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Abstract
For polyhedralmass bodies having arbitrary shape and density distribution of polynomial type
we present a tensorial approach to derive analytical expressions of the gravitational potential
and gravity vector. They are evaluated at an arbitrary point by means of formulas, referred
to a Cartesian reference frame having an arbitrary origin, that are shown to be singularity-
free whatever is the position of the observation point with respect to the body. The solution
is expressed as a sum of algebraic quantities depending solely upon the 3D coordinates of
the polyhedron vertices and the coefficients of the polynomial density function. Hence, no
recursive expression needs to be invoked as in the recent contribution by Ren et al. (Surv
Geophys 41:695–722, 2020).Moreover, the tensorial formalismdeveloped in the paper allows
one to obtain more concise, coordinate-free expressions that can also be extended to address
polynomial functions of greater order. The analytical expressions of the gravitational potential
and gravity vector are numerically validated and comparedwith alternativemethods retrieved
from the literature.

Keywords Gravitational potential · Gravitational vector · Polyhedral bodies · Polynomial
density function

Article Highlights

• A tensor-based formalism is shown to yield analytical formulas for the gravitational field
of polyhedrons having a polynomial density contrast

• Analytical formulas are provided as function of the 3D coordinates of the vertices of the
polyhedron and the parameters of a fourth-order polynomial density contrast

• Singularity-free formulas for the gravitational potential and gravity vector, referred to an
arbitrary position of the observation point, have been implemented in a MATLAB code
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1 Introduction

Gravity modeling plays a fundamental role in interpreting gravity data sets that are measured
using gravimeters based on land, in boreholes or on board satellite, marine or aircraft vessels
and used to estimate locations and shapes of bodies embedded in the earth, see, e.g.,Nabighian
et al. (2005) for a recent historical account.

In practice gravity data may be inverted, in conjunction with geophysical data sets such
as seismic data and electromagnetic induction data (Moorkamp et al. 2011; Aydemir et al.
2014; Roberts et al. 2016), in order to provide more accurate models of the earth.

Recent improvements in gravimeter efficiency and inversion algorithms allow for a wide
application of the gravity methods in several geophysical and geodetic problems such as
studies addressing Moho and Crustal structure (Van der Meijde et al. 2013; De Castro et al.
2014), mineral exploration (Beiki and Pedersen 2010; Martinez et al. 2013; Abtahi et al.
2016) and geoid determination (Bajracharya and Sideris 2004).

Accordingly, it is of paramount importance to efficiently and accurately approximate the
true mass density variations of the earth, e.g., sedimentary basins and bedrock topography,
by suitable volume discretization techniques.

To this end several approaches have been exploited over time, both numerical and analyti-
cal, and increasing levels of refinement have been adopted for the basic geometric block used
to discretize the earth volume (prism, polyhedron, etc.) and for selecting the related density
variation (constant, linear, exponential, etc.).

Common to all gravity forward modeling techniques is the evaluation of the so-called
Newton’s integrals that can be performed either numerically or analytically, adopting in both
strategies either a spatial or a spectral, of Fourier, domain (Kuhn and Seitz 2005).

Numerical strategies approximate the integrals by exploiting, e.g., the finite element
method (Cai and Wang 2005; Kaftan et al. 2005), or finite difference methods (Farquharson
and Mosher 2009; Jahandari and Farquharson 2013).

Alternatively, the integrand is expanded in terms of harmonic series and the potential
harmonic coefficients are evaluated by different techniques (Colombo 1981; Cunningham
1970; Gottlieb 1993; Chao and Rubincam 1989; Balmino 1994; Werner 1997; Jamet and
Thomas 2004; Chen et al. 2019; Jamet and Tsoulis 2020).

In the context of numerical methods Newton’s integrals are evaluated in the spectral
domain by using Fast Fourier Transform (FFT) or spherical transform algorithms. A brief
review of FFT-based algorithms has been provided in Wu (2016; 2018). Subsequently, both
2D and 3D Fourier-domain expressions of gravity effects due to an arbitrary polyhedron with
constant or exponential density distributions have been provided in Wu (2019).

Concerning the analytical approach in the spatial domain, closed-form expressions of the
integrals have been evaluated, in the case of constant density, in Nagy (1966), Banerjee and
Das Gupta (1977), Cady (1980), Nagy et al. (2000), Tsoulis (2000), Jiancheng and Wenbin
(2010) and D’Urso (2012), see also Plouff (1975, 1976),Won and Bevis (1987) andMontana
et al. (1992) for computer codes.

Analytical expressions of the gravity anomaly for prisms have been derived by D’Urso
(2016), for a linearly varying density, byRao (1985, 1986, 1990), Rao et al. (1994), Gallardo-
Delgado et al. (2003) for a quadratic density contrast, by García-Abdeslem (1992, 2005), for
a cubic density variation with depth by Fukushima (2018) as well as Zhang and Jiang (2017)
for density varying as an arbitrary-order polynomial function. A good collection of earlier
references for 3D prisms can be found in Li and Chouteau (1998).
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Non-polynomial density contrast models for 3D bodies have been considered by Cordell
(1973), Chai and Hinze (1988), Litinsky (1989), Rao et al. (1990), Chakravarthi et al. (2002),
Silva et al. (2006), Chakravarthi and Sundararajan (2007), Chappell and Kusznir (2008) and
Zhou (2009b)while, for 2Dbodies, byGendzwill (1970),Murthy andRao (1979), Pan (1989),
Guspí (1990), Ruotoistenmäki (1992), Martín-Atienza and García-Abdeslem (1999), Zhang
et al. (2001) and Zhou (2008, 2009a, 2010). For more complicated forms of the density
contrast, see, e.g., Cai and Wang (2005) and Mostafa (2008).

Besides the case of prisms endowed with complicated functions describing density con-
trast, research has addressed the case of polyhedrons having complicated density contrast.
In this respect analytical formulas for the gravimetric analysis have been contributed by Paul
(1974), Barnett (1976), Strakhov (1978), Okabe (1979), Waldvogel (1979), Golizdra (1981),
Strakhov et al. (1986), Götze and Lahmeyer (1988), Pohanka (1988), Murthy et al. (1989),
Kwok (1991b), Werner (1994), Holstein and Ketteridge (1996), Petrović (1996), Werner and
Scheeres (1997), Li and Chouteau (1998), Tsoulis (2012), D’Urso (2013a, 2014a), Conway
(2015) andWerner (2017). Subsequent advancements have been only concerned with a linear
density variation (Pohanka 1998; Hansen 1999; Holstein 2003; Hamayun et al. 2009; D’Urso
2014b).

Significant advancements in the evaluation of closed-form solutions for the gravitational
field and gravitational contrast of polyhedral bodies having a polynomial density function
of arbitrary order have been recently contributed by D’Urso and Trotta (2017), extending a
similar treatment addressing the gravity anomaly of polygonal bodies D’Urso (2015), and
later addressed in Chen et al. (2018) and a series of papers by Ren and coworkers (2017;
2018a; 2018b; 2020).

Remarkably, in the last paper, the authors provide closed-formsolutions of the gravitational
potential and the gravitational field that are singularity-free, an issue previously discussed in
Kwok (1991a), for prism-based modeling, and Tsoulis and Petrović (2001) for polyhedra.

The methodology outlined in D’Urso and Trotta (2017) is further generalized in order
to derive an analytical expression of the gravitational potential and gravitational vector for
polyhedral bodies having density contrast expressed as a polynomial function of arbitrary
degree. The result is obtained by a version of the generalized Gauss theorem that extends to
tensors of arbitrary order the result first presented in D’Urso (2012, 2013a), and subsequently
applied to several problems ranging fromgeodesy (D’Urso 2014a, b; D’Urso andTrotta 2015;
D’Urso 2016), to geomechanics (D’Urso and Marmo 2009; Sessa and D’Urso 2013; D’Urso
and Marmo 2015), to geophysics (D’Urso and Marmo 2013), elasticity (Marmo and Rosati
2016; Marmo et al. 2016a, b, 2017, 2018; Trotta et al. 2016a, b, 2018) and to heat transfer
(Rosati and Marmo 2014).

Specifically, the volume integral of quantities expressed as tensor products of suitable
vectors is first reduced to a 2D boundary integral and subsequently written as a finite sum of
2D integrals extended to the faces of the polyhedral body Ω . By a further application of the
generalized Gauss theorem, each face integral is reduced to the sum of 1D integrals, extended
to the edges of the face, that are analytically evaluated.

Due to space limitations the tensorial formalism developed in this paper is explicitly
illustrated only for polynomial functions up to the fourth-order but it can be easily adapted to
functions of greater order by suitably exploiting the general approach outlined in the paper.
This leads to algebraic expressions of the gravitational potential and the gravity vector that
are shown to be well-defined and singularity-free whatever is the position of the observation
point with respect to Ω .

123



Surveys in Geophysics

The paper is organized as follows. Section2 sets the stage for the formalism adopted in
the paper by making reference to concepts and methods of tensor analysis briefly presented
in Appendix A.

The gravitational potential of a polyhedral body, endowed with a polynomial density
function of fourth-order as a maximum, is elaborated upon in Sect. 2.1 where Gauss’ theorem
is used to provide the expression of the potential in terms of integrals extended to the boundary
of the target. Being the body polyhedral such integrals are expressed in Sect. 2.2 as 2D
integrals extended to each face of the target. Based on results of tensor analysis, detailed in
Appendix B, and a further application of Gauss’ theorem the 2D integrals extended to each
face are expressed in Sect. 2.3 in terms of 1D integrals over each edge of the generic face.

Subsequently, in Sect. 2.4, the 1D integrals are transformed into algebraic expressions,
invoking the results presented in Appendix C, that depend upon the 2D coordinates of the
vertices of the face expressed in a reference frame local to the face. The singularity-free
nature of the final expression is proved in Sect. 2.5.

Basically the same path of reasoning is adopted for the gravity vector in Sects. 3.1–3.5.
Section4 shows how to express the algebraic expressions of the gravitational potential and
gravity vector in terms of the 3D coordinates of the vertices of the polyhedron, while Sect. 5
is devoted to the numerical validation of the proposed approach.

Specifically, Sect. 5.1 includes a comparisonwith similar results presented in the literature.
Sect. 5.2 shows the results of some numerical tests carried out to assess the rounding error
sensitivity of the analytical formulas derived in the paper with respect to the dimensionless
target distance (Holstein and Ketteridge 1996). Furthermore Sect. 5.3 validates the proposed
tensorial approach by proving that the results of the formulas presented in the paper hold
true irrespective of arbitrary rotations of the observation point and the target body that leave
unaltered their mutual position.

Finally, the Conclusions in Sect. 6 summarize the main findings of the paper and highlight
the future developments of the research.

2 Gravitational Potential of a Polyhedral Body Having a Polynomial
Density

Let us consider a Cartesian reference frame having origin at an arbitrary point O and a
polyhedral body Ω whose continuum mass distribution is assumed to have a density δ(s)
varying as a polynomial function of the position vector s = (x, y, z) of an arbitrary point
belonging to it:

δ(s) =
N∑

i=0

N−i∑

j=0

N−(i+ j)∑

k=0

ci jk x
i y j zk . (1)

In the above formula, the constants ci jk with non-negative suffixes i, j, k are taken as
known coefficients of the assumed polynomial density law while N represents the maximum
power of the polynomial density function. We shall confine the treatment to the case N≤4
since this will suffice to address the majority of the practical applications and, at the same
time, to present our formulation with a sufficient degree of generality to deduce the cases
N > 4.
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More explicitly, for N = 4, Eq. (1) becomes

δ(s) = c000+ c100x+c010y+c001z+c200x2+c020y2+c002z2+c110xy
+c011yz+c101xz
+ c300x3 + c030y3 + c003z3 + c210x2y + c021y2z + c102xz2

+c120xy2 + c012yz2

+ c201x2z + c111xyz
+ c400x4 + c040y4 + c004z4 + c310x3y + c031y3z
+c103xz3 + c130xy3 + c013yz3

+ c301x3z + c220x2y2 + c022y2z2 + c202x2z2 + c211x2yz
+c121xy2z + c112xyz2.

(2)

Denoting by p the position vector of an arbitrary point P , the gravitational potential U
induced at P by the mass of Ω is expressed as

U (P) = U (p) = G
∫

Ω

δ(s)
[(p − s) · (p − s)]1/2 dV (s), (3)

where G is the gravitational constant and the function δ is given by (1).
In order to simplify the previous expression it is convenient to introduce the relative

position r = s− p of an arbitrary point of Ω with respect to p, see, e.g., Fig. 1. Accordingly,
we express the function δ as follows

δ(s) = δo + C(1) · D(1)
s + C(2) · D(2)

s + C(3) · D(3)
s + C(4) · D(4)

s , (4)

where δo = c000 is the density at s = o, i.e., at the origin of the reference frame, D(1)
s = s

while D(2)
s , D(3)

s and D(4)
s are defined in the formulas (204), (207) and (210), respectively,

of Appendix A. Matrix representation of C(1), C(2), C(3) and C(4) is provided in the formulas
(229) and (232) while the dot product between tensors is defined in formula (227).

In conclusion, setting r = s − p in (3) and exploiting (4) the gravitational potential of a
polyhedral body Ω whose density varies as in (1) is given by

U (p) = G
∫

Ω

δo +∑4
k=1 C(k) · D(k)

s

(r · r)1/2 dV (s) =
4∑

k=0

U (k)(p), (5)

whereU (k)(p) denotes the contribution to the gravitational potential associated with the k-th
power of the polynomial law representing the density variation.

In order to actually compute the gravitational potential in (5) we notice that the statement
of U (0)(p) is elementary

U (0)(p) = Gδo

∫

Ω

dV

(r · r)1/2 , (6)

since it amounts to consider a polyhedron of constant density; on the contrary, the evaluation
of the additional terms U (i)(p) in (5), i ∈ [1, 4], requires further manipulations. Actually,
recalling the definition of D(i)

s , provided in (204), (207) and (210), for i = 2, 3 and 4,
respectively, one has to consider tensors in which some of the building blocks require some
integration.

To set the stage, let us first consider the trivial case i = 1

U (1)(p) = G C(1) ·
∫

Ω

s dV (s)
(r · r)1/2 = G C(1) ·

[ ∫

Ω

r dV
(r · r)1/2 + p

∫

Ω

dV

(r · r)1/2
]
. (7)
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Hence, setting

R(m,1/2)
Ω =

∫

Ω

[⊗r,m]
(r · r)1/2 dV m = 0, 1, . . . , (8)

where

[⊗r,m] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if m = 0
r if m = 1
r ⊗ r if m = 2
. . . . . . . . . . . . . . . . . . . . .

r ⊗ r ⊗ · · · ⊗ r︸ ︷︷ ︸
m times

if m > 2

, (9)

one has

U (1)(p) = G C(1) ·
[
R(1,1/2)

Ω + R(0,1/2)
Ω p

]
. (10)

Accordingly, recalling (204), we can set:

U (2)(p) = G C(2) ·
[
(p ⊗ p)R(0,1/2)

Ω + p ⊗ R(1,1/2)
Ω + R(1,1/2)

Ω ⊗ p + R(2,1/2)
Ω

]
.

(11)

Similarly, on account of (207), (208) and (209) one has

U (3)(p) = G C(3) ·
[
(p ⊗ p ⊗ p)R(0,1/2)

Ω + p ⊗ p ⊗ R(1,1/2)
Ω

+p ⊗ R(1,1/2)
Ω ⊗ p + R(1,1/2)

Ω ⊗ p ⊗ p

+R(2,1/2)
Ω ⊗ p + R(2,1/2)

Ω ⊗132 p + p ⊗ R(2,1/2)
Ω + R(3,1/2)

Ω

]
, (12)

where the meaning of the symbol ⊗132 is detailed in Appendix A.
Finally, based on (210), (211), (212) and (213), it turns out to be

U (4)(p) = G C(4) ·
[
A(4)

p + A(3)
p + A(2)

p + A(1)
p + R(4,1/2)

Ω

]
, (13)

where

A(4)
p =

(
p ⊗ p ⊗ p ⊗ p

)
R(0,1/2)

Ω (14)

A(3)
p = p ⊗ p ⊗ p ⊗ R(1,1/2)

Ω + p ⊗ p ⊗ R(1,1/2)
Ω ⊗ p + p ⊗ R(1,1/2)

Ω ⊗ p ⊗ p

+R(1,1/2)
Ω ⊗ p ⊗ p ⊗ p (15)

A(2)
p = p ⊗ p ⊗ R(2,1/2)

Ω +
(
p ⊗ p ⊗ R(2,1/2)

Ω

)

1324
+ p ⊗ R(2,1/2)

Ω ⊗ p

+
(
R(2,1/2)

Ω ⊗ p ⊗ p
)

1423
+
(
R(2,1/2)

Ω ⊗ p ⊗ p
)

1324
+ R(2,1/2)

Ω ⊗ p ⊗ p

(16)

A(1)
p = p ⊗ R(3,1/2)

Ω + R(3,1/2)
Ω ⊗1342 p + R(3,1/2)

Ω ⊗1243 p + R(3,1/2)
Ω ⊗ p, (17)

the symbol ⊗1243 and the analogous ones being specified in Appendix A.
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2.1 Analytical Expression of the Gravitational Potential (GP) in Terms of 2D Integrals

It is apparent from the previous formulas that the only real burden required to compute the
generic addend U (i)(p) is that associated with the evaluation of the integrals R(m,1/2)

Ω in (8).
This has already been done in D’Urso (2013a), for m = 0 and m = 1.

However, to illustrate a more general approach, we prove the following preliminary result

R(m,1/2)
Ω =

∫

Ω

[⊗r,m]
(r · r)1/2 dV = 1

m + 2

∫

∂Ω

[⊗r,m](r · n)

(r · r)1/2 dA m = 0, 1, . . . , (18)

where n is the 3D outward unit normal to the boundary ∂Ω of the polyhedral body.
To fix the ideas, we shall prove the identity (18) for m = 2

∫

Ω

r ⊗ r
(r · r)1/2 dV = 1

4

∫

∂Ω

(r ⊗ r)(r · n)

(r · r)1/2 dA, (19)

since it allows us to illustrate our approach to a degree of generality sufficient to extend the
final result to all integrals in (18).

Recalling the differential identity (255) reported in Appendix B it turns out to be

div

[
(r · r)(r ⊗ r) ⊗ r

(r · r)3/2
]

=
[
(r ⊗ r) ⊗ r

(r · r)3/2
]
grad (r · r) + (r · r)

[
(grad r)

r
(r · r)3/2

]
⊗ r

+(r · r)r ⊗
[
(grad r)

r
(r · r)3/2

]
+ (r · r)(r ⊗ r) div

r
(r · r)3/2 .

(20)

Applying the further identity (250) one has grad (r · r) = 2 r since grad r = I(2), being I(2)

the rank-two identity tensor. Hence, formula (20) becomes

div

[
(r · r)(r ⊗ r) ⊗ r

(r · r)3/2
]

= 2

[
(r ⊗ r) ⊗ r

(r · r)3/2
]
r + (r · r)

[
r

(r · r)3/2 ⊗ r + r ⊗ r
(r · r)3/2

]

+(r · r)(r ⊗ r) div
r

(r · r)3/2 = 4
r ⊗ r

(r · r)1/2 + (r · r)(r ⊗ r) div
r

(r · r)3/2 .

(21)

Finally, integrating the previous identity over Ω yields
∫

Ω

r ⊗ r
(r · r)1/2 dV = 1

4

{∫

Ω

div

[
(r ⊗ r) ⊗ r

(r · r)1/2
]
dV

−
∫

Ω

(r · r)(r ⊗ r) div
r

(r · r)3/2 dV
}
. (22)

The second integral on the right-hand side can be computed by means of the general result
Tang (2006)

∫

Ω

ϕ(r)div
[

r
(r · r)3/2

]
dV =

{
0 if o /∈ Ω

α(o) ϕ(o) if o ∈ Ω
, (23)
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where ϕ is a continuous scalar field and the quantity α represents the angular measure,
expressed in steradians, of the intersection between Ω and a spherical neighborhood of
the singularity point r = o, see, e.g., D’Urso (2012, 2013a, 2014a) for additional details.
The previous expression can be extended to arbitrary tensors by applying it to each scalar
component of the tensor.

On account of (23) one infers that the second integral on the right-hand side of (22) is the
null rank-two tensor O since

∫

Ω

(r · r)(r ⊗ r) div
r

(r · r)3/2 dV =
{
O if o /∈ Ω

[(r · r)r ⊗ r]r=o α(o) if o ∈ Ω
. (24)

However, the expression [(r · r)(r⊗ r)]r=o amounts to evaluating the quantity (r · r)(r⊗ r)
at the singularity point r = o, that yields trivially the null tensorO. Hence, according to (24),
the last integral in (22) is always the null tensor, independently of the position of singularity
point r = o with respect to the domain Ω of integration.

Upon application of Gauss’ theorem to the second integral in (22), we finally infer the
identity (19), according to which the singularity at r = o of the integrand function appearing
on the left-hand side, can be actually ignored. Furthermore, it is not difficult to rephrase the
path of reasoning detailed in formulas (20–24) so as to prove the more general formula (18).

In conclusion, we have proved that the expression (5) of the gravitational potential is well-
defined whatever is the order of the polynomial law expressing the density variation of Ω in
the sense that it exhibits no singularity whatever is the position of the point p with respect to
Ω . It should be mentioned, however, that the algebraic counterparts of the integrals (18) do
contain further singularities; nevertheless, it will be proved in Sect. 2.5 that such singularities
are removable. They can be made ineffective from a computational point of view provided
that the above-mentioned algebraic expressions are suitably programmed.

To actually compute the generic addendU (i)(p) in (5) we exploit formula (18) to express
the generic integral R(m,1/2)

Ω in (5) by means of boundary integrals

R(m,1/2)
Ω =

∫

Ω

[⊗r,m]
(r · r)1/2 dV = 1

m + 2

∫

∂Ω

[⊗r,m](r · n)

(r · r)1/2 dA = 1

m + 2
R(m,1/2)

∂Ω

m = 0, 1, . . . , (25)

However, the previous expressions, and hence those expressingU (i)(p), can be further elab-
orated upon to transform 2D integrals to 1D integrals.

2.2 Analytical Expression of the GP in Terms of Face Integrals

In order to derive an expression suitable for programming, we specialize formula (25) to
polyhedral domains since this is by far the most general case for practical applications.

For a polyhedral body characterized by NF faces, the generic integral in (25) can be
written as

R(m,1/2)
∂Ω =

∫

∂Ω

[⊗r,m](r · n)

(r · r)1/2 dA =
NF∑

i=1

∫

Fi

[⊗ri ,m](ri · ni )
(ri · ri )1/2 dAi , (26)

where ri represents the generic vector spanning the i-th face Fi of Ω and ni the unit vec-
tor, orthogonal to Fi , pointing outwards Ω . However the previous integrals can be further
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Fig. 1 Polyhedral domain Ω and decomposition of the position vector of a point on a face

simplified as follows

R(m,1/2)
∂Ω =

∫

∂Ω

[⊗r,m](r · n)

(r · r)1/2 dA =
NF∑

i=1

∫

Fi

[⊗ri ,m](ri · ni )
(ri · ri )1/2 dAi =

NF∑

i=1

di R(m,1/2)
Fi

,

(27)

where di = ri · ni = r⊥
i · ni .

The 2D integrals above can be transformed to a line integral by a further application
of Gauss’ theorem. To this end we denote by Oi the orthogonal projection on Fi of the
observation point P and assume Oi as origin of a 2D reference frame local to the face.

Furthermore, we express ri as

ri = r⊥
i + r‖

i = (ri · ni )ni + r‖
i = dini + TFi ρi , (28)

where the vector ρi = (ξi , ηi ) represents the position vector of a generic point of the i-th
face with respect to Oi and

TFi =
⎡

⎣
ui1 vi1
ui2 vi2
ui3 vi3

⎤

⎦ (29)

is the linear operator mapping the 2D vector ρi to the 3D one r‖
i . In turn ui and vi represent

two distinct, yet arbitrary, 3D unit vectors coplanar with Fi .
Accordingly, being ri · ri = ρi · ρi + d2i , we are thus led to computing the following

integrals

R(0,1/2)
Fi

=
∫

Fi

dAi

(ρi · ρi + d2i )1/2
= P(0,1/2)

Fi
, (30)
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R(1,1/2)
Fi

=
∫

Fi

dini + TFi ρi

(ρi · ρi + d2i )1/2
dAi = di ni P

(0,1/2)
Fi

+ TFiP
(1,1/2)
Fi

, (31)

R(2,1/2)
Fi

=
∫

Fi

(dini + TFi ρi ) ⊗ (dini + TFi ρi )

(ρi · ρi + d2i )1/2
dAi

= d2i ni ⊗ ni P
(0,1/2)
Fi

+ di (TFiP
(1,1/2)
Fi

⊗ ni + ni ⊗ TFiP
(1,1/2)
Fi

) + TFiP
(2,1/2)
Fi

TT
Fi ,

(32)

where we have introduced the symbol

P(m,1/2)
Fi

=
∫

Fi

[⊗ρi ,m]
(ρi · ρi + d2i )1/2

dAi m = 0, 1, . . . . (33)

To simplify the following expressions we further introduce the formal operator T(m)
Fi

that
transforms a rank-m tensor of order 2 to the corresponding rank-m tensor of order 3. Notice
that, being the definite integral a kind of sum, the operator T(m)

Fi
and the integral sign can be

interchanged. For instance, observing that T(1)
Fi

= TFi , one has

T
(2)
Fi

P(2,1/2)
Fi

= T
(2)
Fi

∫

Fi

ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi =

∫

Fi

TFi ρi ⊗ TFi ρi

(ρi · ρi + d2i )1/2
dAi = TFi P

(2,1/2)
Fi

TT
Fi

,

(34)

so that (32) can also be written as

R(2,1/2)
Fi

= d2i ni ⊗ niP
(0,1/2)
Fi

+ di

[
TFiP

(1,1/2)
Fi

⊗ ni + ni ⊗ TFiP
(1,1/2)
Fi

]
+ T

(2)
Fi
P(2,1/2)
Fi

.

(35)

Hence

R(3,1/2)
Fi

= d3i ni ⊗ ni ⊗ niP
(0,1/2)
Fi

+d2i

[
ni ⊗ ni ⊗ TFi P

(1,1/2)
Fi

+ ni ⊗ TFi P
(1,1/2)
Fi

⊗ ni + TFi P
(1,1/2)
Fi

⊗ ni ⊗ ni

]

+di

[
ni ⊗ T

(2)
Fi

P(2,1/2)
Fi

+ T
(2)
Fi

P(2,1/2)
Fi

⊗132 ni + T
(2)
Fi

P(2,1/2)
Fi

⊗ ni

]

+T
(3)
Fi

P(3,1/2)
Fi

,

(36)

and

R(4,1/2)
Fi

= R(4,1/2,4)
Fi ni

+ R(4,1/2,3)
Fi ni

+ R(4,1/2,2)
Fi ni

+ R(4,1/2,1)
Fi ni

+ T
(4)
Fi
P(4,1/2)
Fi

, (37)

where

R(4,1/2,4)
Fi ni

= d4i ni ⊗ ni ⊗ ni ⊗ niP
(0,1/2)
Fi

, (38)

R(4,1/2,3)
Fi ni

= d3i

[
ni ⊗ ni ⊗ ni ⊗ TFiP

(1,1/2)
Fi

+ ni ⊗ ni ⊗ TFiP
(1,1/2)
Fi

⊗ ni

+ni ⊗ TFiP
(1,1/2)
Fi

⊗ ni ⊗ ni + TFiP
(1,1/2)
Fi

⊗ ni ⊗ ni ⊗ ni

]
, (39)
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R(4,1/2,2)
Fi ni

= d2i

[
ni ⊗ ni ⊗ T

(2)
Fi
P(2,1/2)
Fi

+
(
ni ⊗ ni ⊗ T

(2)
Fi
P(2,1/2)
Fi

)

1324

+ni ⊗ T
(2)
Fi
P(2,1/2)
Fi

⊗ ni +
(
T

(2)
Fi
P(2,1/2)
Fi

⊗ ni ⊗ ni
)

1423

+
(
T

(2)
Fi
P(2,1/2)
Fi

⊗ ni ⊗ ni
)

1324
+ T

(2)
Fi
P(2,1/2)
Fi

⊗ ni ⊗ ni

]
, (40)

R(4,1/2,1)
Fi ni

= di

[
ni ⊗ T

(3)
Fi
P(3,1/2)
Fi

+ T
(3)
Fi
P(3,1/2)
Fi

⊗1342 ni

+T
(3)
Fi
P(3,1/2)
Fi

⊗1243 ni + T
(3)
Fi
P(3,1/2)
Fi

⊗ ni

]
. (41)

In conclusion, recalling (5), the expression ofU (i)(p) reported in (6), (10), (11), (12) and
(13), as well as that of R(m,1/2)

∂Ω in (26), we are finally led to compute the 2D integrals in (33).
This will be addressed in the following subsections.

2.3 Analytical Expression of Face Integrals Related to the GP in Terms of 1D Integrals

It has been shown in the previous subsections that the actual evaluation of the gravitational
potential in (5) ultimately amounts to evaluating the 2D integrals (33). However, they can be
computed by simpler 1D integrals invoking once more the generalized Gauss theorem Tang
(2006). As a matter of fact this has already been done for m = 0 and m = 1 in previous
papers D’Urso (2013a, 2014a, b); for m > 1 it has been carried out in Appendix B.

For the sake of clarity the expressions of the integral (33) are reported in the sequel for
increasing values of m while the relevant proofs, as well as the related notation, is detailed
in Appendix B.

To help the reader fully grasp the notation used with forthcoming formulas we also intro-
duce the following notation

P[(1/2) 0]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
νi (si ) dsi , (42)

P[(1/2) 1·]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) · νi (si ) dsi ,

P[(1/2) 2·]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si )

[
ρi (si ) · νi (si )

]
dsi ,

P[(1/2) 3·]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2[
ρi (si ) ⊗ ρi (si )

]
ρi (si ) · νi (si ) dsi , (43)

and

P[(1/2) 1⊗]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) ⊗ νi (si ) dsi ,

P[(1/2) 2⊗]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) ⊗ ρi (si ) ⊗ νi (si ) dsi ,
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P[(1/2) 3⊗]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) ⊗ ρi (si ) ⊗ ρi (si ) ⊗ νi (si ) dsi , (44)

where νi represents the 2D vector belonging to the face and normal to the edge.
Some of the previous quantities will be also combined to produce expressions that will

be tensorially multiplied by the rank-two tensor I(2). For this reason we also introduce the
following symbols

P0I∂Fi
= P[(1/2) 1·]

∂Fi
+ d2i

(
P[(1/2) 1·,1]

∂Fi
− αi |di |

)
,

P1I∂Fi
= P[(1/2) 2·]

∂Fi
+ d2i P

[(1/2) 0]
∂Fi

,

P2I∂Fi
= P[(1/2) 3·]

∂Fi
+ d2i

[
P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

]
, (45)

where

P[(1/2) 1·,1]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) · νi (si )

ρi (si ) · ρi (si )
dsi . (46)

By means of the previous notation we can set

• Integral (33) for m = 0, see, e.g., formula (20) in D’Urso (2013a)

P(0,1/2)
Fi

=
∫

Fi

dAi

(ρi · ρi + d2i )1/2
= P[(1/2)1·,1]

∂Fi
− αi |di |. (47)

• Integral (33) for m = 1, see, e.g., formula (19) in D’Urso (2014b)

P(1,1/2)
Fi

=
∫

Fi

ρi

(ρi · ρi + d2i )1/2
dAi =

∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
νi (si ) dsi

= P[(1/2) 0]
∂Fi

. (48)

• Integral (33) for m = 2, on account of formula (266) in Appendix B

P(2,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi = P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

. (49)

• Integral (33) for m = 3, on account of formula (272) in Appendix B.

P(3,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi = P[(1/2)2⊗]

∂Fi
− 1

4

[
I(2) ⊗132 P

1I
∂Fi

+ P1I∂Fi
⊗ I(2)

]
.

(50)

• Integral (33) for m = 4, on account of formula (278) in Appendix B.

Recalling the definition (45) for P2I∂Fi
,we get

P(4,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi = P[(1/2)3⊗]

∂Fi
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−1

5

[
I(2) ⊗1423 P

2I
∂Fi

+ P2I∂Fi
⊗1243 I(2) + P2I∂Fi

⊗ I(2)
]
. (51)

Accordingly, all integrals in (33) have been evaluated by means of boundary integrals.

2.4 Algebraic Expression of Face Integrals Related to the GP in Terms of 2DVectors

At this stage of the formulationwehave expressed the domain integralsR(m,1/2)
Fi

,m = 1, ..., 4,

appearing in the expression (5) of the potential as function of integrals R(m,1/2)
∂Ω extended to

the boundary ∂Ω by means of formula (25).
In turn each of the integral R(m,1/2)

∂Ω , extended to the face Fi of ∂Ω for a polyhedral body,

has been expressed as function of the 2D integrals R(m,1/2)
Fi

, see, e. g., formula (27), and
each of them further specialized to the expressions (32), (36) and (37) depending upon the
integrals P(m,1/2)

Fi
introduced in formula (33).

Finally, the 2D integrals P(m,1/2)
Fi

have been converted to 1D integrals by exploiting for-
mulas (47), (48), (49), (50) and (51) detailed above.

Hence our next step is to express the boundary integrals in formulas (42–46) as sums
extended to the NEi edges defining the boundary ∂Fi . Actually, a suitable parameterization
of the j-th edge of ∂Fi allows us to transform each 1D integral to an integral of a real variable
scaled by a suitable combination of the vectors ρ j and ρ j+1 that define the position vectors
of the end vertices of the edge in the 2D reference frame local to Fi .

In particular we set

ρ̂i (λ j ) = ρ j + λ j (ρ j+1 − ρ j ) = ρ j + λ jΔρ j , (52)

where the function ρ̂i associates the position vector spanning the j-th edge with each value
of the adimensional abscissa

λ j = s j/l j . (53)

The quantity s j , s j ∈ [0, l j ], is the curvilinear abscissa along the j-th edge and l j =
|ρ j+1 − ρ j | is the edge length. The position vector spanning the j-th edge of Fi can also be
expressed as function of s j and a new function ρi , fulfilling the condition ρi (si ) = ρ̂i (λ j ).
Hence

ρi (s j ) · ρi (s j ) = ρ̂i (λ j ) · ρ̂i (λ j ) = p jλ
2
j + 2q jλ j + u j = Pu(λ j ), (54)

where, according to (52)

p j = Δρ j · Δρ j = l j q j = ρ j · Δρ j u j = ρ j · ρ j . (55)

Furthermore

ρi (s j ) · ρi (s j ) + d2i = p jλ
2
j + 2q jλ j + v j , (56)

where v j = u j + d2i . We shall also set Pv(λ j ) = Pu(λ j ) + d2i .
We shall also express the outward unit normal ν j to the j−th edge, normal contained

within the face Fi , according to the formula

ν j =
(
ρ j+1 − ρ j

)⊥

l j
= Δρ⊥

j

l j
, (57)
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where the symbol (·)⊥ denotes a clockwise rotation of the 2D vector (·) with respect to
the normal to Fi .

In turn such a clockwise rotation depends on the convention adopted to circulate along
the boundary ∂Fi . In particular, we have assumed that the vertices of each face have been
numbered consecutively by circulating along ∂Fi in a counter-clockwise sense with respect
to the unit outward normal ni to the face. Thus

Δρ j =
[

Δξ j
Δη j

]
⇒ Δρ⊥

j =
[

Δη j

−Δξ j

]
=
[

0 1
−1 0

]
Δρ j . (58)

In conclusion one can write for the integral in (46)

P[(1/2) 1·,1]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρ(si ) · ν(si )

ρi (si ) · ρi (si )
dsi =

NEi∑

j=1

(
ρ j · ρ⊥

j+1

)
I (1/2·0,1)
j ,

(59)

where the expression of the definite integral I (1/2·0,1)
j is detailed in the formula (282) of

Appendix C.
Analogously, with reference to the integral in (43)1, one has

P[(1/2) 0]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ν(si )dsi =

NEi∑

j=1

Δρ⊥
j I

(1/2·0)
j , (60)

see, e.g., formula (283) of Appendix C, while the integral (44)1 by

P[(1/2) 1⊗]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) ⊗ ν(si )dsi

=
NEi∑

j=1

{ 1∫

0

[
ρ̂ j (λ j ) · ρ̂ j (λ j ) + d2i

]1/2 (
ρ j + λ jΔρ j

)
l j dλ j ⊗ ν j

}
;

(61)

hence that one has

P[(1/2) 1⊗]
∂Fi

=
NEi∑

j=1

{[ 1∫

0

(
p jλ

2
j + 2q jλ j + v j

)1/2
dλ j

]
ρ j ⊗ Δρ⊥

j

+
[ 1∫

0

(
p jλ

2
j + 2q jλ j + v j

)1/2
λ j dλ j

]
Δρ j ⊗ Δρ⊥

j

}

=
NEi∑

j=1

[
I (1/2·0)
j ρ j ⊗ Δρ⊥

j + I (1/2·1)
j Δρ j ⊗ Δρ⊥

j

]
,

(62)

the quantities I (1/2·0)
j and I (1/2·1)

j being detailed in formulas (283) and (284) of Appendix
C, respectively. Notice that the additional boundary integral appearing in formula (43)2 is
simply the trace (tr) of the previous expression; hence one has

P[(1/2) 1·]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) · νi (si )dsi =

NEi∑

j=1

I (1/2·0)
j ρ j · Δρ⊥

j , (63)
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since tr(Δρ j ⊗ Δρ⊥
j ) = Δρ j · Δρ⊥

j .
To simplify the ensuing developments we introduce the following notation

ρ̂(λ j ) ⊗ ρ̂(λ j ) = E(2)
ρ jρ j

+ λ j E(2)
ρ jΔρ j

+ λ2j E(2)
Δρ jΔρ j

, (64)

where

E(2)
ρ jρ j

= ρ j ⊗ ρ j E(2)
ρ jΔρ j

= ρ j ⊗ Δρ j + Δρ j ⊗ ρ j E(2)
Δρ jΔρ j

= Δρ j ⊗ Δρ j ,

(65)

and

ρ̂(λ j ) ⊗ ρ̂(λ j ) ⊗ ρ̂(λ j ) = E(3)
ρ jρ jρ j

+ λ j E(3)
ρ jρ jΔρ j

+ λ2j E(3)
ρ jΔρ jΔρ j

+ λ3j E(3)
Δρ jΔρ jΔρ j

,

(66)

being

E(3)
ρ jρ jρ j

= ρ j ⊗ ρ j ⊗ ρ j

E(3)
ρ jρ jΔρ j

= ρ j ⊗ ρ j ⊗ Δρ j + ρ j ⊗ Δρ j ⊗ ρ j + Δρ j ⊗ ρ j ⊗ ρ j ,

E(3)
ρ jΔρ jΔρ j

= ρ j ⊗ Δρ j ⊗ Δρ j + Δρ j ⊗ ρ j ⊗ Δρ j + Δρ j ⊗ Δρ j ⊗ ρ j ,

E(3)
Δρ jΔρ jΔρ j

= Δρ j ⊗ Δρ j ⊗ Δρ j . (67)

Accordingly, we can set for the integral (44)2

P[(1/2) 2⊗]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) ⊗ ρi (si ) ⊗ νi (si )dsi

=
NEi∑

j=1

[
I (1/2·0)
j E(2)

ρ jρ j
+ I (1/2·1)

j E(2)
ρ jΔρ j

+ I (1/2·2)
j E(2)

Δρ jΔρ j

]
⊗ Δρ⊥

j ,

(68)

where I (1/2·0)
j , I (1/2·1)

j and I (1/2·2)
j are given by the formulas (283), (284) and (285) of

Appendix C, respectively.
The integral P[(1/2) 2·]

∂Fi
in (43)3 can be computed as follows:

P[(1/2) 2·]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2[
ρi (si ) ⊗ ρi (si )

]
νi (si )dsi

=
NEi∑

j=1

[
I (1/2·0)
j E(2)

ρ jρ j
+ I (1/2·1)

j E(2)
ρ jΔρ j

+ I (1/2·2)
j E(2)

Δρ jΔρ j

]
Δρ⊥

j ,

(69)

while P[(1/2) 3·]
∂Fi

is given by

P[(1/2) 3·]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2[
ρi (si ) ⊗ ρi (si ) ⊗ ρi (si )

]
νi (si )dsi

=
NEi∑

j=1

[
I (1/2·0)
j E(3)

ρ jρ jρ j
+ I (1/2·1)

j E(3)
ρ jρ jΔρ j

+ I (1/2·2)
j E(3)

ρ jΔρ jΔρ j

+I (1/2·3)
j E(3)

Δρ jΔρ jΔρ j

]
Δρ⊥

j . (70)

123



Surveys in Geophysics

Finally, we need to compute the integral in(44)3

P[(1/2) 3⊗]
∂Fi

=
∫

∂Fi

[
ρi (si ) · ρi (si ) + d2i

]1/2
ρi (si ) ⊗ ρi (si ) ⊗ ρi (si ) ⊗ νi (si )dsi

=
NEi∑

j=1

[
I (1/2·0)
j E(3)

ρ jρ jρ j
+ I (1/2·1)

j E(3)
ρ jρ jΔρ j

+I (1/2·2)
j E(3)

ρ jΔρ jΔρ j
+ I (1/2·3)

j E(3)
Δρ jΔρ jΔρ j

]
⊗ Δρ⊥

j , (71)

where I (1/2·3)
j is given by the formulas (286).

In conclusion, all the integrals in (43), (44) and (46), and hence in (45) and (47–51),
can be explicitly computed as combination of scalar quantities multiplied by suitable tensor
products of ρ j , Δρ j and Δρ⊥

j .

2.5 Removable Singularities of the Algebraic Expressions of the Gravity Potential

It is already been shown that the analytical expression (5) of the gravity potential is obtained
as sum of the integrals R(m,1/2)

Fi
, defined in (26), that are singularity-free whatever is the

position of the observation point P with respect to Ω .
However, the algebraic counterparts of the integrals R(m,1/2)

Fi
, expressed as function of the

line integrals P∂Fi defined in the formulas (43–51) and of the relevant algebraic expressions
reported in the previous section, do include further singularities.

They are associated with the expression of the line integrals I j reported in Appendix
C since they can become singular when the generic Fi of the boundary ∂Ω contains the
observation point or the projection of the observation point Fi belongs to the line containing
the j-th edge of the boundary ∂Fi .

However, it will be proved that the contribution of the singular line integral vanishes in
the computation of the associated domain integral. Hence, the singularity of the j-th line
integral pertaining to a generic face Fi does not have any harmful effect.

To prove the results of interest we shall set

v j = u j + d2i = |r j |2 p j + 2q j + v j = ρ j+1 · ρ j+1 + d2i = |r j+1|2, (72)

where p j , q j and u j have been defined in formula (55), and

− Δ j = p ju j − q2j = (ρ j+1 · ρ j+1)(ρ j · ρ j ) − (ρ j · ρ j+1)
2 ≥ 0, (73)

whose positive value is consequence of the Cauchy-Schwartz inequality (Tang 2006).
To show which are the line integrals that can become singular we indicate in the sequel

the set of formulas required to compute each integral R(m,1/2)
Fi

, m = 0, ..., 4, by concisely
reporting the sequence to be used. For instance

R(0,1/2)
Fi

↔ (30) → (47) → (59) → (282), (74)

meaning that the computation of R(0,1/2)
Fi

requires the evaluation of the integrals I (1/2·0,1)
j ,

expressed in the formula (282), over the edges of ∂Fi .
Analogously

R(1,1/2)
Fi

↔ (31) → [(47), (48)] → [(59), (60)] → [(282), (283)], (75)
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meaning that the integral I (1/2·0)
j in the formula (283) needs to be computed in addition to

I (1/2·0,1)
j . This is a general rule in the sense the computation of the integralR(m+1,1/2)

Fi
requires

to evaluate an additional integral with respect to those associated with R(m,1/2)
Fi

. Actually

R(2,1/2)
Fi

↔ (32) → [(47), (48), (49) − (45)1]
→ [(59), (60), (62) − (63)] → [(282), (283), (284)], (76)

requires to compute I (1/2·1)
j in addition to I (1/2·0,1)

j and I (1/2·0)
j .

Furthermore

R(3,1/2)
Fi

↔ (36) → [(47), (48), (49) − (45)1, (50) − (45)2]
→ [(59), (60), (62) − (63), (68) − (69)] → [(282), (283), (284), (285)],

(77)

requires the extra calculation of I (1/2·2)
j while for

R(4,1/2)
Fi

↔ (37) → [(47), (48), (49) − (45)1, (50) − (45)2, (51) − (45)3]
→ [(59), (60), (62) − (63), (68) − (69), (71) − (70)]
→ [(282), (283), (284), (285), (286)], (78)

the evaluation of I (1/2·3)
j is also needed.

In conclusion the computation of the integrals R(m,1/2)
Fi

, m = 0, ..., 4, requires the evalu-

ation of the five integrals I (1/2·0,1)
j , I (1/2·0)

j , I (1/2·1)
j , I (1/2·2)

j and I (1/2·3)
j . They can become

singular when the projection of P over the face is a such that ρ j = 0 or ρ j+1 = 0 or

belongs to the segment [ ρ j , ρ j+1]. For what concerns I
(1/2·0,1)
j this may happen indepen-

dently from the value of di , i.e., whether or not the i-th face Fi does contain the observation
point. Conversely, the additional four integrals are always well defined if di �= 0.

The singularity-free nature of I (1/2·0,1)
j and I (1/2·0)

j has been proved in Sections 4.1 and
4.2 of D’Urso and Trotta (2017) which the interested reader is referred to.

To prove the well-posedness of the additional three integrals we exploit the expression

LN j = ln k j = ln
ρ j+1 · Δρ j + l j |r j+1|

ρ j · Δρ j + l j |r j | , (79)

reported in formula (73) of D’Urso (2014b), where r j and r j+1 are defined in (72). Actually,
according to (72), LN j is always well defined when di �= 0 independently of the values of ρi
and ρi+1 since both the numerator and denominator are the algebraic counterparts of positive
integrands.

Conversely, should it be di = 0 and ρ j = o or ρ j+1 = o or ρ j+1 = β jρ j (β j < 0),
LN j becomes indefinite. However, its evaluation can be skipped since LN j is scaled by
coefficients that tend to zero with a greater order. Actually, the last addend of formula (284)
for I (1/2·1)

j reads

+q3j − p jq jv j

2p5/2j

LN j = q j
q2j − p jv j

2p5/2j

LN j = q j
Δ j

2p5/2j

LN j . (80)

Hence, if ρ j = o or ρ j+1 = o or ρ j+1 = β jρ j (β j < 0), Δ j tends to zero quadratically
while LN j tends to infinity with an arbitrary low degree. Stated equivalently, the contribution
of the addend including LN j can be ignored.
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Exactly the same does occur for the last addend of formula (285) for I (1/2·2)
j

(q2j − p jv j )(5q2j − p jv j )

8p7/2j

LN j , (81)

in which the coefficient of LN j can tend to zero with a degree equal at least to two.

For what concerns the last addend of the formula (286) for I (1/2·3)
j it turns out to be

7q5j − 10p jq3j v j + 3p2j q jv
2
j

8p9/2j

LN j = q j (q2j − p jv j )(7q2j − 3p jv j )

8p9/2j

LN j , (82)

so that, also in this case, the coefficient scaling LN j can tend to zero with a degree not
less than two.

In conclusion, edges characterized by singularity of LN j can be actually skipped in the
computation of the relevant integral.

3 Gravity Vector of Polyhedral Body Having a Polynomial Density

The gravity vector, i.e., the derivative of the gravitational potential, is obtained by differen-
tiating the expression (5) with respect to p.

dpU (p) = Gdp

∫

Ω

δo +∑4
k=1 C(k) · D(k)

s

(r · r)1/2 dV (s). (83)

It has been proved by Kellogg (1929) that the potential U and its gradient exist and are
continuous whatever is the position of the point P with respect toΩ provided that the density
δ is continuous andΩ is bounded; these properties are certainly fulfilled since δ is polynomial
and Ω is polyhedral. Hence the derivative can be moved inside the integral so that, being
dp = −dr, we can write

dpU (p) = −G
∫

Ω

dr
δo +∑4

k=1 C(k) · D(k)
s

(r · r)1/2 dV (r) =
4∑

k=0

dpU
(k)(p), (84)

where D(1)
s = s and the symbols D(k)

s , k = 2, 3, 4, have been defined in (204), (207) and
(210).

At this stage two different approaches can be exploited for the computation of dpU (p),
each one having pros and cons. The first one amounts to performing the derivatives on the
right-hand side of the previous formula and allows one to prove, by following a path of
reasoning detailed in Sect. 5.1, that the gravity vector of a polyhedral body endowed with a
polynomial density is non-singular whatever is the position of the observation point.

Such an approach leads to particularly compact expressions although it requires a sig-
nificant amount of mathematical manipulations and the necessity of computing further 2D
integrals with respect to those required for the computation of the potential.

The second approach for evaluating the gravity vector is to apply a further variant of the
Gauss theorem to the first integral in formula (84) so as to directly obtain boundary integrals.
This approach leads to formulas containing a greater number of addends with respect to the
ones associated with the first approach but include most of the integrals that are required for
the computation of the potential.
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Space limitations do not allow us to show the formulas associated with the second
approach; hence, an answer on which is the most convenient approach to be adopted will
be given in a forthcoming paper on the basis of numerical experiments and of theoretical
considerations since the second approach considerably simplifies the computation of second
and higher-order derivatives of the potential.

In conclusion, in this paper we shall limit ourselves to adopt the first approach and we
proceed to evaluate the derivatives in (84) on the basis of the expressions of U (k), k=0,…,4,
detailed in (6), (7), (11), (12) and (13), respectively. In turn, this requires the preliminary
evaluation of dpR(m,1/2)

Ω where this last symbol has been defined in (8).
Introducing the additional symbol

R(m,3/2)
Ω =

∫

Ω

[⊗r,m]
(r · r)3/2 dV m = 1, . . . , (85)

and exploiting the differential identities (252) - (257) one has

dpR(0,1/2)
Ω = −

∫

Ω

dr
1

(r · r)1/2 dV = R(1,3/2)
Ω , (86)

dpR(1,1/2)
Ω = R(2,3/2)

Ω − R(0,1/2)
Ω I(2), (87)

dpR(2,1/2)
Ω = R(3, 3/2)

Ω − I(2) ⊗132 R(1, 1/2)
Ω − R(1, 1/2)

Ω ⊗ I(2), (88)

dpR(3,1/2)
Ω = R(4, 3/2)

Ω −
(
I(2) ⊗ R(2, 1/2)

Ω

)

1423
−
(
R(2, 1/2)

Ω ⊗ I(2)
)

1324
− R(2, 1/2)

Ω ⊗ I(2),

(89)

dpR(4,1/2)
Ω = R(5, 3/2)

Ω −
(
I(2) ⊗ R(3, 1/2)

Ω

)

15234
−
(
R(3, 1/2)

Ω ⊗ I(2)
)

13425

−
(
R(3, 1/2)

Ω ⊗ I(2)
)

12435
− R(3, 1/2)

Ω ⊗ I(2). (90)

Finally, to evaluate the contributions dpU (k)(p), k=0,…,4, we need the following identity,
holding for m ≥ 1

grad(A(m) · B(m)) = grad(A(m)) ·1,...,m B(m) + A(m) ·1,...,m grad(B(m)), (91)

according to which the vector field resulting from the differentiation of the scalar fieldA(m) ·
B(m) is obtained by contracting in the product ·1,...,m the first m indices of the rank m + 1
tensor on the left (right) with the m indices of the rank m tensor on the right (left). The
previous formula is extended to the case m = 0 by using the identity (250). In conclusion
we have from formula (6)

dpU
(0)(p) = GδoR(1,3/2)

Ω , (92)

from formula (10),

dpU
(1)(p) = G

[
p ⊗ R(1,3/2)

Ω + R(2,3/2)
Ω

]
C(1), (93)

from formula (11),

dpU
(2)(p) = G

[
p ⊗ p ⊗ R(1, 3/2)

Ω + p ⊗ R(2, 3/2)
Ω + R(2, 3/2)

Ω ⊗132 p + R(3, 3/2)
Ω

]
·12 C(2),

(94)
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from formula (12)

dpU
(3)(p) = G

[
(p ⊗ p ⊗ p) ⊗ R(1, 3/2)

Ω + p ⊗ p ⊗ R(2, 3/2)
Ω +

(
p ⊗ p ⊗ R(2, 3/2)

Ω

)

1324

+
(
R(2, 3/2)

Ω ⊗ p ⊗ p
)

1423
+ p ⊗ R(3, 3/2)

Ω +
(
R(3, 3/2)

Ω ⊗ p
)

1342

+
(
R(3, 3/2)

Ω ⊗ p
)

1243
+ R(4, 3/2)

Ω

]
·123 C(3),

(95)

and, finally, from formula (13)

dpU
(4)(p) = G

[
B(4)
p + B(3)

p + B(2)
p + B(1)

p + R(5, 3/2)
Ω

]
·1234 C(4), (96)

where

B(4)
p = p ⊗ p ⊗ p ⊗ p ⊗ R(1, 3/2)

Ω , (97)

B(3)
p = p ⊗ p ⊗ p ⊗ R(2, 3/2)

Ω +
(
p ⊗ p ⊗ R(2, 3/2)

Ω ⊗ p
)

12354

+
(
p ⊗ R(2, 3/2)

Ω ⊗ p ⊗ p
)

12534
+
(
R(2, 3/2)

Ω ⊗ p ⊗ p ⊗ p
)

15234
, (98)

B(2)
p = p ⊗ p ⊗ R(3, 3/2)

Ω +
(
p ⊗ p ⊗ R(3, 3/2)

Ω

)

13245
+
(
p ⊗ p ⊗ R(3, 3/2)

Ω

)

14235

+
(
R(3, 3/2)

Ω ⊗ p ⊗ p
)

14523
+
(
R(3, 3/2)

Ω ⊗ p ⊗ p
)

13524
+
(
R(3, 3/2)

Ω ⊗ p ⊗ p
)

12534
, (99)

B(1)
p = p ⊗ R(4, 3/2)

Ω +
(
R(4, 3/2)

Ω ⊗ p
)

15342
+
(
R(4, 3/2)

Ω ⊗ p
)

12543

+
(
R(4, 3/2)

Ω ⊗ p
)

12354
. (100)

It is worth emphasizing that the derivation of the formulas (95) and (96) is far from
trivial and the reader should not be cheated by the fact that dpU (3) (dpU (4)) contains the
same number of terms as U (3) (U (4)). Actually the eight (sixteen) terms in dpU (3) (dpU (4))

obtained during the differentiation result from the cancellation of 24 (64) addends of formulas
(12) and (13), whose expressions originally contained 32 and 80 addends, respectively.

For this reason, in order to the help the interested reader to trace back the manipulations
required to get the final expressions (95) and (96), we also report their counterparts expressed
in terms of components

(
dpU

(3)
)

l
= G

[
pip jpk

(
R(1, 3/2)

Ω

)

l
+ pip j

(
R(2, 3/2)

Ω

)

kl
+ pi

(
R(2, 3/2)

Ω

)

jl
pk

+
(
R(2, 3/2)

Ω

)

il
p jpk

+pi

(
R(3, 3/2)

Ω

)

jkl
+
(
R(3, 3/2)

Ω

)

ikl
p j +

(
R(3, 3/2)

Ω

)

i jl
pk

+
(
R(4, 3/2)

Ω

)

i jkl

]
C(3)
i jk, (101)

123



Surveys in Geophysics

(
dpU

(4)
)

q
= G

[
B(4)
p i jklq + B(3)

p i jklq + B(2)
p i jklq + B(1)

p i jklq +
(
R(5, 3/2)

Ω

)

i jklq

]
C(4)
i jkl ,

(102)

where

B(4)
p i jklq = pip jpkpl

(
R(1, 3/2)

Ω

)

q
, (103)

B(3)
p i jklq = pip jpk

(
R(2, 3/2)

Ω

)

lq
+ pip j

(
R(2, 3/2)

Ω

)

kq
pl + pi

(
R(2, 3/2)

Ω

)

jq
pkpl

+
(
R(2, 3/2)

Ω

)

iq
p jpkpl , (104)

B(2)
p i jklq = pip j

(
R(3, 3/2)

Ω

)

klq
+ pi

(
R(3, 3/2)

Ω

)

jlq
pk + pi

(
R(3, 3/2)

Ω

)

jkq
pl

+
(
R(3, 3/2)

Ω

)

ilq
p jpk +

(
R(3, 3/2)

Ω

)

ikq
p jpl +

(
R(3, 3/2)

Ω

)

i jq
pkpl , (105)

B(1)
p i jklq = pi

(
R(4, 3/2)

Ω

)

jklq
+
(
R(4, 3/2)

Ω

)

iklq
p j +

(
R(4, 3/2)

Ω

)

i jlq
pk +

(
R(4, 3/2)

Ω

)

i jkq
pl .

(106)

In particular the component expressions are useful for programming.

3.1 Analytical Expression of the Gravity Vector (GV) in Terms of 2D Integrals

In order to evaluate the generic dpU (k)) we need to analytically compute the integrals in

R(m, 3/2)
Ω (85). This has already been done in D’Urso (2014b) form = 0 andm = 1 by means

of an approach based on the use of the following formula

R(m,3/2)
Ω =

∫

Ω

[⊗r,m]
(r · r)3/2 dV = 1

m

∫

∂Ω

[⊗r,m](r · n)

(r · r)3/2 dA m = 1, . . . , (107)

where n is the 3D outward unit normal to the boundary ∂Ω of the polyhedral body.
Proof of the above formula is based on the identity

div

[
[⊗r,m] ⊗ r

(r · r)3/2
]

= m
[⊗r,m]
(r · r)3/2 + [⊗r,m] div r

(r · r)3/2 , (108)

a result that can be obtained by adopting an approach similar to that leading to (20).
Integrating the previous identity over Ω one has
∫

Ω

[⊗r,m]
(r · r)3/2 dV = 1

m

{ ∫

∂Ω

[⊗r,m](r · n)

(r · r)3/2 dA −
∫

Ω

[ ⊗ r,m] div r
(r · r)3/2 dV

}
, (109)

leading to formula (107), since the second integral on the right-hand side vanishes on account
of (24) applied componentwise to each entry of the tensors [⊗r,m]. In particular, formula
(109) allows us to prove that the integralsR(m, 3/2)

Ω arewell defined, for eachm, independently
from the position of the point r = o with respect to Ω .

Hence we can write, for m ≥ 1,
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R(m,3/2)
Ω =

∫

Ω

[⊗r,m]
(r · r)3/2 dV = 1

m

∫

∂Ω

[⊗r,m](r · n)

(r · r)3/2 dA = 1

m
R(m,3/2)

∂Ω m = 1, . . . ,

(110)

by obtaining expressions that are well defined whatever is the position of the observation
point with respect to Ω .

3.2 Analytical Expression of the GV in Terms of Face Integrals

Let us now specialize formula (110) to the significant case of a polyhedral domain by writing

R(m,3/2)
∂Ω =

∫

∂Ω

[⊗r,m](r · n)

(r · r)3/2 dA =
NF∑

i=1

∫

Fi

[⊗ri ,m](ri · ni )
(ri · ri )3/2 dAi

=
NF∑

i=1

di R(m,3/2)
Fi

m = 1, . . . , (111)

where, as in (26), ri represents the generic vector spanning the i-th face Fi of Ω , ni the unit
vector orthogonal to Fi , pointing outwards Ω and di = ri · ni .

To compute R(m,3/2)
Fi

we follow a procedure analogous to that adopted for R(m,1/2)
Fi

. Thus,
recalling also the decomposition (28) we have

R(1,3/2)
Fi

=
∫

Fi

dini + TFi ρi

(ρi · ρi + d2i )3/2
dAi = di ni P

(0,3/2)
Fi

+ TFiP
(1,3/2)
Fi

, (112)

where we have introduced the symbol

P(m,3/2)
Fi

=
∫

Fi

[⊗ρi ,m]
(ρi · ρi + d2i )3/2

dAi m = 1, 2, . . . , (113)

analogous to that introduced in formula (33).
Furthermore, using the terminology introduced in Sect. 2.2, we have

R(2,3/2)
Fi

= d2i ni ⊗ niP
(0,3/2)
Fi

+ di

[
TFi P

(1,3/2)
Fi

⊗ ni + ni ⊗ TFi P
(1,3/2)
Fi

]
+ T

(2)
Fi

P(2,3/2)
Fi

,

(114)

R(3,3/2)
Fi

= d3i ni ⊗ ni ⊗ niP
(0,3/2)
Fi

+d2i

[
ni ⊗ ni ⊗ TFi P

(1,3/2)
Fi

+ ni ⊗ TFi P
(1,3/2)
Fi

⊗ ni + TFi P
(1,3/2)
Fi

⊗ ni ⊗ ni

]

+di

[
ni ⊗ T

(2)
Fi

P(2,3/2)
Fi

+ T
(2)
Fi

P(2,3/2)
Fi

⊗132 ni + T
(2)
Fi

P(2,3/2)
Fi

⊗ ni

]
+ T

(3)
Fi

P(3,3/2)
Fi

,

(115)

and

R(4,3/2)
Fi

= R(4,3/2,4)
Fi ,ni

+ R(4,3/2,3)
Fi ,ni

+ R(4,3/2,2)
Fi ,ni

+ R(4,3/2,1)
Fi ,ni

+ T
(4)
Fi ,ni

P(4,3/2)
Fi

, (116)

where

R(4,3/2,4)
Fi ,ni

= d4i ni ⊗ ni ⊗ ni ⊗ niP
(0,3/2)
Fi

, (117)
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R(4,3/2,3)
Fi ,ni

= d3i

[
ni ⊗ ni ⊗ ni ⊗ TFiP

(1,3/2)
Fi

+ ni ⊗ ni ⊗ TFiP
(1,3/2)
Fi

⊗ ni

+ni ⊗ TFiP
(1,3/2)
Fi

⊗ ni ⊗ ni + TFiP
(1,3/2)
Fi

⊗ ni ⊗ ni ⊗ ni

]
, (118)

R(4,3/2,2)
Fi ,ni

= d2i

[
ni ⊗ ni ⊗ T

(2)
Fi
P(2,3/2)
Fi

+ ni ⊗ ni ⊗1324 T
(2)
Fi
P(2,3/2)
Fi

+ni ⊗ T
(2)
Fi
P(2,3/2)
Fi

⊗ ni + T
(2)
Fi
P(2,3/2)
Fi

⊗1432 ni ⊗ ni

+T
(2)
Fi
P(2,3/2)
Fi

⊗1324 ni ⊗ ni + T
(2)
Fi
P(2,3/2)
Fi

⊗ ni ⊗ ni

]
, (119)

R(4,3/2,1)
Fi ,ni

= di

[
ni ⊗ T

(3)
Fi
P(3,3/2)
Fi

+ T
(3)
Fi
P(3,3/2)
Fi

⊗1432 ni

+T
(3)
Fi
P(3,3/2)
Fi

⊗1243 ni + T
(3)
Fi
P(3,3/2)
Fi

⊗ ni

]
. (120)

To derive the formula relevant toR(5,3/2)
Fi

we need to extend the terminology introduced in
Appendix A to the fifth-order tensors obtained by combining two vectors. Namely we shall
set

D(5)
ninininini = ni ⊗ ni ⊗ ni ⊗ ni ⊗ ni , (121)

D(5)
ninininiρi = ni ⊗ ni ⊗ ni ⊗ ni ⊗ ρi + ni ⊗ ni ⊗ ni ⊗ ρi ⊗ ni

+ni ⊗ ni ⊗ ρi ⊗ ni ⊗ ni + ni ⊗ ρi ⊗ ni ⊗ ni ⊗ ni
+ρi ⊗ ni ⊗ ni ⊗ ni ⊗ ni , (122)

D(5)
nininiρiρi = ni ⊗ ni ⊗ ni ⊗ ρi ⊗ ρi + ni ⊗ ni ⊗ ρi ⊗ ρi ⊗ ni

+ni ⊗ ni ⊗ ρi ⊗ ni ⊗ ρi

+ni ⊗ ρi ⊗ ni ⊗ ρi ⊗ ni + ni ⊗ ρi ⊗ ni ⊗ ni ⊗ ρi

+ρi ⊗ ni ⊗ ni ⊗ ρi ⊗ ni
+ ρi ⊗ ni ⊗ ni ⊗ ni ⊗ ρi + ni ⊗ ρi ⊗ ρi ⊗ ni ⊗ ni
+ρi ⊗ ni ⊗ ρi ⊗ ni ⊗ ni
+ ρi ⊗ ρi ⊗ ni ⊗ ni ⊗ ni , (123)

D(5)
niniρiρiρi = ni ⊗ ni ⊗ ρi ⊗ ρi ⊗ ρi + ni ⊗ ρi ⊗ ni ⊗ ρi ⊗ ρi

+ρi ⊗ ni ⊗ ni ⊗ ρi ⊗ ρi

+ni ⊗ ρi ⊗ ρi ⊗ ρi ⊗ ni + ni ⊗ ρi ⊗ ρi ⊗ ni ⊗ ρi

+ρi ⊗ ni ⊗ ρi ⊗ ρi ⊗ ni
+ ρi ⊗ ni ⊗ ρi ⊗ ni ⊗ ρi + ρi ⊗ ρi ⊗ ni ⊗ ρi ⊗ ni + ρi ⊗ ρi ⊗ ni ⊗ ni ⊗ ρi

+ ρi ⊗ ρi ⊗ ρi ⊗ ni ⊗ ni , (124)

D(5)
niρiρiρiρi = ni ⊗ ρi ⊗ ρi ⊗ ρi ⊗ ρi + ρi ⊗ ni ⊗ ρi ⊗ ρi ⊗ ρi

+ ρi ⊗ ρi ⊗ ni ⊗ ρi ⊗ ρi + ρi ⊗ ρi ⊗ ρi ⊗ ni ⊗ ρi

+ρi ⊗ ρi ⊗ ρi ⊗ ρi ⊗ ni , (125)

D(5)
ρiρiρiρiρi

= ρi ⊗ ρi ⊗ ρi ⊗ ρi ⊗ ρi . (126)

Please notice that the order of the elements in the six groups of fifth-order tensors above is
not casual. Actually, grouping the six tensors in three groups of complementary tensors, e.g.,
D(5)

nininiρiρi
andD(5)

ρiρiρinini , the k-th element of the first tensor in each group is obtained from
the (N − k)-th element of the complementary tensor, N being the total number of elements
in each tensor, by exchanging ni and ρi .
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According to the general rule illustrated above, we finally have

R(5,3/2)
Fi

= R(5,3/2,5)
Fi ,ni

+ R(5,3/2,4)
Fi ,ni

+ R(5,3/2,3)
Fi ,ni

+ R(5,3/2,2)
Fi ,ni

+ R(5,3/2,1)
Fi ,ni

+ T
(5)
Fi

P(5,3/2)
Fi

,

(127)

where

R(5,3/2,5)
Fi ,ni

= d5i ni ⊗ ni ⊗ ni ⊗ ni ⊗ niP
(0,3/2)
Fi

, (128)

R(5,3/2,4)
Fi ,ni

= d4i

[
ni ⊗ ni ⊗ ni ⊗ ni ⊗ TFiP

(1,3/2)
Fi

+ ni ⊗ ni ⊗ ni ⊗ TFiP
(1,3/2)
Fi

⊗ ni

+ni ⊗ ni ⊗ TFiP
(1,3/2)
Fi

⊗ ni ⊗ ni + ni ⊗ TFiP
(1,3/2)
Fi

⊗ ni ⊗ ni ⊗ ni

+TFiP
(1,3/2)
Fi

⊗ ni ⊗ ni ⊗ ni ⊗ ni

]
, (129)

R(5,3/2,3)
Fi ,ni

= d3i

[
ni ⊗ ni ⊗ ni ⊗ T

(2)
Fi
P(2,3/2)
Fi

+ (ni ⊗ ni ⊗ ni ⊗ T
(2)
Fi
P(2,3/2)
Fi

)12543

+(ni ⊗ ni ⊗ ni ⊗ T
(2)
Fi
P(2,3/2)
Fi

)12435 + (ni ⊗ ni ⊗ ni ⊗ T
(2)
Fi
P(2,3/2)
Fi

)14352

+(ni ⊗ ni ⊗ ni ⊗ T
(2)
Fi
P(2,3/2)
Fi

)14325 + (T
(2)
Fi
P(2,3/2)
Fi

⊗ ni ⊗ ni ⊗ ni )14325

+(T
(2)
Fi
P(2,3/2)
Fi

⊗ ni ⊗ ni ⊗ ni )15342 + (T
(2)
Fi
P(2,3/2)
Fi

⊗ ni ⊗ ni ⊗ ni )32145

+(T
(2)
Fi
P(2,3/2)
Fi

⊗ ni ⊗ ni ⊗ ni )13245 + T
(2)
Fi
P(2,3/2)
Fi

⊗ ni ⊗ ni ⊗ ni

]
, (130)

R(5,3/2,2)
Fi ,ni

= d2i

[
ni ⊗ ni ⊗ T

(3)
Fi
P(3,3/2)
Fi

+ (ni ⊗ ni ⊗ T
(3)
Fi
P(3,3/2)
Fi

)13245

+(ni ⊗ ni ⊗ T
(3)
Fi
P(3,3/2)
Fi

)32145 + (ni ⊗ ni ⊗ T
(3)
Fi
P(3,3/2)
Fi

)15342

+(ni ⊗ ni ⊗ T
(3)
Fi
P(3,3/2)
Fi

)14325 + (T
(3)
Fi
P(3,3/2)
Fi

⊗ ni ⊗ ni )14325

+(T
(3)
Fi
P(3,3/2)
Fi

⊗ ni ⊗ ni )15342 + (T
(3)
Fi
P(3,3/2)
Fi

⊗ ni ⊗ ni )12435

+(T
(3)
Fi
P(3,3/2)
Fi

⊗ ni ⊗ ni )12543 + T
(3)
Fi
P(3,3/2)
Fi

⊗ ni ⊗ ni

]
, (131)

R(5,3/2,1)
Fi ,ni

= di

[
ni ⊗ T

(4)
Fi
P(4,3/2)
Fi

+ T
(4)
Fi
P(4,3/2)
Fi

⊗15342 ni + T
(4)
Fi
P(4,3/2)
Fi

⊗12543 ni

+T
(4)
Fi
P(4,3/2)
Fi

⊗12354 ni + T
(4)
Fi
P(4,3/2)
Fi

⊗ ni

]
. (132)

In conclusion, replacing formulas (112), (114), (115), (116) and (127) in (92), (93), (94),
(95) and (96), we realize that the computation of dpU (k) amounts to evaluating the 2D
integrals (113), an issue addressed in the following subsection.

3.3 Analytical Expression of Face Integrals Related to the GV in Terms of 1D Integrals

The 2D integrals (113) required to evaluated the gravity vector in formulas (92), (93), (94),
(95) and (96) can be further simplified by using the generalized Gauss theorem (Tang 2006)
and transforming them to simpler 1D integrals. This has already been done form = 0, 1, 2 in
D’Urso (2014b) and D’Urso and Trotta (2017); the additional formulas required in the cases
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m = 3, 4, 5 are reported in Appendix D. They make use of the following additional notation

P[1·,1(1/2)]
∂Fi

=
∫

∂Fi

ρi (si ) · νi (si )
[
ρi (si ) · ρi (si )

][
ρi (si ) · ρi (si ) + d2i

]1/2 dsi , (133)

P[0,1/2]
∂Fi

=
∫

∂Fi

νi (si )
[
ρi (si ) · ρi (si ) + d2i

]1/2 dsi , (134)

P[1⊗, 1/2]
∂Fi

=
∫

∂Fi

ρi (si ) ⊗ νi (si ) dsi
(ρi (si ) · ρi (si ) + d2i )1/2

, (135)

P[2⊗, 1/2]
∂Fi

=
∫

∂Fi

ρi (si ) ⊗ ρi (si ) ⊗ νi (si ) dsi
(ρi (si ) · ρi (si ) + d2i )1/2

, (136)

P[3⊗, 1/2]
∂Fi

=
∫

∂Fi

ρi (si ) ⊗ ρi (si ) ⊗ ρi (si ) ⊗ νi (si ) dsi
(ρi (si ) · ρi (si ) + d2i )1/2

, (137)

P[4⊗, 1/2]
∂Fi

=
∫

∂Fi

ρi (si ) ⊗ ρi (si ) ⊗ ρi (si ) ⊗ ρi (si ) ⊗ νi (si ) dsi
(ρi (si ) · ρi (si ) + d2i )1/2

. (138)

For the reader’s convenience the formulas expressing the integrals (113) as function of
boundary integrals are reported in the sequel

• Integral (113), for m = 0, see, e.g., formula (37) of D’Urso (2014b)

P(0,3/2)
Fi

=
∫

Fi

dAi

(ρi · ρi + d2i )3/2
= αi

|di | − P[1·,1(1/2)]
∂Fi

. (139)

• Integral (113), for m = 1, see, e.g., formula (38) of D’Urso (2014b)

P(1,3/2)
Fi

=
∫

Fi

ρi dAi

(ρi · ρi + d2i )3/2

= −P[0,1/2]
∂Fi

. (140)

• Integral (113), for m = 2, see, e.g., formula (40) of D’Urso (2014b)

P(2,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi

(ρi · ρi + d2i )3/2
dAi

= −P(1⊗,1/2)
∂Fi

+ I(2)
[
P[(1/2)1·,1]

∂Fi
− αi |di |

]
. (141)

• Integral (113), for m = 3, on account of formula (299)

P(3,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
dAi

= −P(2⊗, 1/2)
∂Fi

+ I(2) ⊗132 P
[(1/2) 0]
∂Fi

+ P[(1/2) 0]
∂Fi

⊗ I(2). (142)
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• Integral (113), for m = 4, on account of formula (301)

P(4,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
dAi

= −P[3⊗, 1/2]
∂Fi

+ I(2) ⊗1423

[
P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

]

+I(2) ⊗1243

[
P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

]
+
[
P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

]
⊗ I(2).

(143)

• Integral (113), for m = 5, on account of formula (304)

P(5,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
dAi

= −P[4⊗, 1/2]
∂Fi

+ P(5, 3/2,A)
∂Fi

+ P(5, 3/2,B)
∂Fi

+ P(5, 3/2,C)
∂Fi

+ P(5, 3/2,D)
∂Fi

,

(144)

where

P(5, 3/2,A)
∂Fi

= +I(2) ⊗15234 P
[(1/2)2⊗]
∂Fi

− 1

4

[(
I(2) ⊗ I(2) ⊗ P1I∂Fi

)

15243
+
(
I(2) ⊗ P1I∂Fi

⊗ I(2)
)

15234

]
, (145)

P(5, 3/2,B)
∂Fi

= P[(1/2)2⊗]
∂Fi

⊗13425 I(2)

− 1

4

[(
I(2) ⊗ P1I∂Fi

⊗ I(2)
)

14325
+
(
P1I∂Fi

⊗ I(2) ⊗ I(2)
)

13425

]
, (146)

P(5, 3/2,C)
∂Fi

= P[(1/2)2⊗]
∂Fi

⊗12435 I(2)

− 1

4

[(
I(2) ⊗ P1I∂Fi

⊗ I(2)
)

14235
+
(
P1I∂Fi

⊗ I(2) ⊗ I(2)
)

12435

]
, (147)

P(5, 3/2,D)
∂Fi

= P[(1/2)2⊗]
∂Fi

⊗ I(2) − 1

4

[(
I(2) ⊗ P1I∂Fi

⊗ I(2)
)

13245
+ P1I∂Fi

⊗ I(2) ⊗ I(2)
]
.

(148)

3.4 Algebraic Expression of the Face Integrals Related to the GV in Terms of 2D
Vectors

There are now available formulas that express the integrals (113) as function of 1D integrals.
There have been derived to facilitate the computation of the integrals P(m,3/2)

Fi
,m = 0, . . . , 5,

appearing in the formulas (112), (32), (36), (37) and (127) for R(m,3/2)
Fi

, m = 1, . . . , 5.

In turn such integrals are required to compute dpU (k), k = 0, . . . , 4, bymeans of formulas
(92), (93), (94), (95) and (96).

Our next step is to further simplify the evaluation of the boundary integrals entering the
formulas for P(m,3/2)

Fi
by expressing them as sums over the NEi edges defining the boundary

∂Fi . Specifically, adopting the parameterization (52) for the j-th edge of the face Fi and the
notation introduced in Sect. (2.4). Specifically, with reference to the integral (133) appearing
in formula (139), it turns out to be
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P[1·,1(1/2)]
∂Fi

=
∫

∂Fi

ρi (si ) · νi (si )[
ρi (si ) · ρi (si )

][
ρi (si ) · ρi (si ) + d2i

]1/2 dsi =
NEi∑

j=1

(
ρ j · ρ⊥

j+1
)
I [0,1(1/2)]j ,

(149)

where the symbols p j , q j , u j and v j are defined in (55) and (56) while AT N1 j , AT N2 j in

the expression (287) of I [0,1(1/2)]
j are defined in (280) and (281), respectively.

Concerning the integral (134) we have

P[0,1/2]
∂Fi

=
∫

∂Fi

νi (si )
[
ρi (si ) · ρi (si ) + d2i

]1/2 dsi

=
NEi∑

j=1

Δρ⊥
j

1∫

0

dλ j
(
p jλ2 + 2q jλ j + v j

)1/2 =
NEi∑

j=1

I (0,1/2)
j Δρ⊥

j ,

(150)

where the integral I (0,1/2)
j is evaluated in (288).

The integral (135) is obtained by the formula

P[1⊗, 1/2]
∂Fi

=
∫

∂Fi

ρi (si ) ⊗ νi (si )
(
ρi (si ) · ρi (si ) + d2i

)1/2 dsi

= ∑NEi
j=1

[ 1∫

0

ρ j+λ jΔρ j(
p jλ

2
j+2q jλ j+v j

)1/2 l j dλ j

]
⊗ ν j

=
NEi∑

j=1

[
I (0,1/2)
j ρ j ⊗ Δρ⊥

j + I (1,1/2)
j Δρ j ⊗ Δρ⊥

j

]
,

(151)

where the integral I (0,1/2)
j and I (1,1/2)

j are defined in (288) and (289), respectively.
The integral (136) is given by

P[2⊗, 1/2]
∂Fi

=
∫

∂Fi

ρi (si ) ⊗ ρi (si ) ⊗ νi (si )
(
ρi (si ) · ρi (si ) + d2i

)1/2 dsi

=
NEi∑

j=1

[ 1∫

0

(
ρ j + λ jΔρ j

)⊗ (
ρ j + λ jΔρ j

)

(
p jλ

2
j + 2q jλ j + v j

)1/2 l j dλ j

]
⊗ ν j

=
NEi∑

j=1

[
I (0,1/2)
j E(2)

ρ jρ j
+ I (1,1/2)

j E(2)
ρ jΔρ j

+ I (2,1/2)
j E(2)

Δρ jΔρ j

]
⊗ Δρ⊥

j ,

(152)

where the symbols E(2)
ρ jρ j

, E(2)
ρ jΔρ j

, and E(2)
Δρ jΔρ j

are defined in (65) and the integrals I (0,1/2)
j ,

I (1,1/2)
j and I (2,1/2)

j are reported in the formulas (288), (289) and (290), respectively.
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The integral (137) reads

P[3⊗, 1/2]
∂Fi

=
∫

∂Fi

ρi (si ) ⊗ ρi (si ) ⊗ ρi (si ) ⊗ νi (si )
(
ρi (si ) · ρi (si ) + d2i

)1/2 dsi

=
NEi∑

j=1

[ 1∫

0

(
ρ j + λ jΔρ j

)⊗ (
ρ j + λ jΔρ j

)⊗ (
ρ j + λ jΔρ j

)

(
p jλ

2
j + 2q jλ j + v j

)1/2 l j dλ j

]
⊗ ν j

=
NEi∑

j=1

[
I (0,1/2)
j E(3)

ρ jρ jρ j
+ I (1,1/2)

j E(3)
ρ jρ jΔρ j

+I (2,1/2)
j E(3)

ρ jΔρ jΔρ j
+ I (3,1/2)

j E(3)
Δρ jΔρ jΔρ j

]
⊗ Δρ⊥

j ,

(153)

where the symbols E(3)
ρ jρ jρ j

, E(3)
ρ jρ jΔρ j

, E(3)
ρ jΔρ jΔρ j

and E(3)
Δρ jΔρ jΔρ j

are defined in (67) and

I (0,1/2)
j , I (1,1/2)

j , I (2,1/2)
j and I (3,1/2)

j are reported in the formulas (288), (289), (290) and
(291), respectively.

Finally the integral (138) has the following expression

P[4⊗, 1/2]
∂Fi

=
∫

∂Fi

ρi (si ) ⊗ ρi (si ) ⊗ ρi (si ) ⊗ ρi (si ) ⊗ νi (si )
(
ρi (si ) · ρi (si ) + d2i

)1/2 dsi

=
NEi∑

j=1

[ 1∫

0

(
ρ j + λ jΔρ j

)⊗ (
ρ j + λ jΔρ j

)⊗ (
ρ j + λ jΔρ j

)⊗ (
ρ j + λ jΔρ j

)

(
p jλ

2
j + 2q jλ j + v j

)1/2 l j dλ j

]

⊗ν j , (154)

or equivalently

P[4⊗, 1/2]
∂Fi

=
NEi∑

j=1

[
I (0,1/2)
j E(4)

ρ jρ jρ jρ j
+ I (1,1/2)

j E(4)
ρ jρ jρ jΔρ j

+I (2,1/2)
j E(4)

ρ jρ jΔρ jΔρ j
+ I (3,1/2)

j E(4)
ρ jΔρ jΔρ jΔρ j

+ I (4,1/2)
j E(4)

Δρ jΔρ jΔρ jΔρ j

]
⊗ Δρ⊥

j ,

(155)

where

E(4)
ρ jρ jρ jρ j

= ρ j ⊗ ρ j ⊗ ρ j ⊗ ρ j E(4)
Δρ jΔρ jΔρ jΔρ j

= Δρ j ⊗ Δρ j ⊗ Δρ j ⊗ Δρ j ,

(156)

and the expressions of the symbols E(4)
ρ jρ jρ jΔρ j

, E(4)
ρ jρ jΔρ jΔρ j

and E(4)
ρ jΔρ jΔρ jΔρ j

can be

inferred from the symbols D(4)
pppr, D(4)

pprr and D(4)
prrr in (211), (212) and (213), respectively,

by replacing p with ρ j and r with Δρ j . Furthermore, the expressions of I (0,1/2)
j , I (1,1/2)

j ,

I (2,1/2)
j , I (3,1/2)

j and I (4,1/2)
J are reported in the formulas (288), (289), (290), (291) and (292),

respectively.
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3.5 Removable Singularities of the Algebraic Expressions of the Gravity Vector

It has been proved in formula (107) that expression of the integrals R(m,3/2)
Ω , m = 1, . . . , 5,

entering formula (92–96) for the addends dpU (k), k = 0, . . . , 4, of the gravity vector are
singularity-free independently from the position of the observation point P with respect to
Ω .

Nevertheless, the algebraic counterparts R(m,3/2)
Fi

can include integrals extended to the
generic edge of the face Fi that can exhibit singularities whenever the observation point
belongs to Fi or when its projection over Fi belongs to an edge defining its boundary.

However, this possible singularity of the generic integral I j extended to the j-th edge of
∂Fi is actually ineffective from the computational point of view since it will be proved by
analytical arguments that its contribution to the integral R(m,3/2)

Fi
is null.

To prove the results of interest we shall make use of the notation introduced it in the
formulas (55) and (72) and observe that the combination of the formulas (110) and (111)
yields

R(m,3/2)
Ω = 1

m

NF∑

i=1

di R(m,3/2)
Fi

m = 1, . . . , 5 , (157)

when the expression of R(m,3/2)
Fi

, m = 1, . . . , 5, are provided in the formulas (112), (114–

116) and (127). In turn, they depend upon the integrals P(m,3/2)
Fi

defined in (113) whose value
is computed as a sum of the integrals (133–138) extended to the boundary ∂Fi .

Due to the intricate combination of integrals to be evaluated it is convenient to indicate the
set of formulas required to computeR(m,3/2)

Fi
by concisely reporting the sequence of formulas

to be invoked. For instance

R(1,3/2)
Fi

↔ (112) → [(139), (140)] → [(133), (134)]
→ [(149), (150)] → [(287), (288)], (158)

meaning that the computation of R(1,3/2)
Ω requires the evaluation of the integrals I [0,1(1/2)]

j

and I (0,1/2)
j over the edges of ∂Fi .

Analogously,

R(2,3/2)
Fi

↔ (114) → [(139), (140), (141)] → [(133), (134), (135) − (59)]
→ [(149), (150), (151)] → [(287), (288), (289)], (159)

so that one needs to compute the integrals I (1,1/2)
j in addition to those required for computing

R(2,3/2)
Ω . As a matter of fact this represents are general rule in the sense that the computation

of the integral R(m+1,3/2)
Fi

requires to evaluate an additional integral with respect to those

associated with R(m,3/2)
Fi

. Actually

R(3,3/2)
Fi

↔ (115) → [(139), (140), (141), (142)]
→ [(133), (134), (135) − (59), (136)]
→ [(149), (150), (151), (152)] → [(287), (288), (289), (290)],

(160)

what requires computation of I (2,1/2)
j in addition to the previously indicated integrals.
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Furthermore

R(4,3/2)
Fi

↔ (116) → [(139), (140), (141), (142), (143)]
→ [(133), (134), (135) − (59), (136), (137) − (62) − (59) − (63)]
→ [(149), (150), (151), (152), (153)]
→ [(287), (288), (289), (290), (291)],

(161)

requires the extra calculation of I (3,1/2)
j while

R(5,3/2)
Fi

↔ (127) → [(139), (140), (141), (142), (143), (144)]
→ [(133), (134), (135) − (59), (136), (137) − (62) − (59) − (63), (138)]
→ [(149), (150), (151), (152), (153), (155)]
→ [(287), (288), (289), (290), (291), (292)],

(162)

needs to evaluate the additional integral I (4,1/2)
j .

To sum up, the computation of the integrals R(m,3/2)
Fi

, m = 1, . . . , 5, requires the compu-

tation of the six integral I [0,1(1/2)]
j , I (m,1/2)

j , m = 0, . . . , 4. It has been anticipated that they
can become singular when di = 0, i.e., the observation point P belongs to the face Fi , or the
projection of P over the face, i.e., when di �= 0, is such that ρ j = o, ρ j+1 = o or belongs
to the segment [ρ j ,ρ j+1].

Let us first show that, independently from the value of di , the integral R(1,3/2)
Ω is always

well-defined. Actually, on account of (157), (111) and (112) it turns out to be

R(1,3/2)
Ω =

NF∑

i=1

di

[
dini P

(0,3/2)
Fi

+ TFiP
(1,3/2)
Fi

]
. (163)

Hence, one has to prove both P(0,3/2)
Fi

and P(1,3/2)
Fi

are well-defined. Equivalently, according

to (139) and(140), it has to be proved that P[1·,1(1/2)]
∂Fi

and P[0,1/2]
∂Fi

are non-singular. To this
end it is convenient to invoke formulas (139) and(140) to express (163) as follows

R(1,3/2)
Ω =

NF∑

i=1

di

[
dini

(
αi

|di | − P[1·,1(1/2)]
∂Fi

)
− TFi P

[0,1/2]
∂Fi

]

=
NF∑

i=1

di

⎧
⎪⎨

⎪⎩
ni

⎡

⎢⎣sgn(di ) αi − di

NEi∑

j=1

(
ρ j · ρ⊥

j+1
)
I [0,1(1/2)]j

⎤

⎥⎦− TFi I
(0,1/2)
j Δρ⊥

j

⎫
⎪⎬

⎪⎭
,

(164)

where sgn denotes the signum function and the last equality follows from (149) and(150).
To ascertain the well-posedness of the integral I [0,1(1/2)]

j if di �= 0 we proceed as follows.
Such an integral can be computed, on the basis of the formula (287) and invoking formula
(55), by defining

A j = −Δ j

p2j
= p ju j − q2j

p2j
B j = p jv j − q2j

p2j
= A j + d2i

p j
= A j + d2i

l2j
, (165)

and setting t = λ j + q j
p j
. Hence, one obtains

I [0,1(1/2)]
j =

1+q j /p j∫

q j /p j

d t
(
t2 + A j

)√
t2 + Bj

. (166)
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Notice that the denominator in (166) is positive if−Δ j = A j > 0. Accordingly, the previous
integral becomes

I [0,1(1/2)]
j = 1√

A j
√
Bj − A j

⎡

⎣arctan
t
√
Bj − A j

√
A j

√
Bj + t2

⎤

⎦
1+q j /p j

q j /p j

= l j
|di |
√−Δ j

⎡

⎣arctan
|di | t

|l j |
√−Δ j

√
Bj + t2

⎤

⎦
1+q j /p j

q j /p j

.

(167)

Being Bj > 0 the previous expression can become indefinite whenever Δ j = 0 or, equiva-
lently, when A j = 0 in (167) since the integrand becomes singular at one point belonging to

the interval
[
q j
p j

, 1 + q j
p j

]
. In turn, this happens at the left (right) extreme of the integration

interval if ρ j = o ( ρ j+1 = o) or at an internal point if o ∈]ρ j , ρ j+1[, i.e., ρ j and Δρ j have
negative scalar product.

Actually if ρ j = o
(
ρ j+1 = o

)
, it turns out to be

q j
p j

= 0
(
1 + q j

p j
= 0

)
; hence

the denominator in (166) becomes singular at the left (right) extreme of the integration
interval. Furthermore, should the projection of the observation point belong to the segment
[ρ j , ρ j+1], one has ρ j+1 = β jρ j (β j < 0) where

q j
p j

= (β j − 1)
ρ j ·ρ j
p j

< 0 and 1 + q j
p j

=
β j (β j − 1)

ρ j ·ρ j
p j

> 0. Accordingly, the integration interval in (166) splits in two intervals

having 0 as right (left) extreme. At that point, however, t = 0 and A j = −Δ j

p2j
= 0 by

assumption so that the integrand in (166) becomes singular.
However, we are going to prove that, in the previous three cases, the singularity is elim-

inable and that the integral attains a finite value. Let us discuss separately the three cases,
namely ρ j = o, ρ j+1 = o and ρ j+1 = β j ρ j (β j < 0).

In the first case, ρ j = o, the integration interval is [0, 1] and we have singularity of the

integrand in (166) at the left extreme. However, we recall that the computation of I [0,1(1/2)]
j

is required in the expression (149) of P[1·,1(1/2)]
∂Fi

so that they real quantity to compute is

(ρ j · ρ⊥
j+1) I

[0,1(1/2)]
j .

Setting ρ j = |ρ j |e = ε e and observing that, on account of (73),

− Δ j =
(
ρ j+1 · ρ j+1

)
|ρ j |2 −

(
|ρ j |e · ρ j+1

)2 = ε2
[
ρ j+1 · ρ j+1 −

(
e · ρ j+1

)2]
,

(168)

we infer that
√−Δ j is infinitesimal of the same order as ε = |ρ j |when ε → 0, a property

we state by writing
√−Δ j = O(ε).

Being ρ j · ρ⊥
j+1 = O(ε) if ε → 0. one has

(ρ j · ρ⊥
j+1) I

[0,1(1/2)]
j = lim

ε→0
ε

⎡

⎣ l j
|di |
√−Δ j (ε)

arctan
|di | t

l j
√−Δ j (ε)

√
Bj + t2

⎤

⎦
1

ε

= l j
|di |

[π
2

− π

4

]
= l j

|di |
π

4
,

(169)

where l j =
√

Δρ j · Δρ j .
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If ρ j+1 = o the quantity (ρ j · ρ⊥
j+1) I

[0,1(1/2)]
j is still given by the previous expression

but the integration limits are −1 and ε. Hence, the final result coincides with the previous
one but with the reversed sign.

Should the projection of the observation point be internal to the edge, ρ j and ρ j+1 are
parallel so that the product ρ j · ρ⊥

j+1 is zero. Accordingly, both ρ j · ρ⊥
j+1 and

√−Δ j are
O(ε), that is both of them are infinitesimal of order ε as ε → 0. Hence

(ρ j · ρ⊥
j+1) I

[0,1(1/2)]
j = l j

|di | limε→0

ε√−Δ j (ε)⎧
⎪⎨

⎪⎩

⎡

⎣arctan
|di | t

l j
√−Δ j (ε)

√
Bj + t2

⎤

⎦
ε

−1

+
[
arctan |di | t

l j
√−Δ j (ε)

√
Bj+t2

]1

ε

}
= 0 .

(170)

Actually, the arctan function attains finite and opposite values both at t = ε and t = ±1.
On account of the previous results we can conclude that the first two terms in (164) are

zero if di = 0 so that their computation can be skipped in this case.
For what concerns, the integral I (0,1/2)

j in (164) we notice that, according to (288), its
evaluation requires that of the quantity LN j in (279) since p j is always positive on the basis
of its definition in (55). However, the equivalent expression of LN j provided in (79) shows
that it is always well-defined if di �= 0.

Conversely, if the projection of the point P over the face is such that if ρ j = o or ρ j+1 = o

or it belong to ]ρ j , ρ j+1[, LN j tends to infinity with an arbitrary low degree. Since I (0,1/2)
j

is multiplied by di in (164), a quantity that has been assumed to be zero, we ultimately infer
that R(1,3/2)

Ω is zero if di = 0 so that its computation can be actually avoided.

In conclusion, the integral R(1,3/2)
Ω is well-defined if di �= 0 and its computation can be

avoided if di = 0 since the relevant value is null.
Let us now prove that the integral R(2,3/2)

Ω is well-defined independently from the value
of di . Recalling (157), (111) and (114) one has

R(2,3/2)
Ω = 1

2

NF∑

i=1

di

{
d2i ni ⊗ niP

(0,3/2)
Fi

+ di

[
TFiP

(1,3/2)
Fi

⊗ ni + ni ⊗ TFiP
(1,3/2)
Fi

]

+T
(2)
Fi
P(2,3/2)
Fi

}
. (171)

We have already proved, with reference to R(1,3/2)
Ω , that P(0,3/2)

Fi
and P(1,3/2)

Fi
are well-

defined whatever is the value of di . Hence, R(2,3/2)
Ω is singularity-free provided that P(2,3/2)

Fi
does share this property whatever is the value of di .

To this end we invoke formula (141), (151) and (59) to write

P(2,3/2)
Fi

= −P(1⊗,1/2)
∂Fi

+ I(2)
[
P[(1/2)1·,1]

∂Fi
− αi |di |

]

= −
NE j∑

j=1

[
I (0,1/2)
j ρ j ⊗ Δρ⊥

j + I (1,1/2)
j Δρ j ⊗ Δρ⊥

j + I(2)(ρ j · ρ⊥
j+1

)
I (1/2·0,1)
j

]

−αi |di |I(2).

(172)
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According to (289) the integral I (1,1/2)
j is the sumof the algebraic quantity (

√
p j + 2q j + v j−√

v j )/p j , that is always well-defined independently from di , and the projection of the obser-

vation point P over the face, and of the quantity q j I
(0,1/2)
j /p j where I 0,1/2)j depends on

LN j on account of (288).

However both I (0,1/2)
j and I (1,1/2)

j , being addends of P(2,3/2)
Fi

, are multiplied by di in (171)
so that their expressions are well-defined, whatever is the value of di , as already shown for
the product di LN j with reference to the integral R(1,3/2)

Ω .

For what concerns the integral I (1/2·0,1)
j in (172) we infer from formula (282) that it can

be expressed as

I (1/2·0,1)
j = d2i I [0,1(1/2)]

j + 1√
p j

LN j . (173)

Being this integral multiplied by
(
ρ j · ρ⊥

j+1

)
in (172) the first addends is well-defined,

whatever is the value of di , as already proved in (169) and (170).
Hence, in the special case di = 0, the integral I [0,1(1/2)]

j does not even need to be computed

since P(2,3/2)
Fi

in which I [0,1(1/2)]
j does appear, is scaled by di in (171). The same does occur

for the additional terms LN j in (173) since it has to be multiplied by di in (171) producing a
quantity that is well-defined if di �= 0 and equal to zero if di = 0. Actually, in this last case,
di tends to zero while LN j can tend to infinity but with are infinitesimally low rate.

It is worth noting at this stage that proving the well-posedness ofR(2,3/2)
Ω has only required

to prove the well-posedness of the integral of P(2,3/2)
Fi

since the additional terms entering the

expression ofR(2,3/2)
Ω are also included in the expression ofR(1,3/2)

Ω , i.e., the first integral that
has been proved to be singularity-free. On the other hand this is apparent if one compares
formulas (164) and (171) that are based, according (157), on formulas (112) and (114).

Hence, comparing formulas (114) and (115), this means R(3,3/2)
Ω is well defined if and

only if P(3,3/2)
Fi

is singularity-free. This is certainly true since this integral, according to

(142), depends upon the integrals P[2⊗,1/2]
∂Fi

and P[(1/2)0]
∂Fi

. Formulas (152), refereed to the

former integral, shows that one needs to compute the integrals I (0,1/2)
j , I (1,1/2)

j and I (2,1/2)
j ;

furthermore, one infers from (60) that the integral I (1/2·0)
j is required for P[(1/2)0]

∂Fi
. In turn

formulas (288), (289) and (290) for the first three integrals, and formula (283) for the fourth
one show that, apart from algebraic quantities that are always well-defined, they all depend
upon the quantity LN j . However, this quantity is multiplied by di , according to (157); hence,
the product di LN j , as a previously shown, is well-defined and null if di = 0.

Basically, the same path of reasoning can be followed for R(4,3/2)
Ω and R(5,3/2)

Ω whose

well-posedness depends upon the fact that P(4,3/2)
Fi

and P(5,3/2)
Fi

are singularity-free, see, e.g.,
formulas (110), (116) and (127).

Actually, according to formula (143), P(4,3/2)
Fi

depends upon P[3⊗, 1/2]
∂Fi

, P[(1/2) 1⊗]
∂Fi

and P0I∂Fi
.

In turn thefirst integral depends, according to (153), upon I (0,1/2)
j , I (1,1/2)

j , I (2,1/2)
j and I (3,1/2)

j
defined, respectively, in formulas (288), (289), (290) and (291). All of them depend upon
algebraic quantities, these are non-singular whatever is the position of the observation point
P with respect to the target body, and the quantity LN j . Since this quantity is multiplied by
di , see, e.g., formula (110), we conclude from the well-posedness of the quantity di LN j , an

issue repeatedly addressed above, that the addend of R(4,3/2)
Ω related to the integral P[3⊗, 1/2]

∂Fi
is singularity-free and null if di = 0.
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On account of (62) the integral P[(1/2) 1⊗]
∂Fi

depends upon the integrals I (1/2·0)
j and I (1/2·1)

j
whose expressions are provided, respectively, in formula (283) and (284). As before they
are sum of algebraic quantities and an additional term depending upon LN j . Hence the

considerations just discussed for P[3⊗,1/2]
∂Fi

do apply to P[(1/2) 1⊗]
∂Fi

.

Finally, formula (45)1 shows that P0I∂Fi
depends upon the integrals P[(1/2) 1·]

∂Fi
and P[(1/2) 1·,1]

∂Fi
.

The well-posedness of the latter has been already discussed in (172) while that of the former
depends, according to formula (63), upon I (1/2·0)

j that is one of the integrals considered with

reference to P[(1/2) 1⊗]
∂Fi

.

This proves that the integral R(4,3/2)
Ω is non-singular whatever is the position of the obser-

vation point with respect to the target body and null if di = 0.
Basically, the same path of reasoning can be followed forR(5,3/2)

Ω so thatwe limit ourselves
to report just the sequence of formulas and/or integrals that the interested reader has to
consult in order to check the well-posedness of P(5,3/2)

Fi
, that is the only additional term to be

considered with respect to terms P(m,3/2)
Fi

, m=1, 2, 3, 4.

R(5,3/2)
Fi

→ (144) → P[4⊗, 1/2]
∂Fi

, P(5, 3/2,A)
∂Fi

, P(5, 3/2,B)
∂Fi

, P(5, 3/2,C)
∂Fi

, P(5, 3/2,D)
∂Fi

, (174)

where

P[4⊗, 1/2]
∂Fi

→ (155) → I (m,1/2)
j m = 0, ..., 4. (175)

while the integrals P(5, 3/2,A)
∂Fi

, P(5, 3/2,B)
∂Fi

, P(5, 3/2,C)
∂Fi

and P(5, 3/2,D)
∂Fi

depend upon P[(1/2) 2⊗]
∂Fi

and P1I∂Fi
, see, e.g., formulas (145–148).

In turn

P[(1/2) 2⊗]
∂Fi

→ (68) → I (1/2·0)
j , I (1/2·1)

j , I (1/2·2)
j , (176)

P1I∂Fi
→ (45)2 → P[(1/2) 2·]

∂Fi
, P[(1/2) 0]

∂Fi
, (177)

P[(1/2) 2·]
∂Fi

→ (69) → I (1/2·0)
j , I (1/2·1)

j , I (1/2·2)
j . (178)

Hence, looking at Appendix C, it is easy to check that all the previous integrals are
composed of an algebraic quantity and an additional one depending upon LN j . The former
is always well-defined while the latter, being multiplied by di , is non-singular and equal to
zero if di = 0 as previously proved in this section.

In conclusion we can state that all integrals appearing in the expression of the gravity
vector are well-defined whatever is the position of the observation point with respect to the
polyhedral body.

4 Algebraic Expression of the Integrals Related to the GP and GV in
Terms of 3D Vectors

It is useful at this stage to sum up the different steps carried out evaluate the gravitational
potential U (p) by means of the expressions (5) and the gravity vector by means of (84).

Basically, we have shown that this amounts to computing the tensors R(m,1/2)
Ω in formula

(8) and the tensorsR(m,3/2)
Ω in formula (85). In turn, exploiting formula (25), tensorsR(m,1/2)

Ω

have been expressed as a sum of tensors R(m,1/2)
∂Ω associated with the NF faces Fi composing
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the polyhedral bodyΩ . The same procedure has been exploited in formula (107) by replacing
the volume integral R(m,3/2)

Ω with the boundary integral R(m,3/2)
∂Ω .

The targetΩ being polyhedral, bothR(m,1/2)
∂Ω andR(m,3/2)

∂Ω have been expressed as a sum of
2D integrals defined on the faces Fi of ∂Ω , in formula (27) and (85), respectively, introducing
the 3D tensors R(m,1/2)

Fi
and R(m,3/2)

Fi
. In turn, the computation of these tensors is based on

that of the two-dimensional tensors P(m,1/2)
Fi

defined in (33), and that of the tensors P(m,3/2)
Fi

defined in (113). Accordingly, both of them have to be mapped back to the 3D space in order
to provide the correct expression of R(m,1/2)

Ω and R(m,3/2)
Ω . This is trivial form = 0, 1, 2, see,

e.g., formulas (32) and (114), while it is more cumbersome for m = 3, 4 since the tensors
P(m,1/2)
Fi

and P(m,3/2)
Fi

of rank three and four have to be combined with the formal operator T
to evaluate, e.g.,

T
(3)
Fi
P(3,1/2)
Fi

and T
(4)
Fi
P(4,1/2)
Fi

(179)

in formulas (36) and (37), respectively.
On account of (50) and (51), and related algebraic counterparts (272) and (277), we need

to apply T(3)
Fi

and T(4)
Fi

to tensors such as α ⊗ β ⊗ γ , α ⊗ β ⊗ γ ⊗ δ or tensor product of I(2)

by α or α ⊗ β, where the two-dimensional vectors α, β, γ and δ stand for ρ j , Δρ j or Δρ⊥
j .

To fix the ideas, let us set α = ρ j , β = Δρ j , γ = Δρ⊥
j . Hence

T
(3)
Fi

α ⊗ β ⊗ γ = TFi ρ j ⊗ TFi Δρ j ⊗ TFi Δρ⊥
j , (180)

an expression that can be further simplified. Actually, inverting (28), we can express the 2D
coordinates of each vertex as function of the relevant 3D ones. In particular, premultiplying
relation (28) by TT

Fi
, where (·)T stands for transpose, one obtains

ρ j = TT
Fi (r j − dini ), (181)

since it is easy to check that TT
Fi
TFi = I(2). Analogously

Δρ j = TT
Fi (ρ j+1 − ρ j ) = TT

Fi (r j+1 − ri ) = TT
Fi Δr j and Δρ⊥

j =
[
TT
Fi Δr j

]⊥
.

(182)

Accordingly, setting TFiT
T
Fi

= ZFi , where [ZFi ] is a 3x3 matrix, we have

TFi ρ j ⊗ TFi Δρ j ⊗ TFi Δρ⊥
j = [

ZFi

(
r j − dini

)]⊗ [
ZFi Δr j

]⊗ [
TFi

(
TT
Fi Δr j

)⊥]
.

(183)

In other words, during the evaluation of the different quantities contributing to (50) and (51),
we can directly make reference to three-dimensional expressions.

For what concerns the tensor product of I(2) by α or α ⊗ β we observe that I(2) =
e1 ⊗ e2 + e2 ⊗ e1 where e1 = (1, 0) and e2 = (0, 1). Hence

T
(2)
Fi
I(2) = TFi (e1 ⊗ e2 + e2 ⊗ e1)TT

Fi = ui ⊗ ui + vi ⊗ vi , (184)

where ui and vi are the vectors used to define the 2D reference frame on the generic face Fi ,
see, e.g., (29).

In conclusion, setting again α = ρ j , β = Δρ j , γ = Δρ⊥
j to fix the ideas, one has

T
(3)
Fi

(
I(2) ⊗ α

)
= T

(3)
Fi

[
I(2) ⊗ ρ j

]
= (ui ⊗ ui + vi ⊗ vi ) ⊗ ZFi (r j − dini ), (185)
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and

T
(4)
Fi

(
β ⊗ γ ⊗ I(2)

)
= T

(4)
Fi

[
Δρ j ⊗ Δρ⊥

j ⊗ I(2)
]

= ZFi Δr j ⊗
[
TFi

(
TT
Fi Δr j

)T
]

⊗ (ui ⊗ ui + vi ⊗ vi ).

(186)

The transformation of additional tensor product such as ⊗132, ⊗1423 etc. can be addressed
in a similar way.

5 Numerical Examples

This section illustrates the results of several numerical tests that have been carried out in
order to fully validate the proposed formulation. This has been done by considering three
different issues that are dealt with in separate subsections.

The first one is concerned with a comparison of the results of the current approach with
those previously contributed by different authors, with a special emphasis on the results
regarding the case of an observation points leading to removable singularity.

The second issue addressed in this section draws the reader’s attention on the usage
limitations of the proposed formulas imposed by numerical instability. In this respect three
different aspects are specifically dealt with, namely i) the separation between the origin of
the reference frame and the observation point; ii) the separation between this last one and
the target body; iii) the numerical effects associated with a finer subdivision of a polyhedral
body.

Finally, a stress test is carried out by comparing the results presented in the first subsection
with those obtained by considering arbitrary reference frame whose axes are not necessarily
aligned with the edges of the polyhedral bodies considered in the examples retrieved from
the literature.

In all examples, the test platform is a personal computer with 2.7GHz Intel core i7 CPU
and 16GB RAM; version R2022b has been used for the MATLAB software.

5.1 Comparison of Results Between the Current Approach and Those Available in
the Literature

The singularity-free analytical formulas developed in the previous sections have been vali-
dated by comparing the results obtained by a home-madeMATLAB code with those refereed
to a classical example reported in the literature, i.e., theGarcía-Abdeslem (2005) prismmodel,
and to a triangular prismmodel, obtained by halving the latter, considered in Ren et al. (2017)
they are shown in Fig. 2a, b, respectively.

Two different cases of polynomial density functions have been considered for themodel in
Fig. 2a, namely a third-order vertically varying density contrast and a purely quartic density
function. To address more severe test cases, a density contrast varying in both vertical and
horizontal directions has been assumed for the more complicated geometry represented by
the triangular prism in Fig. 2b.

We emphasize that the Cartesian reference frame can be arbitrary in the sense that it does
not necessarily coincide with the observation point since its actual position is explicitly taken
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Fig. 2 García-Abdeslem (2005) prism model (a). A triangular prism model (b) is constructed from García-
Abdeslem (2005) prism model by omitting the two vertices whose coordinates satisfy x = y = 20. The
coordinate units are measured in km

into account in the formulas presented in the paper. Hence, there is no need to make the
origin of the reference frame coincide with the observation point and thus no need to assume
different reference frames as the observation point changes.

5.1.1 A Prismatic Body with Vertically Varying Density Contrast

Let us consider the prism in Fig. 2a whose dimensions range as follows: x ∈ [10km, 20km],
y ∈ [10km, 20km], z ∈ [0km, 8km]. The density contrast is taken from García-Abdeslem
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Table 1 Vertical component of the gravity field (mgal) for the prism model in Fig. 2a considering separately
the four addressed of the density contrast in (187) and observation points characterized by y = 15km and z =
−0.15 m

Density x (km) Garcia-Abdeslem (2005) Ren et al. (2017) Our solution

Const. 9.99995 −7.00101521434590E+01 −7.00101521434592E+01 −7.00101521409157E+01

10.00000 −7.00015340782380E+01 −7.00153407823801E+01 −7.00153407823800E+01

10.00005 −7.00641689787295E+01 −7.00641689787295E+01 −7.00205294232819E+01

10.00010 – – −7.00256702257062E+01

10.00015 – – −7.00307359986260E+01

Linear 9.99995 5.97357825457560E+01 5.97357825457560E+01 5.97357748089338E+01

10.00000 5.97365628358932E+01 5.97365628358933E+01 5.97365628358933E+01

10.00005 5.97443654585579E+01 5.97443654585579E+01 5.97373437046296E+01

10.00010 – – 5.97381044880926E+01

10.00015 – – 5.97389045345322E+01

Quadr. 9.99995 −3.69173288088277E+01 −3.69173288088277E+01 −3.69173288072177E+01

10.00000 −3.69176741955519E+01 −3.69176741955519E+01 −3.69176741955519E+01

10.00005 −3.69211280340700E+01 −3.69211280340700E+01 −3.69180195836488E+01

10.00010 – – −3.69183649681870E+01

10.00015 – – −3.69187103525691E+01

Cubic 9.99995 1.09299348988833E+01 1.09299348988834E+01 1.09299355753161E+01

10.00000 1.09300234258250E+01 1.09300234258250E+01 1.09300234258250E+01

10.00005 1.09309086860681E+01 1.09309086860681E+01 1.09301119027371E+01

10.00010 – – 1.09302021357998E+01

10.00015 – – 1.09302889320471E+01

(2005) and reads

δ(s) = −747.7 + 203.435z − 26.764z2 + 1.4247z3, (187)

where density is expressed in kg m−3 and z in km; the value of the gravitational constant G
is 6, 673 · 10−11 m3 kg−1s−2. Hence, one can set c000 = −747.7, c001 = 203.435, c002 = -
26.764 and c003 = 1.4247 in (2).

Three different combinations of the observation point are considered. Thefirst one assumes
y = 15km, z = −0.15 m, so as to avoid the singularity of the formulas reported in García-
Abdeslem (2005), while x assumes three different values in the interval [9.99995, 10.00005].

Table 1 shows the comparison of the vertical gravity field provided by our solution with
those by García-Abdeslem (2005) and Ren et al. (2017) in four different cases corresponding
to the cases of constant, linear, quadratic and cubic density contrast represented by the four
addends in the formula (187).

Table 2 is similar to Table 1with the only difference that z =0,meaning that the observation
point belongs to the plane containing the upper face of the prism. It is worth noting that both
for z = −0.15 m, Table 1, and z = 0, Table 2, our results do coincide with those reported
in the literature when x = 9.99995 km and x = 10km. Conversely, for x = 10.00005 km,
our solution coincides with those due to García-Abdeslem (2005) and Ren et al. (2017)
only up to the second/third significant digit, a condition that has been considered worth of
further investigation on account of the fact that the coordinates x = 10.00005, y = 15, z =
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Table 2 Vertical component of the gravity field (mgal) for the prism model in Fig. 2a considering separately
the four addressed of the density contrast in (187) and observation points characterized by y = 15km and z =
0

Density x (km) Garcia-Abdeslem (2005) Ren et. al (2017) Our solution

Const. 9.99995 −7.00108086223439E+01 −7.00108086223439E+01 −7.00108086195775E+01

10.00000 – −7.00170532866468E+01 −7.00170532866468E+01

10.00005 −7.00680113760199E+01 −7.00680113760199E+01 −7.00232979531537E+01

10.00010 – – −7.00288509357112E+01

10.00015 – – −7.00341428506751E+01

Linear 9.99995 5.97372496760185E+01 5.97372496760186E+01 5.97372496738222E+01

10.00000 – 5.97380301857833E+01 5.97380301857834E+01

10.00005 5.97458347641883E+01 5.97458347641883E+01 5.97388106970268E+01

10.00010 – – 5.97395911924980E+01

10.00015 – – 5.97403716787862E+01

Quadr. 9.99995 −3.69182233831518E+01 −3.69182233831518E+01 −3.69182233812366E+01

10.00000 – −3.69185687923601E+01 −3.69185687923601E+01

10.00005 −3.69220228557055E+01 −3.69220228557056E+01 −3.69189142029638E+01

10.00010 – – −3.69192596092162E+01

10.00015 – – −3.69196050168621E+01

Cubic 9.99995 1.09301961657224E+01 1.09301961657224E+01 1.09301961650641E+01

10.00000 – 1.09302846973961E+01 1.09302846973961E+01

10.00005 1.09311700049598E+01 1.09311700049598E+01 1.09303732295615E+01

10.00010 – – 1.09304617602434E+01

10.00015 – – 1.09305502914170E+01

0 are indicative of an observation point that belongs to the body, thus excluding any sort of
singularity.

For this reason we have computed the vertical gravity field at points characterized by
slightly increasing values of x , viz. x = 10.0001 and x = 10.00015, in order to check a
smooth variation of the field for values of x ranging in the interval [9.99995,10.00015]. This
property is apparent for our solution in the last column of Table 2 while there is a sudden
change, for x = 10.00005, in the values of the gravity field published in García-Abdeslem
(2005) and Ren et al. (2017); in these last papers the results pertaining to the values x =
10.0001 and x = 10.00015 are not available.

Furthermore, we have checked our solution numerically, by evaluating the integrals by the
Gauss rule, and compared it with the analytical results in Table 3. Numerical solutions have
been obtained by adopting 5× 5× 5 rule in four, eight and twelve subdomains in which the
faces parallel to the planes of the reference frame have been divided. This resulted in a total
of 100 × 100 × 100, 200 × 200 × 200 and 300 × 300 × 300 Gauss points, respectively; in
particular, Fig. 3 displays the faces 10 × 10 and 8 × 10 and the actual distribution of Gauss
point corresponding to a partition of each face in four subdomains.

By examining the results in Table 3 it is apparent that, apart from the constant density
distribution, the correctness of the numerical results does not necessary improve as the number
of Gauss points increases when the observation point does belong to the target body. Actually,
as witnessed by a series of further experiments not reported for brevity, the accuracy of the
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Fig. 3 Layout of Gauss points adopting a 5 × 5 × 5 integration rule in four subdomains of the cross sections
parallel to the xy-zx planes (a) and to the yz plane (b)

Gauss integration depends on how much integration points lie close to, or distance from,
points of the domain of integration in which the field to be computed tends to become
singular, see, e.g., the expression (83) of the gravity field.

In the last numerical test for the prism model in Fig. 2a, similar to that presented in Ren
et al. (2017), the observation point coincides with the corner of the prism having coordinates
x = 20km, y = 10km, z = 0km, or is slightly above it (z = −0.15 m). The relevant results are
compared in Tables 4 and 5, respectively, with those by García-Abdeslem (2005) and Ren
et al. (2017). It is apparent that the agreement of our results with the existing ones is quite
good in all cases.

5.1.2 A Prismatic Body with Quartic Density Contrast

We consider again the prism in Fig. 2a but now endowed with the quartic density contrast

δ(s) = z4 (188)

already considered in Ren et al. (2017).
Fifteen observation points are considered, all characterized by y = 15km, z = 0m as

coordinates, and values of x progressively increasing from 0 to 15km.
The relevant results in terms of vertical gravity are reported in Table 6 and compared with

those reported in Table 8 of Ren et al. (2017). The quite good agreement of our results with
those contributed by Ren et al. (2017) confirms the correctness of the proposed approach,
particularly when the removable singularity comes into play (x= 10).

In accordance with what has been shown in Table 3, there is some evidence that the
Gaussian approximation yields higher error than the analytical methodswhen the observation
point is near the target, x∈ [8,15], while the opposite may be true when the observation points
are further away, due to increasingly destructive numerical cancellation errors when using
analytical formulas. This issue will be specifically addressed in Sect. 5.2.2.
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Table 4 Vertical component of the gravity field (mgal) for the prism model in Fig. 2a at the observation point
x = 20km, y = 10km, z = 0m considering separately the four addends of the density contrast in (187)

Density Garcia-Abdeslem (2005) Ren et. al (2017) Our solution

Const. – −4.25112235972466E+01 −4.25112235972466E+01

Linear – 3.95714574971360E+01 3.95714574971360E+01

Quadr. – −2.55693475942219E+00 −2.55693475942219E+01

Cubic – 7.76656065625613E+00 7.76656065625618E+00

Table 5 Vertical component of the gravity field (mgal) for the prism model in Fig. 2a at the observation point
x = 20km, y = 10km, z = −0.15 m considering separately the four addends of the density contrast in (187)

Density Garcia-Abdeslem (2005) Ren et. al (2017) Our solution

Const. −4.25105387729770E+01 −4.25105387729770E+01 −4.25105387729770E+01

Linear 3.95707907656692E+01 3.95707907656690E+01 3.95707907656692E+01

Quadr. −2.55689100895767E+00 −2.55689100895767E+00 −2.55689100895766E+00

Cubic 7.76642695050040E+00 7.76642695050040E+00 7.76642695050044E+00

5.1.3 A Prismatic Body with an Arbitrary Density Contrast

Let us now address the polyhedron in Fig. 2b and the density contrast

δ(s) = 104x2yz , (189)

so as to consider a function varying in both the vertical and horizontal direction.
This case is simulated by assuming c211 = 104 in formula (2) and setting to zero δo as

well as the entries of C(1), C(2), C(3) in formula (4). Three different observation points are
considered, namely one at the barycenter of the upper face (P3), one at median point of the
edge (P2) and one coincident with the vertex (P1).

The relevant results are reported in Table 7 and compared with those obtained by Gauss
integrationwith a total number of 72×72×72 quadrature points and 200x200x200 quadrature
points, respectively, referred to the domains obtained by dividing the base of the prism in
three irregular quadrilaterals by halving each edge, see, e.g., Fig. 4.

5.2 Usage Limitations Imposed by Numerical Instability

Aim of this subsection is to present the results of some numerical tests aimed at testing the
sensitivity of the analytical formulas presented thus for with respect to several effects asso-
ciated with geometric quantities involved. in the computation of the gravitational potential
and gravity vector.

Specifically, with reference to error control under finite length arithmetic, we shall inves-
tigate in three separate subsections the consequences of adopting large offsets of the origin
from the observation point, of considering large distances of the observation point from the
target body and of subdividing a given polyhedron in smaller polyhedra.
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Fig. 4 Layout of Gauss points adopting a 5 × 5 × 5 integration rule

Fig. 5 Prismmodel analogous to that of Fig. 2a with: a increasing distances between the origin of the reference
frame and the observation point (y = 10km, y = 100km, y = 1000km); b increasing separation between
the observation point and the target body (x = 10km, x = 100km, x = 1000km)

Table 8 Gravitational potential (m2s−2) for the prismmodel in Fig. 5a considering separately the four addends
of the density contrast in (187). Observation point [x = 0, y, z = 0]

Density y = 15km y = 105km y = 1005km

Const −2.5800888881215E−06 −2.5800888881215E−06 −2.5800888881215E−06

Linear 2.7415103648810E−06 2.7415103648810E−06 2.7415103648810E−06

Quadr −1.8966254873997E−06 −1.8966254873997E−06 −1.8966254873997E−06

Cubic 6.0018428215507E−07 6.0018428215507E−07 6.0018428215507E−07

5.2.1 Origin-Observation Point Separation

In order to evaluate the effects of large offsets between the origin of the reference frame and
the observation point on the accuracy of the formulas derived in the paper we consider the
prism in fig.5a and evaluate the potential and the vertical component of the gravity vector at
observation points P = [0, y, 0] having progressively increasing values of y. Specifically,
Table 8 shows the values of the gravitational potential for y =15km, y = 105km and y =
1005km separately for the four contributions of the density contrast. Similar computations
have been carried out for the vertical component of the gravity vector and the relevant results
are reported in Table 9

Inspection of Tables 8 and 9 shows that the results are unaffected by the separation between
the origin and the observation point. This is quite reasonable since the computational of the
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Table 9 Vertical component of the gravity field (mgal) for the prism model in Fig. 5a considering separately
the four addends of the density contrast in (187). Observation point [x = 0, y, z = 0]

Density y = 15km y = 105km y = 1005km

Const −4.39400552420745 −4.39400552420745 −4.39400552420745

Linear 6.07516062953291 6.07516062953291 6.07516062953291

Quadr −4.64523185473247 −4.64523185473247 −4.64523185473247

Cubic 1.54748293640795 1.54748293640795 1.54748293640795

gravity effects depends upon the relative position between the observation point and the target
body, an issue that will be further addressed in the following two subsections.

5.2.2 Observation Point—Target Body Separation

In a seminal paper Holstein and Ketteridge (1996) showed that analytical formulas for the
gravity anomaly of a uniform polyhedral body are subjected to numerical error that increases
with distance from the target. This leads to a limited range of target distances in which
the formulas are effective, beyond which the calculations are dominated by rounding error.
Clearly, this range is precision dependent in the sense that, if the floating point precision were
higher, then the range would increase.

In particular, Holstein andKetteridge (1996) expressed their estimates on the relative error
of the analytical computation by introducing the so-called aspect ratio γ = α/δ between the
typical linear dimension α of the target body and the typical distance δ of the target from the
observation point. In particular, defining the dimensionless target distance Γ = 1/γ , they
proved that, for the constant density case, analytical formulas for the potential expressed
in terms of line integrals leads to terms that are O(δ3/α3) = O(Γ 3) larger than the result.
Hence, differently fromaGaussian integration inwhich no numerical cancellation does occur,
if δ >> α destructive cancellation will take place and the relative error of the analytical
computation will grow with Γ .

For polyhedral bodies having a spatially linear density (Pohanka 1998) and (Hansen 1999)
noted that the analytical formulas for the gravitational field at increasing target distances
produced results characterized by larger numerical errors than those associated with the
corresponding uniform polyhedral formulas. This propertywas confirmed by (Holstein 2003)
who proved that analytical formulas for the linear density case leads to terms that areO(Γ 3+1)

larger than the result.
Hence, for the maximum density variation considered in this paper, i.e., of fourth-order,

a magnification by O(Γ 4) of the largest term in the analytical formulas with respect to
the smallest is expected, making an overall growth factor of O(Γ 3+4) of the summed term
compared to the result.

Furthermore, the calculation of the vertical component of gravity of a finite target at
increasing horizontal distances induces a further level of destructive cancellation, since we
are seeking the vertical component and the field is primarily horizontal. For the constant case,
this induces relative error growth proportional to Γ 4 in the constant density case, or Γ 4+4

in the quartic density case. One would therefore expect gz to be more rapidly corrupted than
the potential, at increasing target distances.
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Fig. 6 Log–log plot of the quantity (190) evaluated by considering the results in Table 10 (a) and Table 11 (b)

Motivated by the previous considerations this subsection presents the results of some
numerical tests aimed at testing the sensitivity of the analytical formulas presented thus far
with respect to the dimensionless target distance.

To this end we consider the prismmodel in Fig. 5b and a progressively increasing distance
between the observation point P = [0, 15km, 0] and the target body by assuming for the
vertices of the left face the values x = 10km, x = 100km, x = 1000km and for those
of the right face x = 20km, x = 110km, x = 1010km. In this way the dimensionless
target distance Γ assumes value approximatively equal to 1, 10 and 100. The values of the
gravitational potential and of vertical component of the gravity vector are reported in Tables
10 and 11, respectively.
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Fig. 7 Prism model of Fig. 2a and related subdivision in smaller subprisms

Assuming the result obtained by Gauss integration as correct, a comparison of the values
presented in Table 10 and 11 is reported in Fig. 6 by plotting on log–log axes the quantity

EΓ = |result[V (x)] − result[V (Gauss)]|
|result[V (Gauss)]| , (190)

where V stands for value of the gravitational potential or the vertical component of the gravity
vector.

The results reported in Tables 10 and 11 show that the values of the gravitational potential
and of the gravity vector computed analytically becomemore andmore unreliable as the offset
between the observation point and the target body increases due to numerical cancellation
errors. Moreover the error associated with the use of the analytical formulas has a rate of
increase that is by far more pronounced for the gravity vector.

5.2.3 Effects of a Subdivision of the Target Body

It is of some interest to understand to what extent the computation of gravity fields associ-
ated with a polyhedral body is influenced by a finer subdivision of the polyhedron in smaller
polyhedra. Actually, this produces an inhomogeneous distribution of the dimensionless tar-
get distance Γ that can significantly increase for smaller polyhedra more distant from the
observation point, even if the value of Γ can be sufficiently low when the target body is
modeled as a unique polyhedron.

In the first test the target body is left at a very low dimensionless distance, Γ 
 1
considering the prism as a whole, but this value is increased and made inhomogeneous
by dividing the prism model of Fig. 7a in smaller subprisms by increasing the number of
subdivisions of each edge of the original prism.

In this way the subprisms more distant from the observation point, namely those near the
bottom right vertex of the prism, are characterized by greater dimensionless target distance.
For instance, for N=100, the linear dimensions α of the subprism is 10/100=0.1km and the
distance δ from the observation point is 
20, yielding a value of Γ = 200.

This is sufficient to provide values of the gravitational potential whose precision, for an
assigned type of density variation, degradates with N, see, e.g., Table 12, in which the first
four columns refer to the four addends in (187) while the results of the last column have been
obtained by considering the density contrast in (188). It is also worth being emphasized in
Table 12 that the number of significant digits decreases as the order of the density variation
increases.

Conversely, as shown in Table 13, such a phenomenon is not experienced by adopting a
Gauss integration in which the number of Gauss point for each subprism has been chosen

123



Surveys in Geophysics

Ta
bl
e
12

G
ra
vi
ta
tio

na
lp
ot
en
tia
l(
m
2
s−

2
)o

bt
ai
ne
d
an
al
yt
ic
al
ly

fo
rt
he

pr
is
m
m
od

el
in
Fi
g.
7b

as
a
fu
nc
tio

n
of

th
e
nu

m
be
ro

fs
ub

di
vi
si
on

s
of

ea
ch

ed
ge

of
th
e
pr
is
m
.O

bs
er
va
tio

n
po

in
t[
x

=
0,

y
=

15
km

,z
=

0]

N
Po

ly
no

m
ia
ld

en
si
ty

fu
nc
tio

ns
C
os
ta
nt

L
in
ea
r

Q
ua
dr
at
ic

C
ub

ic
Q
ua
rt
ic

1
−2

.5
80

08
88

88
12

14
9E

−0
6

2.
74

15
10

36
48

80
96

E
−0

6
−1

.8
96

62
54

87
39

96
6E

−0
6

6.
00

18
42

82
15

50
66

E
−0

7
2.
67

86
17

96
43

86
91

E
−0

6

10
−2

.5
80

08
88

88
12

15
0E

−
06

2.
74

15
10

36
48

80
97

E
−0

6
−1

.8
96

62
54

87
39

96
5E

−0
6

6.
00

18
42

82
15

50
70

E
−0

7
2.
67

86
17

96
43

87
05

E
−0

6

20
−2

.5
80

08
88

88
12

15
1E

−0
6

2.
74

15
10

36
48

80
97

E
−0

6
−1

.8
96

62
54

87
39

96
5E

−0
6

6.
00

18
42

82
15

50
62

E
−0

7
2.
67

86
17

96
43

86
98

E
−0

6

30
−2

.5
80

08
88

88
12

21
0E

−0
6

2.
74

15
10

36
48

75
84

E
−0

6
−1

.8
96

62
54

87
39

92
9E

−0
6

6.
00

18
42

82
15

86
57

E
−0

7
2.
67

86
17

96
43

91
83

E
−0

6

40
−2

.5
80

08
88

88
12

14
9E

−0
6

2.
74

15
10

36
48

80
93

E
−0

6
−1

.8
96

62
54

87
39

97
0E

−0
6

6.
00

18
42

82
15

50
74

E
−0

7
2.
67

86
17

96
43

86
76

E
−0

6

50
−2

.5
80

08
88

88
12

14
8E

−0
6

2.
74

15
10

36
48

71
91

E
−0

6
−1

.8
96

62
54

87
40

06
6E

−0
6

6.
00

18
42

82
16

18
01

E
−0

7
2.
67

86
17

96
43

83
17

E
−0

6

60
−2

.5
80

08
88

88
12

11
9E

−0
6

2.
74

15
10

36
48

81
52

E
−0

6
−1

.8
96

62
54

87
40

08
2E

−0
6

6.
00

18
42

82
15

47
28

E
−0

7
2.
67

86
17

96
43

78
18

E
−0

6

70
−2

.5
80

08
88

88
12

55
4E

−0
6

2.
74

15
10

36
49

28
49

E
−0

6
−1

.8
96

62
54

87
39

09
9E

−0
6

6.
00

18
42

82
12

88
99

E
−0

7
2.
67

86
17

96
44

05
68

E
−0

6

80
−2

.5
80

08
88

88
12

15
0E

−0
6

2.
74

15
10

36
48

80
92

E
−0

6
−1

.8
96

62
54

87
39

95
3E

−0
6

6.
00

18
42

82
15

50
86

E
−0

7
2.
67

86
17

96
43

87
55

E
−0

6

90
−2

.5
80

08
88

88
12

79
2E

−0
6

2.
74

15
10

36
48

35
60

E
−0

6
−1

.8
96

62
54

87
39

42
3E

−0
6

6.
00

18
42

82
18

00
13

E
−0

7
2.
67

86
17

96
44

34
88

E
−0

6

10
0

−2
.5
80

08
88

88
12

03
3E

−0
6

2.
74

15
10

36
48

75
36

E
−0

6
−1

.8
96

62
54

87
40

23
9E

−0
6

6.
00

18
42

82
16

01
48

E
−0

7
2.
67

86
17

96
43

80
11

E
−0

6

N
=
N
um

be
r
of

su
bd

iv
is
io
ns

of
ea
ch

ed
ge

of
th
e
pr
is
m

123



Surveys in Geophysics

Ta
bl
e
13

G
ra
vi
ta
tio

na
lp

ot
en
tia
l(
m
2
s−

2
)
ob

ta
in
ed

by
G
au
ss

in
te
gr
at
io
n
fo
r
th
e
pr
is
m

m
od

el
in

Fi
g.
7b

as
a
fu
nc
tio

n
of

th
e
nu

m
be
r
of

su
bd

iv
is
io
ns

of
ea
ch

ed
ge

of
th
e
pr
is
m
.

O
bs
er
va
tio

n
po

in
t[
x

=
0,

y
=

15
km

,z
=

0]

N
.

G
.Q
.P
.

Po
ly
no
m
ia
ld

en
si
ty

fu
nc
tio

ns
C
os
ta
nt

L
in
ea
r

Q
ua
dr
at
ic

C
ub
ic

Q
ua
rt
ic

1
20

0x
20

0x
20

0
−2

.5
80

08
88

88
12

13
4E

−0
6

2.
74

15
10

36
48

80
78

E
−0

6
−1

.8
96

62
54

87
39

90
9E

−0
6

6.
00

18
42

82
15

46
30

E
−0

7
2.
67

86
17

96
43

83
54

E
−0

6

10
20

x2
0x

25
−2

.5
80

08
88

88
12

14
9E

−0
6

2.
74

15
10

36
48

80
97

E
−0

6
−1

.8
96

62
54

87
39

96
8E

−0
6

6.
00

18
42

82
15

50
62

E
−0

7
2.
67

86
17

96
43

86
84

E
−0

6

20
10

x1
0x

10
−2

.5
80

08
88

88
12

14
9E

−0
6

2.
74

15
10

36
48

80
97

E
−0

6
−1

.8
96

62
54

87
39

96
7E

−0
6

6.
00

18
42

82
15

50
60

E
−0

7
2.
67

86
17

96
43

86
84

E
−0

6

30
7x

7x
7

−2
.5
80

08
88

88
12

15
0E

−0
6

2.
74

15
10

36
48

80
97

E
−0

6
−1

.8
96

62
54

87
39

96
8E

−0
6

6.
00

18
42

82
15

50
56

E
−0

7
2.
67

86
17

96
43

86
83

E
−0

6

40
5x

5x
5

−2
.5
80

08
88

88
12

15
1E

−0
6

2.
74

15
10

36
48

80
98

E
−0

6
−1

.8
96

62
54

87
39

96
7E

−0
6

6.
00

18
42

82
15

50
58

E
−0

7
2.
67

86
17

96
43

86
83

E
−0

6

50
4x

4x
4

−2
.5
80

08
88

88
12

14
8E

−0
6

2.
74

15
10

36
48

80
97

E
−0

6
−1

.8
96

62
54

87
39

96
9E

−0
6

6.
00

18
42

82
15

50
69

E
−0

7
2.
67

86
17

96
43

86
84

E
−0

6

60
3x

3x
3

−2
.5
80

08
88

88
12

14
8E

−0
6

2.
74

15
10

36
48

81
01

E
−0

6
−1

.8
96

62
54

87
39

96
7E

−0
6

6.
00

18
42

82
15

50
64

E
−0

7
2.
67

86
17

96
43

86
81

E
−0

6

70
3x

3x
3

−2
.5
80

08
88

88
12

14
9E

−0
6

2.
74

15
10

36
48

81
07

E
−0

6
−1

.8
96

62
54

87
39

96
8E

−0
6

6.
00

18
42

82
15

50
50

E
−0

7
2.
67

86
17

96
43

86
82

E
−0

6

80
3x

3x
3

−2
.5
80

08
88

88
12

15
9E

−0
6

2.
74

15
10

36
48

80
91

E
−0

6
−1

.8
96

62
54

87
39

97
0E

−0
6

6.
00

18
42

82
15

50
46

E
−0

7
2.
67

86
17

96
43

86
84

E
−0

6

90
2x

2x
2

−2
.5
80

08
88

88
08

21
1E

−0
6

2.
74

15
10

36
48

31
55

E
−0

6
−1

.8
96

62
54

87
41

35
3E

−0
6

6.
00

18
42

82
19

50
23

E
−0

7
2.
67

86
17

96
36

86
05

E
−0

6

10
0

2x
2x

2
−2

.5
80

08
88

88
09

56
0E

−0
6

2.
74

15
10

36
48

48
59

E
−0

6
−1

.8
96

62
54

87
40

88
7E

−0
6

6.
00

18
42

82
18

12
66

E
−0

7
2.
67

86
17

96
39

27
01

E
−0

6

N
.=

N
um

be
r
of

su
bd

iv
is
io
ns

of
ea
ch

ed
ge

of
th
e
pr
is
m

G
.Q
.P
.=

G
au
ss

Q
ua
dr
at
ur
e
Po

in
ts

123



Surveys in Geophysics

Ta
bl
e
14

V
er
tic
al

co
m
po
ne
nt

of
th
e
gr
av
ity

ve
ct
or

(m
ga
l)
ob
ta
in
ed

an
al
yt
ic
al
ly

fo
r
th
e
pr
is
m

m
od
el

in
Fi
g.
7b

as
a
fu
nc
tio

n
of

th
e
nu

m
be
r
of

su
bd

iv
is
io
ns

of
ea
ch

ed
ge

of
th
e

pr
is
m
.O

bs
er
va
tio

n
po

in
t[
x

=
0,

y
=

15
km

,z
=

0]

N
Po

ly
no

m
ia
ld

en
si
ty

fu
nc
tio

ns
C
os
ta
nt

L
in
ea
r

Q
ua
dr
at
ic

C
ub
ic

Q
ua
rt
ic

1
−4

.3
94

00
55

24
20

74
5

6.
07

51
60

62
95

32
91

−4
.6
45

23
18

54
73

24
7

1.
54

74
82

93
64

07
95

7.
12

21
91

01
48

91
59

10
−4

.3
94

00
55

24
20

74
3

6.
07

51
60

62
95

33
09

−4
.6
45

23
18

54
73

25
3

1.
54

74
82

93
64

07
73

7.
12

21
91

01
48

92
47

20
−4

.3
94

00
55

24
20

73
7

6.
07

51
60

62
95

33
08

−4
.6
45

23
18

54
73

26
5

1.
54

74
82

93
64

07
75

7.
12

21
91

01
48

90
36

30
−4

.3
94

00
55

24
26

75
1

6.
07

51
60

62
95

48
19

−4
.6
45

23
18

54
58

12
7

1.
54

74
82

93
63

94
45

7.
12

21
91

01
58

58
24

40
−4

.3
94

00
55

24
20

74
8

6.
07

51
60

62
95

32
65

−4
.6
45

23
18

54
73

22
0

1.
54

74
82

93
64

08
47

7.
12

21
91

01
48

94
62

50
−4

.3
94

00
55

24
27

45
2

6.
07

51
60

62
95

34
33

−4
.6
45

23
18

54
48

11
4

1.
54

74
82

93
64

17
22

7.
12

21
91

01
67

45
45

60
−4

.3
94

00
55

24
20

71
5

6.
07

51
60

62
95

28
46

−4
.6
45

23
18

54
75

04
0

1.
54

74
82

93
64

27
05

7.
12

21
91

01
47

93
40

70
−4

.3
94

00
55

23
69

19
6

6.
07

51
60

62
96

48
11

−4
.6
45

23
18

56
10

50
9

1.
54

74
82

93
63

26
12

7.
12

21
91

00
78

45
71

80
−4

.3
94

00
55

24
20

77
3

6.
07

51
60

62
95

33
96

−4
.6
45

23
18

54
73

18
0

1.
54

74
82

93
64

06
43

7.
12

21
91

01
48

98
62

90
−4

.3
94

00
55

24
82

97
9

6.
07

51
60

62
97

20
29

−4
.6
45

23
18

53
40

13
4

1.
54

74
82

93
62

56
73

7.
12

21
91

02
15

49
97

10
0

−4
.3
94

00
55

24
29

10
4

6.
07

51
60

62
95

00
60

−4
.6
45

23
18

54
57

21
9

1.
54

74
82

93
64

45
78

7.
12

21
91

01
62

93
09

N
=
N
um

be
r
of

su
bd

iv
is
io
ns

of
ea
ch

ed
ge

of
th
e
pr
is
m

123



Surveys in Geophysics

Ta
bl
e
15

V
er
tic
al
co
m
po
ne
nt

of
th
e
gr
av
ity

ve
ct
or

(m
ga
l)
ob
ta
in
ed

by
G
au
ss

in
te
gr
at
io
n
fo
r
th
e
pr
is
m

m
od
el
in

Fi
g.
7b

as
a
fu
nc
tio

n
of

th
e
nu

m
be
r
of

su
bd

iv
is
io
ns

of
ea
ch

ed
ge

of
th
e
pr
is
m
.O

bs
er
va
tio

n
po

in
t[
x

=
0,

y
=

15
km

,z
=

0]

N
.

G
.Q
.P
.

Po
ly
no
m
ia
ld

en
si
ty

fu
nc
tio

ns
C
os
ta
nt

L
in
ea
r

Q
ua
dr
at
ic

C
ub
ic

Q
ua
rt
ic

1
20

0x
20

0x
20

0
−4

.3
94

00
55

24
20

77
3

6.
07

51
60

62
95

31
32

−4
.6
45

23
18

54
72

92
9

1.
54

74
82

93
64

06
22

7.
12

21
91

01
48

78
23

10
20

x2
0x

25
−4

.3
94

00
55

24
20

74
5

6.
07

51
60

62
95

32
76

−4
.6
45

23
18

54
73

26
3

1.
54

74
82

93
64

08
17

7.
12

21
91

01
48

90
19

20
10

x1
0x

10
−4

.3
94

00
55

24
20

74
4

6.
07

51
60

62
95

32
74

−4
.6
45

23
18

54
73

26
1

1.
54

74
82

93
64

08
17

7.
12

21
91

01
48

90
18

30
7x

7x
7

−4
.3
94

00
55

24
20

73
9

6.
07

51
60

62
95

32
76

−4
.6
45

23
18

54
73

26
0

1.
54

74
82

93
64

08
18

7.
12

21
91

01
48

90
16

40
5x

5x
5

−4
.3
94

00
55

24
20

73
8

6.
07

51
60

62
95

32
78

−4
.6
45

23
18

54
73

26
1

1.
54

74
82

93
64

08
17

7.
12

21
91

01
48

90
21

50
4x

4x
4

−4
.3
94

00
55

24
20

75
1

6.
07

51
60

62
95

32
79

−4
.6
45

23
18

54
73

26
1

1.
54

74
82

93
64

08
15

7.
12

21
91

01
48

90
21

60
3x

3x
3

−4
.3
94

00
55

24
20

74
4

6.
07

51
60

62
95

32
72

−4
.6
45

23
18

54
73

25
6

1.
54

74
82

93
64

08
17

7.
12

21
91

01
48

90
33

70
3x

3x
3

−4
.3
94

00
55

24
20

74
4

6.
07

51
60

62
95

32
71

−4
.6
45

23
18

54
73

27
5

1.
54

74
82

93
64

08
17

7.
12

21
91

01
48

90
14

80
3x

3x
3

−4
.3
94

00
55

24
20

73
8

6.
07

51
60

62
95

32
70

−4
.6
45

23
18

54
73

24
9

1.
54

74
82

93
64

08
19

7.
12

21
91

01
48

90
18

90
2x

2x
2

−4
.3
94

00
55

23
21

26
3

6.
07

51
60

62
87

59
26

−4
.6
45

23
18

54
95

78
2

1.
54

74
82

93
62

29
32

7.
12

21
91

01
16

40
32

10
0

2x
2x

2
−4

.3
94

00
55

23
55

49
1

6.
07

51
60

62
90

25
25

−4
.6
45

23
18

54
88

04
5

1.
54

74
82

93
62

90
82

7.
12

21
91

01
27

57
73

N
=
N
um

be
r
of

su
bd

iv
is
io
ns

of
ea
ch

ed
ge

of
th
e
pr
is
m

G
.Q
.P
.=

G
au
ss

Q
ua
dr
at
ur
e
Po

in
ts

123



Surveys in Geophysics

Fig. 8 Prism model obtained by shifting the prism model in Fig. 2a of 1000km along the x axis and related
subdivision in smaller subprisms

so as to keep approximately constant, and equal to 200 × 200 × 200, the number of Gauss
points pertaining to the prism as a whole.

The above-mentioned properties of the solution are experienced aswell in the computation
of the vertical component of the gravity vector, see, e. g., Tables 14 and 15.

The error in the analytical solutions increases dramatically when the prismmodel is placed
at a very long distance from the observation point as show in Fig. 8 in which the prism of
Fig. 2a is shifted by 1000km along the x axis. In this case Γ > 100 and its value increases
even further with N (Tables 16, 17).

Table 16, referred to the gravitational potential, and Table 18, referred to the vertical
component of the gravity vector, show that the number of significant digits decreases with
increasing order of the density variation. For the cubic and quartic cases, the order of mag-
nitude of the solution is obtained only for N = 1, 10, 20 and, in a rather unpredictable way,
for other values of N.

Hence, the only reliable solution is obtained by Gauss integration, as shown in Table 17
for the gravitational potential and Table 19 for the vertical component of the gravity vector.

It is worth noting that the increase in theΓ values associatedwith grid refinement produces
instability of the numerical results characterized by different properties with respect to those
described in the previous subsection. Actually, the most distant polyhedra undoubtedly have
the highest relative error but their absolute anomaly is much smaller since they are more
distant with respect to the polyhedra nearest to the observation point. Consequently, the most
distant polyhedra, even if characterized by low or no correct significant figures, just contribute
noise when combined with the nearest ones.

This means that the overall anomaly may not be substantially affected so that the most
distant polyhedra can be ignored if the observation point is shifted for from the discretized
body; in this case also the nearest polyhedra would be affected by numerical instability as
shown in Table 16.

5.3 Invariance of the Results Under Arbitrary Rotations of the Reference Frame

In order to fully exploit the tensorial approach developed in the paper, that makes the appli-
cations coordinate invariant, it has been decided to express the models in Fig. 2 endowed
with the density function (187), (188) and (189). In this way the faces are no longer aligned
with the reference axis and density functions expressed in the rotated frame are no longer a
function of one variable alone.

In particular, computing the potential in rotated reference frame would (theoretically)
give results identical to the unrotated case but, in this case, the full algorithmic steps for a
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Fig. 9 New reference frame for the prism in Fig. 2a obtained by rotating the old one around the unit vector
defined by (195) by a rotation θ = −60◦. New coordinates of the vertices of the prism are reported in the table

general cubic in x, y, z would be used if one adopts the density function (187). Analogously,
a much more general 4-th degree function is addressed by considering the density functions
in formulas (188) and (189).

To this end we remind that the rotation of a vector of an arbitrary angle θ around an axis
defined by the unit vector u is governed by the orthogonal tensor

Ruθ = cos θ I + sin θ Wu + (1 − cos θ)u ⊗ u, (191)

where Wu is the skew-symmetric tensor associated with u, i.e., Wu a = u × a, ∀a.
Denoting by

e1 =
⎡

⎣
1
0
0

⎤

⎦ , e2 =
⎡

⎣
0
1
0

⎤

⎦ , e3 =
⎡

⎣
0
0
1

⎤

⎦ (192)

the unit vectors directed along the axes x , y and z, respectively, the relevant rotated axes will
be

e∗
1 = Ruθ e1 e∗

2 = Ruθ e2 e∗
3 = Ruθ e3 (193)

and the matrix representation of Ruθ in the original reference frame

[Ruθ ] = [
e∗
1 | e∗

2 | e∗
3

] =
⎡

⎣
E11 E12 E13

E21 E22 E23

E31 E32 E33

⎤

⎦ . (194)

As an example Fig. 9 shows the new reference frame that is obtained by rotating the old
one around the axis defined by the unit vector

u = 1√
3

⎡

⎣
1
1
1

⎤

⎦ (195)

by a rotation of θ = −60◦. This is equivalent to rotate the old reference frame around -u by
θ = 60◦.

The coordinates [s]∗ = (x∗, y∗, z∗) of a generic point s in the new reference frame can
been expressed as function of the original coordinates [s] = (x, y, z) by means of the well-
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known relation

[s]∗ = [R−1
uθ s] = [RT

uθ s] = [
e∗
1 | e∗

2 | e∗
3

]
s =

⎡

⎣
E11 E12 E13

E21 E22 E23

E31 E32 E33

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ , (196)

i.e.,

x∗ = e∗
1 · s y∗ = e∗

2 · s z∗ = e∗
3 · s. (197)

In passing we also notice that expressing above is equivalent to rotate the prism model
around u by an angle θ = 60◦. This is due to the fact that Ru(−θ) = R−1

uθ = RT
uθ , the last

equality stemming from the property of Ruθ of being an orthogonal tensor.
To leave unaltered the density distribution with respect to the rotated frame, we need to

express the density function by adopting the same functional dependence referred to the
original reference frame but using as independent variables the coordinates of the generic
point with respect to the reference frame rotated by Ruθ .

Let us now check if and to what extent formulas derived in the paper are really frame-
indifferent by considering, separately, the examples presented in Sects. 5.1, 5.2.1 and 5.2.2.

5.3.1 Effects of the Rotation of the Reference Frame for the Examples in Subsection 5.1

The first task to accomplish in order to evaluate the gravity field in a rotated reference frame
of the examples in Sect. 5.1 is to properly modify the expressions of the density contrast
according to the formula (197).

Accordingly, the density function (187) can be reformulated as follows

δ(s) = δo + δ1 z
∗ + δ2 (z∗)2 + δ3 (z∗)3

= δo + δ1 (e∗
3 · s) + δ2 (e∗

3 · s)2 + δ3 (e∗
3 · s)3, (198)

where δo = −747.7, δ1 = 203.435, δ2 = −26.764 and δ3 = 1.4247
Observing that, given arbitrary vectors a, b, c, d, e, f , one has

(a · b) (c · d) = (a ⊗ c) · (b ⊗ d), (199)

and

(a · b) (c · d) (e · f) = (a ⊗ c ⊗ e) · (b ⊗ d ⊗ f), (200)

formula (198) can also be written as

δ(s) = δo + δ1 e∗
3 · s + δ2 (e∗

3 ⊗ e∗
3) · (s ⊗ s) + δ3 (e∗

3 ⊗ e∗
3 ⊗ e∗

3) · (s ⊗ s ⊗ s)
= δo + C(1) · D(1)

s + C(2) · D(2)
s + C(3) · D(3)

s ,
(201)

whereC(1) = δ1 e∗
3,C(2) = δ2 (e∗

3⊗e∗
3),C(3) = δ3 (e∗

3⊗e∗
3⊗e∗

3) and the symbolsD(1)
s ,D(2)

s ,

D(3)
s have been introduced in (4) and defined in the formulas (204) and (207), respectively.
Analogously, formula (188) becomes, in the rotated reference frame x∗, y∗, z∗,

δ(s) = (z∗)4 = (e∗3 ⊗ s)4 = (e∗3 ⊗ e∗3 ⊗ e∗3 ⊗ e∗3) · (s ⊗ s ⊗ s ⊗ s) = C(4) · D(4)
s . (202)

Finally, formula (189) becomes

δ(s) = 104x2yz = 104(e∗
1 · s)2(e∗

2 · s)(e∗
3 · s)

= 104(e∗
1 ⊗ e∗

1 ⊗ e∗
2 ⊗ e∗

3) · (s ⊗ s ⊗ s ⊗ s) = C(4) · D(4)
s .

(203)

123



Surveys in Geophysics

Table 20 Gravitational potential (m2 s−2) for the prism model in Fig. 2a considering separately the four
addends of the density contrast in (187) in the original reference frame and of the density contrast (198) for
the rotated ones. Observation point [x = 0, y = 15km, z = −0.15 m]

Density θ = 0◦ θ = −30◦ θ = −60◦

Const −2.5800815248321E−06 −2.5800815248321E−06 −2.5800815248321E−06

Linear 2.7415012520915E−06 2.7415012520915E−06 2.7415012520915E−06

Quadr −1.8966208228689E−06 −1.8966208228689E−06 −1.8966208228689E−06

Cubic 6.0018196086278E−07 6.0018196086277E−07 6.0018196086278E−07

Table 21 Gravitational potential (m2 s−2) for the prism model in Fig. 2a considering separately the four
addends of the density contrast in (187) for the original reference frame and of the density contrast (198) for
the rotated ones. Observation point [x = 0, y = 15km, z = 0]

density θ = 0◦ θ = −30◦ θ = −60◦

Const −2.5800888881215E−06 −2.5800888881215E−06 −2.5800888881215E−06

Linear 2.7415103648810E−06 2.7415103648810E−06 2.7415103648810E−06

Quadr −1.8966254873997E−06 −1.8966254873997E−06 −1.8966254873997E−06

Cubic 6.0018428215507E−07 6.0018428215507E−07 6.0018428215507E−07

Table 22 Gravity field component (mgal) along the vertical axis z for the prism model in Fig. 2a considering
separately the four addends of the density contrast (187) for the original reference frame and gravity field
component along the axis z∗ of the rotated frame assuming the density contrast (198). Observation point
[x = 0, y = 15km, z = −0.15 m]

density θ = 0◦ θ = −30◦ θ = −60◦

Const −4.3941369449666E+00 −4.3941369449666E+00 −4.3941369449667E+00

Linear 6.0752463494303E+00 6.0752463494302E+00 6.0752463494303E+00

Quadr −4.6452931527569E+00 −4.6452931527571E+00 −4.6452931527569E+00

Cubic 1.5475366600785E+00 1.5475366600787E+00 1.5475366600785E+00

The gravitational potential and the gravity vector have been computed by assuming the unit
vector (195) as axis of rotation and considering rotations of θ = −30◦ and θ = −60◦.

For simplicity, only the most distant observation has been considered, viz p=(0, 15, z),
z being either −0.15 m or 0m. Tables 20 and 21 contain, for z = -0,15m and z = 0m,
respectively, the values of the potential for the prism model in Fig. 2a assuming the density
contrast (187) for the original reference frame and the density contrast (198) for the rotated
ones.

Assuming the density contrasts considered in the previous two examples, Tables 22 and
23 contain the vertical component of the gravity field evaluated separately in the original
reference frame (θ = 0◦) and in the rotated ones obtained by assuming θ = −30◦ and
θ = −60◦.

Similarly to (197) the component gz∗ of the gravity field with respect to the rotated axis
z∗ has been computed by setting gz∗ = E∗

3 · g where g is the gradient vector evaluated with
respect to the unrotated vertical frame.

Table 24 contains the vertical component of the gravity field, for the prism in Fig. 2a,
and the component of the gravity field along the axis z∗ obtained by rotating the axes of the
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Table 23 Gravity field component (mgal) along the vertical axis z for the prism model in Fig. 2a considering
separately the four addends of the density contrast (187) for the original reference frame and gravity field
component along the axis z∗ of the rotated frame assuming the density contrast (198). Observation point
[x = 0, y = 15km, z = 0]

density θ = 0◦ θ = −30◦ θ = −60◦

Const −4.3940055242075E+00 −4.3940055242075E+00 −4.3940055242075E+00

Linear 6.0751606295329E+00 6.0751606295329E+00 6.0751606295329E+00

Quadr −4.6452318547325E+00 −4.6452318547325E+00 −4.6452318547325E+00

Cubic 1.5474829364080E+00 1.5474829364080E+00 1.5474829364080E+00

Table 24 Gravity field component (mgal) along the vertical axis z for the prism model in Fig. 2a assuming
the density contrast in (188) for the original reference frame and gravity field component along the axis z∗ of
the rotated frame assuming the density contrast in (202). Observation point [x = 0, y = 15km, z = 0]

x θ = 0◦ θ = −30◦ θ = −45◦ θ = −60◦

0 7.1221910148915 7.1221910148916 7.1221910148893 7.1221910148916

1 8.4805677061436 8.4805677061441 8.4805677061435 8.4805677061438

2 10.1696894406196 10.1696894406196 10.1696894406194 10.1696894406196

3 12.2782706524855 12.2782706524855 12.2782706524858 12.2782706524858

4 14.9143130178876 14.9143130178876 14.9143130178874 14.9143130178875

5 18.2021319910870 18.2021319910870 18.2021319910871 18.2021319910870

6 22.2702667632901 22.2702667632901 22.2702667632902 22.2702667632900

7 27.2226356973333 27.2226356973334 27.2226356973334 27.2226356973334

8 33.0839167397593 33.0839167397593 33.0839167397593 33.0839167397594

9 39.7152373831755 39.7152373831754 39.7152373831755 39.7152373831749

10 46.7187463141865 46.7187463141864 46.7187463141864 46.7187463141861

11 53.4225546453992 53.4225546453992 53.4225546453997 53.4225546453993

12 59.1380804111283 59.1380804111283 59.1380804111280 59.1380804111285

13 63.4175287134969 63.4175287134968 63.4175287134968 63.4175287134971

14 66.0399955350871 66.0399955350871 66.0399955350869 66.0399955350875

15 66.9207406119342 66.9207406119343 66.9207406119342 66.9207406119351

reference frame around the vector in (195). The density contrast (188) has been assumed for
the original reference frame and the density contrast (202) for the rotated one. Specifically,
the values θ = −30◦, θ = −45◦ and θ = −60◦ have been assumed.

Finally, for the prism in Fig. 2b, Table 25 contains the vertical component of the gravity
field and the component of the gravity field along the axis z∗ obtained by rotating the axes of
the reference frame around the vector in (195). The density contrast (189) has been assumed
for the original reference frame and the density contrast (203) for the rotated one. Also in
this case the values of θ = −30◦, θ = −45◦ and θ = −60◦ have been assumed as angles of
rotation.

The examination of the results reported in Tables 20-25 clearly shows that the computation
of the gravitational potential and of the gravity vector is substantially unaffected by the
rotation of the reference frame although, in this last case, more term are needed to express
the density contrast. For this reason we have reported in Table 26 the run-times associated
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Table 26 Absolute and relative run-times for the results in Table 24

x (km) t0 (s) t30 (s) t45 (s) t60 (s) (t30 − t0)/t0 (t45-t0)/t0 (t60 − t0)/t0
θ = 0◦ θ = −30◦ θ = −45◦ θ = −60◦ % % %

0 0.0048 0.0056 0.0051 0.0051 16.51 7.43 7.43

1 0.0041 0.0046 0.0043 0.0043 13.82 4.95 4.95

2 0.0041 0.0044 0.0043 0.0043 8.33 5.16 5.16

3 0.0042 0.0044 0.0042 0.0042 4.80 0.56 0.56

4 0.0040 0.0044 0.0043 0.0043 8.42 6.41 6.41

5 0.0041 0.0042 0.0043 0.0043 3.31 4.55 4.55

6 0.0043 0.0041 0.0043 0.0043 −4.58 −0.55 −0.55

7 0.0040 0.0044 0.0043 0.0043 9.60 6.53 6.53

8 0.0041 0.0044 0.0044 0.0044 8.17 8.29 8.29

9 0.0041 0.0049 0.0043 0.0043 18.88 4.07 4.07

10 0.0034 0.0039 0.0035 0.0035 15.40 4.36 4.36

11 0.0042 0.0045 0.0042 0.0042 7.36 0.59 0.59

12 0.0040 0.0044 0.0042 0.0042 9.83 4.86 4.86

13 0.0041 0.0045 0.0045 0.0045 8.06 7.97 7.97

14 0.0040 0.0043 0.0042 0.0042 7.32 4.75 4.75

15 0.0041 0.0045 0.0041 0.0041 9.51 0.03 0.03

with the results of Table 24; it can be noted that, as a mean, one obtains increments in the
run-time up to the 19%.

5.3.2 Effects of the Rotation of the Reference Frame on the Origin-Observation Point
Separation

In order to check how the effects of the origin-observation point separation are influenced
by an arbitrary rotation of the reference frame, we make reference to the results reported in
Tables 21 and 23 by comparing them with those obtained by considering the same example
referred to a rotated frame.

Tables 21 and 23 shows that the values of the gravitational potential and of the gravity
vector are insensitive to the rotation of the reference frame. For the reason, in order to avoid
duplicating the same values, we report the results of our numerical experiment in the format
of Tables 27 and 28 for the gravitational potential and the gravity vector, respectively.

Inspection of Tables 27 and 28 shows that the effects associated with the rotation of the
reference frame increase with the order of the density variation, the amount of the rotation
and with the distance of the reference point from the origin. Specifically, this last effect is
more pronounced for greater values of the rotation since this produces a larger inhomogeneity
in the coordinates of the vertices and, hence, of the dimensionless target distance Γ .

5.3.3 Effects of the Rotation of the Reference Frame on the Observation Point- Target
Body Separation

Let us now investigate the influence of arbitrary rotations of the reference frame on the
observation point-target body separation by taking into account the results reported in Tables
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Table 28 Gravity field component (mgal) along the vertical axis z for the prism model in Fig. 5a considering
separately the four addends of the density contrast in (187) for the original reference frame and gravity field
component along the axis z∗ of the rotated frame assuming the density contrast in (198). Observation point
[x = 0, y, z = 0]

Const. density θ = 0◦ θ = −30◦ θ = −60◦

y = 15km −4.3940055242075 −4.3940055242075 −4.3940055242074

y = 105km −4.3940055242075 −4.3940055242075 −4.3940055242074

y = 1005km −4.3940055242075 −4.3940055242072 −4.3940055242075

Linear density θ = 0◦ θ = −30◦ θ = −60◦

y = 15km 6.0751606295329 6.0751606295329 6.0751606295329

y = 105km 6.0751606295329 6.0751606295327 6.0751606295327

y = 1005km 6.0751606295329 6.0751606295324 6.0751606295329

Quadr. density θ = 0◦ θ = −30◦ θ = −60◦

y = 15km −4.6452318547325 −4.6452318547325 −4.6452318547325

y = 105km −4.6452318547325 −4.6452318547327 −4.6452318547325

y = 1005km −4.6452318547325 −4.6452318547280 −4.6452318547268

Cubic density θ = 0◦ θ = −30◦ θ = −60◦

y = 15km 1.5474829364080 1.5474829364080 1.5474829364080

y = 105km 1.5474829364080 1.5474829364087 1.5474829364087

y = 1005km 1.5474829364080 1.5474829363182 1.5474829357158

10 and 11. These last ones are included in the first column of Tables 29 nd 30 that refer,
respectively, to gravitational potential and to the gravity vector

The results of Table 30, similarly to those included in Table 29 and in the previous sub-
section, show that the values of the gravitational potential and of the gravity vector are
substantially insensitive to the rotation of the reference frame for low values of the dimen-
sionless target ratio Γ .

As a matter of fact this can be considered as a more general feature that characterizes
the computation of the gravity fields since discrepancies between the values associated with
increasing values of θ are mainly due to greater values of Γ .

A further interesting result that prompts by examining the results in Table 29 when x =
1000km, i.e., whenΓ is large, is that the values corresponding to θ = −30◦ and to θ = −60◦
are almost opposite each other and have significantly different orders of magnitude with
respect to the case θ = 0◦ for constant and quadratic density contrasts. Conversely, when
the vertical component of the gravity vector is computed, this happens for linear and cubic
density contrasts.

6 Conclusions

The gravitational potential (GP) and gravity vector (GV) induced at an arbitrary point by a
polyhedral body having arbitrary shape and polynomial density contrast have been obtained in
tensor form and expressed as the sum of quantities that depend only upon the 3D coordinates
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of the vertices of the polyhedron and upon the parameters defining the density contrast.
Remarkably, the formulation holds true whatever is the origin of the Cartesian reference
frame assumed in the calculations in the sense that is does not have to necessarily coincide
with the observation point.

Differently from the recent contribution by (Ren et al. 2020), the algebraic expressions
of the GP and the GV reported in the paper allow for their computation without any use of
recursive formulas. Furthermore, bymeans of rigorousmathematical arguments, singularities
are ruled out from the analytical expression of both the GP and GV as well as from their
algebraic counterparts.

Though limited to a polynomial density contrast varying with a quartic law as amaximum,
the formulation developed in the paper can be easily extended to polynomials of higher degree.
In additional, being expressed in tensor form, the resulting formulas can be specialized to
arbitrary reference frames.

The effectiveness of the proposed approach has been intensively tested by numerical
comparisons, carried out by means of a MATLAB code, with several examples derived from
the specialized literature. Thenumerical stability issue associatedwith the analytical approach
to gravity field modeling has been investigated by assuming the growth of the relative error in
the computation as a function of the dimensionless target distance, i.e., the distance between
the observation point and the center of a building block in a meshed model over, the size of
the polyhedral element.

Future contributions will address the derivation of analytical formulas for the second-
and third-order gradient of polyhedral bodies endowed with a polynomial density contrast
of arbitrary order.
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Appendix A: Notation

To help the reader suitably manage and interpret the higher-order tensors introduced in the
paper it is convenient to introduce the following notation.

Apart from scalar quantities, a generic tensor of order k will be denoted by a calligraphic
symbol A(k). It may also be equipped with a suffix denoting composition of tensors of the
same order. In particular, we introduce the following quantities

D(2)
s = s ⊗ s = (p + r) ⊗ (p + r) = p ⊗ p + (p ⊗ r + r ⊗ p) + r ⊗ r =

= D(2)
pp + D(2)

pr + D(2)
rr ,

(204)

where the rank-two tensor product a ⊗ b between vectors a and b is defined as

(a ⊗ b)c = (b · c)a ∀ a,b, c ∈ V (205)

and V is a vector space of suitable dimension.
The previous definition can be generalized to tensors of order greater than two

(a ⊗ b ⊗ c)d = (c · d)(a ⊗ b) ∀ a,b, c,d ∈ V, (206)

and so on.
Extending further the definition (204) we have

D(3)
s = s ⊗ s ⊗ s = (p + r) ⊗ (p + r) ⊗ (p + r) = D(3)

ppp + D(3)
ppr + D(3)

prr + D(3)
rrr,

(207)

where D(3)
ppp = p ⊗ p ⊗ p, D(3)

rrr = r ⊗ r ⊗ r,

D(3)
ppr = p ⊗ p ⊗ r + p ⊗ r ⊗ p + r ⊗ p ⊗ p = D(2)

pp ⊗ r + p ⊗ r ⊗ p + r ⊗ D(2)
pp , (208)

and

D(3)
prr = p ⊗ r ⊗ r + r ⊗ p ⊗ r + r ⊗ r ⊗ p. (209)

Analogously, we shall set

D(4)
s = s ⊗ s ⊗ s ⊗ s = D(4)

pppp + D(4)
pppr + D(4)

pprr + D(4)
prrr + D(4)

rrrr, (210)

where D(4)
pppp = p ⊗ p ⊗ p ⊗ p,D(4)

rrrr = r ⊗ r ⊗ r ⊗ r and

D(4)
pppr = p ⊗ p ⊗ p ⊗ r + p ⊗ p ⊗ r ⊗ p + p ⊗ r ⊗ p ⊗ p + r ⊗ p ⊗ p ⊗ p, (211)

D(4)
pprr = p ⊗ p ⊗ r ⊗ r + p ⊗ r ⊗ p ⊗ r + p ⊗ r ⊗ r ⊗ p

+r ⊗ p ⊗ p ⊗ r + r ⊗ p ⊗ r ⊗ p + r ⊗ r ⊗ p ⊗ p, (212)

D(4)
prrr = p ⊗ r ⊗ r ⊗ r + r ⊗ p ⊗ r ⊗ r + r ⊗ r ⊗ p ⊗ r + r ⊗ r ⊗ r ⊗ p . (213)

In the body of the paper we shall also use the symbolD(2)
si to emphasize that the vector r

appearing in the definition ofD(2)
s does belong to the i th face Fi of the polyhedral boundary

∂Ω of Ω . Hence

D(2)
si = D(2)

pp + D(2)
pri + D(2)

ri ri = p ⊗ p + (p ⊗ ri + ri ⊗ p) + ri ⊗ ri . (214)

Finally, setting r = ri , D(3)
si is provided by formulas (207–209) and D(4)

si by formulas
(211–213).
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To effectively handle tensor operation, each tensor has to be associated with the relevant
matrix representation.While this is trivial for first-order (vector) and second-order (rank-two)
tensors

[D(1)
s ] = [s] =

⎡

⎣
x
y
z

⎤

⎦ , [D(2)
s ] = [s ⊗ s] =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ , (215)

the task is less trivial for tensors whose rank is greater than two. Actually, there is not a
unique way to construct a matrix associated with such tensors. Accordingly, as a hint for
programming, we shall adopt the procedure exploited in MATLAB. In particular, for a rank-
three tensor, MATLAB stores the components associated with the third index in pages; in
turn these are ordered along the third dimension of an ideal cube whose slices are the usual
two-dimensional matrices.

Hence, to be specific

[A(3)] = [a ⊗ b ⊗ c] =
⎡

⎢⎣
A(3)

1

A(3)
2

A(3)
3

⎤

⎥⎦ , (216)

where

A(3)
1 = [a ⊗ b] c1 =

⎡

⎣
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤

⎦ c1 =
⎡

⎣
A111 A121 A131

A211 A221 A231

A311 A321 A331

⎤

⎦ , (217)

A(3)
2 = [a ⊗ b] c2 =

⎡

⎣
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤

⎦ c2 =
⎡

⎣
A112 A122 A132

A212 A222 A232

A312 A322 A332

⎤

⎦ , (218)

A(3)
3 = [a ⊗ b] c3 =

⎡

⎣
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤

⎦ c3 =
⎡

⎣
A113 A123 A133

A213 A223 A233

A313 A323 A333

⎤

⎦ . (219)

and the three blocks of the previous vector represent the three pages of the matrix represen-
tation adopted by MATLAB to represent the tensor a ⊗ b ⊗ c. In particular

[D(3)
s ] = [s ⊗ s ⊗ s] =

⎡

⎢⎣
D(3)

s1
D(3)

s2
D(3)

s3

⎤

⎥⎦ , (220)

where

D(3)
s1 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ x D(3)
s2 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ y D(3)
s3 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ z . (221)

We generalize the previous approach to tensors having rank greater than three by defining
a matrix of matrices, i.e., a hypermatrix, for rank-four tensors and a vector of hypermatrices
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for rank-five tensors. For instance

[A(4)] = [a ⊗ b ⊗ c ⊗ d] =

⎡

⎢⎢⎢⎢⎣

A(4)
11

A(4)
21

A(4)
31

A(4)
12

A(4)
22

A(4)
32

A(4)
13

A(4)
23

A(4)
33

⎤

⎥⎥⎥⎥⎦

=
⎡

⎣
[a ⊗ b] c1 d2
[a ⊗ b] c2 d2
[a ⊗ b] c3 d2

[a ⊗ b] c1 d3
[a ⊗ b] c2 d3
[a ⊗ b] c3 d3

[a ⊗ b] c1 d1
[a ⊗ b] c2 d1
[a ⊗ b] c3 d1

⎤

⎦ .

(222)

Its specialization to D(4)
s yields

[D(4)
s ] = [s ⊗ s ⊗ s ⊗ s] =

⎡

⎢⎢⎢⎢⎣

D(4)
s11

D(4)
s21

D(4)
s31

D(4)
s12

D(4)
s22

D(4)
s32

D(4)
s13

D(4)
s23

D(4)
s33

⎤

⎥⎥⎥⎥⎦
, (223)

where

D(4)
s11 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ x2 D(4)
s12 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ xy D(4)
s13 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ xz , (224)

D(4)
s21 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ yx D(4)
s22 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ y2 D(4)
s23 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ yz , (225)

D(4)
s31 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ zx D(4)
s32 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ zy D(4)
s33 =

⎡

⎣
x2 xy xz
yx y2 yz
zx zy z2

⎤

⎦ z2 . (226)

The previous tensors can be combined to provide scalar quantities or, more generally,
lower-rank tensors according to the following rules expressed in terms of their Cartesian
components.

A(2) · B(2) = Ai j Bi j , A(3) · B(3) = Ai jk Bi jk, A(4) · B(4) = Ai jkl Bi jkl (227)

and

A(3) · B(2) = Ai jk B jk, A(4) · B(3) = Ai jkl B jkl , .... . (228)

Actually, formula (227) allows one to express the density function (1) in the more concise
form (4) by setting

C(1) =
⎡

⎣
c100
c010
c001

⎤

⎦ , C(2) =
⎡

⎣
c200 c110/2 c101/2
c110/2 c020 c011/2
c101/2 c011/2 c002

⎤

⎦ , C(3) =

⎡

⎢⎢⎢⎣

C(3)
1

C(3)
2

C(3)
3

⎤

⎥⎥⎥⎦ , (229)

where

C(3)
1 =

⎡

⎣
C111 C121 C131
C211 C221 C231
C311 C321 C331

⎤

⎦ C(3)
2 =

⎡

⎣
C112 C122 C132
C212 C222 C232
C312 C322 C332

⎤

⎦ C(3)
3 =

⎡

⎣
C113 C123 C133
C213 C223 C233
C313 C323 C333

⎤

⎦ ,
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(230)

C111 = c300 C222 = c030 C333 = c003
C112 = C121 = C211 = c210/3 C113 = C131 = C311 = c201/3
C223 = C232 = C322 = c021/3 C122 = C221 = C212 = c120/3
C133 = C331 = C313 = c102/3 C233 = C332 = C323 = c012/3
C123 = C132 = C213 = C231 = C312 = C321 = c111/6.

(231)

Analogously, it turns out to be

C(4) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎣
C1111 C1211 C1311
C2111 C2211 C2311
C3111 C3211 C3311

⎤

⎦

⎡

⎣
C1121 C1221 C1321
C2121 C2221 C2321
C3121 C3221 C3321

⎤

⎦

⎡

⎣
C1131 C1231 C1331
C2131 C2231 C2331
C3131 C3231 C3331

⎤

⎦

⎡

⎣
C1112 C1212 C1312
C2112 C2212 C2312
C3112 C3212 C3312

⎤

⎦

⎡

⎣
C1122 C1222 C1322
C2122 C2222 C2322
C3122 C3222 C3322

⎤

⎦

⎡

⎣
C1132 C1232 C1332
C2132 C2232 C2332
C3132 C3232 C3332

⎤

⎦

⎡

⎣
C1113 C1213 C1313
C2113 C2213 C2313
C3113 C3213 C3313

⎤

⎦

⎡

⎣
C1123 C1223 C1323
C2123 C2223 C2323
C3123 C3223 C3323

⎤

⎦

⎡

⎣
C1133 C1233 C1333
C2133 C2233 C2333
C3133 C3233 C3333

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (232)

Its particular, setting

C(4) · (s ⊗ s ⊗ s ⊗ s) = Si i i i + Si i i j + Si i j j + Si i jk, (233)

where

Si i i i = C1111x4 + C2222y4 + C3333z4, (234)

Si i i j =
(
C1112 + C1121 + C1211 + C2111

)
x3y +

(
C1222 + C2122 + C2212 + C2221

)
xy3

+
(
C2223 + C2232 + C2322 + C3222

)
y3z +

(
C2333 + C3233 + C3323 + C3332

)
yz3

+
(
C3331 + C3313 + C3133 + C1333

)
z3x +

(
C3111 + C1311 + C1131 + C1113

)
zx3,

(235)

Si i j j =
(
C1122 + C2211 + C1212 + C2121 + C1221 + C2112

)
x2y2

+
(
C2233 + C3322 + C2323 + C3232 + C2332 + C3223

)
y2z2

+
(
C3311 + C1133 + C3131 + C1313 + C3113 + C1331

)
z2x2, (236)

Si i jk =
(
C1123 + C1231 + C1312 + C1213 + C1321 + C1132 + C2311

+C3112 + C2113 + C3211 + C2131 + C3121
)
x2yz

+
(
C2231 + C2312 + C2123 + C2321 + C2132 + C2213 + C3122

+C1223 + C3221 + C1322 + C3212 + C1232
)
xy2z

+
(
C3312 + C3123 + C3231 + C3132 + C3213 + C3321 + C1233

+C2331 + C1332 + C2133 + C1323 + C2313
)
xyz2, (237)

one has

C1111 = c400 C2222 = c040 C3333 = c004, (238)
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C1112 = C1121 = C1211 = C2111 = c310/4 C1222 = C2122 = C2212 = C2221 = c130/4

C2223 = C2232 = C2322 = C3222 = c031/4 C2333 = C3233 = C3323 = C3332 = c013/4

C3331 = C3313 = C3133 = C1333 = c103/4 C3111 = C1311 = C1131 = C1113 = c301/4,

(239)

C1122 = C2211 = C1212 = C2121 = C1221 = C2112 = c220/6

C2233 = C3322 = C2323 = C3232 = C2332 = C3223 = c022/6

C3311 = C1133 = C3131 = C1313 = C3113 = C1331 = c202/6, (240)

C1123 = C1231 = C1312 = C1213 = C1321 = C1132 = C2311 =
= C3112 = C2113 = C3211 = C2131 = C3121 = c211/12

C2231 = C2312 = C2123 = C2321 = C2132 = C2213 = C3122 =
= C1223 = C3221 = C1322 = C3212 = C1232 = c121/12

C3312 = C3123 = C3231 = C3132 = C3213 = C3321 = C1233 =
= C2331 = C1332 = C2133 = C1323 = C2313 = c112/12. (241)

In conclusion, it prompts from the previous formulas that the elements of D(k)
s , k =

1, . . . , 4, have the same structure as C(k) with the subscripts 1, 2, 3 in C(k) indicating which
factors x, y, z are present in the corresponding elements ofD(k)

s .
Finally, in the body of the paper we shall carefully distinguish between

(A(2) ⊗ b)i jk = (A(2) ⊗ b)123 = Ai j bk, (242)

and

(A(2) ⊗132 b) = (A(2) ⊗ b)132 = (A(2) ⊗ b)ik j = Aik b j . (243)

Analogously

(A(3) ⊗ b)1234 = Ai jk bl , (b ⊗ A(3))1234 = bi A jkl , (244)

while

(A(3) ⊗1243 b) = (A(3) ⊗ b)1243 = Ai jl bk, (A(3) ⊗ b)1423 = Ail j bk, (245)

and

(A(2) ⊗ b ⊗ c)1423 = Ail b j ck, (a ⊗ B(2) ⊗ c)1243 = ai B jl ck . (246)

Furthermore

(A(2) ⊗ B(2))1234 = Ai j Bkl , (247)

but

(A(2) ⊗ B(2))1324 = Aik B jl , (A(2) ⊗ B(2))1342 = Aik Bl j , (248)

and so on.
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Appendix B: Evaluation of 2D Integrals Related to the GP by Means of
1D Integrals

We are going to show how to evaluate analytically the 2D integrals

P(m,1/2)
Fi

=
∫

Fi

[⊗ρi ,m]
(ρi · ρi + d2i )1/2

dAi m ∈ [0, 4] (249)

introduced in (33) and extended to polygonal faces Fi .
As a matter of fact we only need to evaluate the integrals (249) for m > 1 since the

additional ones have been computed in D’Urso (2012, 2013a, 2014a); the relevant expres-
sions being reported in Sect. 2.3. To evaluate the integral (249) we shall exploit the following
differential identities [ Gurtin et al. (2010)]

grad (a · b) = [grad a]T b + [gradb]T a, (250)

div [ϕ a] = gradϕ · a + ϕ diva, (251)

grad [ϕ a] = a ⊗ gradϕ + ϕ grada, (252)

div [ϕ (a ⊗ b)] = (a ⊗ b)gradϕ + ϕ(grad a)b + ϕ a divb, (253)

grad [ϕ (a ⊗ b)] = (a ⊗ b) ⊗ gradϕ + ϕ grad a ⊗132 b + ϕ a ⊗ gradb, (254)

div [ϕ (a ⊗ b ⊗ c)] = (a ⊗ b ⊗ c)gradϕ + ϕ
[
(grad a) c

]⊗ b

+ϕ a ⊗ [
(gradb) c

]+ ϕ (a ⊗ b)div c, (255)

grad [ϕ (a ⊗ b ⊗ c)] = a ⊗ b ⊗ c ⊗ gradϕ + ϕ (grad a ⊗ b ⊗ c)1423
+ϕ (a ⊗ gradb ⊗ c)1243 + ϕ a ⊗ b ⊗ grad c, (256)

grad [ϕ (a ⊗ b ⊗ c ⊗ d)] = a ⊗ b ⊗ c ⊗ d ⊗ gradϕ + ϕ (grad a ⊗ b ⊗ c ⊗ d)15234

+ϕ (a ⊗ gradb ⊗ c ⊗ d)12534 + ϕ (a ⊗ b ⊗ grad c ⊗ d)12354

+ϕ (a ⊗ b ⊗ c ⊗ gradd), (257)

where ϕ, a,b and c are smooth scalar and vector fields while (·)T stands for transpose. They
are needed to apply generalized versions of Gauss’ theorem (Tang 2006) so as to express 2D
integrals as integrals extended to the boundary.

To make the paper reasonably self-contained we report a short proof of some of the
identities (250–257). Adopting the convention of repeated indices and denoting by (·), j the
derivation of the quantity (·) with respect to the j-th variable, one has

grad(a · b) = (ai bi ), j = ai, j bi + ai bi, j = (grad a)Tji bi + (gradb)Tji ai . (258)

Analogously

div [ϕ (a ⊗ b)] = (ϕ ai b j ), j = ai b j ϕ, j + ϕ ai, j b j + ϕ ai b j, j

= (a ⊗ b) gradϕ + ϕ (grad a)b + ϕ a divb,
(259)

and so on.
We shall also set

P(1/2·0)
Fi

=
∫

Fi

(ρi · ρi + d2i )1/2dAi ,

P(1/2·1)
Fi

=
∫

Fi

(ρi · ρi + d2i )1/2ρidAi ,
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P(1/2·2)
Fi

=
∫

Fi

(ρi · ρi + d2i )1/2ρi ⊗ ρidAi , (260)

and make use of the symbol introduced in (43).

• Integral (249) for m = 2

Let us first apply the differential identity (252) to the following expression

grad
[
(ρi · ρi + d2i )1/2ρi

] = ρi ⊗ 1

2

2 ρi

(ρi · ρi + d2i )1/2
+ (ρi · ρi + d2i )1/2 grad ρi

= ρi ⊗ ρi

(ρi · ρi + d2i )1/2
+ I(2)(ρi · ρi + d2i )1/2,

(261)

where I(2) is the rank-two identity tensor. Hence

P(2,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi = P[(1/2) 1⊗]

∂Fi
− I(2)P(1/2·0)

Fi
. (262)

To express the last integral on the right-hand side as a function of boundary integrals we
exploit the differential identity (251) to get

div
[
(ρi · ρi + d2i )1/2 ρi

] = grad(ρi · ρi + d2i )1/2 · ρi + (ρi · ρi + d2i )1/2 divρi

= ρi · ρi

(ρi · ρi + d2i )1/2
+ 2(ρi · ρi + d2i )1/2

= 3(ρi · ρi + d2i )1/2 − d2i
(ρi · ρi + d2i )1/2

.

(263)

Hence

P(1/2·0)
Fi

=
∫

Fi

(ρi · ρi + d2i )1/2dAi = 1

3

[ ∫

∂Fi

(ρi · ρi + d2i )1/2ρi · νi dsi + d2i P
(0,1/2)
Fi

]
,

(264)

or equivalently, invoking (47),

P(1/2·0)
Fi

= 1

3

[
P[(1/2) 1·]

∂Fi
+ d2i

(
P[(1/2) 1·,1]

∂Fi
− αi |di |

)]
= 1

3
P0I∂Fi

. (265)

Replacing the previous formula in (262) we finally get the desired result

P(2,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi = P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

, (266)

an expression depending only upon boundary integrals.
Analogously

div(ϕ a ⊗ b) = (ϕ ai b j ), j = ai b j ϕ, j +ϕ ai, j b j + ϕ aib j, j

= (a ⊗ b)gradϕ + ϕ(grad a)b + ϕ a divb,
(267)

and so on.

• Integral (249) for m = 3
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Exploiting the differential identity (254) we get

grad
[
(ρi · ρi + d2i )1/2 (ρi ⊗ ρi )

]

= (ρi ⊗ ρi ) ⊗ grad(ρi · ρi + d2i )1/2 + (ρi · ρi + d2i )1/2
[
grad ρi ⊗132 ρi + ρi ⊗ grad ρi

]

= ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )1/2
+ (ρi · ρi + d2i )1/2

[
I(2) ⊗132 ρi + ρi ⊗ I(2)

]
,

(268)

whose integral extended to Fi provides, on account of (260)

P(3,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi

=
∫

∂Fi

(ρi · ρi + d2i )1/2ρi ⊗ ρi ⊗ νi dsi − I(2) ⊗132 P
(1/2·1)
Fi

− P(1/2·1)
Fi

⊗ I(2)

= P[(1/2) 2⊗]
∂Fi

− I(2) ⊗132 P
(1/2·1)
Fi

− P(1/2·1)
Fi

⊗ I(2).

(269)

To express P(1/2·1)
Fi

as a function of a boundary integrals we apply formula (253) to

div
[
(ρi · ρi + d2i )1/2 (ρi ⊗ ρi )

]

= [
ρi ⊗ grad(ρi · ρi + d2i )1/2 + (ρi · ρi + d2i )1/2(grad ρi )

]
ρi + 2(ρi · ρi + d2i )1/2ρi

= (ρi · ρi )ρi

(ρi · ρi + d2i )1/2
+ 3(ρi · ρi + d2i )1/2ρi

= 4(ρi · ρi + d2i )1/2ρi − d2i
ρi

(ρi · ρi + d2i )1/2
.

(270)

Accordingly, it turns out to be

P(1/2·1)
Fi

=
∫

Fi

(ρi · ρi + d2i )1/2ρidAi

= 1

4

[ ∫

∂Fi

(ρi · ρi + d2i )1/2ρi (ρi · νi ) dsi + d2i P
(1,1/2)
Fi

]

= 1

4

[
P[(1/2) 2·]

∂Fi
+ d2i P

[(1/2) 0]
∂Fi

]
= 1

4
P1I∂Fi

, (271)

on account of (45).
In conclusion, substituting the previous expression in (269), one has

P(3,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi = P[(1/2) 2⊗]

∂Fi
− 1

4

[
I(2) ⊗132 P

1I
∂Fi

+ P1I∂Fi
⊗ I(2)

]
. (272)

• Integral (249) for m = 4
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The differential identity (256) provides

grad
[
(ρi · ρi + d2i )1/2 (ρi ⊗ ρi ⊗ ρi )

] = (ρi ⊗ ρi ⊗ ρi ) ⊗ grad(ρi · ρi + d2i )1/2

+ (ρi · ρi + d2i )1/2
[(

grad ρi ⊗ ρi ⊗ ρi

)

1423

+
(
ρi ⊗ grad ρi ⊗ ρi

)

1243
+ ρi ⊗ ρi ⊗ grad ρi

]

= ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )1/2
+ (ρi · ρi + d2i )1/2

[(
I(2) ⊗ ρi ⊗ ρi

)

1423
+
(
ρi ⊗ I(2) ⊗ ρi

)

1243
+ ρi ⊗ ρi ⊗ I(2)

]
.

(273)

Hence, integrating over Fi one gets

P(4,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi =

∫

∂Fi

(ρi · ρi + d2i )1/2 ρi ⊗ ρi ⊗ ρi ⊗ νi dsi

−
∫

Fi

(ρi · ρi + d2i )1/2
[(

I(2) ⊗ ρi ⊗ ρi

)

1423

+
(
ρi ⊗ I(2) ⊗ ρi

)

1243
+ ρi ⊗ ρi ⊗ I(2)

]
dAi

= P[(1/2) 3⊗]
∂Fi

− I(2) ⊗1423 P
(1/2·2)
Fi

−P(1/2·2)
Fi

⊗1243 I(2) − P(1/2·2)
Fi

⊗ I(2).

(274)

To express P(1/2·2)
Fi

in terms of boundary integrals, we invoke formula (255) to get

div
[
(ρi · ρi + d2i )1/2ρi ⊗ (ρi ⊗ ρi )

] =
=
[

ρi

(ρi · ρi + d2i )1/2
· ρi

]
(ρi ⊗ ρi ) + (ρi · ρi + d2i )1/2

[[
(grad ρi ) ρi

]⊗ ρi

+ρi ⊗ [
(grad ρi ) ρi

]+ (ρi ⊗ ρi )div ρi

]
,

(275)

so that

div
[
(ρi · ρi + d2i )1/2ρi ⊗ (ρi ⊗ ρi )

]

= ρi · ρi

(ρi · ρi + d2i )1/2
(ρi ⊗ ρi ) + 4(ρi · ρi + d2i )1/2(ρi ⊗ ρi )

= 5(ρi · ρi + d2i )1/2(ρi ⊗ ρi ) − d2i
(ρi ⊗ ρi )

(ρi · ρi + d2i )1/2
. (276)

Thus, we infer, upon integrating over Fi

P(1/2·2)
Fi

=
∫

Fi

(ρi · ρi + d2i )1/2 (ρi ⊗ ρi )dAi

= 1

5

[ ∫

∂Fi

(ρi · ρi + d2i )1/2(ρi ⊗ ρi )(ρi · νi )dsi + d2i P
(2,1/2)
Fi

]

= 1

5

{
P[(1/2) 3·]

∂Fi
+ d2i

[
P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

]}
= 1

5
P2I∂Fi , (277)
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where we have invoked formula (266). Hence replacing the previous expression in (274) we
get

P(4,1/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )1/2
dAi

= P[(1/2) 3⊗]
∂Fi

− 1

5

[
I(2) ⊗1423 P

2I
∂Fi

+ P2I∂Fi ⊗1243 I(2) + P2I∂Fi ⊗ I(2)
]
.

(278)

Appendix C: Explicit Expressions of Integrals

We report the algebraic expressions of some definite integrals repeatedly referred to in the
body of the paper although some of them have been already computed elsewhere, D’Urso
(2013a, 2014a, b), and denominated in a different way.

Recalling the definition of the quantities p j , q j , u j , v j , introduced in formulas (55) and
(56), we set

LN j = ln k j = ln
p j + q j + √

p j
√
p j + 2q j + v j

q j + √
p jv j

, (279)

AT N1 j = arctan
|di |(p j + q j )√

p ju j − q2j
√
p j + 2q j + v j

, (280)

AT N2 j = arctan
|di |q j√

p ju j − q2j
√

v j

, (281)

where the suffix (·) j has been added to remind that they all refer to the j-th edge of the
generic face Fi .

It turns out to be

I (1/2·0,1)
j =

1∫

0

(
p jλ

2
j + 2q jλ j + v j

)1/2

p jλ
2
j + 2q jλ j + u j

dλ j

= |di |√
p ju j − q2j

[
AT N1 j − AT N2 j

]
+ 1√

p j
LN j , (282)

I (1/2·0)
j =

1∫

0

(
p jλ

2
j + 2q jλ j + v j

)1/2
dλ j

= (p j + q j )
√
p j + 2q j + v j − q j

√
v j

2p j
− q2j − p jv j

2p3/2j

LN j , (283)

I (1/2·1)
j =

1∫

0

(
p jλ

2
j + 2q jλ j + v j

)1/2
λ j dλ j

= 1

6p2j

[
(2p2j + p jq j + 2p jv j − 3q2j )

√
p j + 2q j + v j
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+(3q2j − 2p jv j )
√

v j

]
+ q3j − p jq jv j

2p5/2j

LN j , (284)

I (1/2·2)
j =

1∫

0

(
p jλ

2
j + 2q jλ j + v j

)1/2
λ2j dλ j

= 1

24p3j

{[
6p3j + p2j (2q j + 3v j ) − p jq j (5q j − 13v j )

+15q3j

]√
p j + 2q j + v j + (13p jv j q j − 15q3j )

√
v j

}

+ (q2j − p jv j )(5q2j − p jv j )

8p7/2j

LN j , (285)

I (1/2·3)
j =

1∫

0

[
p jλ

2
j + 2q jλ j + v j

]1/2
λ3j dλ j = 1

120p4j

{[
24p4j + p3j (6q j + 8v j )

−p2j (14q
2
j + 29q jv j + 16v2j ) + 5p jq

2
j (7q j + 23v j ) − 105q4j

]

√
p j + 2q j + v j

+(16p2jv
2
j − 115p jq

2
j v j + 105q4j )

√
v j

}
+ 7q5j − 10p jq3j v j + 3p2j q jv

2
j

8p9/2j

LN j ,

(286)

I [0,1(1/2)]
j =

1∫

0

dλ j
(
p jλ

2
j + 2q jλ j + u j

)(
p jλ

2
j + 2q jλ j + v j

)1/2 = AT N1 j − AT N2 j

|di |
√
p ju j − q2j

,

(287)

I (0,1/2)
j =

1∫

0

dλ j
(
p jλ

2
j + 2q jλ j + v j

)1/2 = LN j√
p j

,

(288)

I (1,1/2)
j =

1∫

0

λ j dλ j
(
p jλ

2
j + 2q jλ j + v j

)1/2 = 1

p j

(√
p j + 2q j + v j − √

v j

)
− q j

p j
I (0,1/2)
j ,

(289)

I (2,1/2)
j =

1∫

0

λ2j dλ j
(
p jλ

2
j + 2q jλ j + v j

)1/2

= 1

2p2j

[
(p j − 3q j )

√
p j + 2q j + v j + 3q j

√
v j

]

+3q2j − p jv j

2p5/2j

LN j ,
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(290)

I (3,1/2)
j =

1∫

0

λ3j dλ j
(
p jλ

2
j + 2q jλ j + v j

)1/2

= 1

6p3j

[
(2p2j − 5p jq j − 4p jv j + 15q2j )

√
p j + 2q j + v j

+(4p jv j − 15q2j )
√

v j

]
+ 3p jq jv j − 5q3j

2p7/2j

LN j , (291)

I (4,1/2)
j =

1∫

0

λ4j dλ j
(
p jλ

2
j + 2q jλ j + v j

)1/2

= 1

24p4j

[
(6p3j − 14p2j q j + 35p jq

2
j − 105q3j − 9p2jv j

+55p jq jv j )
√
p j + 2q j + v j + (105q3j − 55p jq jv j )

√
v j

]

+35q4j − 30p jq2j v j + 3p2jv
2
j

8p9/2j

LN j . (292)

Appendix D: Evaluation of 2D Integrals Related to the GV by Means of
1D Integrals

We are going to show how to evaluate analytically the 2D integrals

P(m,3/2)
Fi

=
∫

Fi

[⊗ρi ,m]
(ρi · ρi + d2i )3/2

d Ai m = 1, . . . , 5 . (293)

introduced in (113), required to compute the gravity potential.
As a matter of fact the integrals (293) for m = 0, 1, 2 have been already computed in

D’Urso (2014b) and D’Urso and Trotta (2017) and are reported here after for the sake of
completeness. Specifically

P(0,3/2)
Fi

=
∫

Fi

d Ai

(ρi · ρi + d2i )3/2
= αi

|di | −
∫

∂Fi

ρi · νi
(
ρi · ρi

)(
ρi · ρi + d2i

)1/2 dsi

= αi

|di | − P[1·,1(1/2)]
∂Fi

, (294)

P(1,3/2)
Fi

=
∫

Fi

ρi d Ai

(ρi · ρi + d2i )3/2
= −

∫

∂Fi

νi
(
ρi · ρi + d2i

)1/2 dsi = −P[0,1/2]
∂Fi

, (295)

P(2,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi

(ρi · ρi + d2i )3/2
d Ai = −

∫

∂Fi

ρi ⊗ νi
(
ρi · ρi + d2i

)1/2 dsi + P(0,1/2)
Fi

I(2)

= −P[1⊗,1/2]
∂Fi

+ I(2)
[
P[(1/2)1·,1]

∂Fi
− αi |di |

]
. (296)
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For brevity the derivation of the additional formulas required for computing P(m,3/2)
Fi

in
the cases m = 3, 4, 5 is detailed only for m = 3 while final formulas are directly reported
for m = 4, 5.

Exploiting the differential identity (256) one has

grad

[
ρi ⊗ ρi

(ρi · ρi + d2i )1/2

]
= (ρi ⊗ ρi ) ⊗

[
−1

2

2 ρi

(ρi · ρi + d2i )3/2

]

+ 1

(ρi · ρi + d2i )1/2

[
grad ρi ⊗132 ρi + ρi ⊗ grad ρi

]

= − ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
+ 1

(ρi · ρi + d2i )1/2

[
I(2) ⊗132 ρi + ρi ⊗ I(2)

]
, (297)

so that

P(3,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
d Ai

= −
∫

∂Fi

ρi ⊗ ρi ⊗ νi

(ρi · ρi + d2i )1/2
dsi + I(2) ⊗132 P

(1, 1/2)
Fi

+ P(1, 1/2)
Fi

⊗ I(2),

(298)

that can also be written as

P(3,3/2)
Fi

= −P[2⊗, 1/2]
∂Fi

+ I(2) ⊗132 P
(1, 1/2)
Fi

+ P(1, 1/2)
Fi

⊗ I(2)

= −P[2⊗, 1/2]
∂Fi

+ I(2) ⊗132 P
[(1/2) 0]
∂Fi

+ P[(1/2) 0]
∂Fi

⊗ I(2). (299)

By following a similar path of reasoning one has

P(4,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
d Ai

= −
∫

∂Fi

ρi ⊗ ρi ⊗ ρi ⊗ νi

(ρi · ρi + d2i )1/2
dsi + I(2) ⊗1423 P

(2, 1/2)
Fi

+I(2) ⊗1243 P
(2, 1/2)
Fi

+ P(2, 1/2)
Fi

⊗ I(2),

(300)

or, equivalently

P(4,3/2)
Fi

= −P[3⊗, 1/2]
∂Fi

+ I(2) ⊗1423

[
P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

]

+I(2) ⊗1243

[
P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

]
+
[
P[(1/2) 1⊗]

∂Fi
− I(2)

3
P0I∂Fi

]
⊗ I(2).

(301)
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Finally, it turns out to be

P(5,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
d Ai

= −
∫

∂Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi ⊗ νi

(ρi · ρi + d2i )1/2
dsi + I(2) ⊗15234 P

(3, 1/2)
Fi

+P(3, 1/2)
Fi

⊗13425 I(2) + P(3, 1/2)
Fi

⊗12435 I(2) + P(3, 1/2)
Fi

⊗ I(2),

(302)

so that one has

P(5,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
d Ai

= −P[4⊗, 1/2]
∂Fi

+ I(2) ⊗15234

[
P[(1/2)2⊗]

∂Fi
− 1

4

(
I(2) ⊗132 P

1I
∂Fi

+ P1I∂Fi
⊗ I(2)

)]

+
[
P[(1/2)2⊗]

∂Fi
− 1

4

(
I(2) ⊗132 P

1I
∂Fi

+ P1I∂Fi
⊗ I(2)

)]
⊗13425 I(2)

+
[
P[(1/2)2⊗]

∂Fi
− 1

4

(
I(2) ⊗132 P

1I
∂Fi

+ P1I∂Fi
⊗ I(2)

)]
⊗12435 I(2)

+
[
P[(1/2)2⊗]

∂Fi
− 1

4

(
I(2) ⊗132 P

1I
∂Fi

+ P1I∂Fi
⊗ I(2)

)]
⊗ I(2), (303)

an expression that can also be written as

P(5,3/2)
Fi

=
∫

Fi

ρi ⊗ ρi ⊗ ρi ⊗ ρi ⊗ ρi

(ρi · ρi + d2i )3/2
d Ai

= −P[4⊗, 1/2]
∂Fi

+ P(5,3/2,A)
∂Fi

+ P(5,3/2,B)
∂Fi

+ P(5,3/2,C)
∂Fi

+ P(5,3/2,D)
∂Fi

,

(304)

where

P(5,3/2,A)
∂Fi

= I(2) ⊗15234 P
[(1/2)2⊗]
∂Fi

−1

4

[(
I(2) ⊗ I(2) ⊗ P1I∂Fi

)

15243

+
(
I(2) ⊗ P1I∂Fi

⊗ I(2)
)

15234

]
,

(305)

P(5,3/2,B)
∂Fi

= P[(1/2)2⊗]
∂Fi

⊗13425 I(2)

−1

4

[(
I(2) ⊗ P1I∂Fi

⊗ I(2)
)

14325

+
(
P1I∂Fi

⊗ I(2) ⊗ I(2)
)

13425

]
,

(306)

P(5,3/2,C)
∂Fi

= P[(1/2)2⊗]
∂Fi

⊗12435 I(2)

−1

4

[(
I(2) ⊗ P1I∂Fi

⊗ I(2)
)

14235

+
(
P1I∂Fi

⊗ I(2) ⊗ I(2)
)

12435

]
,

(307)

P(5,3/2,D)
∂Fi

= P[(1/2)2⊗]
∂Fi

⊗ I(2)

−1

4

[(
I(2) ⊗ P1I∂Fi

⊗ I(2)
)

13245

+
(
P1I∂Fi

⊗ I(2) ⊗ I(2)
)]

. (308)
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