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Abstract We describe a numerical procedure to obtain bounds on the distribution
function of a sum of n dependent risks having fixed marginals. With respect to the
existing literature, our method provides improved bounds and can be applied also
to large non-homogeneous portfolios of risks. As an application, we compute the
VaR-based minimum capital requirement for a portfolio of operational risk losses.
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1 Introduction

The Basel Committee on Banking Supervision released a consultative document re-
quiring banks to meet a regulatory capital charge to cover operational risk (OR).
The new regulations call for the use of statistical tools to estimate the distribution
function of n random variables X1, . . . , Xn , representing the OR loss amounts for
particular lines/types in a given period. Once the marginal distributions of the n
risks are fixed, banks need to measure the risk associated with the aggregate position
S := X1 + · · · + Xn . With respect to the latter task, the minimum capital requirement
is typically calculated as the sum of Value-at-Risks (VaRs) for the estimated marginal
distributions at some high level of probability. This standard practice should raise some
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concern, since in general VaR is not a sub-additive measure of risk, and the effect of
dependence between the individual losses Xi could lead to an under-valuation of the
risk associated with the total exposure S.

The problem of measuring the VaR of a joint position with fixed marginals is
equivalent to the search for the best-possible lower bound on the distribution function
of the corresponding aggregate position. Since a full solution to this problem seems
to be well out of reach when n ≥ 3, different bounds have been given in the literature.

So-called standard bounds, obtained from elementary probability, are stated, for
instance, in Embrechts and Puccetti [2006, Theorem 3.1]. These bounds are defined
as a supremum over Rn−1, and very often cannot be handled analytically. Iterative
numerical procedures for calculating these bounds are presented in Embrechts et al.
[2003] and Denuit et al. [1999]. These techniques, based on the discretization of
the marginal distributions, have the disadvantage that their computational complexity
increases exponentially in the number n of risks treated. In fact, for non-homogeneous
portfolios and apart from the few cases in which an analytical closed form is possible,
numerical bounds have not been given in the literature for the sum of more than three
risks. Instead of following the approach of the above cited papers, we show that for
all continuous marginal models of risk management interest, first-order conditions
on that supremum reduce the computation of standard bounds to a simple univariate
problem.

Dual bounds, resulting instead from a duality theorem of Rüschendorf [1981], are
stated in Embrechts and Puccetti [2006, Theorem 4.2] in the case of an homogeneous
portfolio of risks. Since the risk management of OR under the Advanced Measurement
Approach requires to deal with different marginal distributions, we extend the above
result to heterogeneous portfolios and we describe a numerical procedure to compute
the bounds. Dual bounds are shown to be better than the respective standard ones,
but, especially in the non-homogeneous scenario, their computation calls for the use
of an advanced global optimization algorithm. Moreover, the calculation of standard
bounds is still necessary to restrict the feasible region in this optimization to a bounded
box in Rn .

In Section 2 we give a brief introduction to operational risk and the regulatory
framework introduced by the New Basel Capital Accord.

In Section 3 we state the conditions under which the computation of standard bounds
turns out to be manageable and give the dual bounds for non-homogeneous portfolios
of risks.

In Section 4 we apply the methodologies introduced to a real OR portfolio. Though
this is a rather natural real-world application of considerable current interest, the
relevance of the probabilistic model studied is much wider and includes aggregation
questions in integrated risk management more generally; see for instance Chapter 6
in McNeil et al. [2005]. Another area where aggregation results as discussed in this
paper are relevant concerns the calculation of an overall capital charge for banks and/or
insurance companies. In this case, capital charges for market, credit and operational
risk, respectively underwriting risk, have to be added; see for instance Rosenberg and
Schuermann [2006].

A brief appendix concerning extensions to different aggregate positions concludes
the paper.
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2 Operational risk: The Basel II framework

Under the terms of the New Basel Capital Accord (Basel II) banks will be required
to set aside capital for the specific purpose of offsetting operational risk (OR), the
risk of losses resulting from inadequate or failed internal processes, people and sys-
tems, or external events. In this definition, legal risk is included, but not strategic and
reputational risk. A major innovation of the proposed accord is the introduction of an
evolutionary framework of three stages for the calculation of an OR capital charge;
see Basel Committee on Banking Supervision [2006].

Under the most sophisticated of these approach, namely the Advanced Measurement
Approach (AMA), banks are given an unprecedented amount of flexibility to develop
their own model for assessing their exposure to OR. This freedom, in the opinion
of the Committee, will help to accommodate a rapid evolution in OR management
practices over the coming years. Arbitrariness of OR regulatory charges is instead
heavily criticized in Pezier [1996]. Nešlehová et al. [2006] contains some critical
remarks from a statistical estimation point of view.

The regulator in principle only requires that a bank’s activities are categorized into
the 56-cell Basel matrix, a two-dimensional array in which operational losses are
separately modeled in eight business lines and by seven risk types. The total capital
allocation is then requested to be the sum of unspecified risk measures, accounting
for expected and unexpected losses for the different OR estimates, and this across the
cells of the above or similar matrix. Diversification arguments may be used to reduce
this total sum.

2.1 Probability models for OR losses

The most risk-sensitive AMA methodology by far is the Loss Distribution Approach
(LDA), which aims at modelling the distribution function for Li, j , the one-year holding
period random OR loss in the i-th business line for the j-th loss type. Among eligible
LDA techniques, the most popular is the actuarial collective model of risk, in which
frequency and severity distributions of losses are estimated separately and then the
aggregate loss distribution is computed trough convolution over the cells in the Basel
matrix. It is typically impossible to derive analytical expressions for this kind of con-
volution: Monte Carlo simulations or numerical approximation are used in practice;
see Frachot et al. [2004] and Hürlimann [2004], respectively. The need for such meth-
ods can be bypassed by extracting the underlying one-year loss distribution statistically
from available data. This is the approach taken for instance in Moscadelli [2004] and
de Fontnouvelle et al. [2005], and critically discussed in Nešlehová et al. [2006]. Al-
ternative approaches may be based on graph theory or econophysics models, possibly
combined with some form of expert systems; see Leippold and Vanini [2005] and Kühn
and Neu [2004], respectively. A final analysis would typically be based on statistical
estimation based on internal as well as external data, combined with expert opinion.
Also note that insurance mitigation (up to 20%) for operational risk is possible; see
for instance Bazzarello et al. [2006].
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2.2 Aggregating marginal models

The Committee proposes to compute the total capital charge C to be allocated by
simple addition of the capital charges for every cell of the matrix, regardless of the
measure of risk used to calculate them. In standard practice, C is derived as the addition
of the VaRs at probability level 0.999 for the random losses Li, j across risk types and
business lines, namely

C =
8∑

i=1

7∑
j=1

VaR0.999(Li, j ),

where VaRα(Li, j ), α ∈ [0, 1] is the α-quantile of the estimated distribution func-
tion for the loss in the (i, j)-cell of the Basel matrix. This procedure can be math-
ematically justified by the assumption of comonotonicity among risk cells; see
Proposition 3.1 in Embrechts et al. [2003] and the same paper for more details about
comonotonicity. Many authors criticize this assumption as not being realistic, and
remark that ORs are not perfectly correlated in view of their heterogeneous nature.
Among others, Frachot et al. [2004] stress that there are strong arguments in fa-
vor of low levels of correlation among aggregate losses in the matrix and regard
the one-correlation scenario as highly conservative. At this point we would like to
stress that addition of VaRs over aggregated losses, like business lines, is typically
done.

In spite of these critics, it seems useful to remark that for many examples of inter-
est in quantitative risk management the maximal value for the VaR for an aggregate
position does not occur under the assumption of comonotonicity (i.e. maximal corre-
lation). In fact, apart from pathological cases of no actuarial relevance, for any fixed
set of models for the marginal losses Li, j and every quantile α large enough, there
always exists a distribution function for the aggregate loss

∑8
i=1

∑7
j=1 Li, j under

which

8∑
i=1

7∑
j=1

VaRα(Li, j ) < VaRα

(
8∑

i=1

7∑
j=1

Li, j

)
; (2.1)

see Embrechts et al. [2005, Section 3.1] and Rüschendorf [1981, Theorem 5 and Pr. 1].
As a consequence, adding VaRs across different business lines turns out not to be a
conservative strategy from a pure mathematical point of view. Moreover, the worst-
VaR structure of dependence can be tricky to deal with, and is often excluded from
standard families of copulas used in dependence simulations; see Embrechts et al.
[2005, Fig. 3].

The aim of this paper is to compute a conservative estimate of the capital charge
C without using any assumption on the dependence structure of the portfolio of risks
involved. However, the bank may be permitted to use internally determined models
to capture dependence in OR losses; see Chavez-Demoulin et al. [2006] for some
advanced approaches to this task.
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3 Theory

After giving conditions for an easy calculation of the bound stated in Embrechts and
Puccetti [2006, Theorem 3.1], we extend Embrechts and Puccetti [2006, Theorem 4.2]
to non-homogeneous portfolios. We first introduce some notation. We usually denote
vectors in Rn−1 by x−n and vectors in Rn by x. The indicator function of the set B ⊂ R
is the function 1B : R → R,

1B(b) :=
{

1 if b ∈ B,

0 otherwise,

while the inverse of an increasing function ψ : R → R is the function ψ−1 : R →
R := R ∪ {+∞,−∞}, defined by

ψ−1(y) := inf{x ∈ R : ψ(x) ≥ y}.

We denote by F− the left-continuous version of the df F of a random variable X , i.e.
F−(x) := P [X < x], x ∈ R. Finally, BM(R) is the class of bounded and measurable
real-valued functions.

3.1 Preliminaries and standard bounds

Let X1, . . . , Xn be n (n > 1) real-valued random variables (risks) on some probability
space (�,A,P), with given non-defective dfs Fi (x) = P[Xi ≤ x], i ∈ {1, . . . , n} =:
N . The random vector (portfolio) X := (X1, . . . , Xn) will represent the one-period
losses deriving from the n different loss categories of a firm. We assume every marginal
distribution Fi , i ∈ N to have support Si := [ai ,+∞), ai ∈ R, and to be absolutely
continuous with a continuous and strictly decreasing density fi = F ′

i on (x Fi ,+∞),
for some x Fi ≥ ai . x Fi can be thought as the smallest real number above which the
density fi is strictly decreasing. Table 1 gives some important continuous models of
interest to risk management, for which the marginal losses are consistent with our
framework.

Table 1 Values for x F for some distributions F of actuarial interest. We label TGPD the Tail estimator of
a Generalized Pareto Distribution; see (6.45) in Embrechts et al. [1997]

Distribution Parameters range Density Support x F

Log-Normal (μ, σ 2) μ ∈ R, σ ≥ 0 1
x
√

2πσ
e−

(ln(x)−μ)2

2σ2 [0,+∞) eμ−σ 2

Gamma (a, b) a, b > 0 x (a−1)e−x/b

�(a)ba [0,+∞) b[a − 1]+

Pareto (α, λ) α, λ > 0 λαα

(λ+x)α+1 [0,+∞) 0

Weibull (α, λ) α, λ > 0
( x
α

)λ
λ e−( x

α )λ x−1 [0,+∞)
(

[λ−1]+
λ

) 1
λ

TGPD (ξ, β, u, ku ) ξ, β > 0, u ∈ R, ku ∈ (0, 1] ku
β

(
1 + ξ (x−u)

β

)− 1
ξ −1

[u,+∞) u
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The aggregate loss deriving from the portfolio X will be S := ∑n
i=1 Xi . For a fixed

real threshold s, we define the function φ : Rn−1 → R as follows:

φ(x−n) :=
n−1∑
i=1

Fi (xi ) + F−
n

(
s −

n−1∑
i=1

xi

)
− n + 1. (3.1)

The meaning of the function φ comes out from duality theory; see (3.6) and comments
below. In the general case when we do not have information regarding the dependence
structure of the portfolio X, e.g. we do not assume the Xi ’s to be independent or
comonotonic, Theorem 3.1 in Embrechts and Puccetti [2006] yields that

P [S < s] ≥ τ (s) := sup
x−n∈Rn−1

[φ(x−n)]+ . (3.2)

Translated into the language of VaR, the above inequality becomes

VaRα(S) ≤ τ−1(α), α ∈ [0, 1]. (3.3)

Denuit et al. [1999] define a bound on P[S ≤ s] which is equivalent to τ (s) in our
setting and they remark that it can rarely be calculated explicitly in practice, particularly
if the distributions of the risks Xi are heterogenous in form. In such circumstances,
they resort to a numerical approximation. We instead show that, in our framework
of actuarial/financial interest, first-order conditions allow for a less time-consuming
search of the supremum in (3.2), even for large portfolios. We let p := maxi∈N Fi (x Fi ).

Theorem 3.1. If for a fixed real threshold s, τ (s) > p, then τ (s) = φ(x∗−n), where
x∗−n = (x∗

1 , . . . , x∗
n−1) is the unique vector in

∏n−1
i=1 (x Fi ,+∞) satisfying{

f1(x∗
1 ) = fi (x∗

i ), i = 2, . . . , n − 1,

f1(x∗
1 ) = fn

(
s −∑n−1

i=1 x∗
i

)
.

(3.4)

Proof: For i ∈ {1, . . . , n − 1} fixed, observe that

φ(x−n) =
∑

1≤ j≤n−1,
j =i

Fj (x j ) + Fi (xi ) + F−
n

(
s −

n−1∑
i=1

xi

)
− n + 1

≤ (n − 2) + p + 1 − n + 1 = p,

for all x−n with xi ≤ x Fi . Considering also that τ (s) > p ≥ 0, we can reduce prob-
lem (3.2) to

τ (s) = sup
x−n∈Rn−1

[φ(x−n)]+ = sup
x−n∈Rn−1

φ(x−n) = sup
x−n∈

∏n−1
i=1 (xFi ,+∞)

φ(x−n).
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Note that

lim
xi→+∞ F−

n

⎛⎜⎜⎜⎜⎝s − xi −
∑

1≤ j≤n−1,
j =i

x Fj

⎞⎟⎟⎟⎟⎠ = 0, for all i = 1, . . . , n − 1.

Therefore, for all ξ > 0 and i ∈ {1, . . . , n − 1}, it is always possible to select a real
x+

i such that

F−
n

⎛⎜⎜⎜⎜⎝s − xi −
∑

1≤ j≤n−1,
j =i

x Fj

⎞⎟⎟⎟⎟⎠ < ξ, for all xi ≥ x+
i .

This implies that

φ(x−n) =
n−1∑
i=1

Fi (xi ) + F−
n

(
s −

n−1∑
i=1

xi

)
− n + 1

≤ (n − 1) + ξ − n + 1 = ξ,

for all x−n ∈ ∏n−1
i=1 (x Fi ,+∞) with xi ≥ x+

i .
We can choose ξ such that 0 ≤ p < ξ < τ (s) and conclude that x Fi < x+

i , i =
1, . . . , n − 1 and hence there exists x∗−n ∈ ∏n−1

i=1 (x Fi , x+
i ) such that τ (s) = φ(x∗

−n).
The continuity of the fi ’s yields differentiability of φ on

∏n−1
i=1 (x Fi ,+∞), imply-

ing that x∗−n must satisfy the first-order conditions given in (3.4). Moreover, note that
(s −∑n−1

i=1 x∗
i ) > x Fn , otherwise φ(x∗

−n) ≤ n − 1 + F−
n (x Fn ) − n + 1 ≤ p. As a con-

sequence, strict decreasingness of each fi in (x Fi ,+∞) gives uniqueness of such a
solution. Note that, for n = 2, (3.4) reduces to its second equality. �

Remark 3.1. Though the bound (3.2) is valid for any set of marginal distributions
F1, . . . , Fn , conditions (3.4) may fail to hold at the corresponding supremum if some
of the Fi ’s have a bounded support or are mixed with a discrete component in the tail,
as for instance in a compound model. For a in-depth discussion on the assumption of
continuous marginals and on the way actuarial models fit our framework, we refer to
Section 5.1. For a general joint loss ψ(X) first-order conditions are still necessary at
the global optimum but may fail to be sufficient; see Appendix A.

We can calculate bounds on VaRα (S) using Theorem 3.1 only for values α > p.
This does not present an issue, since, in practice, α is often chosen above the level
0.99. The corresponding thresholds of interest are hence sufficiently large.
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Lemma 3.1. We have that τ (s) > p for every real threshold s satisfying

s >

n∑
i=1

F−1
i

(
p + n − 1

n

)
. (3.5)

Proof: Assume that (3.5) is true and define the vector x̂ as x̂i := F−1
i ( p+n−1

n ), i ∈
N . Since every fi is positive and p+n−1

n > p, we conclude that F−
n (s −∑n−1

i=1 x̂i ) >
F−

n (F−1
n ( p+n−1

n )) = p+n−1
n and therefore

τ (s) = sup
x−n∈Rn−1

[φ(x−n)]+ ≥ [φ(x̂−n)]+ > n
(

p + n − 1

n

)
− n + 1 = p.

�

Remark 3.2. For an homogeneous portfolio, i.e. Fi = F, i ∈ N for some fixed df F ,
we have p = F(x F ) and the standard bound simplifies to

τ (s) = nF(s/n) − n + 1, s ≥ nF−1

(
F(x F ) + n − 1

n

)
;

see Embrechts and Puccetti [2006]. Moreover, note that if p = 0, e.g. in the case
of a portfolio of Pareto-distributed risks, conditions (3.4) can be used for every real
threshold yielding a non-trivial standard bound.

Recall from (3.3) that the inverse of the function τ gives a bound on the VaR for the
aggregate position S. The function τ−1 can be directly calculated using Theorem 4.1
in Embrechts et al. [2003], which is the dual formulation of the optimization problem
in (3.2). Using this result, we have analogous interior first-order conditions; for further
details in the case of homogeneous portfolios, we refer to Theorem 2.6 in Puccetti
[2005], the general case being analogous. We do not follow this equivalent approach
here, since we will need the vector x∗

−n in the analysis below.

3.2 Dual bounds

For portfolios of more than two risks (n > 2), the standard bound given in (3.2) is not
sharp in general; see Embrechts and Puccetti [2006] and discussions therein. A way to
tighten this bound relies on a Mass Transportation duality result given in Rüschendorf
[1981, Theorem 5]:

P [S < s] ≥ 1 − inf

{
n∑

i=1

∫
fi d Fi : fi ∈ BM(R), i ∈ N s.t.

n∑
i=1

fi (xi ) ≥ 1[s,+∞)

(
n∑

i=1

xi

)
for all xi ∈ R, i ∈ N

}
. (3.6)
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This dual optimization problem seems to be very hard to solve in general, but ev-
ery set of admissible functions ( f1, . . . , fn) in (3.6) produces a lower bound α on
P [S < s], and, equivalently, an upper bound on VaRα(S). In general, choosing in (3.6)
the piecewise-constant admissible dual choices

fi (x) := 1(xi ,+∞) (x) , i ∈ N \{n}, fn(x) := 1[s−∑n−1
i=1 xi ,+∞)(x),

for arbitrary x−n ∈ Rn−1 and s ∈ R, leads to the function φ defined in (3.1) and thus
to the standard bound τ (s). We now consider piecewise-linear admissible choices in
order to improve the latter.

The following theorem extends Theorem 4.2 in Embrechts and Puccetti [2006]
to heterogeneous portfolios. Recall that x∗

−n is the unique vector in
∏n−1

i=1 (x Fi ,+∞)
satisfying (3.4).

Theorem 3.2. Define the vector x∗ := (x∗
−n, s −∑n−1

i=1 x∗
i ). Then

P [S < s] ≥ δ(s) := 1 − inf
r∈∏n

i=1(ai ,x∗
i )

∑n
i=1

∫ s−∑
j =i r j

ri
(1 − Fi (xi )) dxi

s −∑n
i=1 ri

. (3.7)

Translated into the language of VaR, the above inequality becomes

VaRα(S) ≤ δ−1(α), α ∈ [0, 1].

Proof: For an arbitrary vector r ∈ ∏n
i=1(ai , x∗

i ) define, for all i ∈ N , the functions
f̂ r
i : R → R,

f̂ r
i (xi ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if xi ≤ ri ,

xi − ri

s −∑n
i=1 ri

if ri < xi ≤ s −
∑
j =i

r j ,

1 otherwise.

We now prove that f̂ r
1 , . . . , f̂ r

n are an admissible choice in (3.6). Since every f̂ r
i is non-

negative, it is sufficient to show that we have
∑n

i=1 f̂ r
i (xi ) ≥ 1 whenever

∑n
i=1 xi ≥ s.

If xî ≥ s −∑
j =î r j for some î = 1, . . . , n, this trivially follows, so take xi ≤ s −∑

j =i r j , i ∈ N with
∑n

i=1 xi ≥ s. Define

I := {i ∈ N : xi > ri }, I := N \ I

and observe that ∑
i∈I

xi ≥ s −
∑
i∈ Ī

xi ≥ s −
∑
i∈ Ī

ri . (3.8)
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By definition of the f̂ r
i ’s and (3.8), it follows that

n∑
i=1

f̂ r
i (xi ) =

∑
i∈I

f̂ r
i (xi ) =

∑
i∈I

xi − ri

s −∑n
i=1 ri

=
∑

i∈I xi −
∑

i∈I ri

s −∑n
i=1 ri

≥ s −∑
i∈I ri −

∑
i∈I ri

s −∑n
i=1 ri

≥ 1.

The theorem follows by checking that

n∑
i=1

∫
f̂ r
i (xi )dFi (xi ) =

∑n
i=1

∫ s−∑
j =i r j

ri
(1 − Fi (xi )) dxi

s −∑n
i=1 ri

and taking the infimum over all r ∈ ∏n
i=1(ai , x∗

i ). �

Remark 3.3. If r goes to x∗, we have that, for all i ∈ N , f̂ r
i goes in the sup-norm to the

function f i : R → R, f i := 1(x∗
i ,+∞)(xi ). Since substituting these admissible choices

in (3.7) we find that δ(s) = τ (s), the dual bound δ is in general better (i.e. ≥) than the
standard bound τ . This can be equivalently expressed by saying that

VaRα(S) ≤ δ−1(α) ≤ τ−1(α), α ∈ [0, 1].

Moreover, note that every choice for the vector r, even if not optimal, provides a bound
on the corresponding VaR for S, which is conservative from a risk management point
of view.

4 Applications to Operational Risk data

Our aim here is to illustrate a general procedure that, once the univariate marginals
F1, . . . , Fn of a portfolio of risks are fixed, will allow to calculate the standard and
dual bounds defined respectively in (3.2) and (3.7).

4.1 Data from the second QIS

Moscadelli [2004] contains an analysis of the Basel II data on Operational Risk com-
ing out of the second Quantitative Impact Study (QIS); see also Chapter 10 in McNeil
et al. [2005] for a discussion and further references. As an illustration of our results, we
choose as marginals the distribution functions estimated in the paper of Moscadelli
[2004] for the losses in eight OR business lines. We thus take every marginal risk
Xi , i = 1, . . . , 8 to be distributed as the Tail estimator of a Generalized Pareto Distri-
bution (TGPD), i.e.

Fi (x) = 1 − kui

(
1 + ξi (x − ui )

βi

)− 1
ξi

, x > ui , for all i = 1, . . . , 8.
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Table 2 Parameter values for the eight TGPD-distributed risks following Moscadelli [2004]

Business line i ξi βi ui kui F(ui )

Corporate finance 1 1.19 774 400.28 0.09929 0.90071
Trading & sales 2 1.17 254 193.00 0.09977 0.90023
Retail banking 3 1.01 233 247.00 0.03462 0.96538
Commercial banking 4 1.39 412 270.00 0.09227 0.90773
Payment & settlement 5 1.23 107 110.00 0.10097 0.89903
Agency services 6 1.22 243 201.66 0.10604 0.89396
Asset management 7 0.85 314 235.00 0.09648 0.90352
Retail brokerage 8 0.98 124 149.51 0.09979 0.90021

The values for the parameters in the different business lines are chosen in accordance
with the above cited paper and are summarized in Table 2.

The reasons for that choice are mainly pedagogical: we are not primarily interested
here in the many remaining statistical problems (lack of extreme data, reporting bias,
limited collection periods, cut-off values, etc. . .) typically present in the analysis of
OR data, for which we refer to Frachot et al. [2004], de Fontnouvelle et al. [2005] and
to Section 5 below. The reader may notice that we deal with 8 categories of OR losses,
instead of the 56 in the full Basel matrix. This is done in view of computational issues;
see Section 4.3 below.

4.2 Calculation of standard bounds

The above portfolio of OR risks fits our framework with ai = x Fi = ui , for all i =
1, . . . , 8; see Table 1. We point out that our setting is suitable also in those situations
where one only has an accurate modeling of the extreme right part of the marginal
distributions.

In order to calculate the standard bound τ (s), we can use the conditions stated
in Theorem 3.1 provided that τ (s) > maxi=1,...,8 Fi (ui ) = 0.96538; see Table 2. Ac-
cording to Lemma 3.1, this condition is met if the threshold s is set above the value
7.9917 × 104. If this is the case, conditions (3.4) are necessary and sufficient to iden-
tify the vector x∗

−n attaining the standard bound. For a portfolio of TGPD marginals,
x∗−n = (x∗

1 , . . . , x∗
n−1) must satisfy:

ku1

β1

(
1 + ξ1(x∗

1 − u1)

β1

)− 1
ξ1
−1

= kui

βi

(
1 + ξi

(
x∗

i − ui
)

βi

)− 1
ξi
−1

, i = 2, . . . , n − 1,

(4.1)

ku1

β1

(
1 + ξ1

(
x∗

1 − u1
)

β1

)− 1
ξ1
−1

= kun

βn

(
1 + ξn

(
s −∑n−1

i=1 x∗
i − un

)
βn

)− 1
ξn
−1

. (4.2)

It is numerically straightforward to find the unique vector solving these equations. In
fact, the values for x∗

2 , . . . , x∗
n−1 are uniquely determined by x∗

1 via (4.1), while x∗
1 is
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the unique root of the function ζ : R → R, defined as follows:

ζ (x1) : = ku1

β1

(
1 + ξ1 (x1 − u1)

β1

)− 1
ξ1
−1

− kun

βn

(
1 + ξn

(
s −∑n−1

i=1 x∗
i (x1) − un

)
βn

)− 1
ξn
−1

,

with

x∗
i (x1) : = ui + βi

ξi

⎧⎨⎩
[
βi

β1

ku1

kui

(
1 + ξ1 (x1 − u1)

β1

)− 1
ξ1
−1
]− ξi

1+ξi

− 1

⎫⎬⎭ ,

i = 2, . . . , n − 1.

Finding the unique root of a real-valued function is a standard routine for most math-
ematical software. We use MATLAB

©R to obtain the vector x∗
−n and the corresponding

standard bound for the thresholds illustrated in Fig. 1. The corresponding bounds on
VaR are given in Table 3.

0 2 4 6 8 10 12

x 10
5

0.97

0.975

0.98

0.985

0.99

0.995

1

s

comonotonicity
dual bound
standard bound

Fig. 1 Range for P [S < s] for Moscadelli’s portfolio of risks under the comonotonic scenario. We also
give the standard (3.2) and dual (3.7) bounds
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Table 3 Range for
VaRα(

∑8
i=1 Xi ) for the data

underlying Table 2

α Comonotonic value Dual bound Standard bound

0.99 2.8924 × 104 1.4778 × 105 2.6950 × 105

0.995 6.7034 × 104 3.3922 × 105 6.1114 × 105

0.999 4.8347 × 105 2.3807 × 106 4.1685 × 106

0.9999 8.7476 × 106 4.0740 × 107 6.7936 × 107

4.3 Computation of dual bounds

While the computation of standard bounds is reduced to the problem of finding the root
of a real-valued function, calculating the dual bounds calls for the use of sophisticated
optimization algorithms. In fact, problem (3.7) introduces the possibility of multiple
local-optima, i.e. spurious solutions that merely satisfy the requirements on the partial
derivatives of the objective function. Problems exhibiting the above difficulty and
algorithms designed to tackle it are termed Global Optimization (GO) problems. In
particular, (3.7) is a bound-constrained GO problem, i.e. having a bounded box as a
feasible region in Rn .

Actually, there are several optimization techniques fitting the structure of (3.7).
We refer to Neumaier [2004] for a comprehensive review. We only remark that it is
unrealistic to expect to find one general non-linear algorithm working well for every
kind of non-linear model. As a consequence, GO codes are to be used with care:
they cannot always find the global optimum in a reasonable, predictable amount of
time and their quality of performance is not well understood. Moreover, algorithmic
performance typically deteriorates with increasing dimension. Choosing n = 50 is
challenging for most general-purpose codes dealing with heterogeneous portfolios;
that is why we did not consider all the 56 cells of the Basel Matrix in our application.
With respect to this, note instead that, for identically distributed risks, problem (3.7)
is trivial to solve even with huge portfolio dimensions; see Puccetti [2005, Table 2.4].

Our present understanding of GO codes implies that one should experiment with
several methods. Keeping an eye at the industry needs, among all the codes we tried
yielding satisfactory results, we decided for freely-available softwares which have a
MATLAB

©R version and are well documented.
Since loops and conditional statements are executed in C much faster than in

MATLAB
©R, one should expect the C implementation of the same algorithms to dra-

matically reduce the computational time. On the other hand, the largest manageable
portfolio dimension is expected to increase when using specialized software which
require the gradient and Hessian matrix of the objective function.

For these more sophisticated choices or latest advances on GO software to be
possibly used, we refer to the regularly updated Fourer [2000] and Neumaier [2000],
and to the references cited therein.

4.4 Optimization codes

In order to solve problem (3.7) and find δ(s) for the data underlying Table 2, we use
two similar codes which are known in the literature to be effective global optimizers
that require relatively few function evaluations:
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(i) Global optimization by Multilevel Coordinate Search (MCS), developed by Huyer
and Neumaier [1999]; MATLAB

©R version and user guide are available at http://
www.mat.univie.ac.at/∼neum/software/mcs/

(ii) DIviding RECTangles (DIRECT), originally introduced in Jones et al. [1993];
MATLAB

©R version and user guide are available at http://www4.ncsu.edu/

∼ctk/Finkel Direct/

For more details on the structure of the two algorithms and the underlying theory, we
refer the reader to the above cited papers.

Both methods are guaranteed to converge eventually to the globally optimal func-
tion value provided that the function is continuous in the neighborhood of a global
optimizer. Unfortunately, this eventually may come at the expense of a large and exhas-
tive search over the domain; see for instance Huyer and Neumaier [1999, Section 6].
In fact, the two codes are so-called sampling algorithms, i.e. they sample function val-
ues on the domain and need a criterion that tells the program when to stop searching
for a better local minimizer. This criterion should be stringent enough that it will not
waste too many functions values, but it should also be sufficiently flexible to ensure
that in typical cases the algorithm does not terminate before the global minimizer has
been found. We stress that, even in the latter case, the corresponding dual bound will
be conservative; see Remark 3.3. Finally, the two codes are deterministic, hence no
multiple runs are needed.

By applying the two codes to the objective function given in (3.7) with the marginal
distributions from Table 2, we obtain the same results, which are illustrated in Fig. 1
and Table 3 along with the previously calculated standard bounds. It is relevant that
in Fig. 1 the dual bound is strictly greater than the standard one, in accordance with
Remark 3.3. Observe also that the value for P [S < s] obtained under the assumption
of comonotonicity among risks lies well above the corresponding dual bound defined
in (3.7), and this for all thresholds s of interest. As we already stated in (2.1),
the sharp bound on P [S < s] falls between the comonotonic and the dual values,
highlighting again that VaR is not a sub-additive measure of risk. This is also evident
from Table 3, where the corresponding bounds on VaR are given. The comonotonic
value is obtained by simple summation of marginal VaRs across business lines.

We stress the gain an end user may have in evaluating the risk of a portfolio
by the the dual rather than the standard bound. Indeed, the lowest bound offers an
evaluation of the risky position held that is prudential, more realistic and economically
advantageous at the same time. Though Frachot et al. [2004] among others consider
even the comonotonic charges as over-conservative, there is no mathematical reason
to drop the worst-case bounds if one uses VaR to evaluate the risk of the position held
and no dependence assumptions on the portfolio are explicitly made.

As a further pedagogical example, we apply our procedure to the three-dimensional
Pareto-Pareto-Weibull portfolio described in Table 2 in Denuit et al. [1999]. In this
paper, the authors resort to the numerical approximation of the marginal distributions
described in Williamson and Downs [1990], in order to compute the standard bound
Fmin, which, in our setting, is equivalent to the standard bound τ . Table 4 collects
the standard bounds Fmin(s) calculated in the above paper along with the standard
bounds τ (s) and the dual bounds δ(s), calculated using Theorem 3.1 and Theorem 3.2,
respectively. Note that, apart from rounding errors, our standard bounds τ (s) are exact

Springer



Geneva Risk Insur Rev (2006) 31:71–90 85

Table 4 Lower bounds on P [X1 + X2 + X3 < s] for the portfolio of risks described in Denuit
et al. [1999, Table 2]

s Fmin(s) τ (s) δ(s) s Fmin(s) τ (s) δ(s)

2.75 0.052 0.0535 0.1650 6.50 0.652 0.6528 0.6961
3.00 0.124 0.1254 0.2294 6.75 0.668 0.6719 0.7128
3.25 0.188 0.1900 0.2872 7.00 0.688 0.6896 0.7282
3.50 0.248 0.2482 0.3391 7.25 0.704 0.7060 0.7427
3.75 0.300 0.3010 0.3860 7.50 0.720 0.7214 0.7561
4.00 0.348 0.3489 0.4284 7.75 0.732 0.7357 0.7686
4.25 0.392 0.3924 0.4669 8.00 0.748 0.7490 0.7803
4.50 0.432 0.4321 0.5020 8.25 0.760 0.7616 0.7913
4.75 0.468 0.4684 0.5340 8.50 0.772 0.7733 0.8015
5.00 0.500 0.5017 0.5633 8.75 0.784 0.7843 0.8111
5.25 0.532 0.5322 0.5902 9.00 0.792 0.7946 0.8201
5.50 0.560 0.5604 0.6149 9.25 0.804 0.8042 0.8286
5.75 0.584 0.5863 0.6377 9.50 0.812 0.8133 0.8365
6.00 0.608 0.6102 0.6587 9.75 0.820 0.8219 0.8440
6.25 0.632 0.6323 0.6781 10.00 0.828 0.8300 0.8511

since they are not based on some discretization of the marginal distributions. Indeed,
they are greater than the corresponding Fmin(s), according to Denuit et al. [1999,
Section 4]. Moreover, the dual bounds δ(s) improve the corresponding standard bounds
without using additional information on the dependence structure of the portfolio.

5 Final remarks

This paper describes a procedure to calculate standard bounds on the distribution of an
aggregate loss with given marginals which is more accurate than the iterative methods
existing in the literature. Most importantly, the new technique can be applied when
the number n of risks involved is large. This is because our method always reduces to
the search for the unique root of a real-valued function.

A dual approach from Mass Transportation theory allows to improve the standard
bound so obtained when the latter is not sharp (n ≥ 3), but calls for the use of a
Global Optimization algorithm and may come at the expence of a large computational
time for medium-sized portfolios (10 ≤ n ≤ 50). The time consumption is typically
reduced if all marginal distributions come from the same parameterized family, as
in the operational risk example given in Section 4. A general procedure to calculate
standard and dual bounds on the distribution function of the total loss originating from
a general portfolio of risks goes as follows:

(i) Substitute the fixed marginal densities in (3.4) and determine the real function
ζ whose unique root is the first component of the vector x∗

−n which attains the
standard bound (3.2).

(ii) Substitute the tails of the marginal distributions and the vector x∗ (defined from
x∗−n) in (3.7) and apply a GO algorithm to solve the bound-constrained problem
so obtained. The optimum function value gives the dual bound (3.7).

Springer



86 Geneva Risk Insur Rev (2006) 31:71–90

If the mathematical form of the densities does not allow to write the function ζ in closed
form, the GO codes described in Section 4.4 may become useful also to determine the
standard bounds. However, an analytical expression is always to be preferred.

5.1 Practical challenges: Actuarial collective models

Our standard-dual bound methodology relies on the assumption of continuity at least
in the tail of the distributions F1, . . . , Fn of the n one-period losses considered.

In practice, banks rarely have enough available data for calibrating these probability
distributions. On the contrary, banks frequently have to provide an assessment of their
frequency and severity parameters on the basis of both their own experts’ point of
view and available data (internal as well as external) if any. This means that actuarial
collective models are often used throughout the banking industry as the most popular
way of approximating the Fi ’s. In the context of actuarial models, the techniques
proposed in this paper are difficult to implement, first because marginal distributions
have no analytical expressions and secondly because of the compounding nature of
these distributions.

In order to adapt our mathematical methods to collective models, it is useful to
recall that any compound model with sub-exponential severities of claims can be
approximated in the tail by a continuous distribution, see Embrechts et al. [1997,
Theorem 1.3.9].

Concerning the AMA methodology, we agree with the author of Moscadelli [2004]
in saying that the treatment of the severity and frequency components within a single
overall estimation problem may reduce the estimation error and the computational
cost with respect to compound models. Further support to continuous models comes
from statistical analyses, which show that Extreme Value Theory in its Peaks Over
Thresholds representation explains the behavior of OR data very well at the highest
percentiles, while conventional actuarial models are typically underperforming in the
tail area of data. In particular, the use of TGPD distributions in modeling OR losses has
a strong mathematical justification; see Theorem 3.4.13(b) in Embrechts et al. [1997].
For further background on the use of these techniques to OR data, and in particular for
a warning concerning data contamination and mixture models, see Nešlehová et al.
[2006].

In conclusion, the usual lack of data in the extreme right part of the loss distributions,
combined with the necessity of high-quantile estimates, calls for the use of a smooth
parameterized model for the tail of losses.

5.2 Inclusion of jumps in the model

Real world catastrophes are often characterized by extraordinary movements that could
be included as discontinuities or jumps for added realism in general risk management
models. We now briefly discuss how the inclusion of jumps would affect the results
in this paper.

Finding the worst-possible VaR for a joint position with given discrete marginals is a
matter of solving a linear problem (LP) using the standard techniques from operations
research. Unfortunately, the dimensions of that LP increase exponentially with the
number of risks in the portfolio of interest. In practice, even for small-sized portfolios
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(n = 5), the need for less computationally-demanding methods arises; see Section 5.1
in Embrechts and Puccetti [2006] for more details on this.

With respect to standard bounds, when introducing discontinuities in the marginal
densities f1, . . . , fn of the n one-period losses, the first-order conditions introduced
in (3.4) may fail to determine a vector x∗

−n attaining the supremum in (3.2). If this
is the case, the most efficient technique to calculate standard bounds is the one first
introduced in Williamson and Downs [1990] for portfolios of two marginals and then
extended to arbitrary portfolios in Denuit et al. [1999] and in Embrechts et al. [2003].
This latter procedure however does not provide the vector x∗

−n , which is instead needed
for the computation of the corresponding dual bound.

In order to find such a vector one has to find the solution of (3.2). In the case of
discrete marginal, this turns out to be a global optimization problem with an objective
function taking only a finite number of values. An efficient code for this purpose can
be looked for in Fourer [2000] and Neumaier [2000].

Finally, dual bounds are based on the admissibility of the dual functionals
f̂ r
1 , . . . , f̂ r

n defined in the proof of Theorem 3.2, and hence are formally indepen-
dent of the choice of the Fi ’s. However, an end user working with some particular
discrete distribution functions may find it useful to construct ad-hoc admissible dual
choices yielding a very good bound within the specific context.

When using mixed distributions (as those in compound models), things get much
more complicated. For example, the search for the vector x∗

−n giving the supremum
in (3.2), to be performed over a continuum of points and function values without
even a bounded range, may result very hard to carry out. In this case, as remarked in
Section 5.1 above, we recommend to use continuous interpolations of the tail of the
distributions of interest.

Appendix A Extensions to general aggregating functions

In this appendix we discuss an extension to the case in which the total exposure deriving
from the n marginal risks is a general increasing function of these marginal risks.
Typical situations where this may occur are to be found in credit risk (basket options)
and multi-line insurance or reinsurance. For examples, see Chapter 6 in McNeil et al.
[2005].

A.1 Standard bounds

Let the aggregate loss derived from the portfolio X be ψ(X), for a function ψ : Rn →
R, increasing in each coordinate and satisfying limxi→+∞ ψ(x) = +∞, for all x1, . . . ,

xi−1, xi+1, . . . , xn ∈ R, and i = 1, . . . , n. We generalize the function φ : Rn−1 → R
as follows:

φ(x−n) :=
n−1∑
i=1

Fi (xi ) + F−
n (ψ∼

s (x−n)) − n + 1,
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whereψ∼
s : Rn−1 → R, ψ∼

s (x−n) := sup{xn ∈ R : ψ(x−n, xn) < s}. Equation (3.2) is
still valid within this extended framework:

P[ψ(X) < s] ≥ τψ (s) := sup
x−n∈Rn−1

[φ(x−n)]+ . (A.1)

For a joint position ψ(X) first order conditions are still necessary at the supremum
defined in (A.1).

Theorem A.1. If ψ∼
s is differentiable and, for a fixed real threshold s, τψ (s) > p,

then τψ (s) = φ(x∗
−n), where x∗

−n satisfies:

fi (x∗
i ) + fn(ψ∼

s (x∗
−n))

∂ψ∼
s

∂xi
(x∗

−n) = 0, i = 1, . . . , n − 1. (A.2)

Proof: The proof is analogous to that of Theorem 3.1. The conditions on ψ are
necessary to have that limxi→+∞ F−

n (ψ∼
s ((x F1 , . . . , x Fi−1 , xi , x Fi+1 , . . . , x Fn−1 ))) = 0,

for all i = 1, . . . , n − 1. �

Contrary to the case of the sum, conditions (A.2) may fail to be sufficient at the
supremum in (A.1). General conditions yielding uniqueness of the vector x∗

−n may be
cumbersome to work with and will typically depend on the function ψ and the fixed
marginal densities. The GO algorithms described in Section 4.3 may therefore become
useful already at this point, since they give also the location of the optimum function
value. A condition analogous to (3.5) identifies the thresholds s at which the standard
bound can be calculated by using (A.2).

Lemma A.1. If ψ is right-continuous in its last argument, τψ (s) > p for every real
threshold s satisfying

s > ψ

(
F−1

1

(
p + n − 1

n

)
, . . . , F−1

n

(
p + n − 1

n

))
. (A.3)

Proof: The proof is analogous to that of Lemma 3.1. Note that the assumption
of continuity on ψ avoids the case in which ψ(x̂−n, ψ

∼
s (x̂−n)) < s, implying that

ψ∼
s (x̂−n) = x̂−n and τψ (s) = p. �

A.2 Dual bounds

The dual result of Rüschendorf [1981] holds analogously for general measurable
functionals ψ :

P[ψ(X) < s] ≥ 1 − inf

{
n∑

i=1

∫
fi d Fi : fi ∈ BM(R), i ∈ N s.t.

n∑
i=1

fi (xi ) ≥ 1[s,+∞)(ψ(x)) for all x ∈ Rn

}
. (A.4)
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In order to find dual admissible functions for (A.4), we restrict our attention to functions
of the form ψ(x) = ∑n

i=1 hi (xi ), for strictly increasing functions hi : R → R, i ∈ N .
In this case, the computation of dual bounds is manageable with the same techniques
as described in Section 4, but still relies on the calculation (analytical or numerical)
of the vector x∗−n attaining the standard bound.

Theorem A.2. For any function of the form ψ(x) = ∑n
i=1 hi (xi ), for strictly increas-

ing, differentiable functions hi : R → R, i ∈ N, we have that

P[ψ(X)<s]≥δψ (s) := 1− inf
r∈∏n

i=1(ai ,x∗
i )

∑n
i=1

∫ h−1
i

(
s−∑

j =i h j (r j )
)

ri (1 − Fi (xi ))h′
i (xi ) dxi

s −∑n
i=1 hi (ri )

,

(A.5)
where x∗ = (x∗

−n, ψ
∼
s (x∗−n)).

Proof: For an arbitrary vector r ∈ ∏n
i=1(ai , x∗

i ) define f̂ r
i : R → R, i ∈ N as follows:

f̂ r
i (xi ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if xi ≤ ri ,
hi (xi ) − hi (ri )

s −∑n
i=1 hi (ri )

if ri < xi ≤ h−1
i

(
s −

∑
j =i

h j (r j )
)

,

1 otherwise.

Analogously to the proof of Theorem 3.2, it is sufficient to check that f̂ r
1 , . . . , f̂ r

n are
an admissible dual choice in (A.4). �

Acknowledgments The first author would like to thank EGRIE and the Geneva Association for the invita-
tion to deliver the Geneva Risk Economics Lecture 2005 at the First World Risk and Insurance Economics
Congress in Salt Lake City, 7–11 August, 2005. The lecture was partly based on the present paper. The
authors also thank two anonymous referees for their helpful comments.

References

BASEL COMMITTEE ON BANKING SUPERVISION [2006]: International Convergence of Capital
Measurement and Capital Standards. Basel: Bank for International Settlements.

BAZZARELLO, D., CRIELAARD, B., PIACENZA, F., and SOPRANO, A. [2006]: “Modeling Insurance
Mitigation on Operational Risk Capital,” Journal of Operational Risk, 1(1), 57–65.

CHAVEZ-DEMOULIN, V., EMBRECHTS, P., and NEŠLEHOVÁ, J. [2006]: “Quantitative Models for
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