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Abstract

This study designs an optimal insurance policy form endogenously, assuming the objective of the insured is to
maximize expected final wealth under the Value-at-Risk (VaR) constraint. The optimal insurance policy can be
replicated using three options, including a long call option with a small strike price, a short call option with a large
strike price, and a short cash-or-nothing call option. Additionally, this study also calculates the optimal insurance
levels for these models when we restrict the indemnity to be one of three common forms: a deductible policy, an
upper-limit policy, or a policy with proportional coinsurance.

Key words: value at risk, optimal insurance, deductible, policy limit, coinsurance

JEL Classification No.: G22

1. Introduction

This study focuses on deriving the optimal insurance policy form endogenously under a
value-at-risk (VaR) framework, where VaR is defined as the worst expected loss over a given
horizon at a given confidence level (Jorion [2001]). In this framework, the insured’s objective
is to maximize expected final wealth, but has a VaR constraint that must be met. In addition
to deriving the optimal insurance, this study also calculates the optimal insurance levels for
three alternative insurances in which we restrict the indemnity to be one of three common
forms: a deductible policy, an upper-limit policy, or a policy with proportional coinsurance.

At least three reasons exist why this study addresses the problem of the optimal insurance
policy under a VaR framework. First, institutions frequently face different forms of risk,
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most of which can be insured, and VaR has been adopted by institutions around the world
as a risk management tool.1 It is natural for institutions facing different forms of risk to
purchase risk reducing insurance. For example, insurance policies now can be purchased
to protect against losses such as human error, loss of staff, interruption of business, trading
losses, technology failure, and so on. Second, every individual always faces the risk of
uncertain future wealth and income. Like institutions, individuals can adopt VaR for risk
management. Naturally, individuals can purchase insurance to control VaR. Third, VaR
has progressively been adopted as the asset allocation constraint, for example, Campbell
et al. [2001] and Basak and Shapiro [2001].2 Additionally, given a fixed confidence level,
although bankers are frequently asked to calculate their VaR in order to determine their
regulatory capital, however, bankers can also retain the current capital level and adjust
their asset allocation, or can simply purchase insurance to meet their VaR criteria. Re-
stated, bankers can meet both the given regulatory confidence level and VaR by purchasing
insurance.

Various investigations have examined optimal insurance policy design. These investiga-
tions can be divided into two frameworks, with and without using expected utility. Under
the expected utility framework, Arrow [1974], and Raviv [1979] derived the optimal policy
form endogenously. Their studies assumed nonnegative indemnity and no moral hazard,
but subsequent studies relaxed these assumptions. Huberman, Mayers, and Smith [1983]
focused on two insurance policies, upper limits on coverage and deductibles, and incor-
porated moral hazard into their analysis. Next, Gollier [1987] relaxed the constraint that
insurance payments are always nonnegative to analyze optimal insurance contracts. Under
the non-expected utility framework, Doherty and Eeckhoudt [1995] adopted Yaari’s Dual
Theory to derive the optimal insurance. Since expected utility is linear in probability but
nonlinear in wealth, and since Yarri’s Dual Theory is linear in wealth but nonlinear in prob-
ability, Yaari’s Dual Theory generally obtains better results than expected utility theory.
Next, using the framework of second-degree stochastic dominance, Gollier and Schlesinger
[1996] provided a new proof for the optimality of deductible insurance, and Schlesinger
[1997] examined insurance policy goodness.

Similar to most previous research, this study endogenously derives the optimal insurance
policy form. However, unlike previous research, this study designs an optimal insurance
under a VaR framework. Like Doherty and Schlesinger [1983a], Doherty and Eeckhoudt
[1995], Li and Liu [2003], and Gollier [2003], this study assumes the insurance load-
ing to be proportional to expected indemnity. The main contents of this study include
the following: First, this study respectively derives the optimal insurance and the three
alternative insurances without making any assumption regarding the probability density
function of the risk. Second, to obtain more explicit indemnity schedules for all these in-
surance forms, this study further assumes that risk is uniformly distributed and lognormally
distributed.

Section 2 derives the optimal insurance and alternative insurances under a VaR con-
straint. Sections 3 and 4 then present the optimal insurance and alternative insurances
under the uniform and lognormal distributions, respectively. Finally, Section 5 presents
conclusions.
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2. The model

2.1. Assumptions

An insured has an initial wealth, W0, and faces a risk of loss, X , which is a non-negative con-
tinuous random variable with probability density function, f (x) and cumulative distribution
function, F(x). An insurance policy can reduce this risk. The insurance policy costs a pre-
mium, P , and pays an indemnity schedule, I (x), 0 ≤ I (x) ≤ x for all x . Assume the insurer
is risk neutral and the premium accordingly has the form P = (1 + λ) Ī , where Ī and λ

denote the expected indemnity payment and percentage loading, respectively. That is, the
insurance cost is proportional to the expected indemnity payment and the loading fee is λ Ī .
Consequently, the insured’s final wealth is W = W0 − P − X + I (X ) and expected final
wealth is W̄ = W0 − P − x̄ + Ī , where x̄ denotes the expected loss.

This study assumes that the objective of the insured is to choose I (x) to maximize the
expected final wealth under the VaR constraint, where VaR is the worst expected loss over
a given horizon at a given confidence level. Mathematically, the VaR constraint means
Pr {W ≥ W̄ − v} = 1 − α, where v ≡ VaR, 1 − α= the confidence level, and α= the
significance level.

2.2. Optimal insurance policy design

This subsection designs the optimal insurance that is Pareto-efficient, i.e. first-best optimal.3

The optimal insurance form with the indemnity schedule, I (x), must sufficiently satisfy the
insured’s objective and meet the premium request of the insurer. According to the previous
subsection, the optimal I (x) can be obtained as follows:

Maximize
I (x)

W̄ = W0 − P − x̄ + Ī (1)

Subject to Pr {W ≥ W̄ − v} ≥ 1 − α and P = (1 + λ) Ī

Using equalities P = (1 + λ) Ī and W = W0 − P − X + I (X ), Pr {W ≥ W̄ − v} ≥ 1 − α

can be rewritten as

Pr{X − I (X ) ≤ v + x̄ − Ī} ≥ 1 − α. (2)

Substituting P = (1+ λ) Ī into eqaution (1) yields W̄ = W0 − x̄ − λ Ī . Since W0, x̄ , and λ

do not depend on I (x), eqaution (1) means to minimize the indemnity to reduce the loading
fee. Accordingly, the optimality problem can be restated as follows.

Minimize
I (x)

Ī (3)

Subject to equation (2)

Minimizing Ī is equivalent to maximizing x̄ − Ī , since x̄ does not depend on I (x). Con-
sequently, the insured sets I (x) to minimize loading fee. In fact, x − I (x) represents the
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retention of the loss, and thus x̄− Ī represents the expected retention. The constraint indicates
the probability that the retention does not exceed the particular critical value, x̂ ≡ v+ x̄ − Ī ,
at least equals the confidence level (1 − α).

Since equation (3) is difficult to solve directly, like Raviv [1979] and Gollier and
Schlesinger [1996], we divide the optimality problem into two sub-problems. First, the
premium P is assumed fixed and the form of the optimal insurance coverage is found as a
function of P . Second, the optimal P is chosen. Since P = (1 + λ) Ī , the fixed value of P
is equivalent to fixed Ī .

Considering a fixed value of Ī , the first sub-problem is to choose I (x), which must satisfy
the restriction of E [I (X )] = Ī and minimize the probability Pr {X − I (X ) > v + x̄ − Ī}.
To save the loading fee, we start considering no indemnity paid yet. That is, when Ī = 0
and then the corresponding indemnity schedule I (x) ≡ 0 for all x . Substituting Ī = 0 and
I (x) ≡ 0 into equation (2), the constraint is changed to

Pr {X ≤ v + x̄} ≥ 1 − α (4)

Accordingly, we obtain

If Pr {X ≤ v + x̄} ≥ 1 − α, then I (x) ≡ 0 for all x . (5)

This study starts to consider another case that does not satisfy equation (4), restated, the
insured requires insurance and thus Ī > 0. Additionally, the constraint of equation (2) must
be binding for optimality, since X has a continuous probability distribution. Accordingly,
equation (3) can be rewritten as follows.

Minimize
I (x)

Ī (6)

Subject to Pr{X − I (X ) ≤ v + x̄ − Ī} = 1 − α (7)

Equation (7) is equivalent to Pr {X − I (X ) > v + x̄ − Ī } = α. Fixing a value of Ī > 0,
I (x) must be chosen to minimize the probability Pr {X − I (X ) > v + x̄ − Ī }. For losses
such that x > v + x̄ − Ī , an indemnity can be paid to bring this to an equality, that is,
I (x) = x − (v+ x̄ − Ī ).4 However, this might violate the restriction that E [I (X )] = Ī . To
save loading fees, the insured sub-interval is selected on the smaller part of x > v+ x̄ − Ī .
The insured sub-interval is assumed to be v+ x̄ − Ī < x < A, where A is a particular critical
value. Since X is continuous, A is unique. In sum, in the case where Pr {X > v + x̄} > α,
the optimal indemnity schedule I (x) is summarized as follows.

If Pr {X > v + x̄} > α, then I (x) =






0

x − x̂

0

x ≤ x̂

x̂ < x < A

x ≥ A

(8)

Since Pr {X − I (X ) > v + x̄ − Ī } is increasing in Ī . If we now increase (decrease) Ī ,
the minimum probability will fall (rise). Consequently, the second sub-problem is to adjust
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Ī such that the probability equals the value α. From equation (8), we can further obtain that

Pr {X − I (X ) > v + x̄ − Ī } = Pr {X ≥ A} = 1 − F(A) = α (9)

Equation (9) implies A = F−1(1 − α), where F−1(·) denotes the inverse function of F .
Finally, Ī must be adjusted to satisfy the following equation:

Ī = E [I (X )] =
∫ A

x̂
(x − x̂) f (x) dx , x̂ ≡ v + x̄ − Ī . (10)

Actually, the condition Pr {X > v + x̄} > α is equivalent to A > v + x̄ , since A =
F−1(1 − α). Combining this with equations (5), (8), (9), and (10), the optimal indemnity
schedule is summarized as follows:

I (x | A ≤ v + x̄) ≡ 0 for all x, (11)

and

I (x |A > v + x̄) =






0

x − x̂

0

x ≤ x̂

x̂ < x < A

x ≥ A

. (12)

Additionally, the optimal indemnity schedule is listed in Table 1. Moreover, figure 1 indicates
the probability density function of loss and shows the optimal indemnity schedule. To
analyze the retained loss, this study draws the probability density function of retention
(x − I (x)) in figure 2. Especially, the retained loss has a probability mass (= F(A)− F(x̂))
at x̂ . Figures 3 and 4 respectively illustrate the relations of indemnity and retention versus
loss.

Interestingly, the optimal indemnity schedule can be decomposed as three options. From
equation (12), we obtain

I (x) = Max {x − x̂, 0} − Max {x − A, 0} − (A − x̂) × 1x ≥ A, (13)

where 1x ≥ A, an index function, equals 1 if x ≥ A and otherwise equals 0. Using x as the
underlying asset and taking the same maturity as the insurance policy, Max {x − x̂, 0} and

Table 1. Optimal indemnity schedule.

Case A ≤ v + x̄ A > v + x̄

x interval ∀ x 0 < x < x̂ x̂ < x < A A < x

I (x) I (x) = 0 I (x) = 0 I (x) = x − x̂ I (x) = 0

x − I (x) x x x̂ x
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Figure 1. Probability density function of loss and optimal indemnity schedule.

Figure 2. Probability density function of retention.

Max {x − A, 0} are the call options with strike prices x̂ and A, respectively. By definition,
a cash-or-nothing call option pays off nothing if the asset price ends up below the strike
price at maturity, and pays a fixed amount if it ends up above the strike price (Hull [2003]
p. 441). Taking A as the strike price and A − x̂ as the fixed amount, then (A − x̂) × 1x ≥ A

is exactly equivalent to the payoff of a cash-or-nothing call option. In short, the optimal
indemnity schedule is the same as a long call option with a small strike price, a short call
option with a large strike price, and a short cash-or-nothing call option.

From equations (9) and (10), the main comparative static results can be derived as below,
with the proofs being presented in Appendixes 1 and 2, respectively.

∂2 Ī/∂ν2 > 0 > ∂ Ī/∂ν and ∂2 Ī/∂α2 > 0 > ∂ Ī/∂α if A > x̂ . (14)
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Figure 3. Indemnity versus Loss.

Figure 4. Retention versus Loss.

Assuming insurance is required (A > x̂), then based on equation (14), the expected in-
demnity is decreasing and convex in ν and α. Accordingly, the expected wealth is increasing
and concave in ν and α, since W̄ = W0 − x̄ − λ Ī . That is,

∂ W̄/∂ν > 0 > ∂2 W̄/∂ν2 and ∂W̄/∂α > 0 > ∂2 W̄/∂α2 if A > x̂ . (15)
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2.3. Alternative insurances

Case 1: Proportional coinsurance policy. Assume the indemnity schedule is limited to
coinsurance provision, I (x) = θ x , where θ denotes the coinsurance proportion. Accord-
ingly, the optimality problem (equation (3)) is revised as follows.

Minimize
θ

Ī = θ x̄ (16)

Subject to Pr {X − θ X ≤ v + x̄ − Ī} ≥ 1 − α (17)

From equation (17), we obtain θ ≥ 1 − v/[F−1(1 − α) − x̄]. Substituting this fact into
equation (16) obtains

θ = 1 − v/[F−1(1 − α) − x̄], (18)

Ī = θ x̄ = {1 − v/[F−1(1 − α) − x̄]} x̄ . (19)

Equation (19) implies that the expected indemnity Ī is decreasing and liner in v.

Case 2: Deductible policy. Assume the indemnity schedule is limited to deductible clause,
I (x) = Max{x − D, 0}, where D represents the deductible. Accordingly, the optimality
problem (equation (3)) is revised as follows.

Minimize
D

Ī =
∫ ∞

D
(x − D) f (x) dx (20)

Subject to Pr {Min {X, D} ≤ v + x̄ − Ī } ≥ 1 − α (21)

Given Pr {X ≤ v + x̄} ≥ 1 − α, from equation (5), the insured need not purchase
insurance, i.e. I (x) ≡ 0 or D ≥ Max {x}. Meanwhile, given Pr {X ≤ v + x̄} < 1 − α, the
insured should purchase insurance, that is, D < Max {x}. If the deductible D > v+ x̄ − Ī ,
then equation (21) can be modified as follows.

Pr {X ≤ v + x̄ − Ī } ≥ 1 − α. (22)

However, equation (22) clearly deviates the condition that Pr {X ≤ v + x̄} < 1 − α.
Therefore, D ≤ v + x̄ − Ī in the case that insured need purchase insurance. Taking the
constraint D ≤ v + x̄ − Ī into equation (20), D = v + x̄ − Ī since Ī is decreasing in D.
In sum, the optimal deductible schedule can be arranged as follows.

D ≥ Max{x} if Pr{X ≤ v + x̄} ≥ 1 − α (23)
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and





D = v + x̄ − Ī

Ī =
∫ ∞

D
(x − D) f (x) dx

if Pr{X ≤ v + x̄} < 1 − α. (24)

Appendix 3 shows that the expected indemnity Ī is decreasing and convex in v.

Case 3: Upper-limit policy. Assume the indemnity schedule is limited to I (x) = Min{x,
M}, where M is the upper-limit. Accordingly, the optimality problem (equation (3)) is
revised as follows.

Minimize
M

Ī =
∫ M

0
x f (x) dx +

∫ ∞

M
M f (x) dx (25)

Subject to Pr {Max{X, M} ≤ v + x̄ + M − Ī } ≥ 1 − α (26)

In the case where Pr {X ≤ v+ x̄} ≥ 1−α, from equation (5), the insured need not purchase
insurance; that is, I (x) ≡ 0 or M = 0. Meanwhile, when Pr {X ≤ v + x̄} < 1 − α, the
insured should purchase insurance; that is, M > 0. Since the inequality M < v+ x̄ +M − Ī
always holds, equation (26) can be modified to

Pr {X ≤ v + x̄ + M − Ī } ≥ 1 − α. (27)

From equations (25) and (27),

∫ M

0
x f (x) dx − MF(M) = v + x̄ − F−1(1 − α), (28)

and

Ī = v + x̄ + M − F−1(1 − α). (29)

Appendix 4 shows that the expected indemnity Ī is decreasing and concave in v.

3. Insurance policy under uniform distribution

Assume X obeys the uniform distribution, with probability density function

fU (x) = 1/h, 0 ≤ x ≤ h. (30)

Accordingly, the cumulative distribution function

FU (x) = x/h, 0 ≤ x ≤ h, (31)
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and the expected value

x̄ = h/2. (32)

For convenience, U b
a is defined and calculated as follows.

U b
a ≡

∫ b

a
x fU (x) dx =

∫ b

a

x

h
dx = b2 − a2

2h
. (33)

From equations (5), (31) and (32), the condition that the loss requires insurance is

ν < (0.5 − α) h (34)

For convenience, this Section assumes that equation (34) holds.

3.1. Optimal insurance

Combining equations (9) and (31) obtains

A = F−1
U (1 − α) = (1 − α)h. (35)

From equations (10), (30), (31), and (33),

∫ A

x̂
(x − x̂) fU (x) dx = U A

x̂ − x̂ [FU (A) − FU (x̂)] = Ī . (36)

Substituting x̂ = v + x̄ − Ī = v + h/2 − Ī and equation (35) into equation (36) yields

(1 − α)2h2 − x̂2

2h
− x̂

(
(1 − α)h − x̂

h

)

= v + h

2
− x̂ . (37)

Solving above equation obtains

x̂ = −α h +
√

2 h (v + α h). (38)

Moreover, substituting x̂ = v + h/2 − Ī into equation (38) yields

Ī = v + h/2 + α h −
√

2 h (v + α h). (39)
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3.2. Alternative insurance

Case 1: Proportional coinsurance policy. Combining equations (18), (31) and (32) can
obtain the optimal coinsurance proportion

θ = 1 − v

F−1
U (1 − α) − x̄

= 1 − v

(0.5 − α) h
. (40)

Substituting equations (32) and (40) into equation (19) obtains

Ī = h

2
− v

1 − 2α
. (41)

Case 2: Deductible policy. Substituting equations (31) and (32) into equation (24) obtains






D = v + x̄ − Ī

Ī =
∫ h

D

x − D

h
dx

(42)

Simplifying equation (42) yields

{
D = √

2vh

Ī = h/2 + ν −√
2vh

(43)

Case 3: Upper-limit policy. From equations (31), (32) and (33), equation (28) is rewritten
as follows.

M2

2h
− M2

h
= v + h

2
− (1 − α)h (44)

Solving the above equation, the optimal upper-limit policy is obtained as follows.

M = h
√

1 − 2α − 2v/h . (45)

Substituting equations (31), (32) and (45) into equation (29) obtains

Ī = h [
√

1 − 2α − 2v/h − 0.5 + α ] + v. (46)
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4. Insurance policy under lignormal distribution

Assume log X has a normal distribution with mean µ and variance σ 2. By definition, X
obeys the lognormal distribution with probability density function

fL (x) = 1

xσ
√

2π
e−

1
2

(
log x −µ

σ

)2

, x ≥ 0. (47)

From equation (47), Appendix 5 shows that the cumulative distribution

FL (x) = �

(
log x − µ

σ

)

, x ≥ 0, (48)

where�(·) denotes the cumulative standard normal distribution. Additionally, Lb
a is defined

and calculated as follows.

Lb
a ≡

∫ b

a
x f (x) dx = eµ+σ 2/2

[

�

(
log b − µ

σ
− σ

)

−�

(
log a − µ

σ
− σ

)]

. (49)

Appendix 6 provides the proof of equation (49). From equation (49), the expected value

x̄ = L∞
0 = eµ+ σ 2/2. (50)

From equations (5), (48) and (50), the condition in which insurance is required against a
potential loss is

ν < eµ + σ �−1(1−α) − eµ+ σ 2/2 (51)

For convenience, equation (51) is assumed to hold in this Section.

4.1. Optimal insurance

Combining equations (9) and (48) obtains

A = F−1
L (1 − α) = eµ + σ �−1(1−α). (52)

From equations (10), (48) and (49),

Ī =
∫ A

x̂
(x − x̂) f (x) dx = L A

x̂ − x̂ [FL (A) − FL (x̂)]. (53)



OPTIMAL INSURANCE DESIGN 173

Substituting Ī = v + x̄ − x̂ into equation (53), x̂ can be obtained by

L A
x̂ − x̂ [ 1 − α − FL (x̂) ] = v + x̄ − x̂ . (54)

4.2. Alternative insurance

Case 1: Proportional coinsurance policy. Combining equations (18), (48) and (50), the
optimal coinsurance proportion is

θ = 1 − v

eµ+ σ �−1(1−α) − eµ+ σ 2/2
(55)

Substituting equations (50) and (55) into equation (19) produces

Ī = eµ+ σ 2/2 − v

eσ �−1(1−α) − σ 2/2 − 1
(56)

Case 2: Deductible policy. Substituting equations (48) and (50) into equation (24) obtains

{
D = ν + eµ+ σ 2/2 − Ī

Ī = L∞
D − D [1 − FL (D)]

(58)

Case 3: Upper-limit policy. From equations (28), (48), (49) and (50), M can be solved by

L M
0 − MFL (M) = v + eµ+ σ 2/2 − eµ+ σ �−1(1−α) (59)

Substituting equations (48), (50) and (59) into equation (29) obtains

Ī = v + eµ+ σ 2/2 − eµ+ σ �−1(1−α) + M. (60)

5. Conclusions

This study derives the optimal insurance policy form endogenously under a VaR framework.
In addition to deriving the optimal insurance, this study also calculates the optimal insurance
levels for three alternative insurances. We show that the optimal insurance policy can be
replicated by three options, including a long call option with a small strike price, a short
call option with a large strike price, and a short cash-or-nothing call option. Additionally,
the main comparative static results are as follows.

For the optimal insurance and the deductible policy, the expected indemnity is decreasing
and convex in VaR. Next, for the proportional coinsurance policy, the expected indemnity
is decreasing and linear in VaR. Finally, for the upper-limit policy, the expected indemnity
is decreasing and concave in VaR.
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Following previous investigations, this study assumes that the loading percentage is fixed
relative to the expected indemnity. Although this assumption frequently is consistent with
insurance practices, differences exist in regular loading fees. For example, the loading per-
centage can be increasing or decreasing in the expected indemnity. If the loading percentage
is not fixed, then the provided optimal insurance form may be revised. Consequently, fu-
ture research can attempt to develop the optimal insurance form with the variable loading
percentage case.

Appendix 1: Prove that if A > x̂ then ∂2 Ī/∂ν2 > 0 > ∂ Ī/∂ν
for the optimal insurance

Partially differentiating x̂ ≡ v + x̄ − Ī in equation (10) with respect to v yields

∂ x̂/∂ν = 1 − ∂ Ī/∂ν. (A1)

Fixed α (i.e., A is fixed) and partially differentiating equation (10) with respect to v yields

−∂ x̂

∂ν
(x̂ − x̂) f (x̂) +

∫ A

x̂
− ∂ x̂

∂ν
f (x) dx = ∂ Ī

∂ν
. (A2)

Simplified equation (A2) yields

−[∂ x̂/∂ν] [F(A) − F(x̂)] = ∂ Ī/∂ν. (A3)

Substituting equation (A1) into equation (A3) yields

[∂ Ī/∂ν]{1 − [F(A) − F(x̂)]} = −[F(A) − F(x̂)]. (A4)

Partially differentiating equation (A4) with respect to v yields

[∂2 Ī/∂ν2]{1 − [F(A) − F(x̂)]} + [∂ Ī/∂ν]{ f (x̂) [∂ x̂/∂ν]} = f (x̂) [∂ x̂/∂ν]. (A5)

Substituting equation (A1) into equation (A5) yields

[∂2 Ī/∂ν2]{1 − [F(A) − F(x̂)]} = f (x̂) [∂ x̂/∂ν]2. (A6)

Since A > x̂ , 0 < [F(A)− F(x̂)] < 1. Incorporating this fact into both equations (A4) and
(A6) produces ∂2 Ī/∂ν2 > 0 > ∂ Ī/∂ν.

Appendix 2: Prove that if A > x̂ then ∂2 Ī/∂α2 > 0 > ∂ Ī/∂α
for the optimal insurance

Since F(A) = 1 − α, differentiating this equation with respect to α can yield

[∂A/∂α] f (A) = −1. (A7)
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Partially differentiating x̂ ≡ v + x̄ − Ī in equation (10) with respect to α yields

∂ x̂/∂α = −∂ Ī/∂α. (A8)

Partially differentiating equation (10) with respect to α yields

∂ A

∂α
(A − x̂) f (A) − ∂ x̂

∂α
(x̂ − x̂) f (x̂) +

∫ A

x̂
−∂ x̂

∂α
f (x) dx = ∂ Ī

∂α
. (A9)

Substituting equations (A7) and (A8) into equation (A9) yields

[∂ Ī/∂α] {1 − [F(A) − F(x̂)]} = −(A − x̂). (A10)

Partially differentiating equation (A10) with respect to α yields

∂2 Ī

∂α2
(1 − [F(A) − F(x̂)]) + ∂ Ī

∂α

[

1 + f (x̂)
∂ x̂

∂α

]

= −∂A

∂α
+ ∂ x̂

∂α
. (A11)

Substituting equation (A8) into equation (A11) yields

(∂2 Ī/∂α2)(1 − [F(A) − F(x̂)]) = f (x̂)(∂ Ī/∂α)2 − (∂A/∂α) − 2(∂ Ī/∂α). (A12)

Since A > x̂ , 0 < [F(A) − F(x̂)] < 1. Incorporating this fact into equation (A10) yields
∂ Ī/∂α < 0. Additionally, ∂A/∂α < 0 by equation (A7), F(A)−F(x̂) < 1, and ∂ Ī/∂α < 0,
thus ∂2 Ī/∂ν2 > 0.

Appendix 3: Proof that if A > x̂ then ∂ Ī/∂ν < 0 and ∂2 Ī/∂ν2 > 0 for the
deductible policy.

From equation (24), we have

Ī =
∫ ∞

D
[x − (v + x̄ − Ī )] f (x) dx (A13)

Substituting the fact of D = ν + x̄ − Ī from equation (24) into equation (A13) yields

Ī =
∫ ∞

v+x̄− Ī
x f (x) dx − (v + x̄ − Ī ) [1 − F(D)] (A14)

Partially differentiating equation (A14) with respect to ν yields

∂ Ī

∂ν
= −

[

1 − ∂ Ī

∂ν

]

Df (D) −
[

1 − ∂ Ī

∂ν

]

[1 − F(D)] + Df (D)

[

1 − ∂ Ī

∂ν

]

(A15)
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Simplifying equation (A15) yields

(∂ Ī/∂ν) F(D) = − [1 − F(D)] (A16)

Partially differentiating equation (A16) with respect to ν yields

(∂2 Ī/∂ν2) F(D) + (∂ Ī/∂ν) (1 − ∂ Ī/∂ν) f (D) = (1 − ∂ Ī/∂ν) f (D) (A17)

Simplifying equation (A17) yields

(∂2 Ī/∂ν2) F(D) = [1 − ∂ Ī/∂ν]2 f (D) (A18)

Since 0 < F(D) < 1, equation (A16) states ∂ Ī/∂ν < 0. Additionally, equation (A18)
clearly states ∂2 Ī/∂ν2 > 0.

Appendix 4: Proof that if A > x̂ then ∂ Ī/∂ν < 0 and ∂2 Ī/∂ν2 < 0
for the upper-limit policy

Partially differentiating equation (29) with respect to ν yields

∂ Ī/∂ν = 1 + ∂ M/∂ν. (A19)

Partially differentiating equation (A19) with respect to ν yields

∂2 Ī/∂ν2 = ∂ 2 M/∂ν2. (A20)

Partially differentiating equation (28) with respect to ν yields

[∂M/∂ν] Mf (M) − [∂M/∂ν] F(M) − Mf (M) [∂M/∂ν] = 1. (A21)

Simplifying equation (A21) yields

[∂M/∂ν] F(M) = −1. (A22)

Substituting equation (A19) into equation (A22) yields

∂ Ī/∂ν = −[1 − F(M)]/F(M). (A23)
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Since 0 < F(M) < 1, equation (A23) states ∂ Ī/∂ν < 0. Additionally, partially differenti-
ating equation (A22) with respect to ν yields

[∂2 M/∂ν2] F(M) + [∂M/∂ν] f (M) [∂M/∂ν] = 0. (A24)

Substituting equation (A20) into equation (A24) yields

∂2 I/∂ν2 = −[∂M/∂ν]2 f (M)/F(M) < 0. (A25)

Appendix 5: Proof of equation (48)

By definition,

FL (x) ≡
∫ x

0

1

xσ
√

2π
e−

1
2

(
log x−µ

σ

)2

dx . (A26)

Let z = (log x − µ)/σ , then dz = dx/(σ x) and equation (A26) can be rewritten as

FL (x) ≡
∫ log x −µ

σ

−∞

1√
2π

e− z2/2 dz = �

(
log x − µ

σ

)

. (A27)

Appendix 6: Proof of equation (49)

By definition,

Lb
a ≡

∫ b

a

1

σ
√

2π
e
− 1

2

(
log x −µ

σ

)2

dx . (A28)

Let z = (log x − µ)/σ , then dx = σ eµ+ σ z dz and equation (A28) can be rewritten as

Lb
a ≡

∫ log b −µ

σ

log a −µ

σ

1√
2π

eµ + σ z e−z2/2 dz. (A29)

Let y = z − σ , then equation (A29) can be rewritten as

Lb
a ≡ eµ+ σ 2/2

∫ log b −µ

σ
− σ

log a −µ

σ
− σ

1√
2π

e− y2/2 dy (A30)

= eµ+ σ 2/2

[

�

(
log b − µ

σ
− σ

)

−�

(
log a − µ

σ
− σ

)]

.
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Notes

1. As described by Dowd [1999] and Jorion [2001], VaR is being adopted by investment banks, commercial banks,
pension funds, other financial institutions, regulators, asset managers, and non-financial corporations.

2. Campbell et al. [2001] developed a portfolio selection model that allocates financial assets by maximizing
expected returns subject to the constraint that expected maximum loss should meet the VaR limits. Basak and
Shapiro [2001] found an optimal dynamic portfolio for utility maximizing investors, who must use VaR to
manage risk exposure.

3. A Pareto efficient allocation is one for which there is no way to make all agents better off (Varian [1992], p.
225). Hence, a Pareto efficient allocation is one that maximizes the satisfaction of the insured, while holding
the insurer fixed at some given satisfaction. In this study, the insurer’s satisfaction is unchanged if the insurance
premium is P = (1 + λ) Ī .

4. Once the insured selects some sub-interval of x > v + x̄ − Ī to insure, to save loading fees, the retention,
x − I (x), on the sub-interval must equal v + x̄ − Ī .
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