.∫

S2

{U (W0 − P − R2(x)) − U (W0 − P − R∗
2 (x))} f (x)dx

≤ U ′(W0 − P − D∗)
∫

S2

[R∗
2 (x) − R2(x)] f (x)dx (A11)

Using equality E [R∗(X )] = E [R(X )] = R̄ yields∫
S1

Rc
1(x) f (x)dx+

∫
S2

R∗
2 (x) f (x)dx =

∫
S1

Rc
1(x) f (x)dx+

∫
S2

R2(x) f (x)dx (A12)
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Simplifying expression (A12) yields∫
S2

[R∗
2 (x) − R2(x)] f (x) dx = 0 (A13)

Substituting expression (A13) into expression (A11) obtains the result of expression
(A4). Expression (A4) equals expression (A2) and thus the proof is performed.

Appendix 2: Proof of Lemma 1

Gmin(P),G A(P), and G K (P) are respectively defined as follows.

Gmin(P) ≡
∫ A

K
(x − K ) f (x) dx − Ī , K = v + x̄ − Ī , Ī = C−1(P). (A14)

G A(P) ≡
∫ A

K
(x − K ) f (x) dx +

∫ T

A
(x − A) f (x) dx − Ī ,

K = v + x̄ − Ī , Ī = C−1(P). (A15)

G K (P) ≡
∫ T

K
(x − K ) f (x) dx − Ī , K = v + x̄ − Ī , Ī = C−1(P). (A16)

From expression (1), Ī = 0 if P = 0. Hence,

Gmin(0) > 0,G A(0) > 0, and G K (0) > 0. (A17)

Respectively differentiating both sides of expressions (A14), (A15), and (A16) with
respect to P obtains

dGmin(P)

d P
= dG A(P)

d P
= −d K

d P
(K − K ) f (K ) +

∫ A

K
−d K

d P
f (x) dx − d Ī

d P
(A18)

dG K (P)

d P
= −d K

d P
(K − K ) f (K ) +

∫ T

K
−d K

d P
f (x) dx − d Ī

d P
(A19)

Because of d Ī/d P > 0 by expression (1) and d K/d P = −d Ī/d P since K = v +
x̄ − Ī , expressions (A18) and (A19) respectively imply that

dGmin(P)/d P = dG A(P)/d P = −(d Ī/d P){1 − [F(A) − F(K )]} < 0 (A20)

dG K (P)/d P = −(d Ī/d P){1 − [1 − F(K )]} < 0 (A21)

Expressions (A20) and (A21) mean that Gmin, G A, and G K are always decreasing in P .
Combining this fact with expression (A17) demonstrates each solution of expressions
(10), (11), and (12) to be positive and unique.
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Appendix 3: Proof of Theorem 3

Lemma 1 have demonstrated that Pmin, PA, and PK are unique, and thus they can be
represented as critical points. For convenience, expression (13) is restated below.

R∗(x) =
{

min{x, K } for 0 ≤ x ≤ A

min{x, D̄} for A < x ≤ T
if Pmin ≤ P ≤ PA (A22)

R∗(x) =
{

min{x, K } for 0 ≤ x ≤ A

D̄ for A < x ≤ T
if P A < P < PK (A23)

where A ≤ D̄ ≤ T in expression (A22) and K < D̄ < A in expression (A23). The
proof is based on the following four claims.

Claim 1. No insurance can meet the VaR constraint if P < Pmin.

If P < Pmin, then the retained loss on interval [K , A], shown in Panel A of Fig. 2,
must increase for some loss x . However, this change deviates the VaR constraint of
expression (3c) that Pr {R(X ) ≤ K} ≥ 1 − α. Consequently, Claim 1 is proven.

Claim 2. The optimal insurance is a single deductible insurance if P ≥ PK .

By definition, PK represents the premium for a deductible insurance with deductible
K . Additionally, if P ≥ PK , then a deductible insurance can be found with a deductible
not exceeding K and which meets the VaR constraint. Claim 2 is proven by incorpo-
rating this fact with Theorem 1.

Claim 3. The optimal insurance is a double deductible insurance with a threshold A
if Pmin ≤ P ≤ PA, and the optimal retained loss schedule is expression (A22).

For all R(x), S can be partitioned into two subspaces, S1 and S2, such that

S1={x | 0≤ R(x)≤ x̂},Pr{S1}=1−α ; S2 = {x | x̂ < R(x)≤T },Pr{S2}=α. (A24)

To meet the VaR constraint, the critical point x̂ ≤ K for all feasible retained loss
schedules. Theorem 2 implies that the optimal insurance for the above partition of S
has the form (see Fig. 2 and Panel A of Fig. 3):

R(x) =
{

min{x, D}, 0 < D ≤ K for x ∈ S1

min{x, D̄}, A ≤ D̄ ≤ T for x ∈ S2
(A25)

where D and D̄ represent the lower and upper deductibles respectively. For R∗(x) in
expression (13), the corresponding S1, S2, D, and D̄ are as follows.

S∗
1 = {x | 0 ≤ x ≤ A}, S∗

2 = {x | A < x ≤ T }, D=K , and D̄= D̄∗. (A26)
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Fig. 3 Various feasible R(x) for Pmin ≤ P ≤ PA

By definition, the expected values of R(X ) and R∗(X ) are equivalent; restated,

E [R(X )] = E [R∗(X )] (A27)

This study will show R∗(x) is not dominated by any R(x) in expression (A25).
Let Ra(x), Rb(x), and Rc(x) represent three various retained loss schedules, shown in
Panels A, B, and C of Fig. 3. The three retained loss schedules have the same expected
value and meet expressions (A24) and (A27). Meanwhile, Ra(x) and Rb(x) meet
the specification of expression (A25). Moreover, let Da = Db = Dc = D denote the
lower deductible and D̄a, D̄b, D̄c denote the upper deductibles. Furthermore, assume
that S1a , S1b, S1c and S2a , S2b, S2c denote the respective S1 and S2 in expression (A24).
Figure 3 demonstrates that

S1a = S1c = S∗
1 = {x | 0 ≤ x ≤ A} (A28)

Actually, Ra(x) is a representative retained loss schedule which is nondecresing in x ;
that is, d Ra(x)/dx ≥ 0, shown in Panel A of Fig. 3. Since E [Ra(X )] = E [R∗(X )] and
D ≤ K , the relation D̄a ≥ D̄∗ is obtained. Additionally, Rb(x) and Rc(x) are viewed
as representative retained loss schedules that do not require nondecasing in x , but
Rc(x) is further assumed that S1c = {x | 0 ≤ x ≤ A}, as shown in expression (A28).
Although Rb(x) is assumed that only two intervals ({a ≤ x ≤ b} and {c ≤ x ≤ d}) do
not meet weakly monotonic. However, as the intervals (not monotonic) increase, the
proof process is also the same. Accordingly, Rb(x) can be represented a general form
for expression (A25).

The proof of Claim 3 next is divided into three steps, as follows.

Step 1: Rc(x) can be found for any Rb(x) such that

E [U (W0 − P − Rb(X ))] = E [U (W0 − P − Rc(X ))] (A29)
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First, the specific form of Rb(x) shown on Panel B of Fig. 3 is considered. The
corresponding S1 and S2 for Rb(x) are as follows.{

S1b = {x | 0 ≤ x ≤ a or b ≤ x ≤ A or c ≤ x ≤ d}, Pr{S1b} = 1 − α

S2b = {x |a < x < b or A < x < c or d < x ≤ T }, Pr{S2b} = α
(A30)

Furthermore, Rc(x) shown as Panel C in Fig. 3 is found, such that

Pr{a < X < b} = Pr{c < X < d} (A31)

Let a ≤ Rc(x) = β0 + β1x ≤ b < x for c ≤ x ≤ d, then β0 and β1 can be found such
that ∫ b

a
x f (x) dx =

∫ d

c
(β0 + β1 x) f (x)dx (A32)

and ∫ b

a
U (W0 − P − x) f (x) dx =

∫ d

c
U (W0 − P − β0 − β1 x) f (x)dx (A33)

must be equivalent for Rb(x) and Rc(x). Incorporating the fact with expression (A31),
(A32), and (A33) can yield the following trivial result.

E [U (W0 − P − Rb(X ))] = E [U (W0 − P − Rc(X ))] (A34)

Although only the special case of Rb(x) is provided here, the proof process demon-
strates that any form of Rb(x) can yield the same result. Accordingly, it can be found
a Rc(x) to satisfy expression (A29) for any Rb(x).

Step 2: Ra(x) is not dominated by Rc(x). That is,

E [U (W0 − P − Ra(X ))] ≥ E [U (W0 − P − Rc(X ))] (A35)

The general forms of Ra(x) and Rc(x) are as follows.

Ra(x) =
{

min{x, D}, 0 < D ≤ K for 0 ≤ x ≤ A

min{x, D̄a}, A ≤ D̄a ≤ T for A < x ≤ T
(A36)

Rc(x) =
{

min{x, D}, 0 < D ≤ K for 0 ≤ x ≤ A

Rc2(x) > D, for A < x ≤ T
(A37)

The notation Rc2(x) (corresponding to S2c) denotes that Rc(x) has no specific form
for A < x ≤ T . Since U ′′(·) < 0, then

U (W0 − P − Rc(x)) − U (W0 − P − Ra(x))

≤ [Ra(x) − Rc(x)] U ′(W0 − P − Ra(x)) for 0 ≤ x ≤ T . (A38)

Springer



108 Geneva Risk Insur Rev (2006) 31:91–110

Additionally, the following three cases are considered to demonstrate

[Ra(x) − Rc(x)] U ′(W0 − P − Ra(x))

≤ [Ra(x) − Rc(x)] U ′(W0 − P − D̄a) for 0 ≤ x ≤ T . (A39)

Case 1: 0 ≤ x ≤ A. In this case, Ra(x) = Rc(x) and thus the left and right hand sides
are equal for expression (A39).

Case 2: A < x < D̄a . In this case, Rc(x) ≤ Ra(x) = x < D̄a . Since U ′′(x) < 0, then
U ′(W0 − P − Ra(x)) ≤ U ′(W0 − P − D̄a). Accordingly, the result of expression
(A39) is obtained for A < x < D̄a .

Case 3: D̄a ≤ x ≤ T . In this case, Ra(x) = D̄a and thus the left and right hand sides
are equal for expression (A39).

The above three cases demonstrate expression (A39). Incorporating expressions
(A38) with (A39) yields

U (W0 − P − Rc(x)) − U (W0 − P − Ra(x))

≤ [Ra(x) − Rc(x)] U ′(W0 − P − D̄a) for 0 ≤ x ≤ T . (A40)

From expressions (A27) and (A40), then

E [U (W0 − P − Rc(X ))] − E [U (W0 − P − Ra(X ))]

=
∫ T

0
[U (W0 − P − Rc(x)) − U (W0 − P − Ra(x))] f (x) dx

≤
∫ T

0
U ′(W0 − P − D̄a) [Ra(x) − Rc(x)] f (x) dx

= U ′(W0 − P − D̄a){E [Ra(X )] − E [Rc(X )]} = 0 (A41)

From expression (A41), step 2 is completed.

Step 3: R∗(x) is not dominated by Ra(x). Restated,

E [U (W0 − P − R∗(X ))] ≥ E [U (W0 − P − Ra(X ))] (A42)

Since E [Ra(x)] = E [R∗(x)] and D ≤ K , then D̄a ≥ D̄∗. Since U ′′(·) < 0,

U (W0 − P − Ra(x)) − U (W0 − P − R∗(x))

≤ [R∗(x) − Ra(x)] U ′(W0 − P − R∗(x)) for 0 ≤ x ≤ T (A43)

The two cases 0 ≤ x ≤ A and A < x ≤ T are considered separately to demonstrate

[R∗(x) − Ra(x)] U ′(W0 − P − R∗(x))

≤ [R∗(x) − Ra(x)] U ′(W0 − P − A) for 0 ≤ x ≤ T . (A44)
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Case 1: 0 ≤ x ≤ A. In this case, we have Ra(x) ≤ R∗(x) ≤ A. Since U ′′(x) < 0,
U ′(W0 − P − R∗(x)) ≤ U ′(W0 − P − A). Accordingly, the result of expression
(A44) is obtained for 0 ≤ x ≤ A.

Case 2: A < x ≤ T . In this case, A ≤ R∗(x) ≤ Ra(x). Since U ′′(x) < 0, the relation
U ′(W0 − P − R∗(x)) ≥ U ′(W0 − P − A) is obtained. Accordingly, the result of
expression (A56) is obtained for A < x ≤ T .

From the above two cases, expression (A4) has been demonstrated. Incorporating
expressions (A43) with (A44) yields

U (W0 − P − Ra(x)) − U (W0 − P − R∗(x))

≤ [R∗(x) − Ra(x)] U ′(W0 − P − A) for 0 ≤ x ≤ T . (A45)

From expressions (A27) and (A45),

E [U (W0 − P − Ra(X ))] − E [U (W0 − P − R∗(X ))]

=
∫ T

0
[U (W0 − P − Ra(x)) − U (W0 − P − R∗(x))] f (x) dx

≤
∫ T

0
U ′(W0 − P − A) [R∗(x) − Ra(x)] f (x) dx

= U ′(W0 − P − A){E [R∗(X )] − E [Ra(X )]} = 0 (A46)

Expression (A42) is demonstrated based on expression (A46). Consequently, Claim
3 is demonstrated based on steps 1, 2, and 3.

Claim 4: The optimal insurance is a double deductible insurance with a threshold A
if PA < P < PK , and the optimal retained loss schedule is expression (A23).

Using the same definitions for Ra(x), Rb(x), and Rc(x) in Claim 3, as in the analysis
presented in Claim 3, the same results can be obtained. First, Rc(x) can be identified for
any Rb(x) such that Rc(x) and Rb(x) have the same expected utility. Second, Rc(x) does
not dominate Ra(x). Accordingly, Claim 4 can be proven by further domonstrating that
Ra(x) does not dominate R∗(x). Corresponding to expression (A23), the definition of
Ra(x) in expression (A36) must be slightly modified as follows.

Ra(x) =
{

min{x, D}, 0 < D ≤ K for 0 ≤ x ≤ A

min{x, D̄a}, K < D̄a ≤ T for A < x ≤ T
(A47)

Although Panel A graphs only the case A < D̄∗ < D̄a , the proof process is the same
for the others: D̄∗ < A < D̄a and D̄∗ < D̄a < A. Since U ′′(·) < 0, the same result of
expression (A55) can be obtained. Additionally, Ra(x) ≤ R∗(x) < D̄∗ for 0 ≤ x ≤ A,
and R∗(x) = D̄∗ for A < x ≤ T . This implies

[R∗(x) − Ra(x)] U ′(W0 − P − R∗(x))

≤ [R∗(x) − Ra(x)] U ′(W0 − P − D̄∗) for 0 ≤ x ≤ T . (A48)

Springer



110 Geneva Risk Insur Rev (2006) 31:91–110

Like Claim 3, incorporating expressions (A43) with (A48) yields Claim 4.

Summary

From Claims 1, 2, 3, and 4, the proof of Theorem 3 has been completed.
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